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K-RINGS OF WONDERFUL VARIETIES AND MATROIDS

MATT LARSON, SHIYUE LI, SAM PAYNE, AND NICHOLAS PROUDFOOT

ABSTRACT. We study the K-ring of the wonderful variety of a hyperplane arrangement and give
a combinatorial presentation that depends only on the underlying matroid. We use this com-
binatorial presentation to define the K-ring of an arbitrary loopless matroid. We construct an
exceptional isomorphism, with integer coefficients, to the Chow ring of the matroid that satisfies
a Hirzebruch-Riemann-Roch-type formula, generalizing a recent construction of Berget, Eur,
Spink, and Tseng for the permutohedral variety (the wonderful variety of a Boolean arrange-
ment). As an application, we give combinatorial formulas for Euler characteristics of arbitrary
line bundles on wonderful varieties. We give analogous constructions and results for augmented
wonderful varieties, and for Deligne-Mumford-Knudsen moduli spaces of stable rational curves

with marked points.
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Let L be a finite dimensional vector space over a field F, and let A = {H, | e € E} be a finite
multiset of hyperplanes in L intersecting only at the origin. The wonderful variety Wy is a smooth
compactification of P(L)\|Jgc 4 P(H), originally studied by De Concini and Procesi [DCP95]. The

augmented wonderful variety Wy
that contains Wy as a divisor.

aug .

is a smooth compactification of L, introduced in [BHM*22a],
The Chow rings of these spaces have been extensively studied

and have combinatorial presentations that depend only on the underlying matroid. As a result,

such rings are naturally defined for arbitrary, not necessarily realizable, matroids. Presentations
for the Chow ring of Wy appear in [DCP95, FY04, BES21], and this ring is used to prove log
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concavity of the characteristic polynomial of A (and more generally of any matroid) in [AHK18|.
A presentation of the Chow ring of Wjug appears in [BHM™'22a], and this ring is used to prove
the top-heavy conjecture and the nonnegativity of Kazhdan—Lusztig polynomials of matroids
[BHM*22b].

Our goal is to study the Grothendieck rings of vector bundles K(Wy) and K (W,"®). We first
give presentations for the K-rings using generators analogous to the generators given by Feichtner—
Yuzvinsky for the Chow ring of W 4. Despite the fact that the (non-homogeneous) relations
among the Feichtner—Yuzvinsky generators in the K-ring are different from the (homogeneous)
relations among the Feichtner—Yuzvinsky generators in the Chow ring, we construct an integral
isomorphism from the K-ring to the Chow ring which satisfies a Hirzebruch—Riemann—Roch-type
formula, generalizing recent results for Boolean arrangements [BEST23, EHL23]. The K-rings
admit additional structures, such as Adams operations, an Euler characteristic map, and Serre
duality, which leads us to new results and new questions. Most of our results can be extended to
the moduli space M, of stable rational curves with n marked points, which is closely related to
the wonderful variety for the braid arrangement B,,_;.

1.1. Definitions of the varieties. For any S C F, let

Ls:=()H. and L%:=L/Ls.
ecS
The dimension of L® is called the rank of S, and the dimension of Lg is called the corank. A
subset F' C E is called a flat if it is maximal within its rank, or, equivalently, if Ly C H. implies
that e € F.
The wonderful variety W, is defined as the closure of the image of the rational map

P(L) -2 H P(LF)a
F40
and the augmented wonderful variety Wjug is defined as the closure of the image of the
rational map
P(LOF) --» [[ PLT & F),
40
where both products are over the set of nonempty flats. For any nonempty flat F', let

T Wa—P(LF) and  7p® Wi s P(LY @F)
be the natural projections. We will write
Lp = mpOpr)(1) and L3 = (15%) Oprrem (1)

The map 7g: Wy — P(L) is an iterated blow-up. It is obtained by blowing up first the points
P(LF) for all corank 1 flats F', then the strict transforms of the lines P(L) for all corank 2 flats
F, and so on. For any nonempty proper flat F', let Dp C Wy be the closure of the preimage
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under the map 7g of the locus
P(Lp)\ |J P(Lo).
FCG#E
Similarly, the map 73 : Wi"® — P(L @ F) is an iterated blow-up, obtained by blowing up first
the points P(Lp @ {0}) for all corank 1 flats F', then the strict transforms of the lines P(Lr @ {0})
for all corank 2 flats F', and so on. For any proper flat F, let D%'"® C Wjug be the closure of the
preimage under the map 7' of the locus

P(Lra{0})\ |J PLso{0}).

FCGAE
In addition, for any e € E, let Dg"® C Wj"® be the strict transform of P(H, ® F). We have
a canonical isomorphism Wy & D' C Wjug, which induces identifications Lp = L3"®|w, and

Dp = D3 N W)y for all nonempty proper F.

1.2. Feichtner—Yuzvinsky presentations. Let A(WW,) denote the Chow ring of cycles modulo
rational equivalence on Wy, see [Ful98]. Similarly, let A(W;"®) denote the Chow ring of Wj"8.
Let Tp == Z[zp | F a flat] ® Z[y. | e € E]. Consider the map

Py Ta — A(WL")

that sends zp to [D%'®] for all proper F, zp to —ci(L%®), and y. to [Dg"¥] for all e € E.

aug

Composing with the pullback along the inclusion W4 C W, ™, we obtain a map

Cpy: Ty — A(Wy)

that sends zp to [Dp] for all nonempty proper F and y. to zero. The maps ®py and @y are
surjective, and their kernels were explicitly described in [FY04, BHM*22a] in terms of the flats
of A (Theorem 2.1).
Next, consider the map
Uik Ty — K(Waug)

aug

that sends zp to [Opaus] for all proper F, zg to 1 — [L5°], and y, to [Opau] for all e € E.
Composing with the pullback along the inclusion W, C Wjug , We obtain a map

Upy: Tq — K(Wy)

that sends 2y to [Op,] for all nonempty proper F' and y. to zero. We show that the maps ¥py
and \If%‘? are surjective and give an explicit description of the kernels in terms of the flats of
A (Theorem 2.3). The relations generating the kernels of Upy and Ui are “inhomogeneous
versions” of the relations generating the kernels of ®py and ®5+y.

1.3. Exceptional isomorphisms and simplicial presentations. For any nonempty flat F,
we define the following Chow and K-classes:

hp = c1(Lr) € A(Wy) h%® = (Eaug) € A(W3")
np=1— (L5 € K(Wa) et =1 [(LF%)71 € KWL™).
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Remark 1.1. The Chow classes {hp} and {h%®} may be interpreted in terms of divisors on
the permutohedral or stellahedral variety coming from simplices and are therefore known as
simplicial generators. In the non-augmented setting, these classes were studied in [Yuz02,
BES21], and the definitions and basic properties immediately generalize to the augmented setting.
See [BES21, Section 3.2 for more details. We will similarly refer to {np} and {nn*} as the
simplicial generators of the K-ring. The statement that they generate their respective K-rings is
true but not obvious.

Our next result says that there are isomorphisms from the K-ring to the Chow ring of the

varieties Wy and Wjug that satisfy analogues of the Hirzebruch—Riemann—Roch formula, in which
1
1-h3®
Boolean arrangement (i.e., the number of hyperplanes is equal to the dimension of L) appeared
in [BEST23, Theorem D] in the non-augmented setting and in [EHL23, Theorem 1.8] in the

augmented setting. Our techniques give new proofs of these results.

play the roles of the respective Todd classes. The special case in which A is the

1
e and

Theorem 1.2. There are isomorphisms (a: K(Wy) — A(Wa) and (' : K(W,") — A(W,")
characterized by the property that a(nr) = hr and (' (nm'®) = hip'®. For any classes & € K(Wy)
and €8 € K(WZ"®), we have

Ca(§)
T hE> and

aug gcaug leug (£aug)
X(Wa, &) = degyy, X(Wy =, 621%) = degyyane TohE )
Remark 1.3. The isomorphisms of Theorem 1.2 are not related to the Chern character homomor-
phisms; in particular, they do not coincide with the respective Chern characters after tensoring
with the rational numbers. If we replaced (4 (respectively (%;'®) with the Chern character, a

similar formula would hold with ﬁ (respectively Hl%ug) replaced by the Todd class.
E

Let Sy :=Zlur | F' a nonempty flat}, and consider the map
(I)@lg: SA — A(Wjug)

aug

that sends up to h‘}ug for all F'. Composing with the pullback along the inclusion Wy C W, ™=,
we obtain a map
Oy Sq— AWy)
that sends up to hp for all F. The maps v and @@g are surjective, and the ideal of relations can
be computed explicitly in terms of the arrangement (Theorem 5.3). This is called the simplicial
presentation of A(M) and A*"&(M).
For the K-theoretic analogue of the simplicial generators, consider the map

W Gy s K(WE)

aug aug

that sends ug to 1y ° for all F. Composing with the pullback along the inclusion Wy C W, ™=,
we obtain a map

Uy: Sq4— K(Wy)
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that sends up to np for all F'. Theorems 1.2 immediately implies that the kernel of Uy is the same
as the kernel of &y, and that the kernel of \I»'@lg is the same as the kernel of @@g . This kernel is
computed explicitly in Theorem 5.3, giving what we refer to as the simplicial presentation of
K(M) and K*'8(M).

1.4. The K-ring of My ,. Our results generalize to My ,,, the Deligne-Mumford-Knudsen com-
pactification of the moduli space of stable rational curves with n marked points, for n > 3. For
i € {1,...,n}, there is a line bundle L; on Mo,n whose fiber over a point is the cotangent space
of the ith marked point in the corresponding curve. The first Chern class of LL; is denoted ;.

Kapranov [Kap93] showed that each LL; is a base-point-free line bundle whose complete linear
system induces a birational map My, — P"~3. For every subset S of [n] := {1,...,n} of size at
least 3, we have a forgetful map fg: MO,n — ﬂoﬁ = ﬂ07|5|. We therefore obtain a map

mom — H P|S|_2
SC[n—1],]5|>2

by composing fsu, with the map induced by the complete linear system of L,, on Mg sup. This
map is a closed embedding.

