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Abstract— Autonomous mobile robots play vital roles in 
business, industry, manufacturing, e-commerce, and healthcare.
Autonomous navigation and obstacle avoidance involve localizing
a robot to actively explore and map an unknown environment
autonomously without prior knowledge. Simultaneous localization 
and mapping (SLAM) present a severe challenge. This paper 
proposes a novel approach for robust navigation and robot action 
mapping based on Bayesian Actor-Critic (A2C) reinforcement 
learning. The principle of Actor-Critic combines policy-based and 
value-based learning by splitting the model into two: the policy 
model (Actor) computes the action based on the state, and the 
value model (Critic) tracks whether the agent is ahead or behind 
during the game. That feedback guides the training process, where 
both models participate in a game and optimize their output as 
time passes. We develop a Bayesian A2C model that generates 
robot actions and quantifies uncertainty on the actions toward 
robust exploration and collision-free navigation. We adopt the 
Bayesian inference and optimize the variational posterior 
distribution over the unknown model parameters using the 
evidence lower bound (ELBO) objective. The first-order Taylor
series approximates the mean and covariance of the variational 
distribution passed through non-linear functions in the A2C 
model. The propagated covariance estimates the robot's action 
uncertainty at the output of the Actor-network. Experiments 
demonstrate the superior robustness of the proposed Bayesian 
A2C model exploring heavily noisy environments compared to 
deterministic homologs. The proposed framework can be applied 
to other fields of research (underwater robots, biomedical 
devices/robots, micro-robots, drones, etc.) where robustness and 
uncertainty quantification are critical.

Keywords— Simultaneous localization and mapping (SLAM),
uncertainty, Actor-Critic (A2C), variational inference (VI), and 
evidence lower bound (ELBO).

I. INTRODUCTION

Reinforcement learning (RL) has been an area of great 
interest in machine learning for quite some time due to the 
remarkable performance where agents could potentially learn 
and outperform human-level skills in tasks related environments
[1]-[5]. RL has achieved tremendous success in several research
areas; one area of interest is active simultaneous localization and 
mapping (SLAM). Active SLAM is a set of approaches in which 
an autonomous robot localizes itself and simultaneously 
navigates and maps an unknown environment [5]-[9].

The main purpose of active SLAM is to efficiently explore 
unknown/unseen environments and gather valuable data to 
construct a map of the real-world environment. SLAM 
technology has demonstrated great potential in many 
applications, such as autonomous mobile robotics, autonomous 
vehicles with two lasers, LIDAR (light imaging detection and 
ranging) and RADAR (radio detection and ranging), augmented 
reality, surveillance with unmanned air vehicles, and
autonomous drones [10]-[13]. Many approaches were 
introduced in the literature for solving active SLAM problems, 
such as filter-base, graph-based, and optimization-based
methods [14]-[16]. However, exploring unknown environments 
remains challenging due to a lack of prior knowledge and the 
critical need for quantifying uncertainty toward robust
exploration in heavily noisy environments.

Researchers have been continuously developing new 
techniques, methods, and solutions to ultimately improve the 
performance and robustness of active SLAM. RL approaches, 
such as Q-learning, Deep Q-Networks (DQN), double DQN, 
dueling double DQN, Actor-Critic (A2C) and its variations have 
shown promising results [17]-[21]. Nevertheless, the uncertainty 
in a predicted action and its relation to robot behavior in noisy 
environments have not been investigated in the literature.
Current robot systems lack resilient mechanisms for exploration 
and uncertainty mitigation, which are critical for intelligent 
decision-making.

This paper proposes a novel Active SLAM algorithm based 
on Bayesian Actor-Critic (A2C) deep reinforcement learning
model. The proposed Bayesian A2C estimates the robot’s
actions and quantifies the uncertainty in the actions. The 
uncertainty can guide the robot to move toward the direction of 
low uncertainty and avoid collisions. We adopt Bayesian 
inference and optimize the variational posterior distribution over 
the A2C model parameters given the data. Thus, the 
optimization is achieved by minimizing the Kullback-Leibler 
(KL) divergence between the approximate and true posterior
distributions. The objective function is known as the evidence 
lower bound (ELBO). We extend the uncertainty propagation 
framework in [22] by propagating the mean and covariance of 
the variational posterior through the Bayesian A2C model
layers. The first-order Taylor linearization is used to 
approximate the mean and covariance after non-linear layers. 
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The propagated covariance at the output of the Actor network 
implies the uncertainty over the predicted action. Quantifying 
uncertainty over the robot’s actions improves the robustness of 
the autonomous navigation of the robot while exploring noisy 
environments. Our experiments show that the Bayesian A2C 
model obtains higher reward values as compared to the 
deterministic A2C model. Moreover, Bayesian A2C maintains
its performance (similar reward values) when the robot explores 
a noisy environment (corrupted with random noise) during 
validation (without being trained on the noisy environment).

