

1 Article

2 **Results from exploratory work in Li-rich regions of the
3 AE-Li-Ge systems (AE = Ca, Sr, Ba)**4 **Jiliang Zhang** ^{1,2} and **Svilen Bobev** ^{1,*}5 ¹ Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA6 ² School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P.R. China

7 * Correspondence: Email: bobev@udel.edu; Telephone: +1-302-831-8720; Fax: +1-302-831-6335

8 **Abstract:** The compounds $AELi_2Ge$ ($AE = Ca, Sr$ and Ba) were synthesized and their structures were
9 determined as a part of the exploratory work in the Li-rich regions of the respective ternary systems.
10 The three compounds are isostructural and their crystal structure is the analogous with the
11 orthorhombic structure of $BaLi_2Si$ and KLi_2As (space group $Pmmm$). The atomic arrangement can be
12 viewed as an intergrowth of corrugated $AEGe$ layers, alternated with slabs of Li atoms, suggestive
13 of the possible application of these phase as electrode materials for lithium-ion batteries. Both ex-
14 perimental electronic density and calculated electronic structure suggest that the valence electrons
15 can be partitioned as $(AE^{2+})(Li^+)_2(Ge^4)$, i.e., the title compounds are valence precise Zintl phases.
16 The band structure calculations for $BaLi_2Ge$ show that a bona-fide energy gap in the band structure
17 does not exist, and that the expected poor metallic behavior is originated from the $AEGe$ layer and
18 related to hybridization of $Ba5d$ and $Ge3p$ states. In addition, electrochemical measurements indi-
19 cate that Li atoms can be intercalated into $CaGe$ with a maximum capacity of 446 mAh/g, and re-
20 veal the possibility of the hitherto unknown $CaLiGe$ to exist as a metastable phase.

21 **Keywords:** crystal structure; germanium, lithium; X-ray diffraction, Zintl phases
2223 **1. Introduction**

24 Despite the huge investment and extensive studies in the technology
25 of Lithium-ion batteries (LIB), the development of LIB still lags far behind
26 the requirement of many electric devices. Most popular electrodes are still
27 based on materials proposed many years ago [1–3], like $LiCoO_2$ for cath-
28 ode and graphite for anode. Many current investigations are still focused
29 on improving the properties of these materials [4–6]. One of the main
30 reasons for this is the lack of an effective guideline/way for the discovery
31 of new materials as high-performance electrodes and many break-
32 throughs are serendipitous. Modern developments for materials discov-
33 ery call for the use of density functional theory (DFT) calculations, which
34 predict mainly the most stable structure in the systems [7,8]. Such calcu-
35 lations generally take huge amounts of time and may have difficulties
36 identifying structures with energy of local minimum. Another drawback
37 is the fact that the routine calculation does not take into the account the
38 required compositions and functions. Another complication is arising
39 s/by/4.0/).

26 Citation: To be added by editorial
27 staff during production.

28 Academic Editor: Firstname Last-
29 name

30 Received: date

31 Revised: date

32 Accepted: date

33 Published: date

34 Copyright: © 2023 by the authors.
35 Submitted for possible open access
36 publication under the terms and
37 conditions of the Creative Commons
38 Attribution (CC BY) license
39 (<https://creativecommons.org/licenses/by/4.0/>).

40 from the fact that many Li-containing compounds are sensitive to air
41 and/or moisture, greatly hindering the experimental work. As rule, the
42 lower the concentration of Li in a compound, the more stable the com-
43 pound is with respect to oxidation by air [9,10]. Thus, it is difficult to ex-
44 plore phase space for Li-rich compounds.

45 Since the subjects of this paper are germanides, we can make a case in
46 point by recapping some oddities in the Li–Ge system [11]. For example,
47 years ago, there was a reported “Li₃Ge” phase that even today is not rec-
48 onciled with the crystallographically characterized Li₅Ge₂ (or the nearby
49 Li₇Ge₂, re-assigned as Li₁₃Ge₄ and Li₉Ge₄, the structures of which are not
50 well established to date [12,13]). The previously reported “Li₄Ge” turns
51 out to be compositionally closest to the compound Li_{4.1}Ge [14], and not
52 Li₁₅Ge₄ [15] or Li₁₇Ge₄ [14] (the latter has also been referred to as Li₂₁Ge₅ or
53 Li₂₂Ge₅ in the older literature [16]). When considering ternary systems, a
54 multitude of Li germanides is reported, but very few of them are Li-rich
55 [17,18]. It is also the case in ternary systems containing Li and elements of
56 group 15 [19,20]. It is already realized that many compounds containing
57 group 14 or 15 elements and metallic elements especially alkali and alk-
58 a-line-earth metals are Zintl phases [21–23]. In Zintl phases, there exists a
59 well-defined relationship between chemical and electronic structures [24].
60 Therefore, using the Zintl concept as a guideline, it should be possible to
61 accelerate the discovery of new materials.

62 With this paper we report on the compounds $AELi_2Ge$ ($AE = Ca, Sr$
63 and Ba), which were obtained via our exploratory work in the Li-rich re-
64 gions of the respective ternary systems. While this research was ongoing,
65 another team published the structures of $CaLi_2Ge$ and $BaLi_2Ge$ [25], leav-
66 ing $SrLi_2Ge$ as the only new compound covered in this report. We still
67 report the refinements of the structures of $CaLi_2Ge$ and $BaLi_2Ge$ because
68 our crystallographic analysis is not done at ambient temperature and
69 comparing the metrics of the three structure can be instructive.

70 2. Materials and Methods

71 2.1. Synthesis

72 Handling of the starting materials [pure elements from Alfa or Al-
73 drich (>99.9 wt%)] was performed inside an argon-filled glovebox or un-
74 der vacuum. Ba and Ge are used as received. The surface of Li metal had
75 to be carefully cleaned with a blade every time the metal rod was cut. In a
76 typical experiment, a mixture of constituent elements with stoichiometric
77 compositions were loaded into a Nb tube, which was then sealed by
78 arc-welding under an Ar atmosphere. The welded tube was transferred
79 into a high-frequency induction melter and the containing materials were
80 melted at ca. 1000 °C for 3 minutes. Subsequently the Nb tube with the
81 melt inside was cooled, taken out and placed inside a fused silica tube,
82 which was then sealed under vacuum. The assembly was heated in a
83 muffle furnace to temperature of 800 °C (rate of 1 °/min) and equilibrated

84 for 7 days, followed by air cooling to room temperature. The synthesized
 85 samples are air sensitive and the colour changes from silver to light brown
 86 in hours upon exposure to ambient atmosphere.

88 **2.2. Crystallographic analysis**

89 Powder X-ray diffraction data were collected at room temperature
 90 using a Rigaku MiniFlex powder diffractometer (Cu $\text{K}\alpha$ radiation) which
 91 was enclosed and operated inside a nitrogen-filled glovebox to measure
 92 air sensitive samples. The main reflections cannot be matched with known
 93 compounds involved in the systems and their oxides, indicating the for-
 94 mation of a new phase. Indexing on the main reflections yield a primitive
 95 orthorhombic unit cell.