Consider the braid arrangement B,_1 in F*~!/F - (1,...,1), whose hyperplanes are normal to
e; —ej for i < j € [n —1]. The lattice of flats of B,_1 may be identified with the collection of
partitions of the set [n —1]. For any subset S C [n — 1] of cardinality at least 2, let Fis denote the
flat corresponding to the partition of [n — 1] into S along with a bunch of singletons. Projecting
onto the factors indexed by flats of B,,_1 of the form Fg for some S, we have a map

Wg, , — I rz™
5Cln—1],[5]>2
whose image is My, under the embedding described previously [DCP95, Section 4.3]. The
relation between ﬂo,n and Wp, , allows us to deduce results about Mo,n from our study of
wonderful varieties.
Let Ls = f&_,Ln. This bundle is trivial when |S| = 2, and the bundles corresponding to sets
of cardinality at least 3 form a basis for the Picard group of My,,. Let

cs = c1(Ls) = funthn € A (Mop).

Theorem 1.4. There is an isomorphism (2 K(Mo,) — A(Mo,) that sends 1 — [Lg'] to cs.
For any & € K(My,,), the Euler characteristic of & is equal to the degree of %

_1]

1.5. Matroids. The presentations of A(Wy) and A(W;"#) depend only on the matroid associated
with A, which led to the definitions of Chow rings and augmented Chow rings of arbitrary loopless
matroids [FY04, BHM'22a]. Similarly, our descriptions of K(W4) and K(Wj"¢), along with
their Euler characteristic functionals, only depend on the matroid associated with A. With the
exception of the latter part of Section 8, we will always assume that all matroids are loopless.
Let M be a matroid on the ground set E. Let ;s be the Bergman fan of M, which has
rays {pp | F a nonempty proper flat} [AK06]. Let X7;® be the augmented Bergman fan
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[BHM*22a] of M, which has rays {p%® | F' a proper flat} U {pe"® | e € E}. These two fans are
related by the fact that X7 is isomorphic to the star of the ray pg in EaMug [BHM ™ 22a, Proposition
2.7(2)]. The rings A(M) and A*'¢(M) are defined to be the Chow rings of the toric varieties
Xy, and Xza]:;g, respectively.

If M is the matroid associated with a hyperplane arrangement A, then, after choosing a
linear functional defining each hyperplane in A, we obtain canonical inclusions Wy C Xy,
and Wjug C Xzaug with the properties that Dp = W4 N D, for any nonempty proper flat F,
D3 = WjugﬂD aug for any proper flat F', and De"™® = W3"ND jaue for any e € E. The restriction
maps A(M) — A(WA) and A*"8(M) — A(W3"®) are both 1s0m0rph1sms [FY04, BHM*22a).

Consider the polynomial ring Ty := Z[zp | F a flat] ® Z[y. | e € E] along with the homomor-
phism ®pp: Ty — A*™8(M) taking xp to [D ] for all proper flats F, xp to — 3 pp[D ],
and ye to [Djau]. Composing with the pullback along the inclusion Xy, = D jaus C Xyau, we
obtain a homomorphism ®py: Ty — A(M) that sends xp to D, for all nonempty proper F'
and y. to zero. Consider also the polynomial ring Sy = Zlupr | F' a nonempty flat]. We define
Py: Sy — A(M) and % Sy — A*E(M) via the formulas

(1) Oy (up) Z Ppy(zg) and (I)aug Z (I)%%{g xq).

FcG FcG
Remark 1.5. When M is the matroid associated with the arrangement A, the following diagrams
(along with their augmented analogues) commute, thus justifying our repeated use of the notation
q)FY and q)v:

Ty ——— Ty Sy ——— S4
iQFY lq)FY fbv i‘bv
AM) —=— A(Wy) AM) == A(Wy).

Commutativity of the first diagram is immediate from the definitions, while commutativity of the
second diagram is proved by reducing to the case of the Boolean matroid [BES21, Section 3.2].

We define K (M) and K?"8(M) to be the Grothendieck rings of vector bundles on Xy, and
Xsaug | respectively. Because Xy, and Xyaue are smooth, these coincide with the Grothendieck
Y M Y
groups of coherent sheaves.

Proposition 1.6. If M is the matroid associated with A, then the inclusions Wy C Xx,, and
Wit C Xyaus induce isomorphisms K(M) = K(Wy) and K*'8(M) = K(W,"®).
A Dyy

Let £3'® be the line bundle on Xzaug whose first Chern class is equal to ), » glD aug] We
define the map Ui : Thy — K*"8(M) by sending zp to [Op aug] for all proper F', zp to 1—[L%®],
and y. to [O ngug] for all e € E. Composing with the pullback along the inclusion Xy;,, = D e C
XE?V‘;g, we obtain a homomorphism VUgy: Ty — K (M) that sends zp to [Op pF} for all nonempty

proper F and y. to zero. We compute the kernel of Upy and UiyF (Theorem 5.2), generalizing
Theorem 2.3 and giving a presentation for K (M) and K*'8(M).
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Remark 1.7. When M is the matroid associated with the arrangement A, the following diagram
commutes (as does its augmented analogue), thus justifying the repeated use of the notation ¥py:

Ty ——— Ty

l\I’FY l\I’FY

K(M) —— K(Wy).
We also have the following extension of Theorem 1.2 to matroids.

Theorem 1.8. There exist isomorphisms (y: K (M) — A(M) and (3% K*'$(M) — A™8(M),
characterized by the property that
Gt (hp) =1— ] (1 = ¥py(ap) ™ and (G (hE®) =1- [ (1- s (ap))
FcG FcG

Motivated by the above characterization of (4 and (%%, we define maps ¥y: Sy — K (M)
and UG®: Sy — K*'8(M) by the formulas
(2) Uy(up)=1-J] Q= Tey(ze)™" and  UTEup)=1- ] (1— U28(z6)) "

FcaG Fcd

Then Theorem 1.8 implies that the kernels of ¥y and \Il%ug are the same as the kernels of &y

and ®®, which is computed by Theorem 5.3. This gives a presentation of K (M) and K*"&(M),
which we call the simplicial presentation.

Remark 1.9. Let M be the matroid associated with an arrangement A. Identifying K (M)
with K (W)4) via the isomorphism in Proposition 1.6, we have constructed two isomorphisms
CvsCa: K(M) — A(M). Proposition 5.4 implies that these two isomorphisms coincide, as do
the analogous pair of isomorphisms in the augmented setting. Similarly, we have constructed
two maps Uy: Sy — K(M), one defined geometrically in Section 1.3, and the other defined
algebraically in Equation (2). Proposition 5.4 also implies that these maps coincide, as do the
analogous pair of maps in the augmented setting.

The Chow rings A(M) and A*"¢(M) satisfy Poincaré duality, meaning that there are maps
degp;: A(M) —-Z  and degf®: A™&(M) — Z

such that the pairing A(M)® A(M) — Z taking f ® g to deg,,(fg) is perfect [AHK18, Theorem
6.19], and similarly in the augmented setting [BHM22a, Theorem 1.3(4)]. Since the toric vari-
eties Xy, and ij;g are usually not proper, one cannot define an Euler characteristic map on
K (M) by pushing forward to a point. We define maps

x: K(M)—7Z and XM K*&(M) — Z

by putting

XA e = deg < = > and  E(M,EME) = degly <Mg<5g>> |

1—h%®
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Then the analogous pairing K (M) ® K (M) — 7Z taking £ ®@n to x(M, &n) is perfect, and similarly
in the augmented setting. For realizable matroids, this is a general property of the Euler pairing
on the K-theory of a smooth proper linear variety [AP15, Theorem 1.3].

Remark 1.10. When M is not realizable, the maps x and x®"¢ still have a natural geometric
interpretation as Euler characteristics on the wonderful variety (respectively augmented wonderful
variety) of the Boolean arrangement. See Proposition 5.6.

Although the K-rings K (M) and K?"¢(M) are isomorphic to their respective Chow rings, the
fact that they are K-rings endow them with several additional structures, including the structure
of augmented A-rings (see Section 6 for details). Furthermore, when M is realizable, Serre duality
gives a nontrivial identity satisfied by x and x®"¢. In Theorem 6.2, we show that that this identity
extends to all matroids.

1.6. Applications to Euler characteristics. Much is known about intersection theory on
(augmented) wonderful varieties. The Hirzebruch-Riemann—Roch-type formulas in Theorem 1.2
allow us to transfer intersection-theoretic computations to K-theory. As applications, we give
formulas for the Euler characteristic of the class of any line bundle in K (M) expressed in terms
of the bundles L (Theorem 7.2 and Corollary 7.5), and similarly in the augmented setting.
We also give a formula for the Fuler characteristic of any line bundle expressed in terms of the
Feichtner—Yuzvinsky generators of K (M) (Theorem 8.2), extending as a corollary Eur’s formula
[Eur20] for the degrees of monomials in the Feichtner—Yuzvinsky generators of A(M) (Corollary
8.4). Likewise, we give a formula for the Euler characteristic of any line bundle on Mo,n expressed
in terms the line bundles {£s} (Theorem 9.1). We also study the Euler characteristics of tensor
products of the {L;}, giving a short proof of a theorem of Lee [Lee97] (Theorem 9.2).

1.7. Structure of the paper. In Sections 2 and 3, we compute a presentation of K(Wjy) and
K(W,"®) (Theorem 2.3) and prove Theorem 1.2, assuming the following technical lemma:

Lemma 1.11. The K-rings of W4 and Wjug are generated by the classes of line bundles.

In Section 4, we discuss the presentation of K (ﬂom) and the exceptional isomorphism to
A(My,,) in Theorem 1.4. In Section 5, we give a presentation for K (M) and K2"&(M) (Theo-
rem 5.2), and we derive Lemma 1.11 as a corollary. We have chosen to order our presentation in
this way, rather than beginning with arbitrary matroids, in order better to highlight the geometric
ideas underlying the proofs of our main results.

