
IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 20, 15 OCTOBER 2023 18387

A Multimodel Edge Computing Offloading

Framework for Deep-Learning Application

Based on Bayesian Optimization
Zidi Zhao , Hong Zhang , Liqiang Wang , and Haijun Huang

Abstract—With the rapid development of the Internet of
Things (IoT), data generated by IoT devices are also increasing
exponentially. The edge computing has alleviated the problems
of limited network and transmission delay when processing tasks
of IoT devices in traditional cloud computing. And with the pop-
ularity of deep learning, more and more terminal devices are
embedded with artificial intelligence (AI) processors for higher
processing capability at the edge. However, the problems of
deep-learning task offloading in a heterogeneous edge computing
environment have not been fully investigated. In this article, a
multimodel edge computing offloading framework is proposed,
using NVIDIA Jetson edge devices (Jetson TX2, Jetson Xavier
NX, and Jetson Nano) and GeForce RTX GPU servers (RTX3080
and RTX2080) to simulate the edge computing environment, and
make binary computational offloading decisions for face detec-
tion tasks. We also introduce a Bayesian optimization algorithm,
namely, modified tree-structured Parzen estimator (MTPE), to
reduce the total cost of edge computation within a time slot
including response time and energy consumption, and ensure
the accuracy requirements of face detection. In addition, we
employ the Lyapunov model to obtain the harvesting energy
between time slots to keep the energy queue stable. Experiments
reveal that MTPE algorithm can achieve the globally optimal
solution in fewer iterations. The total cost of multimodel edge
computing framework is reduced by an average of 17.94% com-
pared to a single-model framework. In contrast to the double
deep Q-network (DDQN), our proposed algorithm can decrease
the computational consumption by 23.01% for obtaining the
offloading decision.

Index Terms—Bayesian optimization, deep learning, edge com-
puting, Lyapunov drift function, modified tree-structured Parzen
estimator (MTPE), multimodel.

I. INTRODUCTION

I
N RECENT years, the variety and number of Internet of

Things (IoT) devices have been growing rapidly, according

Manuscript received 2 April 2023; accepted 22 May 2023. Date of publica-
tion 26 May 2023; date of current version 9 October 2023. The work of Zidi
Zhao, Hong Zhang, and Haijun Huang was supported in part by the Natural
Science Foundation of Hebei Province of China under Grant F2019201361,
and in part by the Science and Technology Research Project of Hebei Higher
Education Institutions under Grant QN2020133. The work of Liqiang Wang
was supported in part by NSF under Grant NSF-1952792. (Corresponding

author: Hong Zhang.)

Zidi Zhao, Hong Zhang, and Haijun Huang are with the School of Cyber
Security and Computer, Hebei University, Baoding 071002, Hebei, China
(e-mail: zhaozidi@stumail.hbu.edu.cn; hzhang@hbu.edu.cn; huanghaijun@
stumail.hbu.edu.cn).

Liqiang Wang is with the Department of Computer Science, University of
Central Florida, Orlando, FL 32816 USA (e-mail: liqiang.wang@ucf.edu).

Digital Object Identifier 10.1109/JIOT.2023.3280162

to Statista [1], the number of IoT devices worldwide is forecast

to almost triple from 8.74 billion in 2020 to more than 25.4

billion IoT devices in 2030. IoT devices in the consumer seg-

ment, such as smartphones, connected (autonomous) vehicles,

asset tracking & monitoring, account for around 60 percent of

all connected IoT devices in 2020. The explosive growth of

IoT devices and the development of 5G technology have sub-

sequently promoted their applications in Internet of Medical

Things (IoMT) [2], Internet of Vehicles (IoV) [3] and other

scenarios [4], [5], [6]. Unfortunately, various data generated

by IoT devices are not just literal data and pictures, but also

include streaming video that take up a bunch of resources

and are time-critical. In intelligent scenarios, although cloud

platforms may provide higher computing capacity, there are

many issues with them, such as limited network resources [7],

transmission delay [8], privacy leakage [9] and other prob-

lems [10], which could be considerably challenging for IoT

applications. The concepts of edge computing [11], fog com-

puting [12], and cloudlet [13] have been put forward to

alleviate these problems by moving computing resources

from the cloud to the edge to reduce cloud computing load

beforehand.

The common three-layer edge computing framework, also

known as the “Cloud–Edge–End” framework [14], is shown

in Fig. 1. The traditional end device is a device that only has

the function of data collection, and the edge server nearby per-

forms data processing tasks. However, with the upgrade of end

devices, they can also perform edge computing with embedded

artificial intelligence (AI) processors [15], such as surveillance

camera [16], unmanned aerial vehicle (UAV) [17], which fur-

ther relieve the pressure of the cloud. Furthermore, edge and

cloud computing are not mutually exclusive. In large scenar-

ios, numerous edge servers can form an edge cloud closer to

the terminal, which can be a part of cloud computing.

An AI application task can be divided into several subtasks,

which can be offloaded according to the capability of edge

servers and subtask complexity. For example, a face recogni-

tion task can be roughly divided into four subtasks: 1) image

acquisition; 2) image preprocessing; 3) face detection; and

4) face recognition. The first three steps can be handled by

edge devices, whereas the feature extraction results are usu-

ally transmitted to the cloud for face matching and recognition.

Koubaa et al. [18] compared the time consumption of face

recognition tasks in cloud, edge and hybrid architectures, and

found that the hybrid architecture took the shortest time, which

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

18388 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 20, 15 OCTOBER 2023

Fig. 1. Edge computing framework.

means the cloud and edge can complement each other and

jointly improve task processing efficiency. There are four edge

computing offloading schemes between end devices and edge

servers, which are one-to-one, one-to-many, many-to-one, and

many-to-many [19]. These schemes can be used in various

offloading scenarios, which fully embodies the flexibility and

scalability of edge computing.

However, there are still several open issues and challenges

in edge computing offloading.

1) Model Selection: Due to the heterogeneous environ-

ment of the “Cloud–Edge–End” framework, a single

deep-learning model may not fit all computing plat-

forms well. For example, GPU resources of end devices

cannot support the demands of sophisticated neural

networks such as Resnet50. Then, we need to choose

certain lightweight models suitable for heterogeneous

end devices to process AI computing requests.

2) Tradeoff of Accuracy and Efficiency: In practice, the

number of tasks generated by end devices in different

time slots is not uniform. As computation scale up, the

accuracy disparity of different models becomes increas-

ingly pronounced. Lower end devices may not support

the high-accuracy requirement, while offloading to the

edge server with a high-accuracy model diminishes the

efficiency. Therefore, the accuracy and efficiency at vari-

ous task levels cannot be balanced by deploying a single

model on edge servers.

3) Complex Offloading Algorithm: With the expan-

sion of the computation scale, offloading algorithms

such as metaheuristic approach and deep reinforce-

ment learning become much more complex than

before in terms of initialization parameters and

iterations.

4) Energy Supply: The total cost of task offloading within a

single time slot is often considered in previous research

for edge computing. Yet how to supply energy among

time slots to ensure the stability of energy queue is still

a critical problem that needs to be resolved.