97 **Table 1.** Selected Crystallographic Data for AELi_2Ge ($\text{AE}=\text{Ca, Sr, Ba}$).

CCDC number	2314734	2314735	2314736
Empirical formula	CaLi_2Ge	SrLi_2Ge	BaLi_2Ge
Formula weight	126.55	174.09	223.81
Temperature		200(2) K	
Radiation, λ		Mo $\text{K}\alpha$, 0.71073 Å	
Space group		$Pmmn$ (no. 59), $Z = 2$	
Lattice constants			
$a/\text{\AA}$	4.650(2)	4.6818(7)	4.7092(9)
$b/\text{\AA}$	5.766(3)	6.2829(6)	6.7593(9)
$c/\text{\AA}$	6.364(3)	6.2800(7)	6.2923(7)
$V/\text{\AA}^3$	170.65(13)	184.81(4)	200.3(1)
$\rho/\text{g}\cdot\text{cm}^{-3}$	2.46	3.13	3.60
μ/cm^{-1}	101.7	222.8	170.1
$R_1 (I > 2\sigma_{(I)})^1$	0.0266	0.009	0.0104
$wR_2 (I > 2\sigma_{(I)})^1$	0.0544	0.0209	0.0201
R_1 (all data) ¹	0.0332	0.0094	0.0114
wR_2 (all data) ¹	0.0566	0.021	0.0268
Largest diff. peak/hole	0.55/−0.67	0.38/−0.32	0.41/−0.51

98 ¹ $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$; $wR_2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$, where $w = 1 / [\sigma^2 F_o^2 + (A \cdot P)^2 + (B \cdot P)]$,
 99 and $P = (F_o^2 + 2F_c^2)/3$; A and B are the respective weight coefficients.

100 Single crystals of AELi_2Ge were selected from the reaction products
 101 after breaking the annealed ingots and mounted on the top of glass fibers
 102 using Paratone N oil. Intensity data sets were collected at 200 K on a
 103 Bruker SMART CCD-diffractometer quipped with monochromated Mo
 104 $\text{K}\alpha$ radiation ($\lambda = 0.71073 \text{ \AA}$). The data collection routine in SMART [26]
 105 with scans at different angles allowed for full coverage of the reciprocal
 106 space up to $2\theta \approx 57\text{--}58^\circ$. The collected frames were integrated using the
 107 SAINT package [27]. Semiempirical absorption correction was applied
 108

109 using SADABS [28]. The structures were solved by direct methods and
 110 refined on F^2 with the aid of the SHELXTL package [29]. The final dif-
 111 ference Fourier maps were flat with highest maxima and minima not
 112 larger than 0.5–0.7 e/Å³. This, together with the excellent crystallographic
 113 parameters (Tables 1 and 2), is suggestive of the fact that all structures are
 114 devoid of disorder. The experimental electron density was reconstructed
 115 by maximum-entropy method (MEM) using a Dysnomia program [30]
 116 and visualized with the VESTA 3 program [31].
 117

118 **Table 2.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters (U_{eq})¹ of $AELi_2Ge$
 119 ($AE = Ca, Sr, Ba$).

Atom	Site	<i>x</i>	<i>y</i>	<i>z</i>	U_{eq} (Å)
CaLi ₂ Ge					
Ca	2b	1/4	1/4	0.0678(3)	0.0135(4)
Ge	2b	1/4	3/4	0.2582(2)	0.0123(3)
Li	4e	0	0.0251(15)	0.6018(15)	0.023(2)
SrLi ₂ Ge					
Sr	2b	1/4	1/4	0.0885(1)	0.0108(2)
Ge	2b	1/4	3/4	0.2793(1)	0.0102(2)
Li	4e	0	0.0369(7)	0.5991(6)	0.0169(8)
BaLi ₂ Ge					
Ba	2b	1/4	1/4	0.0981(1)	0.0126(2)
Ge	2b	1/4	3/4	0.3027(2)	0.0110(2)
Li	4e	0	0.0483(8)	0.5935(8)	0.016(1)

120 ¹ U_{eq} is defined as one-third of the trace of the orthogonalized U^{ij} tensor.
 121

122 2.3. Elemental Analysis

123 Picked single crystals were mounted on to carbon tape and placed in a
 124 JEOL 7400 F electron microscope equipped with an INCA-Oxford ener-
 125 gy-dispersive spectrometer. The microscope was operated at 10 μ A beam
 126 current at 15 kV accelerating potential. Data were acquired for several
 127 spots on the same crystal and average. The obtained results are in good
 128 agreement with the refined compositions (e.g. Ca:Ge \approx 1:1) and the ele-
 129 mental-mapping confirms the homogeneity of the samples. The Li con-
 130 tents were measured using a Spectro Ciros ICP_OES radia view instru-
 131 ment. Generally 5 mg of product powders were dissolved using a dilute
 132 nitric acid (5 mL). All results gave Li contents close to 50%.

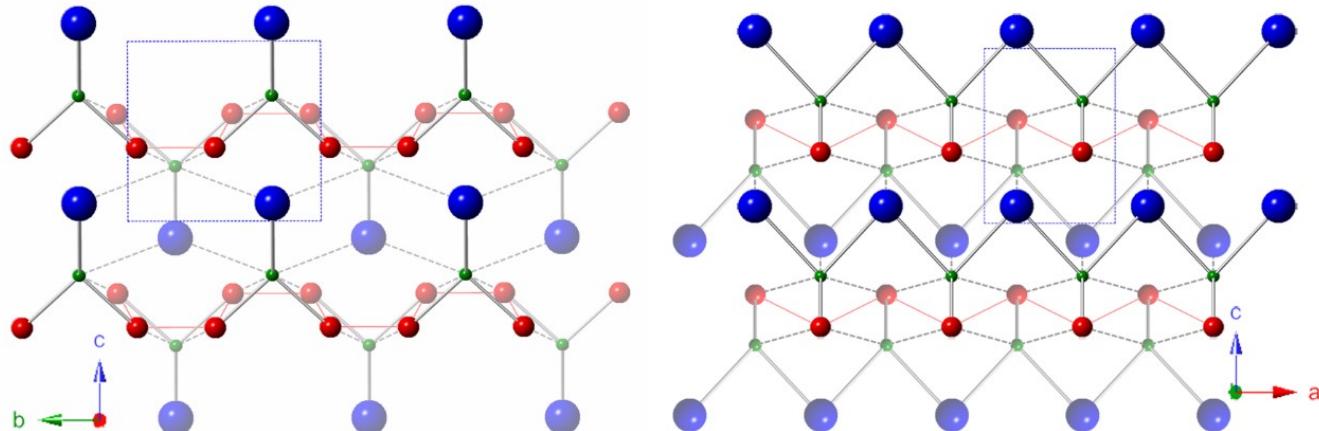
133 2.4. Electronic Structure Calculations