Section 6 is devoted to a description of the Adams operations in K (M) and K*"¢(M) along with
a combinatorial Serre duality theorem (Theorem 6.2). Section 7 is dedicated to computing Euler
characteristics in the simplicial generators, Section 8 to Fuler characteristics in the Feichtner—
Yuzvinsky generators, and Section 9 to Euler characteristics on My ,. Finally, we include an
appendix with a proof of the simplicial presentation for the (augmented) Chow ring of a matroid,
which has not previously appeared in the literature.
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We note that some of the proofs in Sections 6 and 8 proceed by first giving geometric proofs
for realizable matroids, and then using the notion of valuativity to extend the results to all
matroids. Thus, in these sections, separating the statements for hyperplane arrangements from
the statements for matroids is absolutely essential.

1.8. Acknowledgements. We thank Chris Eur for explaining the simplicial generators of the
augmented Chow ring to us, for suggesting that the simplicial generators should behave well with
respect to the exceptional isomorphisms, and for other helpful conversations. We thank June
Huh and Dhruv Ranganathan for helpful conversations. We thank David Speyer and the referee
for helpful comments and corrections. This collaboration is supported by the NSF FRG grant
DMS-2053261. The work of ML is also supported by an NDSEG fellowship, the work of SL is also
supported by NSF DMS—-1844768 and a Coline M. Makepeace Fellowship from Brown University,
the work of SP is also supported by NSF DMS-2001502, and the work of NP is also supported
by NSF DMS-1954050.

2. FEICHTNER—Y UZVINSKY PRESENTATIONS

In this section, we analyze the Feichtner—Yuzvinsky presentation of K(Wy) and K (Wj3"#). We
begin by recalling the Feichtner—Yuzvinsky presentation of A(Wy) and A(Wj"#). We define the
following ideals in T 4:

I ::<;mp>
Iy : <ye_Z$F’6€E>

(3) e¢F
I3 = (zpxq | F and G incomparable)

Ty = (ye | e € E)
7,8 = (yexp | € ¢ F).

Theorem 2.1. Let A be a hyperplane arrangement.

(1) The map Ppy is surjective with kernel Ty + Io + Zs + 74 [FY04, Corollary 2].
(2) The map @i~y is surjective with kernel Iy + Ip + I3 + Z;"® [BHMT22a, Remark 2.13].

Remark 2.2. The original Feichtner—Yuzvinsky presentation of A(W4) does not include the
variable 5. Many later sources omit both x5 and g, since the remaining xp are sufficient to
generate and correspond to boundary divisors on Wy (or correspond to rays of the Bergman fan
[AKO6] of the matroid represented by A). In [AHK18]|, —®py(xg) is called @ and —Ppy(zy) is
called . Similarly, the presentation of A(W,") in [BHM™22a] does not include the variable .
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aug

We now describe the kernels of Uy and Wi, giving a presentation for K (Wy) and K (W,"*).
We define the following ideals in T'4:

1= <1 - H(1 - $F)>

F

Ié::<—(1—ye)+H(1—:cF)‘e€E>.

e¢F

(4)

Note that the generators of Z] and Z) are inhomogeneous, and their lowest order terms coincide

with the generators of Z; and Zs. We give the following K-theoretic analogue of Theorem 2.1.

Theorem 2.3. Let A be a hyperplane arrangement.

(1) The map Vpy is surjective with kernel ) + Tb + I3 + Zy.
(2) The map Wi is surjective with kernel I{ + I + T + I,"®.

Remark 2.4. The difference between the presentations in Theorems 2.1 and 2.3 is that the
homogeneous ideals Z; and Z, are replaced by the inhomogeneous ideals Z] and Z). Indeed, the
Chow rings of these varieties are isomorphic to the associated graded of the coniveau filtrations
on the K-rings.

Before proving Theorem 2.3, we give general lemmas about the K-ring of a general smooth
variety X, which we will also apply later in the proofs of Theorems 1.2 and the analogue of

Theorem 2.3 for general matroids (Theorem 5.2).

Lemma 2.5. If A(X) is a free abelian group of finite rank p, then so is K(X), and the Chern
character ch: K(X) — A(X)q is injective.

Proof. The Chern character becomes an isomorphism after tensoring with Q [Ful98, Example
15.2.16], so K(X) has rank p. There is a surjective map from A(X) to the associated graded of
K (X) with respect to the coniveau filtration [Ful98, Example 15.1.5]. Since A(X) is free of rank
p and K(X) also has rank p, this implies that that K(X) is free. Finally, the Chern character
factors as K(X) — K(X)g — A(X)g, with the first map being injective by freeness of K(X)
and the second map being an isomorphism, so the Chern character is injective. [l

Remark 2.6. Lemma 2.5 will be applied to the varieties Wy, Xx,, [FY04, Corollary 1] and My,
[FY04, Corollary 2], as well as to W;"* and Xyaus [AHK18, Theorem 6.19).

Lemma 2.7. Let X be a smooth variety, and suppose that K(X) is generated as a ring by the
classes of line bundles. Let D1, ..., Dy be divisors on X. If AY(X) is generated as an abelian
group by [D1],...,[Dgl, then K(X) is generated as a ring by [Op,],...,[Op,].

Proof. Let R be the subring of K(X) generated by [Op,],...,[Op,]. We need to show that
the class of every line bundle is contained in R. Since [D1],...,[Dy] generate A'(X) as an
abelian group, the line bundles O(+Dy),...,O(+£Dy) generate the Picard group of X under
multiplication, so it will be sufficient to show that [O(£D;)] € R for all i.
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For any divisor D, we have an exact sequence
0—0O(-D)— 0O —0Op—0,

which implies that
[O(=D)] =[0] - [Op] =1 - [Op].

We also have

() [O(D)] = [O0(-D)] " = +10p] + [Op]* +

S
1—[Op]

Since [Op] lives in the first piece of the coniveau filtration on K (X), it is nilpotent, so the sum
terminates. This allows us to conclude that both [O(—D;)] and [O(D;)] live in the ring R. O

Proof of Theorem 2.3. We begin with statement (2). Surjectivity of the map ®p? follows from
Theorem 2.1, Lemma 1.11, and Lemma 2.7. Next, we show that Z} +7Z} +Z3+Z;"® is contained in
the kernel of @;‘;g. The ideal Z3 is contained in the kernel because Dr and D¢ are disjoint when
F and G are incomparable. Similarly, Z;"® is contained in the kernel because D, is disjoint from
Dp whenever e ¢ F. To prove that Z] is contained in the kernel, we observe that its generator
maps to
11239 T (1= [0ppe]) =1 - 125 [ [o(-D#)].
F#4E F#£E

Since Z; is contained in the kernel of ®§F, the line bundle

L5 @ ® O(~D%)

F#£E

is trivial, thus the generator of 7| is contained in the kernel of \IJaug
To prove that Z} is contained in the kernel, Lemma 2.5 tells us that it is sufficient to prove
that, for all e € F, we have

ch(l - [OD?“gD -1 Ch(1 - [OD?@]).
e¢F
We have
ch (1~ [Opze]) = eh([O(~D25)]) = exp ( - [D2"%))

H ch(l - ODaug > H exp ( aug]) = exp ( - Z[D;ug]).

e¢F e¢F
The fact that these are equal follows from the fact that Z is contained in the kernel of &
Let R :=Ty4 /(I{ + Ih + I3 + I;"®). We have now shown that R surjects onto K (Waug) and

we need to prove that the map is injective. Let p be the rank of the free abelian group A(Waug).

and

aug

Consider the decreasing filtration
R=FDFD- -,
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where Fj is the span of all monomials of total degree > i. Since the leading terms of the generators
7} and 7} coincide with the generators of Z; and Zy, we have a surjection

A(Wjug) =Ty / (L + o + I3 + ;") — gr R.

In particular, this implies that the abelian group gr R can be generated by p elements, and so
the same is true of R. Lemma 2.5 tells us that K (Wj“g) is also free abelian of rank p, so any
surjection from R to K(W4"®) must be an isomorphism.

The proof of statement (1) is nearly identical. The only extra ingredient is the argument that
T, is contained in the kernel of the map Wy, which follows from the fact that DZ"® is disjoint
from D' = Wy inside of Wi"®. O

3. EXCEPTIONAL ISOMORPHISMS

The purpose of this section is to prove Theorem 1.2. We begin by observing that we have an
inclusion
Wy C II pa" c 11 P(L%).

FCFE SCE
a nonempty flat a nonempty subset

The first inclusion comes from the definition of Wy, and the second from the diagonal embedding
of P(L¥) into the product of P(L®) for all S such that L° = L¥.1 Similarly, we have

Wit c [I Pafer c 11 P(L° @ F).
FCE SCE
a nonempty flat a nonempty subset

Suppose that L' C L is a linear subspace. Let E' := {e € E | L' ¢ H.}, and define a new

hyperplane arrangement
A ={H.NL|eeE'}.

If E' = E, then we have inclusions Wy, C W4 and szjg C W8, each inside of the corresponding
product of projective spaces indexed by subsets of E. If L’ is contained in one or more hyperplane,
then we still have an inclusion Wj;jg - Wjug, where sz/g sits inside the product indexed by
subsets of F by setting the S coordinate to 0 € LS ¢ P(L° @ F) unless S C E'.