In response to these shortcomings and challenges, we

propose a multimodel edge computing framework for a many-

to-many offloading scheme to improve the efficiency and

accuracy of AI applications on edge IoT devices, keep energy

consumption within an ideal range, create a more intelligent

edge computing environment, and make end and edge devices

highly cohesive. Here, we take face recognition with a wide

range of scenarios as an example, because face recognition is

conducted on a variety of end and edge devices, such as sta-

tions, commercial districts and military bases, meanwhile, face

recognition often requires good performance on accuracy, effi-

ciency, and energy consumption. In our experiment, we deploy

face detection models on different Jetson devices and edge

servers to construct edge computing environments. In partic-

ular, we propose a modified Bayesian optimization algorithm

named modified tree-structured Parzen estimator (MTPE) to

guide the offloading decision.

The offloading indicators are regarded as the parameters that

need to be configured by MTPE to minimize the time and

energy consumption of face detection, maintain the accuracy

at an ideal level, and improve the Quality of Experience (QoE).

Finally, we ensure energy stability by minimizing the upper

bound of the Lyapunov drift function, and determining the

optimal values of the initial energy and the energy replenished

between time slots.

The main contributions of this article are summarized as

follows:

1) We propose a novel edge computing offloading frame-

work based on multiple models conduct extensive exper-

iment on real end devices including Jetson GPUs and

edge servers with different backbone networks to eval-

uate our framework on various scenarios. Deploying

multiple models in edge computing environment can

extremely balance the accuracy and efficiency at dif-

ferent task levels.

2) We introduce an MTPE algorithm to minimize the

offloading cost of the whole edge computing environ-

ment in a single time slot. The optimized objectives such

as accuracy, time and energy consumption are fully con-

sidered in our algorithm to choose the global optimal

solution as possible by establishing the probability den-

sity function.

3) We also provide a dynamic energy adjustment algorithm

to keep the energy queue stable. The Lyapunov drift

function is employed to describe the energy change of

the dynamic energy queue and minimize these fluctua-

tions by limiting the upper bound of the drift function.

To obtain the harvesting energy among time slots and

the limitation of the initial energy, we calculate the min-

imum point of a unary quadratic function, which keeps

the energy adequate throughout the processing cycle.

The remainder of this article is organized as follows. The

related work is summarized in Section II. The system model

and our algorithm are introduced in Section III. Experimental

results are given in Section IV, and the conclusion and future

work are presented in Section V.

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: MULTIMODEL EDGE COMPUTING OFFLOADING FRAMEWORK FOR DEEP-LEARNING APPLICATION 18389

II. RELATED WORK

At present, there are many research achievements in the

field of edge computing. In addition to the common research

on offloading problems, deep-learning technology in AI appli-

cations has been widely integrated into the edge computing

framework. Wang et al. summarized the concepts of edge

intelligence and intelligent edge in [20].

For edge intelligence, most of the research on the appli-

cation of embedded AI devices in edge computing systems

is related to object detection and recognition. Li et al. [21]

proposed a driver fatigue detection system based on CNN

and tested the performance of the detection system in real

driving scenarios. In this article, Jetson Nano was used as

an edge computing device for real-time detection to improve

robustness and accuracy of the system. Chang et al. [15]

presented a wearable assistive system based on AI edge com-

puting technology and adopted deep-learning technology for

real-time recognition of zebra crossing images. Liu et al. [22]

designed a food recognition system based on edge comput-

ing to make an accurate dietary assessment and overcome

the problems of system delay and low battery life of mobile

devices in mobile cloud computing. Both [3] and [17] studied

the traffic video surveillance system based on edge comput-

ing platform. Wan et al. [3] offloaded vehicle detection tasks

to edge nodes with Jetson TX2, while the system designed

in [17] was embedded in the UAV to track and detect vehicles

in real-time. Neto et al. [23] proposed a distributed system for

video analysis, which divided the heavy processing of large-

scale video streams into various machine learning tasks and

deployed these tasks as data processing workflows on edge

devices equipped with neural network hardware accelerators.

Rajavel et al. [6] proposed a video surveillance system based

on edge computing for object tracking and behavior recogni-

tion in IoMT. In this article, the detection of moving objects

was improved by combining background subtraction and the

DNN algorithm, which brought robustness and intelligence to

the distributed video surveillance system. These studies fully

demonstrated the wide applications of deep learning in edge

computing frameworks. However, they only considered single

model to solve deep-learning problems rather than multimodel

systems when offloading, which did not take the tradeoff

between efficiency and accuracy into account.

For intelligent edge, how to design an edge computing

system with intelligent offloading scheme under the multiple

constraints of network, communication, computing power, and

energy consumption [24], [25], [26], [27] is the key to improve

the efficiency of edge computing. Common offloading decision

approaches include AI-based approaches [28] (e.g., deep Q-

network [29], [30], [31], [32]), Lyapunov optimization [33],

[34], [35], [36], [37], metaheuristic algorithm [38], [39],

[40], [41], [42], (non-)convex optimization [43], [44], etc.

Tu et al. [29] proposed the online predictive offloading algo-

rithm based on double deep Q-network (DDQN) and long

short-term memory networks for cost minimization, which

integrates the processing latency, processing energy consump-

tion and the task throw rate of latency-sensitive tasks. In [33],

a blockchain-enabled IoT–Edge–Cloud computing architecture

that benefits both from mobile cloud computing and mobile-

edge computing (MEC) was proposed. The authors derived

an adaptive offloading-decision algorithm EEDTO by utiliz-

ing the Lyapunov optimization problem such that the energy

consumption of the IoT device can be minimized when only

sacrificing a little delay. Natesha and Guddeti [38] designed

a service placement strategy based on metaheuristic hybrid

algorithms MGAPSO and EGAPSO. They implemented a

two-level fog computing framework developed by docker and

container techniques to minimize service costs and ensure the

Quality of Service (QoS) for Industrial IoT (IIoT) applica-

tions. Xue et al. [39] proposed an efficient offloading scheme

for DNN inference acceleration in a three-layer collabora-

tive environment. For migration plan, algorithm PSO-GA is

applied to obtain the distribution of DNN layers under the

server with the lowest migration delay, and for uploading plan,

a layer merge uploading algorithm is proposed to obtain DNN

partitions and their upload order with efficient DNN query

performance. Deng et al. [43] studied the application of MEC

in the air-to-ground-integrated wireless network. They opti-

mized the offloading decision of the DNN model, resource

allocation, and UAV route based on energy consumption and

resource constraints. It i s worth noting that the UAV deploys

well trained DNN models with different model input sizes to

satisfy various QoS requirements of IoT devices. These studies

considered various influencing factors in edge offloading, such

as delay, energy consumption, and communication resources.

The algorithm needs to tune a large number of parameters.

Moreover, the tuning process for the proposed algorithms such

as reinforcement learning is very slow, which cannot guarantee

timeliness in real-time scenarios.

How to combine deep-learning tasks in real scenes with

edge computing, minimize task delay, energy consumption,

task discarding, and cost payment and maximize computing

speed and energy efficiency through computational offloading

are the critical problems in making edge computing come into

practice. Based on the above summary of the existing work,

deep learning has been widely applied in edge computing, but

how to offload deep-learning tasks under the heterogeneous

edge computing framework remains to be discussed. In addi-

tion to the time and energy consumption that most people

focus on, ensuring the accuracy of AI application services is

also an issue that cannot be ignored, which also motivates the

work of this article.