134 To optimize the geometry of the tetrahedral chains carved out from
 135 the BaLi₂Ge structure, see the structure description in section 3), a triclinic
 136 unit cell containing only one such unit was constructed first. One direction
 137 of the unit cell is chosen to be along the propagation of the chains with a
 138

139 lattice constant equivalent to the Ba—Ba distance in one cluster, while in
140 other directions the initial lattice constants are 1 nm to ensure the isolation
141 of the individual chains. Structural optimizations were performed were
142 performed with the first-principles pseudopotential based density func-
143 tional theory as implemented in SIESTA [32,33], which employs a local-
144 ized orbital basis in the representation of wave functions. We use soft
145 norm-conserving pseudopotential and the Perdew-Berke-Emzerhof ex-
146 change correlation energy within the generalized gradient approximation
147 [34,35]. The optimizations are deemed to have sufficiently converged
148 when the residual forces on any atoms are smaller than 0.001 eV/Å.

149 Electronic structure calculations were carried out on the optimized
150 and experimentally determined structures using the projector augmented
151 wave method (APW) with spin orbit coupling (SOC) [36,37]. The Kinetic
152 energy cur-off for the plane waves was 500 eV. Exchange and correlations
153 were treated in the local density approximation (LDA) [38]. For these
154 calculations, an $8 \times 12 \times 12$ k -point Monkhorst-pack grid was used.

156 2.5. Electrochemical Measurements


157 The fine powders of $AELi_2Ge$ compounds are very air sensitive and
158 can be used directly for electrodes. Instead, CaGe fine powders (see the
159 appendix for details on the preparation) were used for electrochemical
160 measurements, because that $CaLi_2Ge$ was expected to be the product from
161 lithiation of CaGe. The CaGe electrodes were prepared by coating slurries
162 containing the active materials (70 wt%), super P carbon conductive
163 agents (20 wt%), and a binder (polyvinylidenedifluoride, 10 wt%), dis-
164 solved in N-Methyl-2-pyrrolidone. The resulting slurries were cast onto a
165 copper foil current collector and then dried in a vacuum oven at 120 °C for
166 5 hours. After drying, the electrodes were punched into a coin shape of 12
167 mm diameter. The electrochemical performance was evaluated using
168 CR2032 coin-type cells assembled in an Ar-filled glovebox. Li metal foil
169 was used as a counter electrode and a 1 M solution in EC/DEC (1:1, v/v)
170 was employed as an electrolyte.

172 3. Results and Discussion

173 3.1. Crystal Structure

174 During the process of electrochemical tests and manuscript prepara-
175 tion, $CaLi_2Ge$ and $BaLi_2Ge$ were synthesized from Li flux, and their
176 structures were reported by another research team [25]. The structure re-
177 finements at 200 K we provide here (Table 1) are in excellent agreement
178 with the reported ones [25]. Comparing structural parameters reported at
179 ambient temperature with the present results show that the $CaLi_2Ge$
180 crystal exhibits a very small thermal expansion: a and c are almost con-
181 stant from 200 K to room temperature (4.650(2) Å vs 4.6498(3) Å and

182 6.364(3) Å vs 6.3683(4) Å, while in BaLi₂Ge the thermal expansion is rel-
 183 atively larger along *a* axis (4.7092(9) Å vs 4.7141(2) Å) and smaller or non-
 184 existent along *b* and *c* axes, respectively (6.7593(9) Å vs 6.7655(3) Å, and
 185 6.2923(7) Å vs 6.3042(3) Å).

188 **Figure 1.** Schematic representation of the orthorhombic *AELi₂Ge* structure, viewed along the crys-
 189 tallographic *a*-axis (left) and *b*-axis (right). *AE* atoms are represented as blue spheres, Ge atoms are
 190 drawn as green spheres, and Li atoms are shown with the red spheres. The “Ba₂Li₂Ge tetrahedral
 191 chains” are shown with atom connected by sticks; the inter-chain interactions are illustrated by the
 192 dash lines, and the Li—Li interactions are depicted with the thin red lines. The unit cell is outlined
 193 by the blue frame in both projections.

194 The crystal structure of *AELi₂Ge* (*AE* = Ca, Sr, Ba) is schematically il-
 195 lustrated in Figure 1. The structure is formally assigned as belonging to
 196 the BaLi₂Si type (Pearson symbol *oP8*) with space group *Pmmn* (no. 59).
 197 One way to look at the structure of *AELi₂Ge* is to consider tetrahedral
 198 chains forming along *a* axis; the construction of these chains requires
 199 drawing bonds between Li and *AE* to nearest Ge atoms. Such chains are
 200 also coupled with two neighboring chains along *b* axis through Li—Li and
 201 Ge—Li interactions, which as judged by the interatomic distances must
 202 have appreciable covalent character. Taking into an account only these
 203 linked chains yields a layered structure, while including the various
 204 *AE*—Ge or *AE*—Li interactions between neighboring layers results into a
 205 3D-like formation, depending on the nature of *AE*. According to the re-
 206 fined distances listed in Table 3, the Ca—Ge distance (3.1162(17) Å) is
 207 shorter than Ca—Li distance (3.2367(9) Å) and the Ba—Ge distance
 208 (3.4503(4) Å) between nearest neighbors is longer than the contact Ba—Li
 209 (3.4023(3) Å).

212 **Table 3.** Selected Interatomic Distances in *AELi₂Ge* (*AE* = Ca, Sr, Ba).

Atomic pair	Distance (Å)	Atomic pair	Distance (Å)	Atomic pair	Distance (Å)
CaLi ₂ Ge		SrLi ₂ Ge		BaLi ₂ Ge	

Ge—Ca (×2)	3.117(2)	Ge—Sr (×2)	3.2891(4)	Ge—Ba (×2)	3.4503(4)
Ge—Ca (×2)	3.127(2)	Ge—Sr (×2)	3.3623(3)	Ge—Ba (×2)	3.6166(4)
Ge—Li (×2)	2.701(9)	Ge—Li (×2)	2.700(4)	Ge—Li (×2)	2.7228(2)
Ge—Li (×4)	2.808(2)	Ge—Li (×4)	2.803(2)	Ge—Li (×2)	2.7981(2)
Li—Li (×1)	2.59(1)	Li—Li (×1)	2.677(8)	Li—Li (×2)	2.7120(2)
Li—Li (×2)	2.678(9)	Li—Li (×2)	2.692(3)	Li—Li (×1)	3.7267(4)
Ca—Li (×2)	3.237(9)	Sr—Li (×2)	3.353(4)	Ba—Li (×2)	3.4023(3)

213


214

215

The structure under consideration can also be characterized as the intergrowth of two slabs: 1) “AEGe” (PbO-like motif) and 2) “Li” slab, as shown in Figure 2. The slab “Li” is just a cutout from the hexagonal-ly-close-packed structure of Li metal. This allows the present structure to be regarded as a “Li-intercalated” AEGe phase, although in reality, the structures of the alkaline-earth monogermanides are different. Nonetheless, this analogy can be useful if AEGe are to be treated as electrodes in LIB.

