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A Multimodel Edge Computing Offloading
Framework for Deep-Learning Application
Based on Bayesian Optimization

Zidi Zhao"', Hong Zhang"', Ligiang Wang

Abstract—With the rapid development of the Internet of
Things (IoT), data generated by IoT devices are also increasing
exponentially. The edge computing has alleviated the problems
of limited network and transmission delay when processing tasks
of IoT devices in traditional cloud computing. And with the pop-
ularity of deep learning, more and more terminal devices are
embedded with artificial intelligence (AI) processors for higher
processing capability at the edge. However, the problems of
deep-learning task offloading in a heterogeneous edge computing
environment have not been fully investigated. In this article, a
multimodel edge computing offloading framework is proposed,
using NVIDIA Jetson edge devices (Jetson TX2, Jetson Xavier
NX, and Jetson Nano) and GeForce RTX GPU servers (RTX3080
and RTX2080) to simulate the edge computing environment, and
make binary computational offloading decisions for face detec-
tion tasks. We also introduce a Bayesian optimization algorithm,
namely, modified tree-structured Parzen estimator (MTPE), to
reduce the total cost of edge computation within a time slot
including response time and energy consumption, and ensure
the accuracy requirements of face detection. In addition, we
employ the Lyapunov model to obtain the harvesting energy
between time slots to keep the energy queue stable. Experiments
reveal that MTPE algorithm can achieve the globally optimal
solution in fewer iterations. The total cost of multimodel edge
computing framework is reduced by an average of 17.94% com-
pared to a single-model framework. In contrast to the double
deep Q-network (DDQN), our proposed algorithm can decrease
the computational consumption by 23.01% for obtaining the
offloading decision.

Index Terms—Bayesian optimization, deep learning, edge com-
puting, Lyapunov drift function, modified tree-structured Parzen
estimator (MTPE), multimodel.

I. INTRODUCTION

N RECENT years, the variety and number of Internet of
Things (IoT) devices have been growing rapidly, according
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to Statista [1], the number of IoT devices worldwide is forecast
to almost triple from 8.74 billion in 2020 to more than 25.4
billion IoT devices in 2030. IoT devices in the consumer seg-
ment, such as smartphones, connected (autonomous) vehicles,
asset tracking & monitoring, account for around 60 percent of
all connected IoT devices in 2020. The explosive growth of
IoT devices and the development of 5G technology have sub-
sequently promoted their applications in Internet of Medical
Things (IoMT) [2], Internet of Vehicles (IoV) [3] and other
scenarios [4], [5], [6]. Unfortunately, various data generated
by IoT devices are not just literal data and pictures, but also
include streaming video that take up a bunch of resources
and are time-critical. In intelligent scenarios, although cloud
platforms may provide higher computing capacity, there are
many issues with them, such as limited network resources [7],
transmission delay [8], privacy leakage [9] and other prob-
lems [10], which could be considerably challenging for IoT
applications. The concepts of edge computing [11], fog com-
puting [12], and cloudlet [13] have been put forward to
alleviate these problems by moving computing resources
from the cloud to the edge to reduce cloud computing load
beforehand.

The common three-layer edge computing framework, also
known as the “Cloud-Edge—End” framework [14], is shown
in Fig. 1. The traditional end device is a device that only has
the function of data collection, and the edge server nearby per-
forms data processing tasks. However, with the upgrade of end
devices, they can also perform edge computing with embedded
artificial intelligence (AI) processors [15], such as surveillance
camera [16], unmanned aerial vehicle (UAV) [17], which fur-
ther relieve the pressure of the cloud. Furthermore, edge and
cloud computing are not mutually exclusive. In large scenar-
ios, numerous edge servers can form an edge cloud closer to
the terminal, which can be a part of cloud computing.

An Al application task can be divided into several subtasks,
which can be offloaded according to the capability of edge
servers and subtask complexity. For example, a face recogni-
tion task can be roughly divided into four subtasks: 1) image
acquisition; 2) image preprocessing; 3) face detection; and
4) face recognition. The first three steps can be handled by
edge devices, whereas the feature extraction results are usu-
ally transmitted to the cloud for face matching and recognition.
Koubaa et al. [18] compared the time consumption of face
recognition tasks in cloud, edge and hybrid architectures, and
found that the hybrid architecture took the shortest time, which
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means the cloud and edge can complement each other and
jointly improve task processing efficiency. There are four edge
computing offloading schemes between end devices and edge
servers, which are one-to-one, one-to-many, many-to-one, and
many-to-many [19]. These schemes can be used in various
offloading scenarios, which fully embodies the flexibility and
scalability of edge computing.

However, there are still several open issues and challenges

in edge computing offloading.

1) Model Selection: Due to the heterogeneous environ-
ment of the “Cloud—Edge-End” framework, a single
deep-learning model may not fit all computing plat-
forms well. For example, GPU resources of end devices
cannot support the demands of sophisticated neural
networks such as Resnet50. Then, we need to choose
certain lightweight models suitable for heterogeneous
end devices to process Al computing requests.

2) Tradeoff of Accuracy and Efficiency: In practice, the
number of tasks generated by end devices in different
time slots is not uniform. As computation scale up, the
accuracy disparity of different models becomes increas-
ingly pronounced. Lower end devices may not support
the high-accuracy requirement, while offloading to the
edge server with a high-accuracy model diminishes the
efficiency. Therefore, the accuracy and efficiency at vari-
ous task levels cannot be balanced by deploying a single
model on edge servers.