III. SYSTEM MODEL AND SOLUTION ALGORITHM

In this section, we introduce the edge computing offload-

ing architecture that contains different types of edge devices

running multiple models. We first introduce edge system archi-

tecture including model selection, response time and energy

consumption. Then, we formulate the problem within a time

slot with the offloading decision matrix and provide the solv-

ing process of the MTPE algorithm, which is improved based

on TPE [45]. Finally, we provide the energy adjustment algo-

rithm to keep the energy queue stable between time slots. The

notations used in this article are summarized in Table I.

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

18390 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 20, 15 OCTOBER 2023

TABLE I
SUMMARY OF KEY NOTATIONS

A. Edge System Architecture

As depicted in Fig. 2, we consider a multimodel edge com-

puting offloading framework with embedded edge devices

(namely, end devices) and edge servers. The entire offload-

ing process is mainly divided into three stages: 1) stage 1: the

end devices transmit the information of the generated tasks to

a central server containing the scheduler within a single time

slot; 2) stage 2: the target node and model for the task are

returned to each end device by the central server after schedul-

ing tasks using the scheduler’s offloading method; and 3) stage

3: the end devices offload the tasks to the target nodes, and the

target nodes send back the results after processing the tasks.

The set of edge servers is denoted as M = {1, 2, . . . , M}, and

the set of face detection inference models deployed on the edge

servers is denoted as K = {1, 2, . . . , K}. N = {1, 2, . . . , N}

Fig. 2. Multimodel edge computing offloading framework.

is the set of embedded edge devices, and only one inference

model in K is deployed on each edge device. From Fig. 2,

an edge cloud composed of edge servers connects to various

types of end devices and handles their uplink transmission

tasks. The same type of end devices can deploy different mod-

els, while different types of end devices can also deploy the

same model. Therefore, various model deployment scenarios

are fully considered in our edge computing framework.

The inference process of face detection can be executed

on both edge and end devices. But the face detection models

with different backbone networks have certain differences in

efficiency and accuracy as well as the response time. For each

backbone network, we analyze the accuracy Qk = {qe, qm, qh},

k ∈ K at easy, medium, and hard task levels, respectively,

which is officially classified in data set “WIDER FACE” [46].

Assume that tasks S = {s1, s2, . . . , sT} are generated in

Bernoulli distribution within a time slot T = {1, 2, . . . , T},

and the task generation rate Rt of all end devices determines

the specific offloaded model on each edge device within a time

slot, where Rt = (|st|/N).

If Rt is at the easy task level, it means few end devices gen-

erate tasks within a time slot so that the overall tasks are easy

to process, and the models with high accuracy may be selected

to offload. Conversely, Rt at the hard task level means tasks

are hard to process, and the models with the appropriate accu-

racy may be selected. Even if it reduces processing efficiency,

the necessary accuracy must be guaranteed. The condition of

model selection based on task generation rate and accuracy is

shown in
⎧

⎨

⎩

qe ≥ q1, if Rt < Rlow

qm ≥ q2, if Rlow ≤ Rt < Rhigh

qh ≥ q3, if Rhigh ≤ Rt.

(1)

As Rt increases, the accuracy of the task on each model

decreases. For the accuracy of selected models for offload-

ing, the accuracy threshold satisfies q1 ≥ q2 ≥ q3 ≥ qbase,

that is, models that meet the accuracy constraints can be

selected for offloading. Rlow and Rhigh are denoted to clas-

sify the complexity of the tasks, which have been determined

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: MULTIMODEL EDGE COMPUTING OFFLOADING FRAMEWORK FOR DEEP-LEARNING APPLICATION 18391

in data set “WIDER FACE.” Rt < Rlow = 0.8 for easy tasks,

Rlow ≤ Rt < Rhigh = 0.95 for medium tasks, and Rt ≥ Rhigh

for hard tasks.

We examine actual face detection inference tasks on end

devices and edge servers, record and calculate the time

and energy consumption of each task processed on different

devices. Dl
n is the local response time on end device n with

a single model, while Dk
m is the time of task executed on the

edge server m using model k, in which n ∈ N , m ∈ M.

Then the energy consumption of local execution is as

follows:

El
n = Dl

npl (2)

where pl is the power consumption on an end device. The

energy consumption of edge execution is calculated similarly

Ek
m = Dk

mpe (3)

where pe is the power consumption on an edge server.

If the task needs to be executed on an edge server, the time

of data transfer should also be considered. We denote Dt
m as

the transmission time consumed by offloading a frame image

to server m and then returning the result to the end device.

The energy consumption of data transmission Et
m is shown in

Et
m = Dt

mpt (4)

where pt is the transmission power, 0 < pt ≤ pmax
t , and pmax

t

is the maximum transmission power between the server and

the end device. Equation (5) shows the total time and energy

consumption for executing a task on the edge server

De
n = Dk

m + Dt
m

Ee
n = Ek

m + Et
m. (5)

B. Multiobjective Optimization Within Time Slot

Each computing task can be processed on an end

device or offloaded to an edge server with better com-

puting performance and higher precision models. We

denote An = {an0
, an1

, . . . , anm , . . . , anM } and Bm
n =

{b
m1
n , b

m2
n , . . . , b

mk
n , . . . , bmK

n } as the offloading indicators.

an0
= 1 means the task generated on edge device n is pro-

cessed locally, and anm = 1 means the task is offloaded to the

server m. b
mk
n = 1 shows that task generated on edge device

n is offloaded to the model k of the server m.

For each end device n, only one parameter is set to 1 in

An, and only one parameter is set to 1 in Bm
n if the task is

offloaded to the server m, then the relationships in (6) and (7)

must be satisfied

an0
+

M
∑

m=1

anm = 1 ∀n ∈ N (6)

K
∑

k=1

bmk
n =

{

0, if an0
= 1

1, if anm = 1
∀n ∈ N ∀m ∈ M. (7)

Fig. 3 is a binary offloading matrix, showing the offload-

ing situation of tasks within a time interval. The large matrix

has N rows, representing the offloading situation of each edge

device in N . The first column expresses whether the tasks are

Fig. 3. Binary offloading matrix.

executed locally, and columns 2 through M + 1 show whether

the tasks are offloaded to the edge servers. For example, col-

umn M + 1 in row N values 1 means end device N offloads

its task to server M. Note that each row has only one column

value of 1, and all others are 0. The small matrix represents

the model selection of each server. As shown in Fig. 3, the

second column in the model matrix values 1, which repre-

sents inference with the second model is selected. Similarly,

it has only one column with a value of 1.

After constructing the system model and the offloading deci-

sion matrix, the time and energy consumption of the task

generated by device n within a time slot are shown in

Tn = an0
Dl

n +

M
∑

m=1

anm

K
∑

k=1

bmk
n De

n (8)

En = an0
El

n +

M
∑

m=1

anm

K
∑

k=1

bmk
n Ee

n (9)

which are adjusted to the same order of magnitude when

calculating.