221

222

Figure 2. Schematic representation of $AELi_2Ge$, viewed approximately along the crystallographic b-axis and the projection of the crystal structure of $AELi_2Ge$ on the (001) planes: (a) AEGe layer and (b) Li layer. AE atoms are represented as blue spheres, Ge atoms are drawn as green spheres, and Li atoms are shown with the red spheres. Both layers can be considered as the distortion of the corresponding simple compounds: (a) PbO-type AEGe and (b) hexagonal Li.

223

224

225

226

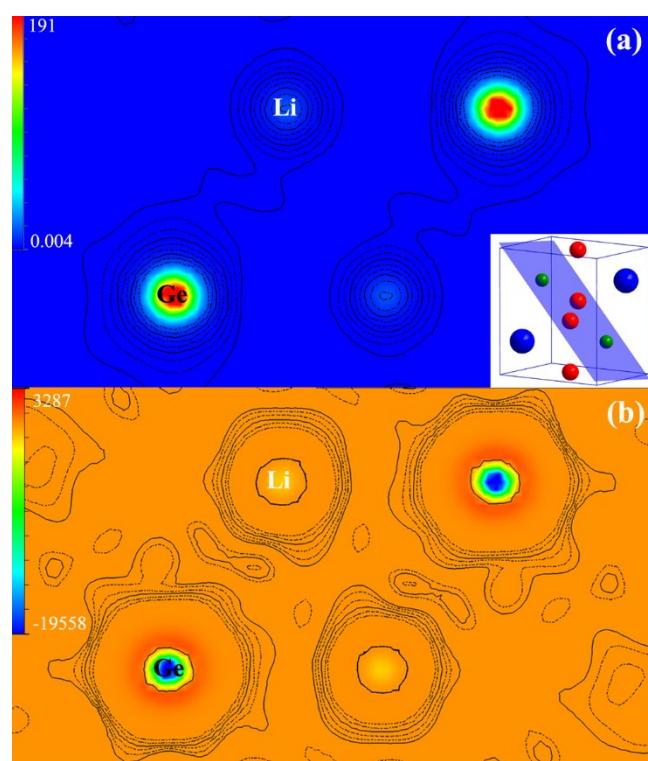
227

228

In the $BaLi_2Ge$ structure, the shortest Ba—Ge distance is 3.4505(6) Å, close to the values seen in other Ba-Ge and Ba-Li-Ge compounds: $BaGe_2$ (3.42 Å) [39], $BaLiGe_2$ (3.37 Å) [40], Ba_2LiGe_3 (3.42 Å) [41,42], $Ba_8Li_5Ge_{41}$ (3.42 Å) [43], while the second shortest Ba—Ge distance 3.62 Å is larger

229

230


231

232

233

than these typical values, indicative of the weaker interactions between layers. In contrast, the shortest Li—Ge distance (2.72 Å) is close to the second shortest Li—Ge distance (2.80 Å). Both Li—Ge distances are longer than those in many ternary compounds: BaLiGe₂ (2.70 Å) [40], Ba₂LiGe₃ (2.58 Å) [41,42], RE₃Li₄Ge₄ (2.62 – 2.69 Å) [44] and RE₂Li₂Ge₃ (2.56 – 2.62) Å [44], but close to the values reported for some ternary compounds such as LiZnGe (2.78 Å) [45]. Such longer Li—Ge distances suggest enhanced metallic characters compared with the reported alkaline-earth metal lithium germanides and rare-earth metal lithium germanides. The implied lesser covalency allows the valence electrons to be shared in multi-center interactions to stabilize the structure.

To better understand the nature of the Li—Ge bonding in BaLi₂Ge, the electronic density $\rho(r)$ maps were obtained by maximum entropy method (MEM) analysis using the refined structure factors. As shown in Figure 3a, there are still electrons between Ge and the nearest Li and both atoms are elongated towards each other, indicating the strong covalent character and electron transfer. However, the shared or transferred electrons are not distributed exactly along the Li—Ge bond path, but curved toward to the second nearest Li atom to the Ge atom, suggestive of appreciable Li—Li bond/interactions to exist.

Figure 3. Electron density distributions obtained by MEM (a) and its Laplacian transformation (b). The inset crystallographic structure in (a) shows the crystal planes containing only Ge (green spheres) and Li (red spheres) atoms corresponding to the electron density distributions. The unit for the electronic density is $e/\text{\AA}^3$. The logarithmic contour lines show 8 levels from minimum to the maximum.