For any flat F of A, let F' :={e € E' | Lr N L' C H.} be the corresponding flat of L’. Then
the line bundle L3 on Wj"® restricts to the line bundle Lz on szf’r . If E = F’, then the line
bundle Lz on Wy restricts to the line bundle Lp on Wy,

Lemma 3.1. Fiz a flat F', and suppose that H C L is a hyperplane with the property that Lp C H
and Lg ¢ H for all flats G C F. Then

h3® = [Wj:g] and npe = [Owjf]~
If the rank of F' is greater than 1, then

hp = [Wa,] and  nF = [OWAH] :

n matroid theoretic language, this is the collection of subsets S whose closure is F'.
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Proof. We prove only the first statement; the second is similar. Let g be a section of Op(rgp (1)
with vanishing locus equal to P(H/Lr@®F) C P(LY @F). Then (73')*g is a regular section of L'
with vanishing locus Wj"®, which shows that hi® = c1(L%"®) = [Wi'®]. We interpret (75"®)*g
as an element of Hom((’)Wjug, L53'#) = Hom ((£3®)~1, (’)Wjug) to obtain an exact sequence
Eaug -1 (ﬂ—;‘ug)*g 0 0
0—>(F) — W;\Ms‘—) Wjqu—>0,

which shows that n%'®¢ =1 — [(L%®)71] = [Opyave] — [(£7®)~) = [Owjqu]. O

For any tuple of natural numbers m = (mp | F' a nonempty flat), we define the monomials

hm o= [ hET € A(Wa) (RE)™ = T (h3®)™" € A(WL"®)
F#£0) F#0)

™= [ np* € K(Wa) (™)™ = [ )™ € KOW™).
F#£0) F#£0(

Lemma 3.2. Suppose that F is infinite. For any m, one of the following two statements holds:
e ™ =0 and K™ = 0.
e There exists a linear subspace L' C L, not contained in any of the hyperplanes in A, such
that n™ = [OWAU] and h™ = [Wy,,].
In addition, one of the following two statements holds:
o (n*8)™ =0 and (h*&)™ = 0.
e There exists a linear subspace L' C L such that (n*'8)™ = [Osz%] and (h*'&)™ = | jz,g]

Proof. We will prove only the first claim; the augmented case is similar. We proceed by induction
on Y mp. When m = 0, we can take L' = L. For the inductive step, assume that the second
statement holds for m’, and take m such that mp = m, +1 and m agrees with m’ in every other
coordinate. Then

™ = npn™ = np(Ow, ] = (1= [£2')[Owy, ] = [Owy ] = [£5],

where F' = {e | Lr N L' C H.} and Lp is the corresponding line bundle on Wy ,. If F’ has
rank 1, then Lp is trivial, and we get zero. If F’ has rank greater than 1, then we may choose a
hyperplane? H' C L' such that H' ¢ A', Ly C H', and Lg ¢ H' for all flats G’ C F’. Then by
Lemma 3.1, n™ = [OWAL/] — L] = [(’)WAH/]. Similarly, we have

W™ = hph™ = hp[Wa,,] = c1(Lp)[Wa,,].

By the projection formula, this is equal to the pushforward of ci(Lpr) from Wy, to Wy. If F'
has rank 1, then Lp is trivial, and we get zero. If F’ has rank greater than 1, then we may
choose H' as above, and we get [Wy,,] by Lemma 3.1. O

Remark 3.3. It is useful to think about the special case when F' = FE in the proof of Lemma
3.2. In this case, F' = E, and the rank of F’ is equal to the dimension of L’. This means that,

2This is where we use the fact that I is infinite.
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if B™ = [Wy,,] for some L' of dimension greater than 1, then h™hg = [Wy,,] for some generic
hyperplane H' C L'. Tterating this observation, we see that, if k = dimL — 1 — ) mp, then
Rk, € AN L=1(,) is the class of a point. Similarly, (h"8)™ (R 8)F1 € AUmEL(PIE) is the

class of a point.

Proposition 3.4. We have
hm

TN and (W ()™ = degpyaes (L0
1 _ hE X A n - gWA :

6)  x(Wa,n™) = degy, < 1
Proof. We will prove only the non-augmented case; the augmented case is identical. The Euler
characteristic can be computed after extension of scalars, so we can assume that [ is infinite. By
Lemma 3.2, either n™ = 0 and h™ = 0, in which case Equation (6) holds trivially, or there exists
some L' C L such that n™ = [OWAL/] and h™ = [Wy,,]. Then x(W4,n™) = 1 because Wy, is a

m

smooth iterated blow-up of projective space, and degyy, (&TE) =1 by Remark 3.3. O

We are now ready to prove the existence of exceptional isomorphisms from K-rings to Chow
rings for wonderful and augmented wonderful varieties.

Proof of Theorem 1.2. Again, we prove only the non-augmented case. Note that, once we prove
the first sentence in the theorem, the second sentence will follow from Proposition 3.4.
For each nonempty flat F', we have an isomorphism

Cr: K(B(LY)) = A(P(LY))
sending the structure sheaf of a hyperplane (which we will denote by or) to the Chow class of

a hyperplane (which we will denote by sp). This isomorphism has the property that, for any
&r € K(P(LY)),

CF(€F)> '

X(P(LY), &p) = degp(pr (1 -

By the Kiinneth formula [AP15, Proposition 6.4], we have an isomorphism
(= Q@pCr: K( 11 IP’(LF)> — A< 11 IP(LF)>
F#£0) F#0

that takes op to sp for every F', and has the property that, for any £ € K (HF¢® IP)(LF)>’

G W(TLP.¢) = dep, e (nffo) |

F#0
By [BES21, Remark 3.2.6] or Theorem 5.3, the restriction map

A( H IP’(LF)) — A(Wy) given by sp+— hp
A0
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is surjective. By Poincaré duality, its kernel is equal to the annihilator of [W4]. By Lemma 1.11
and Lemma 2.7, the analogous restriction map

K( H }P’(LF)> — K(Wy) given by oF — NF
F0

is also surjective. By the nondegeneracy of the Euler pairing [AP15, Proposition 6.3], the kernel
is equal to the annihilator of [Ow,]. We will prove that

(8) owd)= [ (0 =sp) - [Wal.
F#0,E
Since sp is nilpotent, the above product is a unit, which implies that { takes the annihilator
of [Ow,] to the annihilator of [W4]. This in turn shows that ¢ descends to an isomorphism
Cas K(Wa) = A(Wa).
We now prove Equation (8). For any m = (mp | F' a nonempty flat), let
s = H st and o™= H owt,
F£0 F#0

so that s™ — A™ and o™ +— n™ under restriction. We have

degHFﬂp(LF) (Sm . C([OWA])) = X( H P(L"), o™ . H (1—o0p)- [(’)WA]> by Equation (7)

F20 F£0
= X(WA,nm- [Ta- np)>
A0
= degy, (hm . H (1-— hp)> by Proposition (3.4)
F#0.E
= degyy, P (Sm' IT @ =sp)- [WA]>-
F#40,E
Equation (8) then follows from Poincaré duality. O

4. THE K-RING OF My,

We now apply our results to study the K-ring of My ,, and in particular prove the exceptional

isomorphism of Theorem 1.4. From Section 1.4, we observe that the following diagram commutes:

Wg,_, — [[ P(LF)

F£0
I I

MO,?’I ? H ]P)(LFS)7
SCn—1], |S|>2

where pr is the projection onto the factors indexed by flats of the form Fg, and p is the restriction
of pr. By [FMO05, Theorem 4.2], p is a composition of blow-ups at smooth centers. By [Ful98,
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Proposition 6.7(b)], the pullback maps
p* 't A(Mon) = AWs, ) given by cs — hrg, and
p 't K(Moyn) — KWs,_,) given by 1—[L5" — nrg
are both injective.
Consider the ring R,, :== Z[ug | S C [n —1],|S| > 2] C Sg,_,, where the inclusion sends ug to

upg. Then the map Sp, , — A(Wp, ) given by the simplicial presentation restricts to a map
R, — A(My,,). Consider the following ideals in R,

K1 = ((us — usur)(ur —usur) | SNT # 2)
Ko = (us | |S] =2).

Theorem 4.1. [Sin04] [EHKR10, Theorem 5.5] The map R, — A(Mo,,) is surjective with
kernel K1 + Ks.

The surjectivity statement in Theorem 4.1 allows us to prove Theorem 1.4.

Proof of Theorem 1.4. Tt is known to experts that K(Mo,,) is generated by line bundles; see the
discussion in the introduction of [CT20]. This can also be proved in the same way as Lemma 1.11.
Therefore, Theorem 4.1 and Lemma 2.7 imply that K(Mo,,) is generated by 1 — [Egl] for all sub-
sets S C [n —1] of cardinality at least 2. By Theorems 1.2 and 4.1, restriction of the isomorphism
CBn71 : K(Wanl) — A(Wgnfl) to

K(Mon) € K(Ws,_,)
takes K (My,,) isomorphically to A(My,) C A(Wg, ;). O

Remark 4.2. In [CT21], Castravet and Tevelev studied K(Mj,) as a representation of the
symmetric group S,; in particular, they show that the S,-action on K (MO,n) is a permutation
representation over Z. The action of S,, on A(My ) has also been studied, beginning with [Get95].
Our isomorphism in Theorem 1.4 is not S,-equivariant, but it is equivariant with respect to the
action of the subgroup S,—1 C S, that fixes n. Note that K(My,) ® Q and A(My,) ® Q are
Sp-equivariantly isomorphic via the Chern character, but one can check that A(Mj ;) is not a
permutation representation of S over Z, and therefore cannot be Ss-equivariantly isomorphic to

K(Mogs).
Theorems 1.4 and 4.1 combine to give us the following corollary.

Corollary 4.3. The homomorphism R, — K(Myy) taking us to 1 — [Egl] is surjective with
kernel K1 + Ks.

Remark 4.4. The variety My, is a special case of a wonderful variety with a building set. The
proof of Theorem 1.4 generalizes to any wonderful variety with a building set, as the surjectivity
part of Theorem 4.1 can be proved for any wonderful variety with a building set along of the lines
of [BES21, Section 3.2]. Therefore, the application in this section can be extended to the Hassett
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compactification of heavy/light weighted rational stable curves [Has03]. It is also a wonderful
variety with a certain building set [CHMRI16], and its Chow ring has been studied in [KKL21].

5. MATROID K-RINGS

In this section, we study K (M) and K*"¢(M), the K-rings of X;,, and XE?\;g, respectively. We
begin by establishing some basic properties that show that K (M) and K*'8(M) behave similarly
to the K-ring of the wonderful variety and augmented wonderful variety of a realization. We will

use the following notation:

tp = py(cp) € A(M) £ G p) € A™E(M)
TR = \I’Fy(xp) < K(M) T;Ug = \I/%lé(g(xp) € Kaug(M)

By Equation (1), we have
(9) hp = — Z t¢ and  hR®=-— Z to®.
FCG FcG

We also recall the Feichtner—Yuzvinsky presentations of A(M) and A*'8(M). Define the ideals
Th,T5, T3, 14, ;" C T as in Equation (3).

Theorem 5.1. Let M be a loopless matroid.

(1) The map Ppy is surjective with kernel Iy + Is + Ig + Z4 [FY04].
(2) The map ®i? is surjective with kernel Iy + Ty + I3 + ;" [BHM*22a].