The offloading indicators are used to limit the selection of

delay and energy consumption. Since the offloading decision

in each time slot satisfies (6) and (7), the results calculated by

Tn and En are the time and energy consumption under the cur-

rent decision. The objective function of the multimodel edge

computing framework for task offloading within a time slot is

set in (10). The time and energy consumption are considered

comprehensively, and the goal is to minimize the total cost of

all the tasks, where x is the offloading decision matrix

P1 arg min
x=[An,Bm

n]
f (x) =

N
∑

n=1

(αTn + βEn)

s.t. (1), (6), (7), (8), (9), (10)

An, Bm
n ∈ {0, 1} ∀n ∈ N (10a)

Tn ≤ t ∀n ∈ N (10b)

En ≤ Emax
n ∀n ∈ N (10c)

0 < pt ≤ pmax
t (10d)

α + β = 1. (10e)

Constraint (1) keeps the overall accuracy to a great level in

different task complexity. Constraints (6), (7), and (10a) denote

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

18392 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 20, 15 OCTOBER 2023

the binary selection indicators and limit the values they can

take. Constraints (8) and (9), respectively, state the time and

energy consumed by the task of end device n in an offloading

period. Constraint (10b) denotes that each task should be com-

pleted within a time slot. Constraint (10c) states that the energy

consumption of each task should be less than the maximal

energy consumption. Constraint (10d) is the limit of transmis-

sion power. Constraint (10e) is to assign the weight of time

and energy consumption to the total cost.

Bayesian optimization is often used to tune hyperparameters

in machine learning models, which is generally regarded as a

black box optimization problem. During the tuning process, we

only observe its outputs based on the given inputs, and there

are no restrictions of concavity and convexity for the objec-

tive problem. Compared with Grid Search and Randomized

Search, the parameter space and computation of Bayesian

optimization are greatly reduced, and Bayesian optimization

does not require a large number of initial samples in con-

trast to metaheuristic algorithms. Due to these advantages, we

choose Bayesian optimization to solve our offloading deci-

sion problem, which can also be viewed as a black box

function. The tree-structured Parzen estimator (TPE) is a clas-

sic sequential model-based Bayesian optimization algorithm,

which constructs probability models to improve the system

performance based on historical measurements.

In this article, we design an MTPE algorithm that can

optimize initial parameters and dynamically adjust quantile

along with iterations. Compared with traditional Bayesian

Optimization based on the Gaussian process, MTPE based

on the Gaussian mixture model can achieve better results

with higher efficiency and even solve discrete parameters’

optimization.

With the observed experience set {(x1, f (x1)), x2,

f (x2)), . . . , (xq, f (xq))}, MTPE defines p(x|f (x)) using

two probability density functions in (11) to divide the

parameter space into good part and bad part. Note that x is

the solution of a group of offloading indicators

p(x|f (x)) =

{

l(x), if f (x) < f (x)∗

g(x), if f (x) ≥ f (x)∗
(11)

where f (x)∗ is chosen to be some quantile γ of the observed

target function values, so that quantile γ satisfies p(f (x) <

f (x)∗) = γ . The probabilistic surrogate models l(x) and

g(x) are tree-structured hierarchical processes constructed by

adaptive Parzen estimators and can be applied to discrete-

valued variables. Observations {xi} is used to form density

l(x) such that corresponding objective function f (xi) is in the

good part. Conversely, g(x) is the density function of the

bad part.

Here, just for the sake of the derivation, let y = f (x).

After the above estimation by the probability density func-

tion, we adopt the expected improvement (EI) function as the

acquisition function to collect the next observation point. The

acquisition process is shown in

arg min
x

EIy∗(x) = arg minE
x

[

y − y∗
]

. (12)

Since we minimize the objective function in (10) and y is

less than y∗ for the next point, (12) can be rewritten in

arg max
x

EIy∗(x) = arg maxE
x

[

max
(

y∗ − y, 0
)]

. (13)

According to the Bayes formula, posterior probability p(y|x)

can be calculated by prior probability p(y) and conditional

probability p(x|y), i.e., p(y|x) = [p(x|y)p(y)/p(x)]. Therefore,

the above problem is derived as follows:

EIy∗(x) =

∫ ∞

−∞

max
(

y∗ − y, 0
)

p(y|x)dy

=

∫ y∗

−∞

(

y∗ − y
)p(x|y)p(y)

p(x)
dy

=
γ y∗ −

∫ y∗

−∞
yp(y)dy

γ + (1 − γ)
g(x)
l(x)

∝

(

γ + (1 − γ)
g(x)

l(x)

)−1

. (14)

According to (13) and (14), maximizing EI means to

select the next observation point with the minimum value

of (g(x)/l(x)). So, we would like select point x with lower

probability under g(x) and higher probability under l(x).

However, the TPE algorithm starts from a randomly gen-

erated solution, which is an NP-hard Optimization problem

with a large parameter space. Another issue is the fixed quan-

tile also makes the result fall into a local optimization early.

Our proposed algorithm in Algorithm 1 has the following

improvements.

1) It is known that the inference speeds of edge servers are

much faster than that of end devices. Therefore, when

initializing the observation points, we set the offloading

indicators to allow a certain proportion (50-50 policy

based on our experiments) of tasks to perform on the

edge servers. It can dramatically reduce the number of

iterations, compared with selecting the initial parameters

randomly. The overall process is described in lines 1–5

of Algorithm 1.

2) To avoid falling into local optimization, the initial value

of quantile γ is 0.4 by default, and changes dynamically

with the output of each iteration. In each iteration, we

choose bottom-k (k =
γ · Ic�) from Z to generate set

Zl, and the rest are in set Zg. For the next iteration, if

the objective function value of the selected point is less

than that of the previous iteration, γ is set to reduce by

10% of the decline degree fc and stop changing until

γ is less than 0.25. The overall process is described in

lines 6–22 of Algorithm 1.

C. Energy Optimization Between Time Slots

Through the optimization in the above section, we can figure

out the lowest cost for each time slot. To keep the energy stable

during time T , we employ the Lyapunov model to construct

a dynamic energy queue and obtain the energy that needs to

be newly supplied between two adjacent time slots.

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: MULTIMODEL EDGE COMPUTING OFFLOADING FRAMEWORK FOR DEEP-LEARNING APPLICATION 18393

Algorithm 1 MTPE Algorithm

Input:

I: number of iterations

Ic: number of candidates per iteration

γ : quantile

st: task set in time slot t

Output: x minimizes f (x) in Z

Initialization: Z = ∅

1: for i = 1 to Ic do

2: set x to randomly offload 50% of st to the servers

3: calculate f (x) according to Eq. 10

4: Z ← Z ∪ {(x, f (x))}

5: end for

6: for i = 1 to I do

7: k =
γ · Ic�

8: Zl ← select (x, f (x)) with bottom-k values in Z

9: Zg ← Z \ Zl

10: construct l(x) with Zl and g(x) with Zg

11: C ← {(xc, f (xc))|xc ∼ l(x), c = 1, ..., Ic}

12: x ← arg maxx∈C
l(x)
g(x)

13: Z ← Z ∪ {(x, f (x))}

14: if i > 1 and f (x) < f (xpre) then

15: if γ > 0.25 then

16: fc =
f (xpre)−f (x)

f (xpre)

17: γ = (1 − 0.1fc)γ

18: end if

19: end if

20: xpre = x

21: Ic = Ic + 1

22: end for

23: return x minimizes f (x) in Z

Assume that the remaining energy Bt varies at the end of

time slot t in the following:

Bt = Bt−1 − Et + et (15)

where Et is the total energy consumption in time slot t, and et

is the energy that is replenished at the end of each time slot.