3) Complex Offloading Algorithm: With the expan-
sion of the computation scale, offloading algorithms
such as metaheuristic approach and deep reinforce-
ment learning become much more complex than
before in terms of initialization parameters and
iterations.

4) Energy Supply: The total cost of task offloading within a
single time slot is often considered in previous research
for edge computing. Yet how to supply energy among
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time slots to ensure the stability of energy queue is still
a critical problem that needs to be resolved.

In response to these shortcomings and challenges, we
propose a multimodel edge computing framework for a many-
to-many offloading scheme to improve the efficiency and
accuracy of Al applications on edge IoT devices, keep energy
consumption within an ideal range, create a more intelligent
edge computing environment, and make end and edge devices
highly cohesive. Here, we take face recognition with a wide
range of scenarios as an example, because face recognition is
conducted on a variety of end and edge devices, such as sta-
tions, commercial districts and military bases, meanwhile, face
recognition often requires good performance on accuracy, effi-
ciency, and energy consumption. In our experiment, we deploy
face detection models on different Jetson devices and edge
servers to construct edge computing environments. In partic-
ular, we propose a modified Bayesian optimization algorithm
named modified tree-structured Parzen estimator (MTPE) to
guide the offloading decision.

The offloading indicators are regarded as the parameters that
need to be configured by MTPE to minimize the time and
energy consumption of face detection, maintain the accuracy
at an ideal level, and improve the Quality of Experience (QoE).
Finally, we ensure energy stability by minimizing the upper
bound of the Lyapunov drift function, and determining the
optimal values of the initial energy and the energy replenished
between time slots.

The main contributions of this article are summarized as
follows:

1) We propose a novel edge computing offloading frame-
work based on multiple models conduct extensive exper-
iment on real end devices including Jetson GPUs and
edge servers with different backbone networks to eval-
uate our framework on various scenarios. Deploying
multiple models in edge computing environment can
extremely balance the accuracy and efficiency at dif-
ferent task levels.

2) We introduce an MTPE algorithm to minimize the
offloading cost of the whole edge computing environ-
ment in a single time slot. The optimized objectives such
as accuracy, time and energy consumption are fully con-
sidered in our algorithm to choose the global optimal
solution as possible by establishing the probability den-
sity function.

3) We also provide a dynamic energy adjustment algorithm
to keep the energy queue stable. The Lyapunov drift
function is employed to describe the energy change of
the dynamic energy queue and minimize these fluctua-
tions by limiting the upper bound of the drift function.
To obtain the harvesting energy among time slots and
the limitation of the initial energy, we calculate the min-
imum point of a unary quadratic function, which keeps
the energy adequate throughout the processing cycle.

The remainder of this article is organized as follows. The
related work is summarized in Section II. The system model
and our algorithm are introduced in Section III. Experimental
results are given in Section IV, and the conclusion and future
work are presented in Section V.
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II. RELATED WORK

At present, there are many research achievements in the
field of edge computing. In addition to the common research
on offloading problems, deep-learning technology in Al appli-
cations has been widely integrated into the edge computing
framework. Wang et al. summarized the concepts of edge
intelligence and intelligent edge in [20].

For edge intelligence, most of the research on the appli-
cation of embedded Al devices in edge computing systems
is related to object detection and recognition. Li et al. [21]
proposed a driver fatigue detection system based on CNN
and tested the performance of the detection system in real
driving scenarios. In this article, Jetson Nano was used as
an edge computing device for real-time detection to improve
robustness and accuracy of the system. Chang et al. [15]
presented a wearable assistive system based on Al edge com-
puting technology and adopted deep-learning technology for
real-time recognition of zebra crossing images. Liu et al. [22]
designed a food recognition system based on edge comput-
ing to make an accurate dietary assessment and overcome
the problems of system delay and low battery life of mobile
devices in mobile cloud computing. Both [3] and [17] studied
the traffic video surveillance system based on edge comput-
ing platform. Wan et al. [3] offloaded vehicle detection tasks
to edge nodes with Jetson TX2, while the system designed
in [17] was embedded in the UAV to track and detect vehicles
in real-time. Neto et al. [23] proposed a distributed system for
video analysis, which divided the heavy processing of large-
scale video streams into various machine learning tasks and
deployed these tasks as data processing workflows on edge
devices equipped with neural network hardware accelerators.
Rajavel et al. [6] proposed a video surveillance system based
on edge computing for object tracking and behavior recogni-
tion in IoMT. In this article, the detection of moving objects
was improved by combining background subtraction and the
DNN algorithm, which brought robustness and intelligence to
the distributed video surveillance system. These studies fully
demonstrated the wide applications of deep learning in edge
computing frameworks. However, they only considered single
model to solve deep-learning problems rather than multimodel
systems when offloading, which did not take the tradeoff
between efficiency and accuracy into account.