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

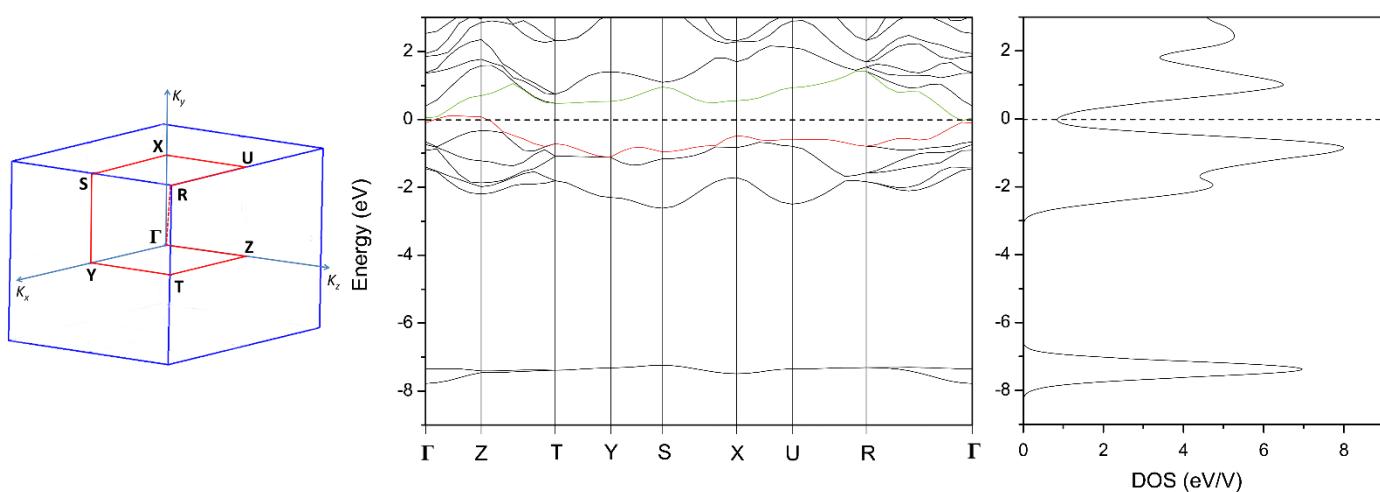
286

287

288

289

290

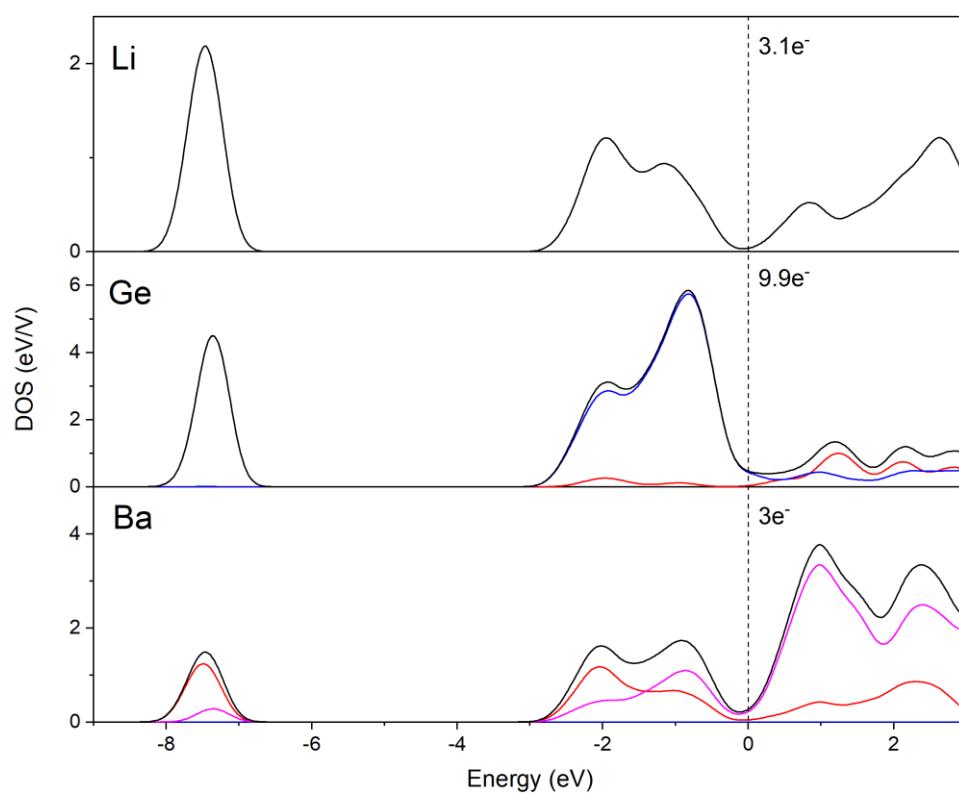

291

292

Compared with the $\rho(r)$ map, its Laplacian function $L(r) = -\nabla^2\rho(r)$ is more sensitive to the bond formation. When a chemical bond is formed, the $L(r)$ distribution is no longer spherical and its properties are widely used for characterizing atomic interactions, since the Laplacian enhances the features of charge distribution and of electron pair localization. The Li–Li bonding character is more evident in the Laplacian of the electron density, as shown by the distortion towards each other in Figure 3b.

3.2. Electronic Structure

Computations based on the density functional theory were carried out for BaLi₂Ge with experimentally determined structural data. The Brillouin zone (BZ) is schematically illustrated in Figure 4 (the left side) with high symmetric K points to generate the band structure. The band structure and corresponding electronic density of states (DOS) are given in the middle and right of Figure 4. There are 8 energy bands in the range -10 eV to Fermi level (E_F) for valence electrons. Except two flat bands between -8 eV and -7 eV, six curved bands are in an energy range from -5 eV to the E_F , and these bands are degenerated into 3 energy levels in most zones of the BZ zone. These characters indicate the strong hybridization in the structure. The charge balance suggests the compound as a Zintl phase, but the hybridization in the Γ –Z zone elevates the energy of the filled band just below the Fermi level and reduces the energy of the empty band just above the Fermi level. As a result, the overlap of two bands leads to the DOS at Fermi level. The Fermi level located at the bottom of the valley in the total DOS, suggestive of an overall electronic structure stability (and likely poor metallic behavior). It is evident from the band structure that the DOS at Fermi level is mainly from the Γ –Z zone around $Z(0, 0, k_z/2)$ point. It corresponds to the crystal planes parallel to (001) in the real space and suggests the metallic behaviors from delocalized electrons inside layers.


293

294
295
296

Figure 4. Band structure (middle) and DOS (right) of BaLi₂Ge, together with the schematically de-
picted Brillouin zone (left). The Fermi level is shown as the dash line. The red line in the band
structure represents the main conductive band.

297
298
299
300
301
302
303
304
305
306
307
308
309
310

According to the partial DOS in Figure 5, strong hybridization of Ba-5d and Ge-3p states dominate the conduction band in the vicinity of the Fermi level E_F ; this is inferred by their high DOS and similar distributions. Together with the band structure and total DOS in Figure 4, it can be inferred that the metallic behavior is associated the hybridization in BaGe layers. The DOS integration on the conduction band indicates the electron transfer of ca. 0.9 e from Li to Ge per unit cell. Together with the inter-growth conceptual description we gave earlier, the dominant bonding interactions can be summarized as follows: strong Ba—Ge interactions (5d-3p hybridization) favor the formation of Ba—Ge layer, while the interaction between Li and layer show more ionic characters, like Li intercalated graphite in rechargeable lithium ion battery [1,2].

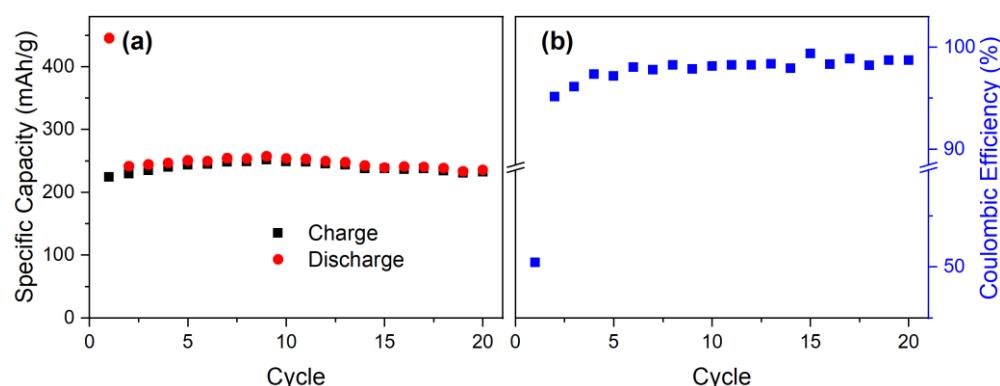
311
312
313
314

Figure 5. Partial DOS (black lines) for Ba, Li and Ge in BaLi₂Ge. Contributions from s-, p-, d- bands
are shown by the blue, red and pink lines respectively. The dotted lines indicate the Fermi level.
Around 0.9 electrons are transferred from Li to Ge (in one unit cell with two formula units).