Proof of Proposition 1.6. Since A(M) = A(Xsx,,) is torsion-free, it is isomorphic to the associated
graded of K(M) = A(Xs,,) with respect to the coniveau filtration [Ful93, Example 15.2.16].
Since we know that the associated graded map A(M) — A(Wj) is an isomorphism, the filtered
map K (M) — K(Wj) is also an isomorphism [Wei94, Theorem 5.2.12]. The augmented case is
identical. g

Proof of Lemma 1.11. By Proposition 1.6, this is equivalent to the statement that the rings K (M)
and K*"8(M) are generated by line bundles on the toric varieties Xy, and X saue. This is a general

property of smooth toric varieties, see [AP15, Lemma 2.2]. O
We have the following generalization of Theorem 2.3 to matroids.

Theorem 5.2. Let M be a loopless matroid.

(1) The map Vpy is surjective with kernel ) + T4 + I3 + Zy.
(2) The map Wi is surjective with kernel I{ + I + Ty + I,"®.

Proof. The proof of statements (1) and (2) is essentially identical to the proof of Theorem 2.3,
except that we use Theorem 5.1 in place of Theorem 2.1, and we use the fact that the K-ring of
a smooth toric variety is generated by classes of line bundles (see [AP15, Lemma 2.2]) in place
of Lemma 1.11. O
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We now compute the simplicial presentation of K (M) and K*'¢(M), and then use that to
prove Theorem 1.8. We first state the simplicial presentation of A(W,) and A(Wjug), which
describes the kernel of &y and @@lg . We defer the proof to Appendix A.

For any pair of flats F' and G, let F'V G denote the smallest flat containing both F' and G.
Consider the following ideals in S 4:

Ji = {(up —upvg)(ug — upvg) | F, G arbitrary)
(10) Jo = (up |tk FF =1)
T8 = (u |tk F = 1) + (up(ug — upyg) | tk F = 1, G arbitrary).

Theorem 5.3. Let M be a loopless matroid.

(1) The map Py is surjective with kernel Jy + Ja.
(2) The map @%ug is surjective with kernel Jy + J5 2.

Proof of Theorem 1.8. We prove only the augmented case; the non-augmented case is similar.
Define a map kps: Sy — K*'8(M) by putting
ana(wp) = 1= [T Q=757 =1 [T Q+78% + (557 +-).
FCcG FCG

Our first task will be to show that s vanishes on J; + J2aug, and therefore descends to a map
from A*"8(M) to K*'8(M). We will make use of Theorem 5.2(2), which says that 75 575 ° =
for any incomparable F' and G,

[[a-) =1,  and  IPE() =1-[]J(1-7&%).
F e¢G

The later equation implies that K*"8(M) is generated by the 75", Using the relations in Z,"#,

we get that

(11) T (1 - Ja- rg“g)> =0
e¢G

for any e ¢ F.

We begin by checking that «); vanishes on a generator of J;. We have

KM ((UF —urva)(ug — UF\/G))

_ (H (|| (1—7?“g)_1> (H(l”f}ug)_l‘ 11 (1_T?ug)_l)

FCH FvGcl GcJ FvGcl

S 1 LR Il B RO R B B | QRO )

FVGCI FCHCFVG GCJCFVG

which vanishes because H and J are incomparable for any H appearing in the second product
and J appearing in the third product.
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Next, we check that rys vanishes on a generator of 75 '®. Fix a flat F' of rank 1 and an element
e € F, so that

far(up) =1 J[ Q=735 =1-J[ - =1 J] (1 —3%).

FCH ecH e¢K

o) = (1= T -5 ) (1= TL -9,

ecH e¢ K
which vanishes by Equation (11). Now for any flat G, we have

Then

K (UF(UG - UF\/G))

() e (T e
¢ K FVGCI GCJICFVG

which also vanishes by Equation (11) because e ¢ J for any J appearing in the last product.
We have now proved that s descends to a homomorphism 7ps: A*"8(M) — K*'¢(M). Mébius

inversion tells us that FG)
au _ —K )
- =TT (1-Futa)

FCcG
where p is the Mobius function on the lattice of flats of M. This, along with the surjectivity

statement of Theorem 5.2(2), implies that s is surjective. By Lemma 2.5 applied to the va-
riety Xyaue, A?8(M) and K?"'¢(M) are free abelian groups of the same rank, thus ®j; is an
isomorphism. We may then take C;}lg to be the inverse of K. (Il

Proposition 5.4. Let M be the matroid associated with a hyperplane arrangement A. The
following diagrams commute:

aug

K(M) —M 5 A(M) Ka8(M) My qaug ()
K(Wa) —A5 A(Wa) K(WE) A7, Ay,

Proof. We do the non-augmented case. Since (4 takes ng to hr and (js is characterized in the
statement of Theorem 1.8, we need to show that
np=1- H (1—7a)""
FcG
By considering first Chern classes, we have
LrELp® ® O(—Dg)
FCGCE

as line bundles on the wonderful variety Wu. Since 7 = 1 —[Lg|, 7¢ = 1 —[O(—Dg)] for G # E,
and np = 1 — [£'], the result follows. O
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We now discuss an analogue of the projection formula that will allow us to interpret the Fuler
characteristic maps on matroid K-rings using geometry. Let U denote the Boolean arrangement
on the ground set E, consisting of the coordinate hyperplanes in F¥, realizing the Boolean matroid
Ug. The wonderful variety of Ug is a toric variety, called the permutohedral variety, which
we denote Xpg. The augmented wonderful variety is also a toric variety, called the stellahedral
variety, which we denote X%ug . For any matroid M, there is an open embedding ¢: Xy,,, — Xpg,
so we have restriction maps ¢*: K(Xg) — K(M) and «*: A(Xg) — A(M). Similarly, there is an
open embedding (*"&: XE;;g — X%ug and corresponding restriction maps on K-rings and Chow
rings. These maps are characterized by the property that

tg, S isaflat of M Tg, S is a flat of M

Uty = and 'Tg =
0, otherwise 0, otherwise,

and similarly in the augmented setting.

Lemma 5.5. For any subset S C E, let S be the closure of S in M. We have

Clns)=ng € K(M) (M) (3™) = 2 € K*5(M)
C(hs) =hg € AM) (M) (RE®) = hE € AMS(M),

Proof. We have that

*hg = —1* Z tgr = — Z trp = hg.

scs’ SCF
F a flat

The other statements are similar. |

There exist unique Chow classes
Ay € A(Ug) and A € AMS(Up),

called the Bergman class and augmented Bergman class, respectively, with the properties
that, for any £ € A(Ug) and £*"¢ € A*"¢(Ug), we have

degyr(176) = degy, (- Anr)  and  degy ((1™8)"E™E) = degyy,, (£ - AY®).

In the non-augmented setting, this is proved in [BES21, Theorem 4.2.1]. The same argument
works in the augmented setting, using [EHL23, Theorem 1.11].

Proposition 5.6. The following diagrams commute:

Caug
K(Up) <25 A(US) K™ (Ug) —"E AE (1)
J/L* \LL* \L(Laug)* \L(Laug)*
aug
K(M) =25 A(M) Ke(M) M, Amug()r),

Additionally, for any £ € K(Ug) and £*'¢ € K*'$(Ug), we have

N(M,4(©) = x (Us. € G5l (An) . and
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Xaug (]\47 (Laug)* (gaug)) =y (UE’Saug . (C;?;g)*l (AaMug)> .

Proof of Proposition 5.6. Commutativity of the diagrams follows from Lemma 5.5. For the second
statement, we do the non-augmented case. For any { € K(Ug), we have

CMOL*(§)>

C(,(6)) = degyy (221

_ deg,, <L ;EU;E(§)>

<A
= degUE <CU1~1(E)hE M>

=X (UE,€ : C(};(AM» :
The augmented case is similar. O

As a corollary, we are to prove the following characterizing properties of (,, and g‘?};g, which
demonstrate that they agree with the maps denoted ¢ in [BEST23, Corollary 10.6] and [EHL23,
Theorem 8b).

Corollary 5.7. Let A be a hyperplane arrangement equipped with a choice of linear function
cutting out each hyperplane, which induces embeddings Wa C Xg and Wi C X3'®. Then

CUE([OWA]) = [WA] and C?;g([OWXugD = [Wjug]'
Proof. Let M be the matroid associated with A. For any £ € K(Xg) = K(Ug), we have

¥ (X, € GG (A)) = x (Us. - GG () = X(M.1*(8)) = X(Wa, 1*(€)) = x(X. € - [Ows]):

where the second equality comes from Proposition 5.6 and the fourth comes from the projection
formula on the permutohedral variety. The nondegeneracy of the pairing (z,y) — x(Xg,zy)
[AP15, Theorem 1.3] implies that (5;(AM) = [Ow,]. Applying (y,, we find that

W4l = Anm = Cug ([OWA])'
The augmented case is similar. (Il
Motivated by Corollary 5.7, we define
Ou] = GL(Aw) € K(Us)  and (O3] = (GU%) 1 (A%%) € K™*(Up)

for any loopless matroid M. Proposition 5.6 may then be interpreted as a purely combinatorial
projection formula.
We conclude this section with the following lemma, which we will need in Section 8.

Lemma 5.8. The exceptional isomorphism (yr: K(M) — A(M) has the following properties:

o (7o) =ty
* (n(TE) = 1.%;}3

e For any flat F, (\(Tp) = tp + terms of degree at least 2.
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Proof. By Proposition 5.6, it is sufficient to prove these statements when M = Ug is the Boolean
matroid. The first two statements for the Boolean matroid are proved in the course of the proof
of [BEST23, Theorem 10.11].