For intelligent edge, how to design an edge computing
system with intelligent offloading scheme under the multiple
constraints of network, communication, computing power, and
energy consumption [24], [25], [26], [27] is the key to improve
the efficiency of edge computing. Common offloading decision
approaches include Al-based approaches [28] (e.g., deep O-
network [29], [30], [31], [32]), Lyapunov optimization [33],
[34], [35], [36], [37], metaheuristic algorithm [38], [39],
[40], [41], [42], (non-)convex optimization [43], [44], etc.
Tu et al. [29] proposed the online predictive offloading algo-
rithm based on double deep Q-network (DDQN) and long
short-term memory networks for cost minimization, which
integrates the processing latency, processing energy consump-
tion and the task throw rate of latency-sensitive tasks. In [33],
a blockchain-enabled IoT-Edge—Cloud computing architecture
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that benefits both from mobile cloud computing and mobile-
edge computing (MEC) was proposed. The authors derived
an adaptive offloading-decision algorithm EEDTO by utiliz-
ing the Lyapunov optimization problem such that the energy
consumption of the IoT device can be minimized when only
sacrificing a little delay. Natesha and Guddeti [38] designed
a service placement strategy based on metaheuristic hybrid
algorithms MGAPSO and EGAPSO. They implemented a
two-level fog computing framework developed by docker and
container techniques to minimize service costs and ensure the
Quality of Service (QoS) for Industrial IoT (IIoT) applica-
tions. Xue et al. [39] proposed an efficient offloading scheme
for DNN inference acceleration in a three-layer collabora-
tive environment. For migration plan, algorithm PSO-GA is
applied to obtain the distribution of DNN layers under the
server with the lowest migration delay, and for uploading plan,
a layer merge uploading algorithm is proposed to obtain DNN
partitions and their upload order with efficient DNN query
performance. Deng et al. [43] studied the application of MEC
in the air-to-ground-integrated wireless network. They opti-
mized the offloading decision of the DNN model, resource
allocation, and UAV route based on energy consumption and
resource constraints. It i s worth noting that the UAV deploys
well trained DNN models with different model input sizes to
satisfy various QoS requirements of IoT devices. These studies
considered various influencing factors in edge offloading, such
as delay, energy consumption, and communication resources.
The algorithm needs to tune a large number of parameters.
Moreover, the tuning process for the proposed algorithms such
as reinforcement learning is very slow, which cannot guarantee
timeliness in real-time scenarios.

How to combine deep-learning tasks in real scenes with
edge computing, minimize task delay, energy consumption,
task discarding, and cost payment and maximize computing
speed and energy efficiency through computational offloading
are the critical problems in making edge computing come into
practice. Based on the above summary of the existing work,
deep learning has been widely applied in edge computing, but
how to offload deep-learning tasks under the heterogeneous
edge computing framework remains to be discussed. In addi-
tion to the time and energy consumption that most people
focus on, ensuring the accuracy of Al application services is
also an issue that cannot be ignored, which also motivates the
work of this article.

III. SYSTEM MODEL AND SOLUTION ALGORITHM

In this section, we introduce the edge computing offload-
ing architecture that contains different types of edge devices
running multiple models. We first introduce edge system archi-
tecture including model selection, response time and energy
consumption. Then, we formulate the problem within a time
slot with the offloading decision matrix and provide the solv-
ing process of the MTPE algorithm, which is improved based
on TPE [45]. Finally, we provide the energy adjustment algo-
rithm to keep the energy queue stable between time slots. The
notations used in this article are summarized in Table I.
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TABLE I
SUMMARY OF KEY NOTATIONS

Notation Description

M set of edge servers

K set of inference models deployed on the
edge servers

N set of end devices

T set of time slots

S set of tasks generated by A in each time slot

St task set in time slot t

Q. set of the accuracy of model k

Ry task generation rate within a time slot

response time of end device n

DF response time of server m using model k

m

E!, energy consumption of executing task on
end device n

EF energy consumption of executing task on
edge server m

Dt time consumption of transferring task to
edge server m

Et, energy consumption of transferring task to
edge server m

Dg, total time consumption of executing task on
edge server m

Ee total energy consumption of executing task on
edge server m

Emar maximum energy consumption for a task

D1 power consumption of end device

Pe power consumption of edge server

12 transmission power

pyrer maximum transmission power

Ay, B offloading indicators

Ty group of offloading indicators in time slot ¢

Ey total energy consumption of executing task in
time slot ¢

e maximum total energy consumption in time
slot ¢

ey harvesting energy between each time slot

eyrar maximum harvesting energy

By initial energy within 7

By remaining energy at the end of time slot ¢

A. Edge System Architecture

As depicted in Fig. 2, we consider a multimodel edge com-
puting offloading framework with embedded edge devices
(namely, end devices) and edge servers. The entire offload-
ing process is mainly divided into three stages: 1) stage 1: the
end devices transmit the information of the generated tasks to
a central server containing the scheduler within a single time
slot; 2) stage 2: the target node and model for the task are
returned to each end device by the central server after schedul-
ing tasks using the scheduler’s offloading method; and 3) stage
3: the end devices offload the tasks to the target nodes, and the
target nodes send back the results after processing the tasks.
The set of edge servers is denoted as M = {1,2, ..., M}, and
the set of face detection inference models deployed on the edge
servers is denoted as K = {1,2,...,K}. N = {1,2,...,N}

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 20, 15 OCTOBER 2023

Edge Servers

‘ 2 Scheduler ‘

Calculate

offloading
decision Offload each task to
the target model of
the target node
1 3 L
s .|z & s @l [z @ |z & |z
gl1le El2|a g Na ] s @25 - @|N|E
L A T R - 5 o
= £ =
= . ‘ S
( \ End Devices
e | B— @ S
oo *20 ( oto ) ¥ °00
o0 2 . ®o
o o0
\ J o

Fig. 2.  Multimodel edge computing offloading framework.

is the set of embedded edge devices, and only one inference
model in K is deployed on each edge device. From Fig. 2,
an edge cloud composed of edge servers connects to various
types of end devices and handles their uplink transmission
tasks. The same type of end devices can deploy different mod-
els, while different types of end devices can also deploy the
same model. Therefore, various model deployment scenarios
are fully considered in our edge computing framework.