Then, we introduce the Lyapunov optimization, defined in

L(Bt) =
1

2
B2

t . (16)

Fig. 4. Energy queue.

The Lyapunov drift can be described in

�(Bt) = E
[

L(Bt) − L(Bt−1)|Bt

]

. (17)

Then, we infer an upper bound of �(Bt), which can be

found in Lemma 1 [34].

Lemma 1: For the end of each time slot, the upper bound

of the Lyapunov drift function �(Bt) is

�(Bt) ≤ E
[

Bt−1(et − Et)|Bt

]

+ C (18)

where C is a constant, and is denoted as

C =

(

emax
t

)2
+

(

Emax
t

)2

2
(19)

limit 0 < et ≤ emax
t and 0 < Et ≤ Emax

t .

To keep the energy queue dynamically stable, we minimize

the upper bound in time T , which can be transformed into

P2 arg min
et

1

T

T
∑

t=1

Bt−1(et − Et). (20)

Fig. 4 shows the dynamic change of the energy queue within

time T , each square represents a time slot, and B0 is the initial

energy.

The detailed derivation of calculating et is

shown in (21), at the bottom of the page, where

C1 =
∑T−1

i=1

∑T
j=i+1 EiEj, C2 = E1 + E2 + · · · + ET .

From the deduced result, we find that this is a unary quadratic

function with et as the independent variable. Therefore,

value et that satisfies (20) can be obtained by computing the

minimum point of the unary quadratic function in

et = −
TB0 − (T − 1)C2

T(T − 1)

=
C2

T
−

B0

T − 1
. (22)

Due to et > 0 and the sufficiency of initial energy in time

T , the range of B0 is E1 < B0 < (T − 1/T)C2. Then, the

initial energy and the harvesting energy between time slots

can be solved by maintaining energy stability in the whole

task processing cycle.

T
∑

t=1

Bt(et − Et) = B0(et − E1) + B1(et − E2) + · · · + BT−1(et − ET)

= B0(et − E1) + (B0 − E1 + et)(et − E2) + · · · +
[

B0 − E1 − · · · − ET−1 + (T − 1)et

]

(et − ET)

= TetB0 − et

[

(T − 1)E1 + (T − 2)E2 + · · · + ET−1

]

+ (1 + 2 + · · · + T − 1)e2
t

− B0(E1 + E2 + · · · + ET) − et[E2 + 2E3 + · · · + (T − 1)ET] + C1

=
T(T − 1)

2
e2

t − (T − 1)et[E1 + E2 + · · · + ET] + TetB0 − B0(E1 + E2 + · · · + ET) + C1

=
T(T − 1)

2
e2

t − [(T − 1)C2 − TB0]et + C1 − C2B0 (21)

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

18394 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 20, 15 OCTOBER 2023

TABLE II
NVIDIA JETSON BOARD SPECIFICATION

Algorithm 2 Dynamic Energy Adjustment Algorithm

Input:

M = {1, 2, ..., m, ..., M}: set of edge servers

K = {1, 2, ..., k, ..., K}: set of models

N = {1, 2, ..., n, ..., N}: set of end devices

T = {1, 2, ..., t, ..., T}: set of time slots

B0: initial energy

et: harvesting energy

1: set S = {s1, s2, ..., sT } by Bernoulli distribution

2: set D = ∅, E = ∅

3: for t = 1 to T do

4: for each task in st do

5: import Dl
n, Dk

m, Dt
m from the actual test

6: De
n = Dk

m + Dt
m

7: D ← D ∪
{

Dl
n, De

n

}

8: calculate El
n, Ek

m, Et
m according to Eq. 2-4

9: Ee
n = Ek

m + Et
m

10: E ← E ∪
{

El
n, Ee

n

}

11: end for

12: // call the MTPE algorithm of Alg. 1

13: xt = MTPE (st, D, E)

14: put xt into (10b) to get Et =
∑N

n=1 En

15: Bt = Bt−1 − Et + et

16: end for

The dynamic change of energy during the whole process

is shown in Algorithm 2. In each time slot t, the time con-

sumption Dl
n, De

n and energy consumption El
n, Ee

n of executing

generated tasks on the end devices and edge servers are

calculated in lines 4–11. Then, the MTPE algorithm from

Algorithm 1 constructs the objective function and returns the

optimal offloading decision. Therefore, we can obtain the total

energy consumption Et of time slot t. At the end of each time

slot t, Algorithm 2 calculates energy et by (22) and updates

energy queue Bt. Algorithms 1 and 2 solve the problem of

minimizing the total cost of offloading within a time slot and

the problem of keeping the energy queue stable between the

time slots in the whole cycle T , respectively, which correspond

to P1 and P2.

TABLE III
EDGE SERVER SPECIFICATION

IV. EXPERIMENTAL RESULTS

In this section, we first conduct experiments to compare the

performance of end devices and edge servers. Then we test the

inference capability of various face detection models including

response time and accuracy on real equipment. Finally, we

evaluate our proposed MTPE algorithm compared with the

TPE algorithm, two metaheuristic algorithms and Randomized

Search.

A. AI Application on NVIDIA Jetson and RTX GPU

In all experiments, we choose Jetson Xavier NX, Jetson TX2

and Jetson Nano from the NVIDIA Jetson series as embed-

ded edge devices, and use GeForce RTX 3080 and GeForce

RTX 2080 as edge servers. Different features and configu-

rations of these NVIDIA Jetson end devices are shown in

Table II. Theoretically, the AI performance of Jetson Xavier

NX is roughly 12.71 times that of Jetson TX2 and 4.51 times

that of Jetson Nano. We install the same system versions on all

three types of boards, ensuring that our experimental results

only rely on hardware conditions. Since the driver version on

each edge server is limited by the GPU model, which is shown

in Table III, GeForce RTX 3080 has higher requirements for

the GPU driver version.

First, we train the single-shot face detection model

Retinaface [47] of various backbone networks on the GeForce

RTX 3080 server using the face detection benchmark data

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: MULTIMODEL EDGE COMPUTING OFFLOADING FRAMEWORK FOR DEEP-LEARNING APPLICATION 18395

Fig. 5. Accuracy of each model on different difficulty tasks.

set WIDER FACE [46]. The backbone networks includ-

ing Mobilenet0.25, Mobilenetv3, Ghostnet, Shufflenetv2, and

Resnet50 are fully employed in our experiments. By com-

bining extra-supervised and self-supervised multitask learning,

RetinaFace can perform pixel-level localization of faces at var-

ious scales. After model training, we estimate the performance

of all kinds of backbone networks on three complex task lev-

els, which is classified by data set WIDER FACE according

to the number of images. The exact accuracy results of each

model on the easy, medium and hard WIDER FACE test-

ing sets are shown in Fig. 5. The accuracy of each model

on the easy testing set is above 90%, especially over 95% of

Resnet50. On the medium testing set, the accuracy remains

stable without significant reduction, but only Mobilenet0.25

decreases below 90%. However, the accuracy of all mod-

els on the hard testing set are greatly reduced, yet only

Resnet50 shows an acceptable result (84.43%), compared to

80% or even below 75% of the others.