For the last statement, let F' be a nonempty flat. After restricting from leavl;g to Xy, we
have that

T = — Z wu(F, G)ng + terms of degree at least 2 in {ng | F' C G}.
FcaG
Applying (ps, we find that

Cvu(tr) = — Z w(F,G)hg + terms of degree at least 2 in {hg | F C G}
FcG
= tp + terms of degree at least 2,

which completes the proof. O

6. ADAMS OPERATIONS AND SERRE DUALITY

We now discuss some additional structures on matroid K-rings. The fact that K (M) and
K?'8(M) are (by definition) K-rings of toric varieties Xy, and Xyaue endows them with the
structure of augmented A-rings [BGI71, Exposé V, Exemple 3.9.1]. This means that we have
a rank function e that takes values in Z, and for each natural number k, we have operations A*
and UF (the latter called Adams operations) characterized by the property that

N(ED) =[A"e]  and  WH((L)) = [®°L]

for any vector bundle £ and any line bundle £. Since our simplicial generators nz are all of the
form 1 — [£] for some line bundle £, we have ¢(nr) = 0, and

k - i1 (K i
v o) = S0 ()
The formula for augmented simplicial generators is identical. Note that the Adams operations
are ring homomorphisms, which is not at all combinatorially obvious from the above formula.
The Adams operations become simultaneously diagonalizable after tensoring with Q, and their
eigenspaces (which are independent of & > 1) map isomorphically to the graded pieces of the
Chow ring via the Chern character. We also have a duality automorphism D, characterized
by the property that D([€]) = [€V] for any vector bundle £. In terms of the simplicial generators,

this takes the form
—NF

2
=~ —np =
L —nF F

D(nr) =

and similarly in the augmented setting.

We note that the operations e, A\¥, U* and D all commute with the maps ¢* and (,2"8)*
introduced in Section 5 because they are compatible with functorial maps between K-rings of

varieties.
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On a d-dimensional smooth projective variety X with canonical bundle wx, Serre duality
implies that, for any vector bundle &,

X(X,6) = (1) X (X,wx ® £Y).

In particular, this holds for X = Wy or Wjug. We will show that a similar formula holds on K (M)
for any matroid M, even if M is not realizable. Our first task is to define classes wys € K (M)
and wf,® € K*8(M) that will play the roles of the canonical bundles.

For any matroid on the ground set E, the matroid polytope P(M) C R¥ is defined to
be the convex hull of the indicator functions of bases of M, and the independence polytope
IP(M) C R is defined to be the convex hull of indicator functions of independent subsets of M.

Recall that, on a smooth projective toric variety with fan 3, there is a correspondence between
torus equivariant nef line bundles and lattice polytopes whose normal fans coarsen Y. For any
matroid on the ground set £, P(M) coarsens X, and IP(M) coarsens E%;g, so we obtain line
bundles [P(M)] and [IP(M)] on Xp and X5, respectively.

Let M+ be the matroid dual to M, characterized by the property that the bases of M=+ are
the complements of the bases of M. Using the standard description of the canonical bundle of

a smooth proper toric variety [Ful93, Section 4.3], one can check that ¢;(wx,) = xg + 2 =
aug

=2 rppprrand ca(Wx)) =TE =D ccpVe = — D prp TF — D_ecp Ye- We define the classes
wyy = * (WXE : [P(ML)D € K(M)
and
Wi = () (wyyps - [IP(MH)]) € K™5(M).

These definitions are motivated by the following proposition.

Proposition 6.1. Let A be a hyperplane arrangement with associated matroid M. The isomor-
phisms K(M) = K(Wy) and K*'8(M) = K(W,"®) take wy and wiy® to the canonical bundles
of Wy and Wjug, respectively.

Proof. The adjunction formula states that the canonical class of W;" is equal to the restriction
of the canonical class of X7,'® tensored with the determinant of the normal bundle to W;"®
inside of X7'®. The determinant of the normal bundle is equal to the restriction of [IP(M |
by [EHL23, Proposition 4.6 and Corollary 5.4]. The non-augmented case can be prove similarly,
using [BEST23, Theorem 7.10]. O

The following theorem is a combinatorial version of Serre duality for K-rings of matroids.
Theorem 6.2. For any £ € K(M) and £*"¢ € K*"¢(M), we have
X(M, &) = (1) M I (M,wy - D(€))  and  xX™5(M,E%8) = (1) Mx™8(M, D(£™¥)).

In the realizable case, Theorem 6.2 follows from Proposition 6.1 and Serre duality for the
varieties Wy and Wjug. Our strategy is to deduce the general case using the concept of valuativity.
Given an abelian group A, a function f: {matroids on E} — A is called valuative if it factors
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through the map that takes M to the indicator function of its matroid polytope P(M) C R¥.
That is, for any matroids My, ..., My and integers ay, . .., ax such that > a;lp(n;) = 0, we require
that Zazf(MZ) = 0.

Remark 6.3. The notion of valuativity is typically defined on functions that take values on
the set of all matroids on E, whereas we are only considering loopless matroids in this paper.
This is not an important distinction, as the valuative group of loopless matroids on E is a direct
summand of the valuative group of all matroids on E. That is, a function on the set of loopless
matroids on F is valuative if and only if it extends to a valuative function on the set of all
matroids on F, if and only if it extends by zero to a valuative function on the set of all matroids
on F.

Lemma 6.4. Fiz a pair of classes £ € K(Ug) and 28 € K*'¢(Ug). The following four Z-valued

functions are valuative:
M = x(M,"§)
M — Xaug(M’ (Laug)*gaug)
M (—1)™ M= (M, war - D))
M s (1) (M - D((8)76)).

Proof. We begin with the first function. By Proposition 5.6, x(M,t*¢) = x(Xpg, [On] - §). Recall
that [On] = C&;(AM), and the function M — Ajs is valuative by [BEST23, Corollary 7.11].
Therefore the function M +— [Oyy] is valuative, and the result follows by the linearity of the Euler
characteristic map on K(Xg). The proof of valuativity of the second function is similar, except
that we now use [EHL23, Proposition 4.7] to establish the valuativity of the function M — [OF®].

After applying (7%, it follows from [EHL23, Proposition 4.7 and Corollary 6.5] that the function
M — [O38] - [IP(M™)] is valuative. This implies the valuativity of the fourth function. One can
argue similarly for the third function. (I

Proof of Theorem 6.2. We have already used Proposition 6.1 to prove the theorem for realizable
matroids. We have shown that each side of both claimed equalities is valuative. The full theorem
now follows from a result of Derksen and Fink [DF10] (see also [BEST23, Lemma 5.9]), which says
that the matroid polytope of any matroid can be expressed as a linear combination of indicator
functions of matroid polytopes of realizable matroids. [l

Question 6.5. Can Theorem 6.2 be applied to give interesting identities for matroids? For
example, let f(¢) = x(M,w?,); then Theorem 6.2 implies that f(¢) = (—1)""1f(1 —¢). Does this
statement admit an elementary proof, without using valuativity and Serre duality for wonderful

varieties?
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7. EULER CHARACTERISTICS AND SIMPLICIAL SNAPPER POLYNOMIALS
In this section, we give purely combinatorial formulas for the Euler characteristic of a monomial

in the simplicial generators on K (M) or K*'¢(M). Given a pair of tuples

m = (mp | F a nonempty flat) and m’ = (my | F a nonempty flat),

we say that m’ < m if m'F < mp for all F. We say that m satisfies the Hall-Rado condition

rank U F > Zmlp

m/>0 F#0
If the inequality is always strict, we say that m satisfies the dragon Hall-Rado condition.

if, for all m’ < m, we have

The following theorem computes the degrees of the monomials A™ and (h*"8)™.

Theorem 7.1. If Y- mp =1k M — 1, then [BES21, Theorem 5.2.4]

m 1 if m satisfies the dragon Hall-Rado condition
degys (h™) = )
0 otherwise.

If Y- mp =1k M, then [EL23, Theorem 1.3]

1 if m satisfies the Hall-Rado condition

degye((romeymy = { L st
0 otherwise.

The K-theoretic analogue of Theorem 7.1 is almost exactly the same, except without the

condition on ) mp.

Theorem 7.2. For any m, we have

m 1 if m satisfies the dragon Hall-Rado condition
xX(M,n™) = ,
0 otheruise

and

au N 1 if m satisfies the Hall-Rado condition
XM (M, (n™8)™) =

0 otherwise.
Proof. We prove the first statement; the augmented case is similar. If > mp > rk M, then n™ =0
and m fails to satisfy the dragon Hall-Rado condition. If > > mp < rk M, we let
k=1kM—1-> mp>0,

and define m by putting mg = mpg + k and mp = mp for all F' £ E. Then

m S (™ h™ h
x(M,n )=degM<1_(hE) = degy | 77 = deg,y (B™) .
We observe that m satisfies dragon Hall-Rado if and only if m does, thus our formula follows

from Theorem 7.1. O
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Given a proper variety X and a finite tuple of line bundles £ = (L1, ..., L) on X, the function
from ZF to Z given by the formula

Snap,(a) == x (X, L' @ - @ L}¥)
is a polynomial of degree at most dim X [Sna59, Theorem 9.1}, which we call the Snapper
polynomial. Given an integer x and a natural number d, let

@) _ x(x+1)~c-l!(x+d—1) _ <d+2—1> _ (_Dd(—dm)

If a € Z" and d € N*, let

Lemma 7.3. If o; =1 — [LY] for eachi € {1,...,k}, then

Snap,(a Z X(X o1t ) a'?.
deNk

Proof. We have
o
[£5'] = 1 — ;) Z_

The lemma follows. O

Let M be a matroid, and consider a tuple a = (ap | F' a nonempty flat). Let
Snap,,(a ZX (M, n™)al™) and Snap,® Zxaug ()™ a(m)

This definition is motivated by the following observation.

Lemma 7.4. Let A be a hyperplane arrangement with associated matroid M. Then Snap,, and
Snap]a\zlg coincide with the geometrically defined Snapper polynomials for the varieties Wy and
W' with respect to the line bundles (Lp) and (L3'®).

Proof. By definition, np = 1— [L'}_;l]. The fact that Snap;, coincides with the Snapper polynomial
for Wy with respect to (Lp) then follows from Lemma 7.3. The augmented case is identical. O

We can now rephrase Theorem 7.2 as a statement about Snapper polynomials.

Corollary 7.5. We have

Snapy,(a) = Z a(™ and  Snapj®(a) = Z a™.
m satisfies m satisfies
dragon Hall-Rado Hall-Rado

Remark 7.6. In the special case where M = Ug is Boolean, the first equality in Corollary 7.5
appears in [Pos09, Theorem 11.3].