The inference process of face detection can be executed
on both edge and end devices. But the face detection models
with different backbone networks have certain differences in
efficiency and accuracy as well as the response time. For each
backbone network, we analyze the accuracy O = {ge, gm, qn},
k € K at easy, medium, and hard task levels, respectively,
which is officially classified in data set “WIDER FACE” [46].
Assume that tasks & = {s1,s$2,...,s7} are generated in
Bernoulli distribution within a time slot 7 = {1,2,...,T},
and the task generation rate R; of all end devices determines
the specific offloaded model on each edge device within a time
slot, where R; = (|s;|/N).

If R, is at the easy task level, it means few end devices gen-
erate tasks within a time slot so that the overall tasks are easy
to process, and the models with high accuracy may be selected
to offload. Conversely, R; at the hard task level means tasks
are hard to process, and the models with the appropriate accu-
racy may be selected. Even if it reduces processing efficiency,
the necessary accuracy must be guaranteed. The condition of
model selection based on task generation rate and accuracy is
shown in

ge > q1, if Ry < Rjow
gm = q2, if Riow < Ry < Rnigh (D
gn > q3, if Rnign < R;.

As R; increases, the accuracy of the task on each model
decreases. For the accuracy of selected models for offload-
ing, the accuracy threshold satisfies g1 > g2 > g3 > gvase,
that is, models that meet the accuracy constraints can be
selected for offloading. Rjow and Ryjgn are denoted to clas-
sify the complexity of the tasks, which have been determined
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in data set “WIDER FACE.” R; < Rjoy = 0.8 for easy tasks,
Riow < R; < Ryjgn = 0.95 for medium tasks, and R; > Ryign
for hard tasks.

We examine actual face detection inference tasks on end
devices and edge servers, record and calculate the time
and energy consumption of each task processed on different
devices. D!, is the local response time on end device n with
a single model, while DX is the time of task executed on the
edge server m using model k, in which n € N/, m € M.

Then the energy consumption of local execution is as
follows:

E. =Dlp 2)

where p; is the power consumption on an end device. The
energy consumption of edge execution is calculated similarly

Ef =Dk p, (3)

where p, is the power consumption on an edge server.

If the task needs to be executed on an edge server, the time
of data transfer should also be considered. We denote D!, as
the transmission time consumed by offloading a frame image
to server m and then returning the result to the end device.
The energy consumption of data transmission E!, is shown in

E, = Dyp: “)

where p; is the transmission power, 0 < p; < p"®*, and p/"®*

is the maximum transmission power between the server and
the end device. Equation (5) shows the total time and energy
consumption for executing a task on the edge server

k
D., = D,, + D},
E¢=EX +E. (5)

B. Multiobjective Optimization Within Time Slot

Each computing task can be processed on an end
device or offloaded to an edge server with better com-
puting performance and higher precision models. We
denote A, = {ayy,an.,.. .,any,} and B} =
by, by, ... by*, ..., b} as the offloading indicators.
an, = 1 means the task generated on edge device n is pro-
cessed locally, and a,, = 1 means the task is offloaded to the
server m. b,* = 1 shows that task generated on edge device
n is offloaded to the model k of the server m.

For each end device n, only one parameter is set to 1 in
A,, and only one parameter is set to 1 in B/ if the task is
offloaded to the server m, then the relationships in (6) and (7)
must be satisfied

s -

M
an0+2anm=1 VneN (6)
m=1

o 0. if ay, =1
Yopme=tT LT VneNVme M. (D)
n 1, if a,, =1
k=1
Fig. 3 is a binary offloading matrix, showing the offload-
ing situation of tasks within a time interval. The large matrix
has N rows, representing the offloading situation of each edge

device in V. The first column expresses whether the tasks are
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Nx(M+1) Binary Offloading Matrix

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

1xK Model Matrix

Fig. 3. Binary offloading matrix.

executed locally, and columns 2 through M + 1 show whether
the tasks are offloaded to the edge servers. For example, col-
umn M + 1 in row N values 1 means end device N offloads
its task to server M. Note that each row has only one column
value of 1, and all others are 0. The small matrix represents
the model selection of each server. As shown in Fig. 3, the
second column in the model matrix values 1, which repre-
sents inference with the second model is selected. Similarly,
it has only one column with a value of 1.

After constructing the system model and the offloading deci-
sion matrix, the time and energy consumption of the task
generated by device n within a time slot are shown in

M K
Ty = anDy+ Y _ an, Y _ byD, (8)
m=1 k=1
M K
Ey=anEy+ ) ay, Y bE; )
=1 k=1

which are adjusted to the same order of magnitude when
calculating.