Second, we also evaluate the response time on end devices

and edge servers, which is the detected time of each image.

The inference performance of different models on each testing

equipment is shown in Figs. 6 and 7.

From Fig. 6, the response time of each model decreases

gradually along with the increase of capability of the end

devices, the model with backbone Mobilenet0.25 is the fastest

among all models. By correlated with Fig. 5, it shows that

the model with relatively higher accuracy takes a longer time

for inference. For Resnet50, as a complex backbone network,

it takes far more time to execute tasks on end devices than

other lightweight networks. Especially, the reference time of

Resnet50 on the Jetson Nano is more than 2 s, so it is

unsuitable to deploy on end devices.

From Fig. 7, the response time of each model is rela-

tively low and similar. Compared with end devices, Resnet50

runs more efficiently on edge servers, which presents the

dual advantages of high accuracy and low latency. Therefore,

we consider deploying one lightweight model on each end

device and multiple models including Resnet50 on edge

servers.

Fig. 6. Response time of each end device.

Fig. 7. Response time of each model on edge servers.

B. Results and Analysis of MTPE Algorithm

In this part of the experiments, we verify the feasibility of

the multimodel edge computing framework and estimate the

performance of the MTPE algorithm compared with others.

pl = 10 W, pe = 100 W, and pt = 1 W, which are based on

the actual test data and rated power of devices. The time slot

t is 1s, and the energy consumption limited for a task within a

time slot Emax
n is 10J. According to the accuracy measured by

different complex tasks, q1 and q2 are set to 0.9, and q3 is 0.8.

Therefore, models with accuracy more than 0.9 are accepted

for easy and medium tasks, whereas models with accuracy

better than 0.8 are selected for hard tasks. Due to the high

requirements for real-time performance in actual applications,

the weight α of Tn should be set to more than 0.5. The larger α

is easily conducive to reduce the total response time. However,

the lowest response time is often accompanied by the highest

energy consumption. Initially, α is adjusted to 0.8 to balance

response time and energy consumption simultaneously.

To consider multiple deployment scenarios in our experi-

ments, end devices come into a group of 12, and each group

contains three types of devices mentioned in Table II and four

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

18396 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 20, 15 OCTOBER 2023

Fig. 8. Convergence of MTPE and TPE (α = 0.8, K = 5, N = 60).

Fig. 9. Total cost for different offloading environment (α = 0.8, K = 5).

types of lightweight models in each type of end device. The

number of edge servers M is 4, which is enough for our edge

computing framework. In Fig. 8, we set N = 60, five groups

of end devices, and the number of inference models K = 5 to

obtain the convergence of the iterative process for the MTPE

algorithm and TPE algorithm. We find that the total costs of

both algorithms start to drop significantly after 20 iterations,

but MTPE converge faster than TPE to search the optimal

value, and the optimal value is also smaller. Since the results

stabilize after 20 iterations, we set the number of iterations of

the MTPE algorithm to 30 in our training process, by default.

When the number of end devices N is varied from 12 to

60 with the fixed number of models K = 5, the total costs

of processing tasks generated by different numbers of devices

under three offloading environments are calculated in Fig. 9.

We observe that with the increase of end devices and the

number of tasks, the total cost of task consumption gradually

increases. However, it is obvious that the cost of edge-end

collaboration is 36.10% and 54.03% lower than offloading all

tasks to the servers or end devices, respectively. Therefore,

edge computing can dramatically reduce computing costs.

Fig. 10. Total cost for different number of models (α = 0.8).

Fig. 11. Model selection (α = 0.8, K = 5, N = 60).

Next, we compare the total cost of deploying different num-

bers of models on the servers. N still ranges from 12 to 60,

and the number of models K varies from 1 to 5 as well as

the complexity of the model added from difficulty to easiness.

As shown in Fig. 10, as more models are deployed, the total

cost tends to decrease. Multimodel framework with K = 5 is

reduced by an average of 17.94% compared to a single-model

framework, reaching up to 21.86% when N = 60. Hence,

auxiliary deployment of lightweight models on edge servers

can further ease the computing burden, and the effect is more

obvious with the increase of tasks.

The model selection under different task complexities with

the number of end devices N = 60 is shown in Fig. 11. In gen-

eral, the advantage of multimodel is that lightweight models

can meet basic requirements without selecting complex mod-

els with long response time. All five models can be selected

at the easy task level. However, with the increase of task com-

plexity, the number of selected models decreases to meet the

requirement of accuracy. At the hard task level, only Resnet50

can be selected for edge devices.

To further observe the influence of the two factors of time

and energy consumption on the experimental results, we vary

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: MULTIMODEL EDGE COMPUTING OFFLOADING FRAMEWORK FOR DEEP-LEARNING APPLICATION 18397

Fig. 12. Total cost for different α Value (K = 5, N = 60).

Fig. 13. Contrast experiment (α = 0.8, K = 5).

the weight α of the objective function f (x) from 0 to 1 with 0.1

in Fig. 12. We find that the total cost of edge-end collaboration

keeps decreasing steadily as the value of α increases. But with

α = 0.5 as the boundary, the total cost of executing all tasks on

end devices locally starts to be higher than that of offloading

all tasks to servers which maintains a sharp downward trend. It

can be concluded that the edge servers are beneficial to reduce

the total response time, while the end devices contribute to

reducing the total energy consumption. For this reason, the

total cost of edge-end collaboration can be effectively reduced

and maintained at a stable level.

Finally, we compare our algorithm with the latest DDQN

algorithm [29], metaheuristic hybrid algorithm EGAPSO [38],

SA and the original TPE algorithm. The result in contrast

to the baseline algorithm, Randomized Search, is shown in

Fig. 13 with α = 0.8, K = 5. Our MTPE algorithm can

obtain the optimal solution by using fewer initialization deci-

sion parameters. It can be concluded that our algorithm MTPE

is superior to the DDQN algorithm and the metaheuristic algo-

rithm for solving the offloading problem in multimodel edge

computing framework, which reduces the total cost by 37.79%,

23.01%, 3.14%, 20.09%, and 19.90% on average compared

with Randomized Search, DDQN, TPE, EGAPSO, and SA,

respectively.