315
316

3.3. Electrochemical Properties

317 According to the above discussion, the presented $AELi_2Ge$ ($AE = Ca$,
 318 Sr , Ba) compounds can suggested as potential electrodes for rechargeable
 319 LIB, following the delithiation/lithiation mechanism:



321 The theoretical capacity (C_{theor}) can be estimated using the following
 322 equation [46]:

323
$$C_{theor} = nF/3.6 \times M$$

324 where n is the maximum number of charges of the compound can
 325 accept (or give up), F is Faraday's constant, and M is the formula weight of
 326 the compound in g/mol. From the above, $CaGe$ has a C_{theor} of ca. 480
 327 mAh/g.

328 Because of air sensitivity of finely ground powders of $CaLi_2Ge$, the
 329 electrochemical measurements were performed on $CaGe$ electrodes, and
 330 the $CaLi_2Ge$ is the expected product of full lithiation. The cycling proper-
 331 ties were measured in a current density of 50 mA/g, and shown in Figure
 332 6. The initial discharge capacity (lithiation) is 446 mAh/g, close to the the-
 333 oretical value, and the charge capacity in the first cycle is 225 mAh/g,
 334 which increases up to ca. 245 mAh/g in the following cycles. No visible
 335 capacity fading and high Coulombic efficiency up to 99% in the following
 336 20 cycles suggest the intercalation nature of the electrochemical reaction.

342
 343 **Figure 6.** The electrochemical performance of polycrystalline $CaGe$. Panel (a) shows the specific
 344 capacity and panel (b) depicts the Coulombic efficiency.

345
 346 The discharge capacity close to the theoretical value in the first cycle
 347 indicates the formation of $CaLi_2Ge$ via electrochemical intercalation. The
 348 charge capacity has only a half of the theoretical values suggests only one
 349 Li delithiated out from $CaLi_2Ge$. Thus the electrochemical reaction after
 350 the first cycle is likely $CaLi_2Ge \rightarrow Li + e^- + CaLiGe$. To confirm it, the ex situ
 351 PXRD was collected on the electrodes after 1st discharge-charge cycle. As

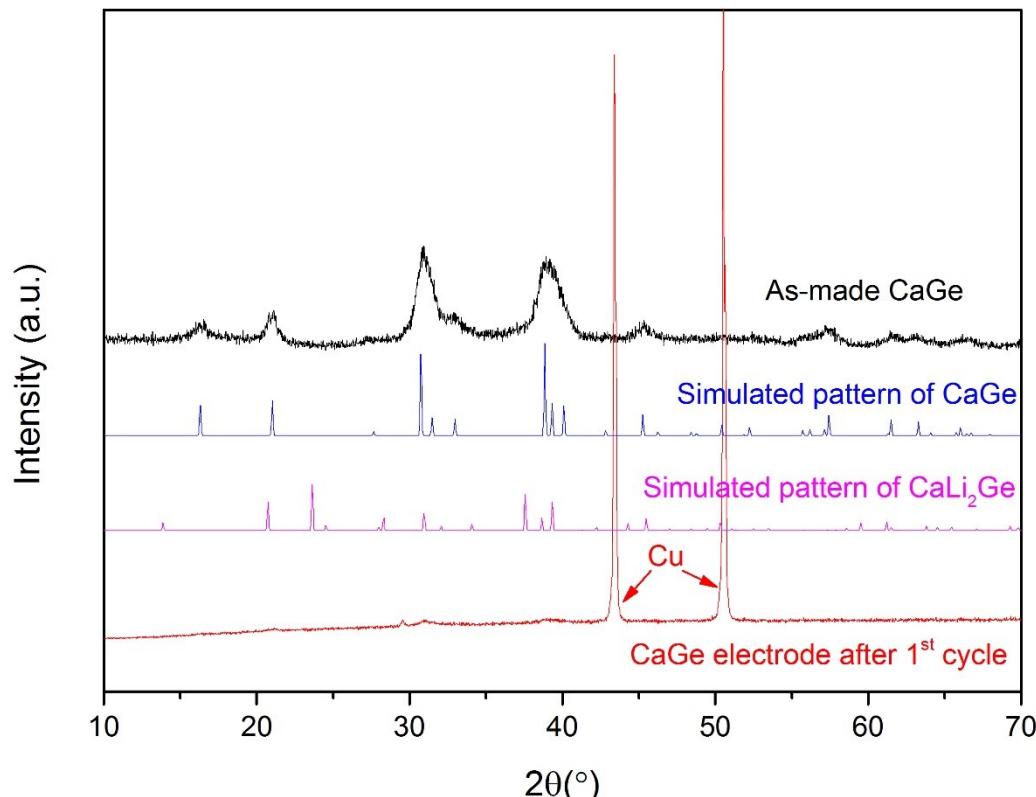
352 shown in Figure S1, after the 1st cycle, the main phase in the electrode is
353 not CaGe but an unknown phase, except the Cu collector. Due to poor
354 crystallinity, it is impossible to index the PXRD pattern. However, based
355 on the electrochemical behaviors, it can be inferred that the phase has a
356 formula CaLiGe or close to it, but the structure and existence of this phase
357 remains to be confirmed in future works.

358
359 **Author Contributions:** Conceptualization, S.B.; methodology, J.Z.; S.B.; data curation, J.Z.; S.B.;
360 validation, J.Z.; S.B.; formal analysis, J.Z.; S.B.; investigation, J.Z.; resources, S.B.; writing—original
361 draft preparation, J.Z.; writing—conceptualization, J.Z.; S.B.; writing—review and editing, S.B.;
362 visualization, S.B.; supervision, S.B.; project administration, S.B.; funding acquisition, S.B. All au-
363 thors have read and agreed to the published version of the manuscript.

364 **Funding:** This work was supported by the US National Science Foundation (NSF) through grant
365 DMR-2004579.

366 **Data Availability Statement:** The corresponding crystallographic information files (CIF) have been
367 deposited with the Cambridge Crystallographic Database Centre (CCDC) and can be obtained free
368 of charge via <http://www.ccdc.cam.ac.uk/conts/retrieving.html> (or from the CCDC, 12 Union Road,
369 Cambridge CB2 1EZ, UK; Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk) with the fol-
370 lowing depository numbers: 2314734–2314736.

371 **Acknowledgments:** In this section, you can acknowledge any support given which is not covered
372 by the author contribution or funding sections. This may include administrative and technical
373 support, or donations in kind (e.g., materials used for experiments).


374 **Conflicts of Interest:** The authors declare no conflict of interest.