The offloading indicators are used to limit the selection of
delay and energy consumption. Since the offloading decision
in each time slot satisfies (6) and (7), the results calculated by
T, and E, are the time and energy consumption under the cur-
rent decision. The objective function of the multimodel edge
computing framework for task offloading within a time slot is
set in (10). The time and energy consumption are considered
comprehensively, and the goal is to minimize the total cost of
all the tasks, where x is the offloading decision matrix

N
P1  argmin f(x) = Z(aTn + BE,)
x=[An.B]

n=1
s.t. (1),(6),(7), (), (9), (10)
AnB' {0, 1} Vne N (10a)
T,<tVneN (10b)
E, <E™ Vne N (10c)
0<pr =p™ (10d)
a+p=1. (10e)

Constraint (1) keeps the overall accuracy to a great level in
different task complexity. Constraints (6), (7), and (10a) denote
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the binary selection indicators and limit the values they can
take. Constraints (8) and (9), respectively, state the time and
energy consumed by the task of end device n in an offloading
period. Constraint (10b) denotes that each task should be com-
pleted within a time slot. Constraint (10c) states that the energy
consumption of each task should be less than the maximal
energy consumption. Constraint (10d) is the limit of transmis-
sion power. Constraint (10e) is to assign the weight of time
and energy consumption to the total cost.

Bayesian optimization is often used to tune hyperparameters
in machine learning models, which is generally regarded as a
black box optimization problem. During the tuning process, we
only observe its outputs based on the given inputs, and there
are no restrictions of concavity and convexity for the objec-
tive problem. Compared with Grid Search and Randomized
Search, the parameter space and computation of Bayesian
optimization are greatly reduced, and Bayesian optimization
does not require a large number of initial samples in con-
trast to metaheuristic algorithms. Due to these advantages, we
choose Bayesian optimization to solve our offloading deci-
sion problem, which can also be viewed as a black box
function. The tree-structured Parzen estimator (TPE) is a clas-
sic sequential model-based Bayesian optimization algorithm,
which constructs probability models to improve the system
performance based on historical measurements.

In this article, we design an MTPE algorithm that can
optimize initial parameters and dynamically adjust quantile
along with iterations. Compared with traditional Bayesian
Optimization based on the Gaussian process, MTPE based
on the Gaussian mixture model can achieve better results
with higher efficiency and even solve discrete parameters’
optimization.

With the observed experience set {(x1,f(x1)),x2,
f(x2)), ..., (x4, f(xg))}, MTPE defines p(x|f(x)) using
two probability density functions in (11) to divide the
parameter space into good part and bad part. Note that x is
the solution of a group of offloading indicators

I(x), if fx) <f@o)*

g0, if f() = f(0)* (i

plf(x) = {

where f(x)* is chosen to be some quantile y of the observed
target function values, so that quantile y satisfies p(f(x) <
f(x)*) = y. The probabilistic surrogate models /(x) and
g(x) are tree-structured hierarchical processes constructed by
adaptive Parzen estimators and can be applied to discrete-
valued variables. Observations {x;} is used to form density
l(x) such that corresponding objective function f(x;) is in the
good part. Conversely, g(x) is the density function of the
bad part.

Here, just for the sake of the derivation, let y = f(x).
After the above estimation by the probability density func-
tion, we adopt the expected improvement (EI) function as the
acquisition function to collect the next observation point. The
acquisition process is shown in

argmin Ely=(x) = argminE[y — y*]. (12)
X X
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Since we minimize the objective function in (10) and y is
less than y* for the next point, (12) can be rewritten in

arg max El+(x) = arg max E[max (y* -, 0)] . 13)
X X

According to the Bayes formula, posterior probability p(y|x)
can be calculated by prior probability p(y) and conditional

probability p(x|y), i.e., p(y|x) = [p(x|y)p(y)/p(x)]. Therefore,
the above problem is derived as follows:

Ely(x) = / max(y* — y, 0)p(y|x)dy

o pxIy)p(y)
= — —d
/;oo (y y) p) Y

,V*
Yy = 2o yp(dy
®
Y + (l - V)z?(;()

—1
x (y+(1—y>%) .

(14)

According to (13) and (14), maximizing EI means to
select the next observation point with the minimum value
of (g(x)/I(x)). So, we would like select point x with lower
probability under g(x) and higher probability under /(x).

However, the TPE algorithm starts from a randomly gen-
erated solution, which is an NP-hard Optimization problem
with a large parameter space. Another issue is the fixed quan-
tile also makes the result fall into a local optimization early.
Our proposed algorithm in Algorithm 1 has the following
improvements.

1) It is known that the inference speeds of edge servers are
much faster than that of end devices. Therefore, when
initializing the observation points, we set the offloading
indicators to allow a certain proportion (50-50 policy
based on our experiments) of tasks to perform on the
edge servers. It can dramatically reduce the number of
iterations, compared with selecting the initial parameters
randomly. The overall process is described in lines 1-5
of Algorithm 1.

2) To avoid falling into local optimization, the initial value
of quantile y is 0.4 by default, and changes dynamically
with the output of each iteration. In each iteration, we
choose bottom-k (k = [y - I.]) from Z to generate set
Z;, and the rest are in set Z,. For the next iteration, if
the objective function value of the selected point is less
than that of the previous iteration, y is set to reduce by
10% of the decline degree f. and stop changing until
y is less than 0.25. The overall process is described in
lines 6-22 of Algorithm 1.

