DISTRIBUTION OF VALUES OF GAUSSIAN HYPERGEOMETRIC
FUNCTIONS

SATOSHI KUMABE AND HASAN SAAD

ABSTRACT. In the 1980’s, Greene defined hypergeometric functions over finite fields using Jacobi
sums. The framework of his theory establishes that these functions possess many properties that
are analogous to those of the classical hypergeometric series studied by Gauss and Kummer.
These functions have played important roles in the study of Apéry-style supercongruences, the
Eichler-Selberg trace formula, Galois representations, and zeta-functions of arithmetic varieties.
We study the value distribution (over large finite fields) of natural families of these functions. For
the o F functions, the limiting distribution is semicircular (i.e. SU(2)), whereas the distribution
for the 3F5 functions is the Batman distribution for the traces of the real orthogonal group Os.

1. INTRODUCTION AND STATEMENT OF RESULTS

In the ’80s, Greene [29] B0] defined Gaussian hypergeometric functions over finite fields using
Jacobi sums. He developed the foundation of a beautiful theory where these functions possess
many properties that are analogous to those of classical hypergeometric functions. These proper-
ties include transformation laws, explicit evaluations, and contiguous relations. These functions
have played central roles in the study of combinatorial supercongruences [1, 13, 36, [44], [47, 48] 52|
59, B0l 57, B8, K9], Dwork hypersurfaces [9, 46], Galois representations [41], 42], L-functions of
elliptic curves [0, [10] 1], 25] 40} 145, 53, 63, 66], hyperelliptic curves [7, 8], K3 surfaces [4], 19 (3],
Calabi-Yau threefolds [2, [3, [68], the Eichler-Selberg trace formula [24] 25] 26] 27, 39, 49, 59, 61],
among other topics. This body of work meshes well with the framework established by Katz [37]
and Roberts and Villegas [62] on the analysis and arithmetic of “hypergeometric varieties”.

Here we initiate the study of the value distribution of Greene’s functions. We first recall

Greene’s original definition. If Ay, As,..., A, and By, Bs, ..., B,,_; are multiplicative characters
of the finite field IF;, where ¢ = p", then we have the Gaussian hypergeometric function
A, Ay L A, q Aix\ [(Azx Anx
nF_ ’ ’ ’ = e :
1( Bi. ..., Bo |x>q {14 ( x J\Bix B,y M)

where the summation is over the multiplicative character of F¥, and where (g) is the normalized
Jacobi sum J(A, B), defined by

(1.1) (2) = B(q_l)J(A,F) = B(q_l) > A(x)B(1 - ).

zelfy

Many authors (see [30], [31], [35], [38], [53], and [63], to name a few) have made use of the
mantra that Gaussian analogs of classical hypergeometric results arise when rational parameters
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1/n are replaced with a character x of order n (resp. a/n with x*). We consider those functions
where the parameter characters have order 1 and 2, which always exist for F, when ¢ = p" is
odd. The simplest example of these functions are the o Fi-Gaussian hypergeometric functions

12 Fe=an (M2 1) = 55 () ()

X

where ¢(-) is the quadratic character and ¢ is the trivial character of F,. As our first result, we
compute the moments of these Gaussian hypergeometric functions.

Theorem 1.1. Ifr and m are fixed positive integers, then as p — 400 we have

r(m/2-1) m ) oms(1) if m is odd
p o1 (N7 = " ‘ .
/\GZFPT i n'((iﬁl)l + mr(l) me = 2n 18 even.

Remark. The non-zero moments in Theorem (i.e. the Catalan numbers) arise [23] as the
moments of traces of the Lie group SU(2), the 2 x 2 determinant 1 unitary matrices. Namely,
for even moments, we have

on)!
/ (Tex )y — — 20

where the integral is with respect to the Haar measure on SU(2).

Using these moments, we determine the limiting behavior of the oF;(\),r as p — +o00. We
obtain the limiting distribution of the renormalized values \/p" - 2F1(\),r € [—2,2], which we
view as random variables on IF,,-. Namely, we obtain the following result.

Corollary 1.2. If =2 <a < b <2, and r is a fixed positive integer, then

ey VT SRy € [w b} /Wdt

p—r00 pr

Remark. Theorem may be interpreted in terms of the Legendre normal form elliptic curves
EYe. y?=a(z—1)(z—\).
If A e F,\{0,1}, then (see Theorem 11.10 of [54]) q-2F1(N)g = —6(—1) - ay*®(q), where

(1.3) ak%(q) = g+ 1 — |EV5(E) = = 3 éla(e — 1)z — \)).

z€ly

Corollary [1.2| refines (i.e. restriction to Legendre curves) a classical theorem of Birch [I3] which
established this distribution for all elliptic curves over finite fields. Birch’s Theorem has recently
been refined [15] by Bringmann, Kane, and Pujahari in another direction, where the Frobenius
traces are restrictied to arithmetic progressions. These distributions are renormalizations of the
usual Sato-Tate distribution which was famously proved by Clozel, Harris, Shepherd-Barron and
Taylor in [I6]. In their (more difficult) setting, the elliptic curve is fixed and the distribution
is taken over all primes p. Recent work along these lines for further abelian varieties have been
obtained by Fité, Kedlaya, and Sutherland (for example, see [23]).

We also consider these questions for the 3F, Gaussian hypergeometric functions

w0 eS8 20 - ()
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The power moments for these functions satisfy the following asymptotics.

Theorem 1.3. If r and m are fixed positive integers, then as p — +oo we have

_— Om.r(1) if m is odd

-1

i Fo(A)r = ¢ & my (20 ‘ ,

p ,\GX]F:T sF2 (M)} Z(_l)l(z)% + 0y r (1) if m is even.
p 1=0

Remark. The moments in Theorem arise [60] as moments of traces of the real orthogonal
group Osz. Namely, for even m we have

/OS(TrX)de _ i(—w (”Z) %

=0

where the integral is with respect to the Haar measure on Os.

In analogy with Corollary [I.2], we obtain the limiting distribution of the renormalized values
" 3F5(N)r € [—3, 3], that we view as random variables over F,». We obtain the following result.

Corollary 1.4. If -3 < a < b <3, and r is a fired positive integer, then
Fur 0" - 3F5(N)pr I
™ a

p—r00 pr
where
3—|t )
\/ﬁﬁ ’l,f 1 < ‘t’ < 3,
t) = 3+t 3—t .
f< ) V/3—2t—t2 - V3+2t—t2 if W <1
0 otherwise.