8. SNAPPER POLYNOMIALS IN THE FEICHTNER—Y UZVINSKY GENERATORS

Section 7 was about the Snapper polynomial of the wonderful variety of an arrangement with
respect to the line bundles {Lr | F' a nonempty flat}, or of an arbitrary matroid with respect
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to the corresponding K-classes. This was fundamentally a “simplicial” construction, since the

simplicial generators for K-theory were defined in terms of these line bundles. In this section,

we consider the Snapper polynomial with respect to a collection of line bundles related to the

Feichtner—Yuzvinsky generators. For simplicity, we work only in the non-augmented setting.
Recall that, for all flats F', we have defined

tp = (I)Fy(l‘p) € A(M) and TR ‘= \I’Fy(SUF) S K(M)

For any tuple of natural numbers m = (mp | F' a flat), let
= H T}nF
F
For any tuple of integers a = (ap | F' a flat), we define

Snaph ) ZX (M, ™ a(m)

If M is the matroid associated with a hyperplane arrangement A, let Dy and Dy be the divisor
classes on Wy with first Chern classes tj and tg respectively, so that we have 77 = 1 — [O(—Dp)]
for all flats F. Lemma 7.3 immediately implies that Snapgf is the Snapper polynomial of Wy
with respect to the tuple of line bundles (O(Dp) | F a flat).

We now provide an explicit formula for the polynomial Snapgf(a). For any natural number £k,
let Flag;, be the collection of flags of flats of the form

F={o=FRChC - CF=E}

If F and G are incomparable flats, then 777G = 0 € K (M), therefore Snap}) (a) does not contain
any monomials that are multiples of apag. This implies that we may write

Sk @)= 5 3 Y el m) P Ve )l Vel

k>1 FeFlag, m

where m ranges over all tuples (my, ..., my) of natural numbers. It remains only to compute the
constants ¢(F, m).

Remark 8.1. It may be slightly confusing that the first and last exponents are (mg) and (myg),
whereas the middle exponents are (m; + 1) for 1 < ¢ < k. The point is that a particular
“monomial” appears in the summand indexed by F if and only if the nonempty proper flats in its
support are precisely {F1, ..., Fy_1}. Also, this convention leads to a tidier formula for ¢(F,m).

Given F € Flag, and i € {1,...,k}, consider the matroid M 1%71 obtained by contracting F;_;
and deleting the complement of F;, whose poset of flats is canonically isomorphic to the interval
[Fi—1, F;] in the poset of flats of M. Let d; = rk Mg_l — 1. Let /(M) denote the absolute value

of the coefficient of t'*M~1=J in the reduced characteristic polynomial of M.
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Theorem 8.2. For any k > 1, F € Flagy, and m = (my, ..., my), we have

k
d; —e; . m;
= — |e|+m v ? €4 F; 1
o Z - g( fi )M (MFi_l)<ei+1+fi—miami_fiami_ei+1>,

e,feNk
e1=mg

where we adopt the convention that ey41 = 0.

Corollary 8.3. Fiz an element F € Flag, and a tuple of natural numbers m = (mg,..., my)
with Y m; =tk M — k. Then the degree

moypm1+1 me—1+1,my
degys (tFO tF1 '”tqu tFk

18 equal to
k -
-1 rk M—k ,U'ei MFl ( 7 )’
=1 e%\;k Zl_Il (M) eit1 — € +di —mi,my — d; + €, m; — €
e1=mg

again with the convention that epy1 = 0.
Proof. By the definition of x and the third item of Lemma 5.8, we have
degyy (Lot ti ) = x (Mot e ) — o F,m).
In the formula for ¢(F, m) in Theorem 8.2, we see that a particular term vanishes unless e;+ f; < d;
for all ¢ € {1,...,k}. Taking the sum over all 4, this implies that
le] + |f| <|d| =1k M — k =mo+ -+ my.

On the other hand, a term also vanishes unless m; < e;11 + f; for all i € {1,...,k}. Taking the

sum over all ¢ and including the equality ey = my, this implies that
mo+ -+ my < le| + | f]

Thus the aforementioned inequalities are all equalities, and we can simplify our formula for
¢(F,m) by setting f; = d; — e; for all 7. The result follows. O
If we take mo = 0 = my, in Corollary 8.3, we recover a result of Eur [Eur20, Theorem 3.2].
Corollary 8.4. Fiz an element F € Flag, and a tuple of natural numbers (my, ..., mg_1) with
(mi+1)+---+(mg_1+1) =rk M—1. Foralli € {1,...,k}, lete; = (m1—di)+---+(mi—1—di—1),

and let exy1 = 0. Then we have
k
mi+1 mep_1+1Y\ _ rk M—k ; F; myg
deg,, (tFll et ) =(-1) ilj[l’ue (MFi—l) <€i+1>'
Proof. The fact that mg = 0 = my, implies that the only nonzero term in Corollary 8.3 is the one

in which e; = (m1 — Cll) + 4 (mi_l — dz’—l) for all 7. O

The remainder of this section is devoted to the proof of Theorem 8.2. We begin by analyzing
a particular specialization of Snapﬁ}/, where we set all variables except ap and ag to 0.
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Lemma 8.5. We have
kM —-1-—
suapfY . 0,02) = Y- (-1 (" Vo nafal).
e,fEN f
Proof. By definition, we have

Snapy/ (ag, 0,ap) = Y X(M,TéTé)aée)@g)-

e,fEN
We also have ; ;
e Cv(T578) Cu(T578)
X(M,757E) = degyy (1 e ) = desu | ST )

By Lemma 5.8, this is equal to

e 4f
degyy ((1&3’0“) = Z(—l)é_f <J€> deg (t5th)-

14

The degree of ¢t vanishes unless e +£ = rk M — 1, in which case it is equal to (—1)"*M=1,,¢(M)
[AHK18, Proposition 9.5, thus
tkM—1—e

() = (e (T ),
This completes the proof. Il

For the statement and proof of the next proposition, it will be convenient to regard Snaplj;}(a)
as a function that takes inputs ag for all subsets S C F, with the property that the coefficient
of any monomial involving ag is zero if S is not a flat of M. It will also be convenient to allow
M to have loops, with the convention that Snaplj;/}((a) = 0 whenever M has a loop. This allows
us to define the matroid Mg on the ground set G \ F' with respect to an arbitrary pair of sets
F C G; note that this matroid is loopless if and only if F is a flat.

Fix a subset G C E, and for any a = (ar), define a’ by putting a;; = ag — 1 and a, = ar for
all F # G. For any polynomial P in a, define g P by putting

OgP(a) = P(a) — P(a’).

Note that if P does not depend on ag, then dgP = 0. For any pair of subsets F' C G, let a‘[F,G]
be the restriction of a to this interval, which we identify with the collection of subsets of G \ F.

Proposition 8.6. For any proper nonempty subset G C E, we have
FY FY FY
JgSnap;, (a) = Snang(a“@’G]) Snang(a“G,E]).

Proof. We will first prove the statement when M is the matroid associated with a hyperplane

arrangement A4, and then deduce the general case from valuativity. Note that if G is not a flat

of M, then M@G has a loop and both sides vanish. We therefore assume that G is a flat.
Consider the hyperplane arrangements

AS ={H,/Lg|eeG} and AE={H.NLg|e¢G}.
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We observe that AS is an arrangement in the vector space LY with associated matroid Mg, and
Ag is an arrangement in the vector space Lg with associated matroid Mg
There is a short exact sequence

0—-0 (tg—l)D(;—l- ZtFDF %O(ZtFDF) —>ODG (ZtFDF> — 0.
F£G

Taking Fuler characteristics, we find that

dgSnaph) (a) = Snaph ) (a) — Snaph) (a’) = x (Dg, Opg (Z tFDF>) .
By [DCP95, Page 482], the divisor D¢ is isomorphic to WAg X WAE' Furthermore, the restriction
of Op, (> trDr) to D¢ is isomorphic to the pullback from WAg of Op,, (ZFSG trDF) tensored
with the pullback from Wz of Op; (3 g<ptrDr) [BHM*22a, Proposition 2.20]. Then by the

Kiinneth formula, we have

X(DGaoDG (ZtFDF)) =X WAgaoDG ZtFDF X W_AgaoDG ZtFDF
F<G G<F

= SnapFM%(a![@,G]) Snap% (alig,m))-

This completes the proof in the realizable case. For the general case, it will suffice to show that
both sides of the equation in the statement of the proposition are valuative invariants of M. It
follows from Lemma 6.4 that Snap}Y (a) is valutive, and therefore that dgSnaph) (a) is valuative.
The valuativity of Snapg}g (al(g,a)) Snap% (aljq,g)) follows from the valuativity of Snaph ) (a)
and general properties of valuativity [McMO09, Theorem 4.6] (see also [AS23, Theorem A]). O

Remark 8.7. Our reason for regarding Snap};}/(a) as a polynomial with variables indexed by
arbitrary subsets rather than flats, and for allowing matroids with loops, is that it would not
otherwise make sense to assert that the two sides of the equation in the statement of Proposition
8.6 are valuative invariants of the matroid M. When considering all matroids at once, we cannot
know in advance whether or not G is a flat.

Iterating Proposition 8.6, we obtain the following corollary.

Corollary 8.8. For any F € Flag,,, we have
k
aFl e 8Fk_1sna‘pF]\}](a’) = H Snap};\;’i (a" [Fi,hFi})'
i=1 Fi1

Proof of Theorem 8.2. We use the fact that

(mo) (mi+1) (ma+1) (mig—1+1) (mg)) _ (mo) (my)
O, -+ OF,_, (QFOO ap " ap ) ap T ap® ) =ap " ap”
to interpret ¢(F, m) as the coefficient of a%o) e ag:’“) in the polynomial 9, - - - 9, _, Snaph) (a).