C. Energy Optimization Between Time Slots

Through the optimization in the above section, we can figure
out the lowest cost for each time slot. To keep the energy stable
during time 7, we employ the Lyapunov model to construct
a dynamic energy queue and obtain the energy that needs to
be newly supplied between two adjacent time slots.
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Algorithm 1 MTPE Algorithm
Input:
I: number of iterations
I.: number of candidates per iteration
y: quantile
s;: task set in time slot ¢
Output: x minimizes f(x) in Z
Initialization: Z = ¢
1: fori=1to I. do
2: set x to randomly offload 50% of s; to the servers
3 calculate f(x) according to Eq. 10
4 Z < ZU{(f00)}
5: end for
6: for i=1to I do
7
8
9

k=Ty-I]
Z; < select (x, f(x)) with bottom-k values in Z
: Zy <~ 2Z\Z
10: construct /(x) with Z; and g(x) with Z,
11: C <« {(xe, fx)|xe ~Ix),c =1, ..., 1.}
12: X <= arg MaXyeC o
13: Z <~ ZU{(x,f(x)}
14: if i > 1 and f(x) < f(xpr) then

15: if y > 0.25 then
16: f _ S Gepre) —f (%)
’ ¢ f(xpre)
17: y =1 -=0.1f)y
18: end if
19: end if
20: Xpre = X
21: I.=1.+1
22: end for

23: return x minimizes f(x) in Z

Assume that the remaining energy B; varies at the end of
time slot 7 in the following:

B =B;—1 — E;+ ¢ (15)

where E; is the total energy consumption in time slot #, and e,

is the energy that is replenished at the end of each time slot.
Then, we introduce the Lyapunov optimization, defined in

_ 1y
L(B) = B}, (16)
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Fig. 4. Energy queue.
The Lyapunov drift can be described in
A(By) = E[L(B)) — L(Bi-1)|By]. (17

Then, we infer an upper bound of A(B;), which can be
found in Lemma 1 [34].

Lemma 1: For the end of each time slot, the upper bound
of the Lyapunov drift function A(B;) is

A(By) < E[B,,l (er — Et)|Bt] +C (18)
where C is a constant, and is denoted as
max 2 max 2
+ (E
C = (et ) ( ' ) (19)

2
limit 0 < ¢; < €™ and 0 < E; < E"™.

To keep the energy queue dynamically stable, we minimize

the upper bound in time 7, which can be transformed into

1 L

P2 argmin — Bi_1(e; — Ey).
ge, T ; t—1(er t)
Fig. 4 shows the dynamic change of the energy queue within
time 7, each square represents a time slot, and By is the initial

(20)

energy.
The detailed derivation of calculating e, is
shown in (21), at the bottom of the page, where

a =Y Z]‘T=i+1EiEj’ C, = Ei +E + -+ + Er.
From the deduced result, we find that this is a unary quadratic
function with e, as the independent variable. Therefore,
value e, that satisfies (20) can be obtained by computing the
minimum point of the unary quadratic function in

TBy — (T — 1),

T-1
_G_ B (22)
T T-1

Due to ¢; > 0 and the sufficiency of initial energy in time
T, the range of By is E; < By < (T — 1/T)C;. Then, the
initial energy and the harvesting energy between time slots
can be solved by maintaining energy stability in the whole
task processing cycle.

ey =

T
ZBt(et — Et) = Bo(es — E1) + Bi(e; — E2) +--- + Br—1(es — Er)

t=1

= Bo(es —E1) + (Bo — Ey +e)(es — Ex) + -+ + [Bo — Ey — - -+ — Er—y + (T — De;](e; — Er)
=TeBo— e[(T — DE1 + (T —=2)Ex+ -+ Er—1 ]|+ (1 +2+ - + T — 1)é?
—By(E\ +Ey+ -+ E7) —e)[Ep +2E3+--- + (T — DEr] + C4

(T — 1)

=2 —(T— DeJE; + Ex + -

2
T(T — 1)

= ———2¢ —[(T — 1)C2 — TByle; + C1 — C2By

2

-+ Er] +Te;By — Bo(E1 + E» + - - - + ET) + C)

1)
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TABLE II
NVIDIA JETSON BOARD SPECIFICATION

Jetson Nano

Jetson TX2 Jetson Xavier NX

Quad (4)-Core ARM Cortex-A57

CPU MPCore

Hexa (6)-core processor with 2x
NVIDIA Denver2 64-Bit CPU and 4x

6-core NVIDIA Carmel ARMvS.2

ARM Cortex-A57 cores 64-bit CPU 6 MB L2+4 MB L3

GPU 128-core Maxwell GPU

Volta GPU with 384 NVIDIA CUDA

256-core Pascal GPU cores and 48 Tensor cores

Al Performance 472 GFLOPs (FP16)

1.33 TFLOPs (FP16) 6 TFLOPs (FP16)&21 TOPs (INTS)

Memory 4 GB 64-bit LPDDR4 @25.6GB/s 8 GB 128-bit LPDDR4 @59.7GB/s 8 GB 128-bit LPDDR4 @51.2GB/s
Power 5-10W 7.5-15W 10-15W
Jetpack version 4.4 4.4 4.4
Ubuntu Linux 18.04.5 18.04.5 18.04.5
CUDA version 10.2 10.2 10.2
CuDNN version 8.0 8.0 8.0
Archiconda version 3-0.2.3 3-0.2.3 3-0.2.3
Algorithm 2 Dynamic Energy Adjustment Algorithm EbGE SERTVI?EE%EI‘;FTICIIFICATION
Input:
M=A{1,2,...,m, ..., M}: set of edge servers GeForce RTX GeForce RTX
K=1{1,2,..,k, .., K}: set of models 3080 2080
N ={1,2,...,n,...,N}: set of end devices CUDA Cores 8704 2944
T = {17 2, ety T}: set of time slots GPU Memory 10GB GDDR6X 8GB GDDR6
By: initial energy Enforced Power Limit 320W 215W
e;: harvesting energy CentOS Linux 8.5.2111 8.5.2111
1: set S = {s1, 52, ..., st} by Bernoulli distribution Driver version 51047 47086
2setD=0E=0 CUDA version 11.6 11.4
3-fort=1to T do CuDNN version 8.2.1 8.2.1
Anaconda version 4.8.2 4.8.2