Ezample. For the prime p = 93283 (i.e. r = 1), the histograms of the values /p - 2F1(\),
and p - 3F5(\), illustrate Corollary (i.e. the near match with the radius 2 semicircle) and
Corollary[l.4] (i.e. the near match with the Batman distribution f(t)).

02

-2 -1 1 2 -3 -2 -1 1 2 3

o F histogram for p = 93283 3F5 histogram for p = 93283

Remark. Theorem can be interpreted in terms of the K3 surfaces whose function fields are
Xy s =ay(e +1)(y+ 1)z + \y),
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where A € F, \ {0, —1}. It is known (see Theorem 11.18 of [54] and Proposition 4.1 of [4]) that
IXa(F)| =1+ ¢*+19¢ + ¢* - 3F2(—=\),.

Corollary gives the limiting Frobenius trace distribution for these K3 surfaces.

Remark. It is natural to consider the asymptotics for the moments of the general

o o PP . \X X X
hypergeometric functions. It would be very interesting to determine asymptotics for the moments,

which in turn would lead to distributions that extend Corollaries [[.2] and [L4l A solution to this
problem in the case of the 4F3 functions is already quite interesting.

The proofs of Theorems |1.1{ and [1.3[rely on the fact that the oF;()), and 3F5(\), values arise
from the arithmetic of the Legendre and Clausen elliptic curves

(1.5) B¢ =z —1)(z—)) and EY: o= (zx—1) (2 + ).

As mentioned above, the 5 Fj()\), are renormalizations of the Frobenius traces for Ey*/F,. The
3I5(N), (see Theorem are related to the squares of the Frobenius traces of E{!/F,. Using
these arithmetic geometric connections, we reformulate the moments in terms of the moduli
space of these elliptic curves. We interpret these reformulations in terms of isomorphism classes
of elliptic curves with certain subgroups of [F, rational points. The moments can then be given
as weighted sums of Hurwitz class numbers which enumerate such isomorphism classes.

To estimate these moments, we make use of the theory of harmonic Maass forms. More
precisely, these weighted sums arise in the Fourier expansions of nonholomorphic modular forms
produced from the Rankin-Cohen brackets of Zagier’s weight 3/2 nonholomorphic Eisenstein
series when paired with explicit theta functions. The proofs of Theorems and are then
reduced to an application of Deligne’s Theorem, which bounds the coefficients of the cuspidal
components of the holomorphic projections of these nonholomorphic modular forms. The recent
proof of Cohen’s Conjecture by Mertens [50, [51] plays a significant role in the o F} case.

This paper is organized as follows. In Section 2] we recall the fundamental facts we require
about the oF(\), functions and the arithmetic of the Legendre curves Efeg. In Section (3 we
recall the analogous results for 3F5(\), and the Clausen curves E5!. In Section , we recall facts
from the theory of harmonic Maass forms which enable us to analyze these elliptic curves in
terms of weighted class number sums thanks to a theorem of Schoof. We apply these facts in
Section [5] to obtain the asymptotic properties of these class number sums. In Section [6] we recall
the criteria for deducing the distributions in Corollaries[I.2]and [I.4)in terms of moments. Finally,
in Section [7] we conclude with the proofs of Theorems [I.1] and [L.3]
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2. THE 3F,()\), AND THE ARITHMETIC OF [}

Here we recall important facts about the oF (), values. The results we require are obtained
by interpreting these values in terms of the trace of Frobenius on the Legendre normal form
elliptic curves E/%eg. This connection is well known and has been observed by several authors.

Theorem 2.1 (Th. 11.10 of [54]). If X € F, \ {0,1} and char(F,) > 5, then

q-2F1 (Vg = —6(=1)ay*(g).
Remark. Theorem is analogous to Gauss’ classical hypergeometric formula for the real period
Ql8(\) of B (for example, see Chapter 9 of [33]), where for 0 < A < 1 we have

1

11
oy (2 2| )\> = Qleg()).

2.1. Facts about Legendre normal forms. As mentioned above, the proof of Theorem
relies on an arithmetic reformulation of the moments of 3F3(\),. By Theorem this task

requires important facts about the E/%eg. We now recall these facts.

Proposition 2.2 (Proposition 1.7, Chapter III of [65]). Let K be a field with char(K) # 2, 3.
(1) Every elliptic curve E/K is isomorphic over K to an elliptic curve EY®.
(2) If A # 0,1, then the j-invariant of EY® is
(A2 —A+1)3
A 1)?

(3) The only X for which j(EY*®) = 1728 are A =2, —1, and 1/2.
(4) The only X for which j(EY*®) =0 are \ = %TS
(5) For every j ¢ {0,1728}, the map K \ {0,1} — j(EY®) is siz to one. In particular, we have

1 1 AoA—1
{)\,— 1—\ } — jEY®).

JEE) =25

A 1A A=17 A

Since elliptic curves defined over F, with the same j-invariant are not necessarily isomorphic
over [F,, we must consider the theory of twists. We only require the standard notion of a quadratic
twist. If d € F, \ {0,1}, and E is given by

E: y* =%+ apx® + ayx + ag,
then its quadratic twist F, is given byﬂ
Ey: y? = da® + dayx® + dagx + dag.

If d is a square in F,, then £, is isomorphic to E over F,. Moreover, if p is a prime of good
reduction for E; (and hence also E), we have that

(2.1) q+1—|E(F)| = ¢(d) (¢ +1 - [Ea(Fy)]).

The next result characterizes the quadratic twists of Legendre curves with common j-invariant.

2We note that this choice is equivalent to the usual convention where one has Eq :  dy? = 2® + az2? + asx + ag.
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Proposition 2.3 (Prop. 3.2 of [2]). For A € F,\ {0, 1}, the following holds.
(1) EX°¢ is the \ quadratic twist of Ef/ef’
(2) Ex® is the —1 quadratic twist of E}%,.
(3) EX°® is the 1 — \ quadratic twist of E/I\“f%/\fl).
(4) Ex® is the —\ quadratic twist of Egj\efl)//\.

(5) EX°¢ is the \ — 1 quadratic twist of Eff{gl%).

By Theorem [2.1], we can reformulate the moments of the o F} functions as sums over Legendre

normal form elliptic curves. As we shall see in the next subsection, this requires dividing these
curves into isomorphism classes over F,. To this end, for A € F, \ {0,1}, we define

(2.2) L(\) :={B € F,\{0,1} : E*® =y E®}.

The following three lemmas determine |L(\)|. The first concerns j ¢ {0, 1728}.

Lemma 2.4. If j(E,) ¢ {0,1728}, then

ifg=3 (mod 4)

if¢g=1 (mod4),\ and 1 — X are both squares in I,
)

LA = L . . .
ifg=1 (mod 4), either A or 1 — X is a square in F,

N =~ O W

ifg=1 (mod 4), neither A nor 1 — X is a square in IF,.