376

Appendix A

377

378

379

380

381

382

383

384

385

386

Figure A1. Powder X-ray diffraction patterns of as-made CaGe [CaGe powders were prepared via high energy ball milling using Ca (Aldrich, >99.9%) and Ge powders (Aldrich, >99.9%). The molar ratio of Ca and Ge was 1:1 with the total weight of 2 g. Stainless steel balls of 40 g were used and the ball milling was carried out under an Ar atmosphere for 3 hours] and CaGe electrodes after the first discharge-charge cycle, together with simulated patterns of CaGe and CaLi₂Ge. A small sharp peak appears at ca. 30° in the pattern of CaGe electrode after the first cycle, and it does not match a known phase.

387

388

389

390 **References**

1. Whittingham, M.S.; Lithium Batteries and Cathode Materials. *Chem. Rev.* **2004**, *104*, 4271-4301.
2. Goodenough, J.B.; Park, K.S.; The Li-Ion Rechargeable Battery: A Perspective. *J. Am. Chem. Soc.* **2013**, *135*, 1167-1176.
3. Goodenough, J.B.; Kim, Y.; Challenges for Rechargeable Li Batteries. *Chem. Mater.* **2010**, *22*, 587-603.
4. Sathiya, M.; Rousset, G.; Ramesha, K.; Laisa, C.P.; Vezin, H.; Sougrati, M.T.; Doublet, M.L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A.S.; Ben Hassine, M.; Doupont, L.; Tarascon, J.M.; Reversible Anionic Redox Chemistry in High-Capacity Layered-Oxide Electrodes. *Nat. Mater.* **2013**, *12*, 827-835.
5. Goodenough, J.B.; Evolution of Strategies for Modern Rechargeable Batteries. *Acc. Chem. Res.* **2013**, *46*, 1053-1046.
6. Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G.; *Science* **2014**, *343*, 519.
7. Collins, C.; Dyer, M.S.; Pitcher, M.J.; Whitehead, G.F.S.; Zanella, M.; Mandal, P.; Claridge, J.B.; Darling, G.R.; Rosseinsky, M.J.; Accelerated Discovery of Two Crystal Structure Types in a Complex Inorganic Phase Field. *Nature* **2017**, *546*, 280.
8. Dyer, M.S.; Collins, C.; Hodgeman, D.; Chater, P.A.; Demont, A.; Romani, S.; Sayer, R.; Thomas, M.F.; Claridge, J.B.; Darling, G.R.; Rosseinsky, M.J.; Computationally Assisted Identification of Functional Inorganic Materials. *Science* **2013**, *340*, 847-852.

404 9. Longo, R.C.; Kong, F.T.; Santosh, K.C.; Park, M.S.; Yoon, J.; Yeon, D.H.; Park, J.H.; Doo, S.G.; Cho, K.; Phase Stability of
405 Li-Mn-O Oxides as Cathode Materials for Li-ion Batteries: Insights from Ab Initio Calculation. *Phys. Chem. Chem. Phys.*
406 **2014**, *16*, 11218.

407 10. Matsuno, S.; Noji, M.; Kashiwagi, T.; Nakayama, M.; Wakihara, M.; Construction of the Ternary Phase Diagram for the
408 Li-Cu-Sb System as the Anode Materials for a Lithium Ion Battery. *J. Phys. Chem. C* **2007**, *111*, 7548-7553.

409 11. Massalski, T.B., Ed.; *Binary Alloys Phase Diagrams*; ASM International: Materials Park, OH, 1990.

410 12. St. John, M.R.; Furgala, A.J.; Sammells, A.F.; Thermodynamic Studies of Li-Ge Alloys: Application to Negative Electrodes
411 for Molten Salt Batteries. *J. Electrochem. Soc.* **1982**, *129*, 246-150.

412 13. Vhof, V.; Muller, W.; Schafer, H.; The Structure of Li_7Ge_2 . *Z. Naturforsch. B* **1972**, *27B*, 1157-1160.

413 14. Fassler, T.F.; Zeilinger, M.; Structural and Thermodynamic Similarities of Phases in the $\text{Li}-\text{Tt}$ ($\text{Tt} = \text{Si}, \text{Ge}$) Systems: Redetermination of the Lithium-rich Side of the Li-Ge Phase Diagram and Crystal Structure of $\text{Li}_{17}\text{Si}_{4-x}\text{Ge}_x$ for $x = 2.3, 3.1, 3.5$ and
415 4 As Well As $\text{Li}_{4.1}\text{Ge}$. *Dalton Trans.* **2014**, *43*, 14959-14970.

416 15. (a) Johnson, Q.; Smith G.S.; Wood, D.; The Crystal Structure of $\text{Li}_{15}\text{Ge}_4$. *Acta Crystallogr.* **1965**, *18*, 131-132; (b) Osman, H. H.;
417 Bobev, S.; Experimental and Theoretical Study on the Substitution Patterns in Lithium Germanides: The Case of $\text{Li}_{15}\text{Ge}_4$ vs
418 $\text{Li}_{14}\text{ZnGe}_4$. *Eur. J. Inorg. Chem.* **2022**, e202100901.

419 16. Goward, G.R.; Taylor, N.J.; Souza, D.C.S.; Nazar, L.; The True Crystal Structure of Li_{17}M_4 ($\text{M} = \text{Ge}, \text{Sn}, \text{Pb}$) – Revised from
420 Li_{22}M_5 . *J. Alloys Compd.* **2001**, *329*, 82-91.

421 17. Tillard, M.; Belin, C.; Spina, L.; Jia, Y.Z.; Two Cubic Polymorphs of AlGeLi . *Acta Crystallogr. Sect. C* **2012**, *68*, i60-i64.

422 18. Henze, A.; Hlukhyy, V.; Fassler, T.F.; Fully and Partially Li-Stuffed Diamond Polytypes with Ag-Ge Structures: Li_2AgGe and
423 $\text{Li}_{2.53}\text{AgGe}_2$. *Inorg. Chem.* **2015**, *54*, 1152-1158.

424 19. Todorov, I.; Sevov, S.C.; Heavy-Metal Aromatic and Conjugated Species: Rings, Oligomers, and Chains of Tin in
425 $\text{Li}_{9-x}\text{EuSn}_{6+x}$, $\text{Li}_{9-x}\text{CaSn}_{6+x}$, $\text{Li}_5\text{Ca}_7\text{Sn}_{11}$, $\text{Li}_6\text{Eu}_5\text{Sn}_9$, $\text{LiMgEu}_2\text{Sn}_3$, and $\text{LiMgSr}_2\text{Sn}_3$. *Inorg. Chem.* **2005**, *44*, 5361-5369.

426 20. Ganguli, A.K.; Gupta, S.; Corbett, J.D.; New Tetragonal Structure Type for $\text{A}_2\text{Ca}_{10}\text{Sb}_9$ ($\text{A} = \text{Li}, \text{Mg}$). Electronic Variability
427 Around a Zintl Phase. *Inorg. Chem.* **2006**, *45*, 196-200.