4: for each task in s; do

5: import D}, DX, D!, from the actual test

6: D¢ = DX + DI,

7: D<—DU‘D£,,DZ}

8: calculate E', EX, E! according to Eq. 2-4
9: E¢ = EN + E,

10: &< EUlELE)

11: end for

12: /I call the MTPE algorithm of Alg. 1
13: x; = MTPE (s, D, &)

14: put x; into (10b) to get E; = 227:1 E,
15: B;=B;i_1 —E;i+ ¢

16: end for

The dynamic change of energy during the whole process
is shown in Algorithm 2. In each time slot ¢, the time con-
sumption D!, D¢ and energy consumption E/, E¢ of executing
generated tasks on the end devices and edge servers are
calculated in lines 4-11. Then, the MTPE algorithm from
Algorithm 1 constructs the objective function and returns the
optimal offloading decision. Therefore, we can obtain the total
energy consumption E; of time slot 7. At the end of each time
slot #, Algorithm 2 calculates energy e; by (22) and updates
energy queue B;. Algorithms 1 and 2 solve the problem of
minimizing the total cost of offloading within a time slot and
the problem of keeping the energy queue stable between the
time slots in the whole cycle 7T, respectively, which correspond
to P1 and P2.

IV. EXPERIMENTAL RESULTS

In this section, we first conduct experiments to compare the
performance of end devices and edge servers. Then we test the
inference capability of various face detection models including
response time and accuracy on real equipment. Finally, we
evaluate our proposed MTPE algorithm compared with the
TPE algorithm, two metaheuristic algorithms and Randomized
Search.

A. Al Application on NVIDIA Jetson and RTX GPU

In all experiments, we choose Jetson Xavier NX, Jetson TX2
and Jetson Nano from the NVIDIA Jetson series as embed-
ded edge devices, and use GeForce RTX 3080 and GeForce
RTX 2080 as edge servers. Different features and configu-
rations of these NVIDIA Jetson end devices are shown in
Table II. Theoretically, the Al performance of Jetson Xavier
NX is roughly 12.71 times that of Jetson TX2 and 4.51 times
that of Jetson Nano. We install the same system versions on all
three types of boards, ensuring that our experimental results
only rely on hardware conditions. Since the driver version on
each edge server is limited by the GPU model, which is shown
in Table III, GeForce RTX 3080 has higher requirements for
the GPU driver version.

First, we train the single-shot face detection model
Retinaface [47] of various backbone networks on the GeForce
RTX 3080 server using the face detection benchmark data
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Fig. 5. Accuracy of each model on different difficulty tasks.

set WIDER FACE [46]. The backbone networks includ-
ing Mobilenet0.25, Mobilenetv3, Ghostnet, Shufflenetv2, and
Resnet50 are fully employed in our experiments. By com-
bining extra-supervised and self-supervised multitask learning,
RetinaFace can perform pixel-level localization of faces at var-
ious scales. After model training, we estimate the performance
of all kinds of backbone networks on three complex task lev-
els, which is classified by data set WIDER FACE according
to the number of images. The exact accuracy results of each
model on the easy, medium and hard WIDER FACE test-
ing sets are shown in Fig. 5. The accuracy of each model
on the easy testing set is above 90%, especially over 95% of
Resnet50. On the medium testing set, the accuracy remains
stable without significant reduction, but only Mobilenet0.25
decreases below 90%. However, the accuracy of all mod-
els on the hard testing set are greatly reduced, yet only
Resnet50 shows an acceptable result (84.43%), compared to
80% or even below 75% of the others.

Second, we also evaluate the response time on end devices
and edge servers, which is the detected time of each image.
The inference performance of different models on each testing
equipment is shown in Figs. 6 and 7.

From Fig. 6, the response time of each model decreases
gradually along with the increase of capability of the end
devices, the model with backbone Mobilenet0.25 is the fastest
among all models. By correlated with Fig. 5, it shows that
the model with relatively higher accuracy takes a longer time
for inference. For Resnet50, as a complex backbone network,
it takes far more time to execute tasks on end devices than
other lightweight networks. Especially, the reference time of
Resnet50 on the Jetson Nano is more than 2's, so it is
unsuitable to deploy on end devices.

From Fig. 7, the response time of each model is rela-
tively low and similar. Compared with end devices, Resnet50
runs more efficiently on edge servers, which presents the
dual advantages of high accuracy and low latency. Therefore,
we consider deploying one lightweight model on each end
device and multiple models including Resnet50 on edge
Servers.
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B. Results and Analysis of MTPE Algorithm

In this part of the experiments, we verify the feasibility of
the multimodel edge computing framework and estimate the
performance of the MTPE algorithm compared with others.
pr =10 W, p, = 100 W, and p, = 1 W, which are based on
the actual test data and rated power of devices. The time slot
t is ls, and the energy consumption limited for a task within a
time slot E}'®* is 10J. According to the accuracy measured by
different complex tasks, g1 and ¢ are set to 0.9, and g3 is 0.8.
Therefore, models with accuracy more than 0.9 are accepted
for easy and medium tasks, whereas models with accuracy
better than 0.8 are selected for hard tasks. Due to the high
requirements for real-time performance in actual applications,
the weight o of 7}, should be set to more than 0.5. The larger «
is easily conducive to reduce the total response time. However,
the lowest response time is often accompanied by the highest
energy consumption. Initially, « is adjusted to 0.8 to balance
response time and energy consumption simultaneously.