Proof. Here we consider the case where ¢ = 3 (mod 4). There are exactly two elements of {\, 1 —
A, —A, A — 1} that are squares. Therefore, Proposition applies that |L(\)| = 3. The other
cases are handled mutatis mutandis. 0

For j = 1728, we have the following lemma.

Lemma 2.5. Suppose that EY®/F, has j(FEY®) = 1728.

(1) If ¢ =3 (mod 4), then a5®(q) = 0.

(2) If g=1 (mod 8), then L(2) ={-1,2,1/2}.

(3) If g =5 (mod 8), then L(2) = {—1,2} and L(1/2) = {1/2}.

Proof. Curves with j = 1728 have complex multiplication by Q(i). There are no ideals in Z[i]
with norm ¢ = 3 (mod 4), and so (1) follows easily (for example, see [34, Section 4]). If ¢ =1
(mod 4), then a similar counting argument as in the proof of Lemma [2.4] gives (2) and (3). O

For j = 0, we have the following lemma.

Lemma 2.6. Suppose Ey*®/F, has j(Ey®) = 0.

(1) There are no such EY® when ¢ =2 (mod 3).

2) If g =1 (mod 12), then |L e 2, and LEV=3 e squares in FF,.
2 q

2
(8) If g =7 (mod 12), then |L (%) | =1, and %j?’ are both not squares in F,.

Proof. Claim (1) follows from the unsolvability of j(Ey®) = 28 - (A2 — X\ + 1)3/X3(\ — 1)2 = 0.
The proofs of claims (2) and (3) are analogous to the proof of Lemma O

To obtain the desired reformulation of the power moments of the 5 F; hypergeometric functions,
we make use of the fact that Z2 x Z2 C Ey*¥(F,). Our final reformulation makes use of this
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observation, combined with the fact that certain Hurwitz class numbers enumerate isomorphism
classes of elliptic curves with prescribed subgroups and fixed Frobenius traces.

Lemma 2.7. If ¢ =3 (mod 4), and E/F, is an elliptic curve for which Z2 x Z2 C E(F,), then
E is isomorphic to a Legendre normal form elliptic curve over F,.

Proof. Since Z2 x Z2 C E(F,), E is given by
E: y=(z-a)(z—pB)(z-17),

where a, 3,y € F,. After possibly exchanging a and 3, we may assume that 5 — a is a square.
Under the transformations y = (8—a)*?Y and z = (8—a)X +a, E = E}*®, where \ = i U

As the previous lemma indicates, if ¢ = 3 (mod 4), then every E/F, with Z2 x Z2 C E(F,) is
isomorphic over F, to a Legendre normal form curve. Unfortunately, this is not the case when
g =1 (mod 4), and we call those E without such isomorphic Legendre forms inconvenient.

Lemma 2.8. Suppose that ¢ =1 (mod 4) and that E/F, is inconvenient.

(1) We have that |E(F,)| # 0 (mod 8).

(2) There is a A € F,\ {0,1} and d € Ty, where d & T2, such that 74 x 74 C E5(F,) and
E, = E;Jeg over F,.

(3) The phenomenon in (2) induces a bijection between FF,-isomorphism classes of inconvenient
curves and those classes for which Z4 x 74 is a subgroup of IF-rational points.

Proof. Let E be an elliptic curve defined by

E: ¢y =z(—a)(z—p),
where «, 3, a — 3 are non-squares in F,. The classical 2-descent lemma (for example, see Propo-
sition X.1.4 of [65]) indicates when a rational point P is a double of another rational point, say
. By our assumptions on « and [, we find that none of the 2-torsion points are doubles, and
so we have that |E(F,)| # 0 (mod 8). Furthermore, the a-twist E, is

E,: y*=oazx(z—a)(z—pB),
and under the transformation z = a X,y = Y/a?, this is equivalent to

Egt: Y2 =X(X - 1)(X = B/a).

One then applies the 2-descent lemma again. 0
We conclude with a classification of those Legendre normal form with Z4 x Z4 C EY*¥(F,).

Lemma 2.9. Suppose that ¢ = 1 (mod 4) and A € F,\ {0,1}. Then we have that Z4 x Z4 C
EY8(F,) if and only if \ and 1 — X are both squares in F,.

Proof. This claim follows easily again by the 2-descent lemma. O

2.2. Isomorphism classes of elliptic curves with prescribed subgroups. We have refor-
mulated the moments of the o F7 functions as sums over isomorphism classes of elliptic curves for
which Z2 x Z2 C E(F,). Therefore, we seek formulas for the number of such classes. Thankfully,
these are known due to work of Schoof [64], and they involve Hurwitz class numbers.

To make this precise, we first recall some notation. If —D < 0 such that —D = 0,1 (mod 4),
then denote by O(—D) the unique imaginary quadratic order with discriminant —D. Let h(D) =
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h(O(—=D)) denotd] the order of the class group of O(—D) and let w(D) = w(O(—D)) denote
half the number of roots of unity in O(—D). Furthermore, define

(2.3) H(D):= > h(0O) and H'D):= Y

OCO'COmax OCO'COmax

h(O)
w(O)’

where the sum is over all orders O between O and the maximal order O,,.,. The following
theorem of Schoof [64] gives the results we require.

Theorem 2.10 (Section 4 of [64]). If p > 5 is prime, and q = p", then the following are true.
(1) If n > 2 and s is a nonzero integer for which p|s and s* # 4q, then there are no elliptic
curves E/F, with |E(F,)| = ¢+ 1—s and Zn x Zn C E(F,).

(2) If r is even and s = £2p™/?, then the number of isomorphism classes of elliptic curves over
F, with Z2 x 22 C E(F,) and |E(F,)| =¢+1— s is

- ee-o2)-5))

where (1—0) 15 the Legendre symbol.

(3) Suppose that n and s are integers such that s* < 4q, pts, n*| (¢+1—s), andn | (¢ — 1).
Then the number of isomorphism classes of elliptic curves over Fy with |E(F,)| =q+1—s and

Zn x In C E(F,) is H (4q—82) .

n2

Remark. Theorem is a compilation of various results from [64]. Namely, (1) follows from

Finally, (3) is a consequence of the proof of Theorem 4.9 (i).

Remark. The number S(p) defined in([2.4) also happens to be the number of isomorphism classes
of supersingular elliptic curves over F, (for example, see Proposition 2.49 of [54]).

2.3. Formulas for ,F; moments. Finally, we assemble the results of the previous subsections
to obtain the desired weighted class number sum expressions for the power moments.