Corollary 8.8 provides us with a formula for this polynomial. Setting ar = 0 for all F' not
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appearing in F, we obtain the polynomial
k
H Snap};;;i (ap,_,,0,aF).
i=1 Fi_1

By Lemma 8.5, we may rewrite this as

k
d; — € e; ; €; i
(12) Z (_1)Ie|+\f\ H( : )M Z(Méz_l)a%i_)la%)'
i=1 v

e,feNF

To compute the coefficient of a%o) e ag:’“), we make use of the identity
- m-+n—/¥
(m) .(n) — - (m+n—£)
v Z(Z,m—ﬁ,n—€>x
/=0
to rewrite (12) as
k €i+1
d; — e; . ) eiv1+ fi — 4 (eip1+fi—ls)
1 \e|+|f|a(61) ( i z)uez MF,Z < i+ i i )a 5.1+1 i=t)
Zk( ) ? 1:[ fi ( FH)Z: Uiyeiyy — Liy fi =€) 5
e feN =1 ;=0
with the convention that ey11 = 0. The coefficient of aggo) e ag:’“) consists of those terms for

which e; = mg and e;41 + f; — €; = m; for all 0 <4 < k. Thus

k
d; — e; . m;
F,m) = —1)lel+f t s (Mg ' . O
oAFm) = 2, (=) }_[1 fi ) (M) eit1 + fi —mi,mi — fi,mi — eip

e,feNF
e1=myg

9. EULER CHARACTERISTICS AND SNAPPER POLYNOMIALS FOR My,

Last, we turn our attention to the moduli space ﬂo,n. Recall that we have defined a tuple of
line bundles
L= (Ls]|SC[n—-1],|S>3).
We begin this section by computing the Snapper polynomial Snap.(a) with respect to these line
bundles. Given a tuple of natural numbers m = (mg | S C [n — 1] | |[S]| > 3), we say that m
satisfies the Cerberus condition if, for every m’ < m, we have

’ U S’U{n}‘—?y > meg

m/g>0 S

Theorem 9.1. We have
Snap,(a) = Z a™,

m satisfies
Cerberus

Proof. Let m be given, and define

m = (mp | F a nonempty flat of B,_1)
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by putting mp; = mg and mp = 0 for all flats F' not of the form Fg. Because the map
p: Wa
line bundle on Mo,n is equal to the Euler characteristic of its pullback to Wp, ,. Thus, if we

— ﬂo,n is a composition of blowups at smooth centers, the Euler characteristic of a

n—1

can show that the Cerberus condition for m is equivalent to the dragon Hall-Rado condition for
m, our result will follow from Theorem 7.2. Note that m fails the dragon Hall-Rado condition if
and only if there is m’ < m with

rank U F < Z'rh’ (F) and U F is a connected set.
7w (F)>0 F#0 m/(F)>0

The remainder of the proof follows by direct calculation, using the facts that rk Fis = |S| — 1 and
rk Fg U Fp =1k Fgup if S and T are not disjoint. ([l

We conclude by computing the Snapper polynomial with respect to a different tuple of line
bundles on Hgyn. Recall that L; is the i*® cotangent line bundle, whose first Chern class is equal
to ¥, and let L := (Ly,...,L,). In [Pan97], Pandharipande showed that if ai,...,a, > 0, then
H (Mg, LY @ - @ L&) =0 for i > 0, and so

X(Moma L?al R ® Lgan) — ho(ﬁo,n, Li@al QR L%an).
In [Lee97], Lee gave an expression for the generating function of this Euler characteristic, which
is equivalent to the following theorem.

Theorem 9.2. [Lee97] We have
al an n—3
g - . )
napy (@) = <d1> (d,) <n —3—|d,d,... ,dn>
|d|<n—3
We give a new proof of Theorem 9.2, beginning with the following lemma. Recall the excep-

tional isomorphism ¢, : K(Mo,,) = A(Mo,) of Theorem 1.4. Let z; =1 — [L;] € K(My,,).
Lemma 9.3. We have (,(z;) = —; for alli <n, and (,(2n) = —tn/(1 — y).

Proof. We will consider a family of closely related moduli spaces of curves, called the Losev—
Manin spaces [LMO00]. The Losev—Manin space HOMW is a moduli space of stable rational
curves with n weighted marked points [Has03], with weights 1 for the the k" and ¢ points and
e € QN(0, -L5) for the remaining n—2 points. Reduction of weights from (1,...,1) to wy induces
a morphism [Has03, Theorem 4.1] py ¢: Mo, — MOMM. Furthermore, Mo,wk, , is isomorphic to
the permutohedral variety Xp,). (x,¢} [LMO0O], so we have an exceptional isomorphism

iy - K (Mo ) = AMojuy,)-

For i # n, consider the classes tg,ty € A(Mow,,) = A(Xpiny) and 75,79 € K(Mow,,,) =
K (X{p)~qi,ny)- Then we have the following identities:

PritE = —tn PniTE = 1 — [LLy]
Prito = —i PriTo = 1 — [Li],
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see, for example, [DR22, Section 2]. For each i # n, we have the following diagram

—_ Cn ~q{n,? —_
KE(Mow,,) "= A(Mo,w,,)

lﬂi@,i lpfm‘
- CTL -
K(Mopn) —— A(Mon),
whose commutativity can be checked by using that p;, ;75 =1 —[L,, 1, and that similar formulas

hold for pullbacks of the nth cotangent line bundle under forgetful maps.
The Lemma 5.8 gives that

Cn(zi) = Gu(1 = [Ii]) = Cn 0 Py, (T0) = Pini © Cinjiniy (T0) = pn (o) = —i,

t _ —Yn
1+EtE) = Tn O

and similarly ¢, (z,) = P:”(

Proof of Theorem 9.2. By Lemma 7.3, we have

Snapy (—a) = Z X (ﬂo,n, zldl e z,‘i”) al@.
deNn

(Note that the minus sign comes from the fact that z; = 1 — [L;] rather than 1 — [L;'].) By
Theorem 1.4 and Lemma 9.3, we have

dl dn dl dn
. n z ...Zn n
(Mo 2t l) = deg <C§—H)) S (a—w)> |

Next, we observe that

h L qpdn d 4 o k) 1k
0 gyt = Wi D _(dn + )P,
n k=0

and therefore the part of this sum in degree n — 3 is equal to
dp— —3—dj——d,, _ _3—
llil Cgpir e tan 3—di dn1(d,, + 1)(n 3—(d])

if |d| < n — 3, and zero otherwise. By work of Witten [Wit91], the degree of this term is equal to

n—3
4 4 1)1,
<d17"'7dn—l7n_3_dl_"'_dn—].)( * )
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Putting it all together, we have

Snapp (—a) = Z X (ﬂo,n, z‘lil .. zg") al@
deN™

di . ahdn
= Y (=)a@ deg <(11_¢n)£+1>

|[d|<n—3

-3
= —D)dla@q, +1 (n—3—|d|)< n >
|d<zn—3( ) ( ) di,....,dp_1,n—3—dy —---—dp_1

dp+mn—3—1d| n—3
T (0 |
|d§n:—3( ) TL—3—|C” d17-~-,dn—17n—3—d1—"'—dn—l

n—3
|d§r;3 dl,...,dn’n_3_|d’

Finally, this implies that

B al an n — 3
Snapy,(a) = Z <d1> (dn) <d1,...,dn,n—3— |d)7
|[d|<n—3

which completes the proof. O

APPENDIX A. THE SIMPLICIAL PRESENTATION OF CHOW RINGS

This appendix is devoted to proving the simplicial presentation for the (augmented) Chow ring
of a matroid. The simplicial generators of A(M) were extensively studied in [BES21], and the
surjectivity of ®y was proved there. This immediately generalizes to CD%ug. That work did not
give a simple description of the kernel of @y .

For any pair of flats F' and G, let

ZFG = Z rpxg € Ty
FCF'CFVG
GCG'CFVG
For any element e € E and flat F' # (), let
We, F = Z YeZG € TM
FCGZe

Recall the definitions of the ideals 71, Ty, Z3,Z,"® C Ty in Equation (3).

Lemma A.1. We have the following equalities of ideals in Thys:
I3 = (zrg | F,G arbitrary)
L+I" = Lo+ WP |e€E)+(wer|e€ E,F#0).

Proof. We begin with the first statement. Every term in zr ¢ is a product of incomparable flats,

thus zp ¢ is contained in Z3. The opposite inclusion follows by induction on sum of the coranks
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of F' and G, using the observation that, whenever F' and G are incomparable,
2p,q = TFrxq + terms with lower sum of coranks.
For the second statement, we write
I = (y.20 | e € E) + (yoar | e ¢ F # 2).
A similar argument to the one above shows that

(yexr |e ¢ F # @) = (wer | e € B, F # 2),

so it remains only to show that y.z4 is congruent to y? modulo the ideal Zy+(w, r | e € E, F # @).
Indeed, we have

ygawyezye<%z§:xF)% > yewr,
e¢F e¢ P+
which completes the proof. O

Recall that we have defined the homomorphism ®'®: Sy — A*"8(M) by the formula
PTE(up) = — Z Ppy(zg).
Fcd

It is easy to see that the kernel of the map A*"8(M) — A(M) is generated by (hp : tk F' = 1), so
the following theorem implies Theorem 5.3.

aug

Theorem A.2. The map @@g is surjective with kernel J1 + Jy

Proof. Consider the homomorphism ©: Sy; — Ths defined by the formula

O(up) = — Z G
FcG

aug

for all nonempty flats F, so that ®T* = OpF 0 ©. The image of © is equal to the subring
Z|xp | F a nonempty flat] C Ths. In particular, the composition
O: Sy = T — Tu/(Th + 1)
is an isomorphism. This implies that ®3'® is surjective, and its kernel is equal to
O NIy + Tn + Ty + I1).

For the remainder of the proof, we put a bar over an element of T; or an ideal in T; to denote
its image in T /(Z1 + Z2). Then we need to compute ©1(Z; + Z;"®). By Lemma A.1, we may

rewrite this as

(:)_1(<ZF,G | F, G arbitrary) + (72 | e € E) + (wer | e € B, F # @))
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We have the following equalities:

Zra = é((uF —upva)(ua — quG)):
vo = O(ul),
Wep = @<ue(uevp—uF)>,

which together imply that the kernel of @@lg is equal to

Ji+ (W2 e€ E)+ (us(ueyr —ur) | e € B, F # 2).

The theorem now follows from the fact that the second and third summand above add to anug. |
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