To consider multiple deployment scenarios in our experi-
ments, end devices come into a group of 12, and each group
contains three types of devices mentioned in Table II and four
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Fig. 9. Total cost for different offloading environment (¢ = 0.8, K = 5).

types of lightweight models in each type of end device. The
number of edge servers M is 4, which is enough for our edge
computing framework. In Fig. 8, we set N = 60, five groups
of end devices, and the number of inference models K = 5 to
obtain the convergence of the iterative process for the MTPE
algorithm and TPE algorithm. We find that the total costs of
both algorithms start to drop significantly after 20 iterations,
but MTPE converge faster than TPE to search the optimal
value, and the optimal value is also smaller. Since the results
stabilize after 20 iterations, we set the number of iterations of
the MTPE algorithm to 30 in our training process, by default.
When the number of end devices N is varied from 12 to
60 with the fixed number of models K = 5, the total costs
of processing tasks generated by different numbers of devices
under three offloading environments are calculated in Fig. 9.
We observe that with the increase of end devices and the
number of tasks, the total cost of task consumption gradually
increases. However, it is obvious that the cost of edge-end
collaboration is 36.10% and 54.03% lower than offloading all
tasks to the servers or end devices, respectively. Therefore,
edge computing can dramatically reduce computing costs.
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Next, we compare the total cost of deploying different num-
bers of models on the servers. N still ranges from 12 to 60,
and the number of models K varies from 1 to 5 as well as
the complexity of the model added from difficulty to easiness.
As shown in Fig. 10, as more models are deployed, the total
cost tends to decrease. Multimodel framework with K =5 is
reduced by an average of 17.94% compared to a single-model
framework, reaching up to 21.86% when N = 60. Hence,
auxiliary deployment of lightweight models on edge servers
can further ease the computing burden, and the effect is more
obvious with the increase of tasks.

The model selection under different task complexities with
the number of end devices N = 60 is shown in Fig. 11. In gen-
eral, the advantage of multimodel is that lightweight models
can meet basic requirements without selecting complex mod-
els with long response time. All five models can be selected
at the easy task level. However, with the increase of task com-
plexity, the number of selected models decreases to meet the
requirement of accuracy. At the hard task level, only Resnet50
can be selected for edge devices.

To further observe the influence of the two factors of time
and energy consumption on the experimental results, we vary
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the weight « of the objective function f(x) from O to 1 with 0.1
in Fig. 12. We find that the total cost of edge-end collaboration
keeps decreasing steadily as the value of « increases. But with
a = 0.5 as the boundary, the total cost of executing all tasks on
end devices locally starts to be higher than that of offloading
all tasks to servers which maintains a sharp downward trend. It
can be concluded that the edge servers are beneficial to reduce
the total response time, while the end devices contribute to
reducing the total energy consumption. For this reason, the
total cost of edge-end collaboration can be effectively reduced
and maintained at a stable level.

Finally, we compare our algorithm with the latest DDQN
algorithm [29], metaheuristic hybrid algorithm EGAPSO [38],
SA and the original TPE algorithm. The result in contrast
to the baseline algorithm, Randomized Search, is shown in
Fig. 13 with ¢ = 0.8, K = 5. Our MTPE algorithm can
obtain the optimal solution by using fewer initialization deci-
sion parameters. It can be concluded that our algorithm MTPE
is superior to the DDQN algorithm and the metaheuristic algo-
rithm for solving the offloading problem in multimodel edge
computing framework, which reduces the total cost by 37.79%,
23.01%, 3.14%, 20.09%, and 19.90% on average compared
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with Randomized Search, DDQN, TPE, EGAPSO, and SA,
respectively.

V. CONCLUSION AND FUTURE WORK

In this article, we proposed a multimodel edge computing
offloading framework, using embedded edge devices NVIDIA
Jetson and GeForce RTX GPU servers to simulate the edge
computing environment of real Al applications. We compre-
hensively considered the accuracy, time, and energy consump-
tion of inference tasks. To work out the lowest total cost of
the system within a time slot, we put forward a Bayesian
optimization algorithm using MTPE, and theoretically indi-
cated that our algorithm can find an optimal solution under less
iterations. To ensure the stability of the energy queue between
time slots, we also employed the Lyapunov drift function to
solve the harvesting energy between the time slots. Through
comparative experiments, we verified that the multimodel edge
computing offloading framework achieved satisfactory results
in communication cost and computation cost, and ensured the
high accuracy of inference tasks. Compared with the original
TPE algorithm, the state-of-the-art DDQN algorithm and the
metaheuristic algorithms, EGAPSO and SA, our algorithm was
superior for solving offloading problems at the lowest cost. In
the future, we will concentrate on load balancing, including
the scheduling and migration of containers on edge devices
to fully utilize the computing, storage, and network resources,
which will also improve the reliability of the edge computing
environment.
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