Proposition 2.11. Suppose that p > 5 is prime. If r and m are positive integers, then the
following are true for ¢ = p", where in each summation we have that —2,/q < s < 2,/q.
(1) If r is odd and m is even, then we have

m m * 4q_82 m
q Z2Fl()\)q:1+3 Z H 1 s™.

)\GFQ ng(S,p):l
s=qg+1 (mod 4)

(2) If r and m are both even, then there is a rational number C(q) € [0,6] for which

4q — s*
m m m/2 * m
q g 2F1(/\)q =14+C(q)S(p)-q 243 E H ( 1 )s )
AeF, ged(s,p)=1
s=q+1 (mod 4)

(3) If ¢ =3 (mod 4) and m is odd, then we have g™ Y 2Fi(\)y' = 1.

A€EF,

3We note that H(D) = H*(D) = h(D) = 0 whenever —D is neither zero nor a negative discriminant.
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(4) If g =1 (mod 4) and m is odd, then there is a rational number D(q) € [—6,6] for which
¢" Y Ry

A€F,
. (4q— 5 o ((4q— 5 /2
=—-1-2 Z H ( 1 )sm—4 Z H ( 16 s™ —D(q)S(p)g™~.
ged(s,p)=1 ged(s,p)=1
s=¢+1 (mod 8) s=¢+1 (mod 16)

Remark. The rational number C(q) is the average number of Legendre form curves in an F-
isomorphism class with a“*8(g), = £2-p’/2. Similarly, D(q) is the average number of such curves

in an isomorphism class with a}¢(¢q) = 2p’/? minus the average number with a}*®(¢) = —2p"/2.

Proof. We first prove (3) as it is a triviality. By Theorem 4.4 of [30], if ¢ = 3 (mod 4) and
A€ F,\ {0,1}, then oF1(\), = —2F1(1 — \),. Therefore, claim (3) follows from the resulting
cancellation, combined with the fact that o F1(1), = 1/¢ and 3#7(0), = 0.

The proofs of claims (1), (2), and (4) are very similar. Therefore, we only prove (4) for brevity.
We make use of Theorem [2.10, and Lemmas [2.4] through 2.9] Using Theorem [2.1] we rewrite the

sum in terms of —a5*®(¢). We then decompose the sum

- > algm==)_l(sq)]-s"

AEF \{0,1}

where I(s,q) = {)\ eF, N\ {0,1} : a}®(q) = s}. By Theorem [2.10| and Lemmas and

Lemma [2.9] we have

=Y ar=—t Y [H*(4q282)_H*(4q1—682)}8m

AeFg\{0,1} ged(s,p)=1
s=q+1 (mod 8)

4q — s* 4q — s*
2 Y m m_ H m
< 4 ) § 6 Z ( 16 s
ged(s,p)=1 ged(s,p)=1
s#Zq+1 (mod 8) s=q¢+1 (mod 16)

—1(2¢"2,q)| - 2¢™* — |1(=2¢""*,q)| - (—=2¢™"*) + E(q,m),

where E(q, m) is the sum over equivalence classes which do not contain a Legendre normal form.
However, by Lemma [2.8] we see that
4q — 52
H* —s)™.
| (55) s

E(g,m) =2 3 1 H* <4q1_632>sm=2 3

ged(s,p)= ged(s,p)=
—s=g+1 (mod 16) s=¢+1 (mod 16)
The result follows by considering congruence conditions and the fact that m is odd. 0

3. THE 3F3()\), AND THE ARITHMETIC OF EY{'

Here we recall important facts about the 3F5(\), values, which are related to the squares of
the trace of Frobenius for the Clausen elliptic curves E{.
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Theorem 3.1 (Th. 5 of [53]). If A € F,\ {0, —1}, char(F,) > 5 and a§'(q) := ¢+ 1 — |ES\(F,)|,

then we have

A
2 1 . F _ Cl 2.
g+ qo(A+1)-3 2(—A+1)q ay (q)

Remark. Theorem has a counterpart in terms of classical hypergeometric functions. For
0 < A< 1,if QY(N) is the real period of EY', then McCarthy [43] proved that

111 ) V1+ A
3 2 2 _ 00112
3F2( i 1|>\+1)— Q¥ ().

2
3.1. Certain moments of traces of Frobenius of the Clausen elliptic curves. The goal
of this subsection is to obtain two types of power moments for the Clausen curves. To this end,
we first fix some notation. We let C denote a generic isomorphism class of elliptic curves over
F,, where throughout p > 5 is prime and ¢ = p", where r is a fixed positive integer. We let Z,
denote the set of all isomorphism classes of elliptic curves over [y, and define

(3.1) I(s,q): ={Ce€Z, : V E€C wehave |[E(F,))|=q+1+£s},

(3.2) Iy(s,q) :={C € I(s,q) : VE €C we have E(F,)[2] = Z2 x Z2},
where 0 < s < 2,/g is even. We recall that the size of I(s,q) is given by Theorem as
2H(4q — s%) ifpts
1I(s,q)] =4 2-S(p) if s = 4q and r is even
0 otherwise,
where S(p) is given by (2.4)).
For even 0 < s < 2,/q, we let
(3.3) L(s,q) = {A € F,\ {0, =1} : af'(q) = £s} .

The following proposition about most isomorphism classes with nonzero even traces of Frobenius
will simplify our later calculations.

Proposition 3.2. If 0 < s < 2,/q is even, 1/3,—1/9 € L(s,q), and |E(F,)| € {q¢ +1=£ s} for
any elliptic curve E/F, with j(E) = 1728, then the following is true.
(1) If n is a positive integer, then

> = (5 el ke

XeF\{0,—1}
a)c\l(q):is

(2) If n is a positive integer, then

> NS = (< el +2 (s )

AEF,\{0,-1}
agl(q):is

Proof. As I(s,q) includes quadratic twists, we let C* be the isomorphism class of quadratic
twists of curves in C by nonsquares in F,, which then gives I(s,q) = {C1,...,Cp,C{¥,...,Ci¥}.
To study these isomorphism clases, it is convenient to then define

f(s,q):{CluC{W,...,ChUCZW and fg(s,q):{CUCtW : CEI(S,q)}.
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By Theorem , we can compute 11(s,q)| and |I1(s,q)|. Therefore, we aim to relate the
cardinalities of L(s, q), I(s,q) and I5(s, q). To this end, we define F': L(s,q) — I(s,q) by F(\) :=
[ES U [ESYY, where [E] is the F,-isomorphism class of elliptic curves containing E.