428 21. Stegmaier, S.; Waibel, M.; Henze, A.; Jantke, L.A.; Karttunen, A.J.; Fassler, T.F.; Soluble Zintl phase $\text{A}_{14}\text{ZnGe}_{16}$ ($\text{A} = \text{K}, \text{Rb}$)
429 Featuring $[(\eta^3\text{-Ge}_4)\text{Zn}(\eta^3\text{-Ge}_4)]^6^-$ and $[\text{Ge}_4]^{4-}$ Clusters and the Isolation of $[(\text{MesCu})_2(\eta^3\text{-Ge}_4)\text{Zn}(\eta^3\text{-Ge}_4)]^{4-}$: The Missing
430 Link in the Solution Chemistry of Tetrahedral Group 14 Element Zintl Clusters. *J. Am. Chem. Soc.* **2012**, *134*, 14450-14460.

431 22. Luo, X.H.; Krizan, J.W.; Haldolaarachchige, N.; Klimczuk, T.; Xi, W.W.; Fuccillo, M.K.; Felser, C.; Cava, R.J.; A Large
432 Family of Filled Skutterudites Stabilized by Electron Count. *Nat. Commun.* **2015**, *6*, 6489.

433 23. Schafer, M.C.; Bobev, S.; Tin Clathrates with the Type II Structure. *J. Am. Chem. Soc.* **2013**, *135*, 1696.

434 24. Fassler, T.F. (ed.); *Zintl Ions: Principles and Recent Developments*. Springer-Verlag Berlin Heidelberg 2011.

435 25. Stoiber, D.; Bobnar, M.; Hohn, P.; Niewa, R.; Lithium Alkaline Earth Tetrelides of the type Li_2AeTt ($\text{Ae} = \text{Ca}, \text{Ba}$, $\text{Tt} = \text{Si}, \text{Ge},$
436 Sn, Pb): Synthesis, Crystal Structures and Physical Properties. *Z. Naturforsch. B* **2017**, *72*, 220-222.

437 26. SMART NT, version 5.63; Bruker Analytical X-ray Systems, In.: Madison, WI, 2003.

438 27. SAINT NT, version 6.45; Bruker Analytical X-ray Systems, In.: Madison, WI, 2003.

439 28. SADABS NT, version 2.10; Bruker Analytical X-ray Systems, In.: Madison, WI, 2001.

440 29. SHELXTL, version 6.12; Bruker Analytical X-ray Systems, In.: Madison, WI, 2001.

441 30. Momma, K.; Ikeda, T.; Belik, A.A.; Izumi, F.; Dysnomia, A Computer Program for Maximum-Entropy Method (MEM) Analysis and its Performance in the MEM-based Pattern Fitting. *Powder Diffr.* **2013**, *28*, 184-193.

442 31. Momma, K.; Izumi, F.; VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. *J. Appl. Cryst.* **2011**, *44*, 1272-1276.

443 32. Ordejón, P.; Artacho, E.; Soler, J.M. Self-consistent Order-N Density-Functional Calculations for Very Large Systems. *Phys. Rev. B* **1996**, *53*, R10441.

444 33. Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA Method for Ab Initio
445 Order-N Materials Simulation. *J. Phys.: Condens. Matter* **2002**, *14*, 2745.

446 34. Troullier, N.; Martins, J.L. Efficient Pseudopotentials for Plane-Wave Calculations. *Phys. Rev. B* **1991**, *43*, 1993.

447 35. Perdew, J.P.; Burke, K.; Emzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865.

448 36. Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. *Phys. Rev. B* **1993**, *47*, 558.

449 37. Kresse, G.; Joubert, D. From Ultrasoft Pseudopotential to the Projector Augmented-Wave Method. *Phys. Rev. B* **1999**, *59*,
450 1758.

451 38. Von Barth, U.; Hedin, L.A. A Local Exchange-Correlation Potential for the Spin Polarized Case. I. *J. Phys. C* **1972**, *5*, 1629.

452 39. Betz, A.; Schafer, H.; Weiss, A.; Wulf, R.; Digermanide SrGe_2 and BaGe_2 . *Z. Naturforsch. B* **1968**, *23*, 878.

453 40. Park, D.G.; Dong, Y.; DiSalvo, F.J.; LiSrGe_2 and LiBaGe_2 : One-Dimensional Chains of $[\text{Ge}_2]^{3-}$ in an Unusual Conformation. *J. Alloys Compd.* **2009**, *470*, 90-95.

454 41. von Schnering, H.G.; Bolle, U.; Curde, J.; Peter, K.; Carillo-Cabrera, W.; Mehmet, S.; Schultheiss, M.; Wedig, U.; Hucker
455 Arenes with Ten π Electrons: Cyclic Zintl Anions $[\text{Si}_6]^{10-}$ and $[\text{Ge}_6]^{10-}$, Isosteric with $[\text{P}_6]^{4-}$. *Angew. Chem.* **1996**, *35*, 984-986.

456 42. Ghosh, K.; Bobev, S.; Yet Another Case of Lithium Metal Atoms and Germanium Atoms Sharing Chemistry in the Solid
457 State: Synthesis and Structural Characterization of Ba_2LiGe_3 . *Chem. Eur. J.* **2023**, *29*, e202302385.

462 43. Ghosh, K.; Ovchinnikov, A.; Baitinger, M.; Krnel, M.; Burkhardt, U.; Grin, Y.; Bobev, S.; Lithium Metal Atoms Fill Vacancies in the Germanium Network of a Type-I Clathrate: Synthesis and Structural Characterization of $\text{Ba}_8\text{Li}_5\text{Ge}_{41}$. *Dalton Trans.* **2023**, *52*, 10310.

463 44. Guo, S.P.; You, T.S.; Bobev, S.; Closely Related Rare-Earth Metal Germanides $RE_2\text{Li}_2\text{Ge}_3$ and $RE_3\text{Li}_4\text{Ge}_4$ ($RE=\text{La-Nd, Sm}$):
466 Synthesis, Crystal Chemistry, and Magnetic Properties. *Inorg. Chem.* **2012**, *51*, 3119–3129.

467 45. Lacroix-Orio, L.; Tillard, M.; Belin, C.; Synthesis, Crystal and Electronic Structure of $\text{Li}_8\text{Zn}_2\text{Ge}_3$, a Compound Displaying an
468 Open Layered Anionic Network. *Solid State Sci.* **2006**, *8*, 208–215.

469 46. Howard, W.F.; Spotnitz, R.M.; Theoretical Evaluation of High-Energy Lithium Metal Phosphate Cathode Materials in
470 Li-ion Batteries. *J. Power Source* **2007**, *165*, 887.

471

472 **Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual
473 author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury
474 to people or property resulting from any ideas, methods, instructions or products referred to in the content.