V. CONCLUSION AND FUTURE WORK

In this article, we proposed a multimodel edge computing

offloading framework, using embedded edge devices NVIDIA

Jetson and GeForce RTX GPU servers to simulate the edge

computing environment of real AI applications. We compre-

hensively considered the accuracy, time, and energy consump-

tion of inference tasks. To work out the lowest total cost of

the system within a time slot, we put forward a Bayesian

optimization algorithm using MTPE, and theoretically indi-

cated that our algorithm can find an optimal solution under less

iterations. To ensure the stability of the energy queue between

time slots, we also employed the Lyapunov drift function to

solve the harvesting energy between the time slots. Through

comparative experiments, we verified that the multimodel edge

computing offloading framework achieved satisfactory results

in communication cost and computation cost, and ensured the

high accuracy of inference tasks. Compared with the original

TPE algorithm, the state-of-the-art DDQN algorithm and the

metaheuristic algorithms, EGAPSO and SA, our algorithm was

superior for solving offloading problems at the lowest cost. In

the future, we will concentrate on load balancing, including

the scheduling and migration of containers on edge devices

to fully utilize the computing, storage, and network resources,

which will also improve the reliability of the edge computing

environment.

REFERENCES

[1] “Statista: Number of Internet of Things (IoT) connected devices world-
wide from 2019 to 2030.” 2020. [Online]. Available: https://www.
statista.com/statistics/1183457/iot-connected-devices-worldwide/

[2] M. A. Rahman and M. S. Hossain, “An Internet-of-Medical-Things-
enabled edge computing framework for tackling COVID-19,” IEEE

Internet Things J., vol. 8, no. 21, pp. 15847–15854, Nov. 2021.
[3] S. Wan, S. Ding, and C. Chen, “Edge computing enabled video segmen-

tation for real-time traffic monitoring in Internet of Vehicles,” Pattern

Recognit., vol. 121, Jan. 2022, Art. no. 108146.
[4] L. Fan and L. Zhang, “Multi-system fusion based on deep neural

network and cloud edge computing and its application in intelligent
manufacturing,” Neural Comput. Appl., vol. 34, no. 5, pp. 3411–3420,
2022.

[5] M. A. Guillén et al., “Performance evaluation of edge-computing plat-
forms for the prediction of low temperatures in agriculture using deep
learning,” J. Supercomput., vol. 77, no. 1, pp. 818–840, 2021.

[6] R. Rajavel, S. K. Ravichandran, K. Harimoorthy, P. Nagappan, and
K. Ramasubramanian, “IoT-based smart healthcare video surveillance
system using edge computing,” J. Ambient Intell. Humanized Comput.,
vol. 13, no. 6, pp. 3195–3207, 2022.

[7] Z. Ali, Z. H. Abbas, G. Abbas, A. Numani, and M. Bilal, “Smart
computational offloading for mobile edge computing in next-generation
Internet of Things networks,” Comput. Netw., vol. 198, Oct. 2021,
Art. no. 108356.

[8] A. S. Mohammed, K. Venkatachalam, S. Hubálovskỳ, P. Trojovskỳ, and
P. Prabu, “Smart edge computing for 5 g/6 g satellite IOT for reducing
inter transmission delay,” Mobile Netw. Appl., vol. 27, pp. 1050–1059,
Feb. 2022.

[9] A. I. Tahirkheli et al., “A survey on modern cloud computing secu-
rity over smart city networks: Threats, vulnerabilities, consequences,
countermeasures, and challenges,” Electronics, vol. 10, no. 15, p. 1811,
2021.

[10] M. M. Sadeeq, N. M. Abdulkareem, S. R. Zeebaree, D. M. Ahmed,
A. S. Sami, and R. R. Zebari, “IoT and cloud computing issues, chal-
lenges and opportunities: A review,” Qubahan Acad. J., vol. 1, no. 2,
pp. 1–7, 2021.

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

18398 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 20, 15 OCTOBER 2023

[11] W. Shi, C. Jie, Z. Quan, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[12] S. Yi, L. Cheng, and Q. Li, “A survey of fog computing: Concepts, appli-
cations, and issues,” in Proc. Workshop Mobile Big Data (Mobidata),
2015, pp. 37–42.

[13] U. Shaukat, E. Ahmed, Z. Anwar, and F. Xia, “Cloudlet deployment
in local wireless networks: Motivation, architectures, applications, and
open challenges,” J. Netw. Comput. Appl., vol. 62, pp. 18–40, Feb. 2016.

[14] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-
edge-cloud orchestrated network computing paradigms: Transparent
computing, mobile edge computing, fog computing, and cloudlet,” ACM

Comput. Surveys, vol. 52, no. 6, pp. 1–36, 2019.

[15] W.-J. Chang, L.-B. Chen, C.-Y. Sie, and C.-H. Yang, “An artificial intel-
ligence edge computing-based assistive system for visually impaired
pedestrian safety at zebra crossings,” IEEE Trans. Consum. Electron.,
vol. 67, no. 1, pp. 3–11, Feb. 2021.

[16] X. Kong et al., “Real-time mask identification for COVID-19: An edge-
computing-based deep learning framework,” IEEE Internet Things J.,
vol. 8, no. 21, pp. 15929–15938, Nov. 2021.

[17] N. Balamuralidhar, S. Tilon, and F. Nex, “MultEYE: Monitoring system
for real-time vehicle detection, tracking and speed estimation from UAV
imagery on edge-computing platforms,” Remote Sens., vol. 13, no. 4,
p. 573, 2021.

[18] A. Koubaa, A. Ammar, A. Kanhouch, and Y. Alhabashi, “Cloud ver-
sus edge deployment strategies of real-time face recognition inference,”
IEEE Trans. Netw. Sci. Eng., vol. 9, no. 1, pp. 143–160, Jan.-Feb. 2022.

[19] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, “A survey on
computation offloading modeling for edge computing,” J. Netw. Comput.

Appl., vol. 169, Nov. 2020, Art. no. 102781.

[20] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904, 2nd
Quart., 2020.

[21] X. Li, J. Xia, L. Cao, G. Zhang, and X. Feng, “Driver fatigue detection
based on convolutional neural network and face alignment for edge com-
puting device,” Proc. Inst. Mech. Eng. D, J. Automobile Eng., vol. 235,
nos. 10–11, pp. 2699–2711, 2021.

[22] C. Liu et al., “A new deep learning-based food recognition system for
dietary assessment on an edge computing service infrastructure,” IEEE

Trans. Services Comput., vol. 11, no. 2, pp. 249–261, Mar./Apr. 2018.

[23] A. R. Neto, T. P. Silva, T. Batista, F. C. Delicato, P. F. Pires, and
F. Lopes, “Leveraging edge intelligence for video analytics in smart
city applications,” Information, vol. 12, no. 1, p. 14, 2020.

[24] M. Lapegna, W. Balzano, N. Meyer, and D. Romano, “Clustering algo-
rithms on low-power and high-performance devices for edge computing
environments,” Sensors, vol. 21, no. 16, p. 5395, 2021.

[25] T. V. Pham, N. N. Q. Tran, H. M. Pham, T. M. Nguyen, and
T. Ta Minh, “Efficient low-latency dynamic licensing for deep neural
network deployment on edge devices,” in Proc. 3rd Int. Conf. Comput.

Intell. Intell. Syst., 2020, pp. 44–49.

[26] A. Khakimov et al., “Flexible architecture for deployment of edge com-
puting applications,” Simulat. Model. Pract. Theory, vol. 114, Jan. 2022,
Art. no. 102402.