By Lemma 7.1 [24], F' is surjective, unless j(E) = 1728, in which case F’ misses exactly one
isomorphism class. Furthermore, by Lemma 7.2 of [24], if 1/3,—1/9 & L(s,q), then F is three-
to-one if and only if —\ is a square in [F, and is one-to-one otherwise. To see (1), we note that
the above discussion gives that

" . (1 3
> A= -(§<u<s,q>r—\12<s,q>r>+5~uz<s,q>|).
AeF,\{0,—1}
oS (q)=s

Similarly, to obtain (2), the above discussion gives that
1 3
> N = (< (el ) + 5 Il

AeF\{0,—1}
zzg\n(q)::ts

These two claims clearly reduce to (1) and (2) respectively. O
The discussion above also provides the following critical bound for |L(s, q)|.

Proposition 3.3. If0 < s < 2,/q is even, then we have |L(s, q)| < 3-max {H (4¢q — s*), S(p), 2} .

4. HARMONIC MAASS FORMS AND WEIGHTED SUMS OF FOURIER COEFFICIENTS

In this section we explain how the weighted sums of class numbers in the previous section arise
naturally in the theory of harmonic Maass forms (for background, see [14]). The connection with
harmonic Maass forms stems from the following well-known theorem about Zagier’s weight 3/2
nonholomorphic Eisenstein series.

Theorem 4.1 ([67]). The function

2miT

where 7 = x + iy € H and q, := e*™7, is a weight 3/2 harmonic Maass form with manageable

growth at the cusps of To(4).

This theorem asserts that the generating function for Hurwitz class numbers E| is the holomor-
phic part of the harmonic Maass form H (7). More generally (for example, see Lemma 4.3 of [14]),
every weight k& # 1 harmonic weak Maass form f(7) has a Fourier expansion of the form

(4.1 10) = e+ TG w ),

where

(4.2) Fr) =" cfn)gr and f(r) = > c;(m)n*'T(1 = k;4x|n|y)g;".
o =

“Here we adopt the convention that H*(0) := —1/12.
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Here I'(o; ) :== [ e7't""'dt is the usual incomplete Gamma-function. The function f*(7) is
called the holomorphic part of f.

The weighted sums of class numbers we require appear in formulas for the Fourier coefficients
of certain families of nonholomorphic modular forms. These forms are constructed from Zagier’s
H(7) as a simple implementation of the Rankin-Cohen bracket operators, which are combinatorial
expressions in derivatives of pairs of modular forms. This method was previously applied by
Mertens [50, 51] in his proof of a deep conjecture of Cohen on the Cohen-Eisenstein series.

4.1. Combinatorial Interlude. To carry out the strategy described above, we require a frame-
work of combinatorial identities for the degree a — 2 homogeneous polynomials

a—2 .
(4.3) Pa,b(X, Y) — Z (] + b — 2) Xj(X + Y)afjfz,
j=0 J

where a > 2 is a positive integer and b is any real number. This framework captures the non-
holomorphic modular forms constructed with the Rankin-Cohen brackets. The next proposition
gives a significant identity for certain complicated algebraic expressions in these polynomials.

Proposition 4.2. If m > n are positive integers, then we have

o201 (21/ + 1) <m*%(m% B n%)2V+2) _

v+1
v 1 1
3 <2 + u) (2 - y) =t (w2 L (= ) — ).
S\v—p)\ h

This proposition is analogous to Proposition V.2.7 of [50]. Moreover, its proof follows along
the same lines. The key lemmas we require are as follows, where binomial and multinomial
coefficients with non-integral arguments are defined using the Gamma-function.

Lemma 4.3. Ifv > 1, and j > 0 are integers, then we have

ii ( v —-2p+1 ) — oW+2(_ 1) (2v — 7+ 1)y

p—ji+3 \2v—p, p, 2v0—2p+1 (2i)(2v — 25 +2)

pn=0

Sketch of the Proof. This claim is analogous to Lemma V.2.6 of [50], which stems from an ex-
pression of the form

= — -3k : 201,
2 —j+3 < 2u ) 32( —y+§ —2u+§|
The claim is obtained by applying the same steps to the following expression with sign changes

= . . 3F . 2 1),
2 —j+ 3 ( 2w ) ’ 2( s —2y—§’

2

Lemma 4.4. The following are true:
(1) If i < v are nonnegative integers, then we have

v+3\(v+s g (T (2v 42
v— 1 v+1)\2u+1)°
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(2) If 0 < u < v and j >0 are integers, then we have

(2v—u+%> (j—u—%> _ 0 s (v =204 D2p 4 1))
2w+1—j J j—pu—3 Quv—p)lpu! g Qv—j+1)

Sketch of Proof. To prove (1), we emulate Mertens’ proof (see p. 60 of [50]) that
V—l—% 1/—% _ o-w 2v\ (2v +1
v— i L v)\2u+1)

He gives explicit steps involving standard properties of the Gamma-function that transform the
left-hand side into the right-hand side. To obtain (1), one applies the same steps to

L))

To prove (2), we emulate Mertens’ proof (see p. 61 of [50]) that

(2u . ) (g . ) LD (2 DIt )
2V~ j J—n—3 2v —p— 1D pl gl (20 = j)!
He gives explicit steps which transform the left-hand side into the right-hand side. To obtain

(2), one applies the same steps to
w—pt+s\(i—n—73
2w+1— ] '

Finally, we recall an important identity for the polynomials P, ;(X,Y’) obtained by Mertens.

Lemma 4.5 (Lemma V.1.8 of [50]). If b # 1,2, then

(4.4) Puy(X,Y) S (ZJ—FZ:) (J'Jr?—?) (X + V)2 (—Y).

“M

Using these lemma above, we are now able to prove Proposition |4.2]

Proof of Proposition[f.3. To prove the proposition, we begin with the right-hand side of the
claimed formula. To start, we absorb the powers of m by

v o1 1
S (B (F Y (A i = )
v—p)\
n=0
? v+ 1 v+ 3 1 1
- Z ’ ? (m7V75P3+2ul u(rm) — ”ﬁ“m%ll) :
v—p)\ u 2

©n=0
By combining Lemma [4.4] (1) with Lemma [4.5] one obtains

v 2uv+1 . 3 v
:2721171 2V+2 ZZ 2V-/l+ ]—M—E (—n)j— 2V—|—2 n%Jr‘umV*“ .
v+1 2v+1— J : 2u+1

pu=0 j=0 p=
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By the Binomial Theorem, we note that the left-hand side of the claim is
v+1 v
m_%<m% — n%)2y+2 = Z 2v + 2 mV_N+%nM _ Z 2v + 2 ’I’LM—"_%’ITLV_IJ‘.
=\ 24 o \2p 1

Therefore, it suffices to show that

v 2v+1 1 . 3 v
1 (20— i+ 5 —u—= , 2v+ 2 1
E E m"3+2(2yy ’T_;) (‘7 /; 2)(—71)] = E ( g >m”“+2n“.

pu=0 j=0 p=0 2,LL
Lemma (2), followed by an application Lemma implies this equality. O

4.2. Families of modular forms obtained from Rankin-Cohen brackets. As alluded to
earlier, the weighted sums of class numbers we require arise in formulas for the coefficients of
certain families of non-holomorphic modular forms. These families are obtained from Zagier’s
‘H(7) by making use of Rankin-Cohen brackets. In this section we recall several important facts
about the nonholomorphic modular forms obtained by this method, along with their holomorphic
modular form images under the process of holomorphic projection.

To make this precise, let f and g be smooth functions defined on the upper-half of the complex
plane H, and let k,l € Ry and v € Ny. The vth Rankin-Cohen bracket of f and g is

(45) = e S (T (T e e

r+s=v

As the next proposition illustrates, these operators preserve modularity.

Proposition 4.6 (Th. 7.1 of [I7]). Let f and g be (not necessarily holomorphic) modular forms
of weights k and [, respectively on a congruence subgroup I'. Then the following are true.

(1) We have that [f,g], is modular of weight k + 1+ 2v on T.

(2) If v € SLy(R), then under the usual modular slash operator we have

Lflevs glivle = (Uf, 9)0) ka0

Remark. Proposition (2) is important for studying the behavior of Rankin-Cohen brackets
at cusps. It shows that if f and ¢ are smooth functions that do not blow up at any cusp, and
[f, g, vanishes at the cusp ioco, then it vanishes at all other cusps for v > 0.

By Proposition 4.6, we have a procedure for producing many nonholomorphic modular forms
from derivatives of a pair of seed forms f and g. We shall study forms that arise in this way
from f(7) := H(7) and certain univariate theta functions for g(7). To prove our results, we make
use of canonical holomorphic modular forms that have coefficients with the same asymptotic
properties as [f, g],. These forms are obtained by the method of holomorphic projection.

To make this precise, suppose f : H — C is a (not necessarily holomorphic) modular form of
weight £ > 2 on a congruence subgroup I with Fourier expansion

F@) =Y epn,y)gl,

where 7 = x + iy. Let {Kk1,...,Kkup} be the cusps of T', where k1 := ico. Moreover, for each j let
7v; € SLo(Z) satisty v;k; = ico. Then suppose the following are true.
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(1) There is an € > 0 and a constant céj ) € C for which

f (75 w) (j—w) = o+ Otm(w)) .

forall j =1,...,M and w = ;.
(2) For all n > 0, we have that cf(n,y) = O(y**) as y — 0. Then, the holomorphic projection
of f is defined by

(4.6) (Mot f) (7 —co+2 n)q;,

where ¢y = c0 ) and for n > 1

c(n) = % /0 cr(n,y)e ™y 2 dy.

The following proposition explains the important role of the projection operator.

Proposition 4.7 (Prop. 10.2 of [14]). Assuming the hypotheses above, if k > 2 (resp. k = 2),
then mho(f) is a weight k holomorphic modular form (resp. weight 2 quasimodular form) on T.

Turning to the setting we consider, suppose that f is a harmonic Maass form of weight k € %Z
on I'g(N) with manageable growth at the cusps, and that ¢ is a holomorphic modular form of
weight [ on I'g(IV). Moreover, suppose that [f, g], satisfies the hypothesis in the definition of holo-
morphic projection. By additivity, the holomorphic modular form obtained by Proposition
has the following convenient decomposition

%Wﬁhfﬂqyl_kv g]u) + Trhol([f_7 g]l/)

For our applications, the weighted class number sums will arise from the first summand [f*, ¢],
of (4.7), when ¢(7) is a univariate theta function, and f(7) = H(7). This term [, g, clearly
involves weighted sums of class numbers via Theorem (4.1]

The other two summands in (4.7) must be bounded for our applications. The next lemma
offers a closed formula for the Fourier expansion of the middle term.

(47) ﬂ-hol([f7g]l/) = [f+vg]y+

Lemma 4.8 (Lemma V.1.4 of [50]). Assuming the hypotheses above, if g(T) has Fourier series
g(1) =>0" yag(n)q?, then we have
(47T)1—k
k—1

Whol([ B ] =K ka la v an—Hj ! qra
where

()= g T Z e 20 T)

Finally, the last term in (4.7)) can be bounded thanks to the following theorem of Mertens that
offers a closed formula in terms of the Fourier coefficients of f and g.
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Theorem 4.9 (Th. V.15 of [50]). If ¢;(n) and a,(n) are bounded polynomially, then we have
7Thol([f_a g]l/ - Z b(T)Q;rw where

r=1

W) = D=8 3 aglm)er ()Y (’””‘1) (l +’/—1)mu—u

X (m* P a0 g u(rm) — n

k—i—u—l)

b

where the sum runs over positive integers m and n.

Remark. We shall apply Proposition [£.2] the main objective of the previous subsection, to the
formulas in the theorem above. This application yields convenient formulas for the Fourier
expansions of important modular forms (for example, see (4.2])) constructed in the next section.

5. BOUNDS FOR WEIGHTED SUMS OF CLASS NUMBERS

Here we assemble the required asymptotics for the weighted sums of class numbers that lead
to the proofs of Theorems and [1.3] The proofs of these asymptotics rely on standard bounds
for class numbers and coefficients of cusp forms, and the results of Section |4 on the holomorphic
projection of those nonholomorphic modular forms arising from the Rankin-Cohen bracket of
Zagier's H (1) function with certain univariate theta functions.

5.1. Some Standard Bounds. Here we recall some simple class numbers bounds, and the
celebrated theorem of Deligne which bounds the coefficients of integer weight cusp forms.

Lemma 5.1. The following are true.
(1) If =D < 0 is a discriminant, then we have H*(D) < +/D(log D + 2) /7.
(2) For fized positive integers r and m, as the primes p — +00, we have

4" — 2
Z H*( 14 7 S )8m :Om,r(pr(m/2+1))7
SEQPT
where Qpr == {s € [-2/P",2y/P"] : p|sand s=p"+1 (mod 4)}.