[27] Z. Shahbazi and Y.-C. Byun, “Improving transactional data system
based on an edge computing–blockchain–machine learning integrated
framework,” Processes, vol. 9, no. 1, p. 92, 2021.

[28] S. Iftikhar et al., “AI-based fog and edge computing: A systematic
review, taxonomy and future directions,” Internet Things, vol. 21,
Apr. 2023, Art. no. 100674.

[29] Y. Tu, H. Chen, L. Yan, and X. Zhou, “Task offloading based on LSTM
prediction and deep reinforcement learning for efficient edge computing
in IoT,” Future Internet, vol. 14, no. 2, p. 30, 2022.

[30] J. Wang and L. Wang, “Mobile edge computing task distribution and
offloading algorithm based on deep reinforcement learning in Internet
of Vehicles,” J. Ambient Intell. Humanized Comput., vol. 2021, pp. 1–11,
Aug. 2021.

[31] X. Li, “A computing offloading resource allocation scheme using deep
reinforcement learning in mobile edge computing systems,” J. Grid

Comput., vol. 19, no. 3, pp. 1–12, 2021.

[32] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, and L. Li, “Delay-aware
and energy-efficient computation offloading in mobile-edge computing
using deep reinforcement learning,” IEEE Trans. Cogn. Commun. Netw.,
vol. 7, no. 3, pp. 881–892, Sep. 2021.

[33] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO:
An energy-efficient dynamic task offloading algorithm for blockchain-
enabled IoT-edge-cloud orchestrated computing,” IEEE Internet Things

J., vol. 8, no. 4, pp. 2163–2176, Feb. 2021.
[34] Z. Chang, L. Liu, X. Guo, and Q. Sheng, “Dynamic resource allocation

and computation offloading for IoT fog computing system,” IEEE Trans.

Ind. Informat., vol. 17, no. 5, pp. 3348–3357, May 2021.
[35] Z. Ning et al., “Distributed and dynamic service placement in pervasive

edge computing networks,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 6, pp. 1277–1292, Jun. 2021.

[36] S. Bi, L. Huang, H. Wang, and Y.-J. A. Zhang, “Lyapunov-guided
deep reinforcement learning for stable online computation offloading
in mobile-edge computing networks,” IEEE Trans. Wireless Commun.,
vol. 20, no. 11, pp. 7519–7537, Nov. 2021.

[37] J. Zhang et al., “Stochastic computation offloading and trajectory
scheduling for UAV-assisted mobile edge computing,” IEEE Internet

Things J., vol. 6, no. 2, pp. 3688–3699, Apr. 2019.
[38] B. Natesha and R. M. R. Guddeti, “Meta-heuristic based hybrid service

placement strategies for two-level fog computing architecture,” J. Netw.

Syst. Manage., vol. 30, no. 3, pp. 1–23, 2022.
[39] M. Xue, H. Wu, R. Li, M. Xu, and P. Jiao, “EosDNN: AN efficient

offloading scheme for DNN inference acceleration in local-edge-cloud
collaborative environments,” IEEE Trans. Green Commun. Netw., vol. 6,
no. 1, pp. 248–264, Mar. 2022.

[40] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
optimized partial computation offloading in mobile-edge computing with
genetic simulated-annealing-based particle swarm optimization,” IEEE

Internet Things J., vol. 8, no. 5, pp. 3774–3785, Mar. 2021.
[41] L. Kuang, T. Gong, S. OuYang, H. Gao, and S. Deng, “Offloading deci-

sion methods for multiple users with structured tasks in edge computing
for smart cities,” Future Gener. Comput. Syst., vol. 105, pp. 717–729,
Apr. 2020.

[42] G. Li, Y. Liu, J. Wu, D. Lin, and S. Zhao, “Methods of resource schedul-
ing based on optimized fuzzy clustering in fog computing,” Sensors,
vol. 19, no. 9, p. 2122, 2019.

[43] C. Deng, X. Fang, and X. Wang, “UAV-enabled mobile-edge com-
puting for AI applications: Joint model decision, resource allocation,
and trajectory optimization,” IEEE Internet Things J., vol. 10, no. 7,
pp. 5662–5675, Apr. 2023.

[44] Q. Tang, Z. Fei, B. Li, and Z. Han, “Computation offloading in LEO
satellite networks with hybrid cloud and edge computing,” IEEE Internet

Things J., vol. 8, no. 11, pp. 9164–9176, Jun. 2021.
[45] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-

parameter optimization,” in Proc. Adv. Neural Inf. Process. Syst., vol. 24,
2011, pp. 1–9.

[46] “WIDER FACE: A face detection benchmark.” 2017. [Online].
Available: http://shuoyang1213.me/WIDERFACE/index.html

[47] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “RetinaFace:
Single-shot multi-level face localisation in the wild,” in Proc. IEEE/CVF

Conf. Comput. Vis. Pattern Recognit., 2020, pp. 5203–5212.

Zidi Zhao is currently pursuing the M.S. degree
in computer technology with the School of Cyber
Security and Computer, Hebei University, Baoding,
China.

Her current research interests include edge com-
puting, machine learning, and Internet of Things.

Hong Zhang received the Ph.D. degree in com-
puter science from the University of Central Florida,
Orlando, FL, USA, in 2018.

He is an Assistant Professor with the School
of Cyber Security and Computer, Hebei University,
Baoding, China. His research interest is the design
and analysis of distributed systems for edge comput-
ing and big data. In terms of design, he is currently
working on developing the high-performance plat-
forms of edge computing and big data. As for
analysis, he focuses on improving performance, scal-

ability, resilience, security, and load balancing of edge computing and
distributed machine learning.

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: MULTIMODEL EDGE COMPUTING OFFLOADING FRAMEWORK FOR DEEP-LEARNING APPLICATION 18399

Liqiang Wang received the Ph.D. degree in com-
puter science from Stony Brook University, Stony
Brook, NY, USA, in 2006.

He is currently an Professor with the Department
of Computer Science, University of Central Florida,
Orlando, FL, USA. He is the Director of Big
Data Lab. He was a Faculty Member with the
Department of Computer Science, University of
Wyoming, Laramie, WY, USA, from 2006 to 2015.
He was a Visiting Research Scientist with IBM T.J.
Watson Research Center, Ossining, NY, USA, from

2012 to 2013. His research focuses on big data computing and analytics tech-
niques in the following aspects: 1) improving accuracy and security of big
data analysis models; 2) optimizing performance and scalability of big data
processing and parallel computing systems, including multithreading, HPC,
Cloud, and GPU platforms; and 3) using program analysis and deep learning
techniques to detect and prevent programming errors and execution anomaly
in big data and/or parallel programs.

Prof. Wang received the NSF CAREER Award in 2011 and the Castagne
Faculty Fellowship from 2013 to 2015.

Haijun Huang is currently pursuing the M.S. degree
in computer technology with the School of Cyber
Security and Computer, Hebei University, Baoding,
China.

His current research interests include edge com-
puting, information security, and blockchain.

Authorized licensed use limited to: University of Central Florida. Downloaded on April 04,2024 at 16:20:14 UTC from IEEE Xplore. Restrictions apply.