Proof. Claim (1) is Lemma 2.2 of [32]. To prove (2), we note that at most 2p"/2~! nonzero
integers s such that s?> < 4p” and p|s. Therefore, we have the following trivial bound

4p" — 2 4y — 2
Z H* ( D ] S ) ™ S 2pr/2—1(2pr/2)m . maX{H* ( D y S )}
SEQPT
Claim (2) follows immediately now from (1). O

The following celebrated theorem of Deligne, which bounds the coefficients of integer weight
cusp forms, shall also play a key role in our subsequent work.

Theorem 5.2 (Remark 9.3.15 of [I8]). If f = > a(n)q? is a cusp form of integer weight k on

n>1
a congruence subgroup, then for all € > 0 we have a(n) = O.(n*~1/2+e),

5.2. Weighted sums of class numbers required for Theorem [1.1 We now derive the
asymptotic formulas which are crucial for the proof of Theorem [L.1]
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5.2.1. Even moments. We begin by recalling the famous classical result of Eichler.
Theorem 5.3 (Eichler [20, 21]). If N is odd, then
1
Y. H(N =)= —n(N) +za(N),
—VN<s<VN

where o1(N) := Y d, and \;(N) := 5 3 min(d, §).
N N

From Eichler’s identity, if ¢ = p”, where p is an odd prime, then we find that
3> H(g—s)=q+0lq)
—Va<s<\a

This conclusion is the n = 0 case of the following general family of asymptotics.

Lemma 5.4. If n is a nonnegative integer, then

4q — 2 2n)!
3 Z H*( Q4 S )32”2 ( n) _qn+1+0n(qn+1)'

! !
s=q+1 (mod 4) n(n + 1)

Proof. Since H*(D) =0 for D = 1,2 (mod 4), we have

dg — 2
Z H*< q4s)32”:22"282”]-1*(q—32).

s=q+1 (mod 4) s

Mertens recently proved Cohen’s Conjecture (see Conjecture 1.2.1 of [50] and [I7]) which con-
structs an infinite sequence of cusp forms from Hurwitz class numbers. Namely, if n is a positive
integer, then he proves (see Theorem 1 of [51]) that the coefficient of X?" in

H*(l -
2121 2iX j 1X? Z Asea(! X%] C

lodd LseZ

is a cusp form of weight 2n+2 on I'g(4), where Agp41(1) := 1 " min(d, £)***. On the other hand,
dll
Lemma 7.5 of [17] establishes that the coefficient of X" is the Fourier series

1 t n—t'l * n—ot
Z & [Z (-1 t' 2n — 2t)! ZH *)(2s) + )‘2n+1(l)] :

[ odd 0<t<n

We now prove the lemma by mathematical induction on n. Thanks to Eichler’s Theorem [5.3],
the claim holds for n = 0. Now, suppose that the lemma is true for n’ < n. It is clear that

Aoni1(q) = O(q"3/*) = o(¢"*!) as ¢ — oo. Therefore, Deligne’s Theorem 5.2| implies that

(5.1) > (1) m_—tZH* (q — %)(2s)"~ 2t+ZH* q—5%)(25)%" = 0,(¢").

t(2n — 2t)!
1<t<n
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By the induction hypothesis, replacing > H*(q — s?)(2s)?" 2! by %q”_t“ contributes

0n ("), Therefore, we have

(2n —t)!
SV =2 == Y (- Do g, (g

2 thn—t)ln+1—1)!

2n)l ¢ 2n —t)! i .
- n!((nJr)l)!q ) _Og;(_l) tl(n —(t)!(n+)1 T Hon(a™).

Cohen computed (1 — )+ . (1 —¢)="=! in two ways, and proved (see p. 284 of [17]) that

. (2n —t)! B
2. (D thin —t)(n+1—1t) 0,

0<t<n

thereby completing the proof.
O

5.2.2. Odd moments. The following lemma provides an asymptotic formula for a modified version
of the weighted sum of Hurwitz class numbers which appears in Proposition 2.11] (4).

Lemma 5.5. If m is a positive odd integer, then the following are true.
(1) As ¢ — oo with ¢ =1 (mod 4), we have

dg — 2
2 H*( T )Sm:%(qm/”l)-

s=q¢+1 (mod 8)

(2) As g — oo with ¢ =1 (mod 4), we have

4qg — 2
Z 2 e YU om(qm/2+1).
: 16

s=¢+1 (mod 16

Proof. Here we prove case (1) when ¢ = 1,5 (mod 8). The proof of (2) is completely analogous
and shall be left to the reader. To this end, let g(7) = n(87)3, where n(r) = @ [1(1—¢"
1

is the Dedekind eta-function. It is the weight 3/2 cuspidal theta function on I'y(64) for the
Dirichlet character y_4 := (%4) By Theorem and Proposition we have that m,o(H - g)
is a holomorphic modular form of weight 3 on I'g(64) and Nebentypus character x_,. Moreover,
since H has manageable growth at cusps and ¢ is a cusp form, Proposition (2) implies that
Thot(H - ¢) is a cusp form. Thanks to Proposition Lemma , and Theorem (4.9, its Fourier

expansion is

- * n 1 - n
> >, H'(n—s")s | g+ ) > xealt) - (t =17 | g
n=1 \s=1 (mod 4) n=1 \ 2—12=n

(5.2) t1>1

1 & 2
+ 52 xealn) gl
n=0
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Since we have Y. (t —1)?* < nt - d(n), where d(n) is the divisor function, it is clear that

t2—12=n
ti>1

S (t—1)? = 0o(n®?). Claim (1) with m = 1 follows from Theorem [5.2| as we have

> )H* (4‘17_82) s = _ > H (g5 (29)™

s=2 (mod 8 (mod 4)

We proceed by induction. Suppose that it is true for m’ < m,. If v = (m — 1)/2, then it is
easy to verify that

el =3 | S (V) (07 X ) |6

n=0 \ j=0 J v (mod 4)

Therefore, as above, we have that

n=0 \ j=0 (mod 4)

o

2v+1 [ 2
2721/72 Ot =1 2v+2 n 2v+2 n
Rl G DOl D DRI PR SO

n=1 t2—12=n
ti>1
where £ = £(3/2,3/2,v) is as in Lemma [4.8] is a cusp form of weight 2v + 3 on I'g(64) and
Nebentypus character y_4. The proof follows similarly as in the case m = 1 with an induction
argument for the first sum. O

5.3. Weighted sums of class numbers required for Theorem We state an asymptotic
formula for weighted sums of class numbers which are important to prove Theorem For
brevity, we sketch the proof as it follows the same arguments from the previous section.

Lemma 5.6. If n is a nonnegative integer, then as ¢ — +oo we have

4 (2n)!
H* 4 _ 2\ .2n — . n+1 " n+1 .
Zﬂ (4g — 8%)s™" = 2 il (¢")

Sketch of the proof. First, we write
Z H*(4q — s%)s*" = 2%" Z H*(4q — 45%)s™".

s even

To adapt the proof of Lemma , let g(7) = 6(47), where 8(7) = 3 ¢*° =14 2¢ +2¢* + . ..
nez
is the usual weight 1/2 Jacobi 0 function. Then g is a modular form of weight 1/2 on I'y(16).

The proof for v = 0 follows from a simple counting argument for the number of Clausen models.
Then the proof by induction follows the same steps as in the proof of Lemma [5.5 when modified
suitably for the weight 1/2 univariate theta function g(7) = 6(47). O
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6. SOME DISTRIBUTIONS
To obtain Corollaries [I.2] and [I.4] we will combine Theorem [I.1] and [I.3] with the following

lemma concerning the semlclrcular and Batman distributions. To make this precise, we first let
P denote the set of primes, and fix a positive integer r. For each prime p € P, we have a function

fp . Fpr — [—17 1]
In this notation, we have the following important lemma.

Lemma 6.1. If r is a fized positive integer, then the following are true.
(1) Suppose that the following asymptotics hold for every positive integer m :

Omr(1 if m s odd
> =
- (2n)! ; )
= P Wﬁnw + 0omy (1) if m = 2n is even.

If -1 <a<b<1, then

o LAEFy - f) elab]] _ 2 /bmdt_

p—r00 pr

(2) Suppose that the following asymptotics hold for every positive integer m :

Om,r(1) if m is odd
,\egr o) ZO(—l) (Z)% + 01 (1) if m is even.
P i=
If -1 <a<b<1, then
i A EFpr @ fy(d) € /f
p—0o0 p 47T
where
3-3|¢| 1
\/3+6|t|—9t2 if 3 < t] <1
— 343t 3-3¢ : 1
f) Viot—oe T Vreron if 1t <3
0 otherwise.

Proof. This result follows via a standard application of the method of moments in probability
theory (for example, see Theorems 30.1 and 30.2 of [12]). We prove these two cases separately.

(1) For each p € P, consider the probability space (£2,, Fp, 1t,), where Q, = Fyr, F, = P(F,r),
and p,(A) = |A|/p" for all A € F,. For the random variable X, = f,,, we have

0 if m is odd
lim E(X)" )= (2n)! . :
p—oo P DTl if m = 2n is even.
Furthermore, consider the probability space (€2, F, usr), where Q := [— 1], F is the collection
of Lebesgue-measurable subsets of Q, and gy is the measure pugr([a, b)) := 2 f V1 —1t2 dt.
For the random variable X :  — [ , 1], defined by X (t) :=t, we have

0 if m is odd

T (g )il if m = 2n is even.



DISTRIBUTION OF VALUES OF GAUSSIAN HYPERGEOMETRIC FUNCTIONS 21

Since the moment-generating function has a positive radius of convergence, the distribution of
X is determined by its moments, and thus X, converges in distribution to X. Therefore, for
—1<a<b<1, we have

lim HAEFr fol)) € GO i o (fa < X, < b)) = psn(a < X < b).

p—ro0 p p—ro0

(2) The proof of the second case follows mutatis mutandis. The only change is that
3 0 if m is odd
/_3 f(e)e"dt = 4 3 (— 1) () 22 if m is even,

(D)
i=0 )

where f(t) is as in Corollary . Since f is odd, it is clear that fi,) f(®)t™dt = 0 when m is odd.

By symmetry, when m is even, we have

3 3 3—t
Ot"dt = 2 \/—-tmdt.
/_3f<) /—1 1+t

By a simple change of variables, we see that

3 1
/ f)tmdt = 8/ t7Y2(1 — )2 (1 — 4t)™dt.
-3 0
Thankfully, we can express this integral in terms of the Appell hypergeometric series

S (01 (B2)n
Fi(a,by,by;c;z,y) = Z (@) ftn(b1)k(b2) gy

k=0 (C)k+nk'|n‘ ’
n—1
where ¢ is not a nonnegative integer, and (1), := [[ (r+k) forn > 1, and (r)g = 1. By a formula
k=0

of Bailey (see page 77, (4) of [5]), we have

1 v w
t t 1 11
11— - 1—-| dt= - F: 1, —v, —w; 2;—— .
/0 ( a) ( b) w1 1<u+ v, —w;u + B b)

,2w=m,a=1,and b= iv we obtainﬂ

By letting u = —

(6.1) /3f(t)tmdt—16 o TR S
. s — 1 2) 27 ma27 ) .

To find an exact formula, we will need the classical hypergeometric series

n=0

N —=

JU:

N |

where ¢ cannot be a nonnegative integer. It is straightforward to see that

b b
Fl(a,bl,bg;c;l,x) :2F1 ( “ Cl |]_> -2F1 ( ¢ C—Qb1 |l'> .

SThis series converges since —m is negative integer.
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Substituting this identity into (6.1)), we obtain
3 11 1
(6:2) / f(t)tmdt:16~2F1( 2 ,1) .2}7’1( : ) ,4)

Using Gauss’ identity (see (1.3) of [5], and [28§])
JF ( a IC) | 1> _ I'(e)l'(c—a—Db)

where Re(c —a — b) > 0, we find that

/_33 FOtdt = 4m - o Fy ( : e 4) :4w§(—1)’“(2)%.

The claim in the proposition follows by an elementary rescaling. 0

7. PROOFS OF THEOREMS [I.1] AND [I.3] AND COROLLARIES AND [1.4]
We now prove Theorems [I.1] and [1.3} and their corollaries.

Proof of Theorem [1.1] Proposition [2.11] gives a formula for the power moments of the values of
the hypergeometric functions oF;()), in terms of weighted sums of class numbers. Lemma

(2) reduces the statement to Lemmas and , thereby concluding the proof. 0
Proof of Corollary[1.3. After rescaling, the claim follows from Theorem [1.1] and Lemma (1).
]
Proof of Theorem[1.3. By Proposition and Lemma (2), we have that
Cl/, r\2n __ (27’L>' rn-+r rn-+r Cl/, . r\2n __ rn+r
> 0 = ey P e and 3 G- XS 0 = 0™,

AGIFPT )\EFP’I‘

for all positive integers n. Since 3F5(8), = ¢(—8)3F5(1/8), for all 3 € FX (see Theorem 4.2 of
[30]), Theorem [3.1| gives us that

S\ + 1)as'(q)* = (A + Da_,(g).
Applying the binomial theorem to the equation in Theorem concludes the proof. 0
Proof of Corollary[1.4 After rescaling, the claim follows from Theorem and Lemma (2).
O
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