This study investigates the fundamental issues of intelligent 
robotic systems’ robustness and trustworthiness by developing 
a principled theoretical and algorithmic framework that impacts 
the design of mapping and active sensing algorithms for 
autonomous robot systems. Such capabilities are crucial in 
security, surveillance, and environmental monitoring, where it 
is necessary to quickly gain situational awareness of the terrain, 
buildings, and humans in the environment.

II. BAYESIAN ACTOR-CRITIC REINFORCEMENT LEARNING

The actor-critic model is a temporal difference (TD) learning 
method that represents the policy function independent of the 
value function. The policy function returns the agent’s actions
based on a given state. At the same time, the value function 
determines the expected return for an agent starting at a given 
state and acting according to a particular policy. In the Actor-
Critic method, the policy is referred to as the actor that proposes 
a set of possible actions given a state, and the estimated value 
function is referred to as the critic, which evaluates actions taken 
by the actor based on the given policy. We consider convolution 
neural networks (CNNs) in both the actor and critic models and 
introduce a prior distribution over the networks’ weights 

~ ( ). The variational posterior distribution of the weights 
given the data is ( | ), where = { , }, and , are
the state and action at time . The variational posterior 

( | ) is approximated using the variational inference by
optimizing the ELBO objective ( ; ) in (1).

( ; ) = ( ){log (  | )} ( ) || ( ) ,    (1)

where represents the variational parameters, i.e., the mean 
and covariance of the variational posterior, ( ) and =

1, … , , is the number of training steps per epoch.

The ELBO objective (or loss) function ( ; ) consists of
two parts: the negative expected log-likelihood of the training 
data (environment maps) given the network parameters and a 
regularization term. The latter is defined by the KL divergence 
between the proposed variational distribution ( ) and the
prior distribution ( ). The ELBO loss function is minimized 
as part of the total loss function using the gradient descent 
update rule during training of the Bayesian A2C networks. The 
total objective function of the Bayesian A2C model is given as,

J( , ) =   ( ; ) ( , ),  (2)

( , ) = ( , ) + ( ) ( ),  (3)

where ( , ) is the TD loss, is the reward, ( ) is the
average value of the state, and  is the parameters of the Critic 
network. Figure 1 shows a schematic description of the Bayesian 
A2C model, including the Actor and Critic networks.

We adopt the first-order Taylor approximation to propagate the 
mean and covariance matrix after non-linear activation 
functions in the model. Let = ( ), where and are the 
feature maps before and after activation function, , for a layer 
in the network (Fig. 2). The mean and covariance of propagate
through to using the first-order approximation as follows,

( ),    

  ( ( ) ( ) ).  (4)

The derivation of the mean and covariance applies to any 
non-linear function in the model. By propagating the mean and 
covariance of the variation distribution, we obtain the predictive 
distribution over any new action  , given a state  and the 
training data , i.e., ( | , ) , by marginalizing out the
model parameters . The mean of ( | , ) represents the
robot’s action (step or move), while the covariance matrix 
reflects the uncertainty associated with the predicted action.

Fig 1. A schematic description of the proposed Bayesian A2C model with the two convolution neural networks: Actor network and Critic network. The parameters 
of the two networks are random variables following variational posterior distribution. We propagate the mean and covariance of the variational distribution 
through the non-linear layers of the two networks. The output of the Actor network is the predictive distribution over the action, ( | , ). The mean and 
covariance of ( | , ) refer to the predicted robot’s action and the uncertainty associated with that action.
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Fig 2. A schematic example of the mean-covariance propagation. The first-order 
Taylor approximation facilitates the propagation of the mean and covariance 
matrix of the variational posterior through the non-linear activation functions in 
the proposed Bayesian A2C networks. 

The process of using Bayesian A2C model to conduct Active 
SLAM training for mobile robots is shown in Algorithm 1.

Algorithm 1. The proposed Bayesian Actor-Critic 
Reinforcement Learning.

Require: Total number of training epochs, Max-epoch,
maximum number of training steps per epoch , and learning 
rate .

1. Initialize the parameters of the Actor and Critic networks.
2. Set = 0, and epoch = 0.
3. While epoch < Max-epoch
4. Initialize the input environment to get the initial state .
5. While <
6. According to the observed state , the current Actor

neural network selects the actions to be executed.
7. Apply the selected action to the current environment

for immediate rewards ( , ) and new
environment status .

8. Calculate the value ( ) and the TD loss ( , ).
9. Calculate the loss J( , ) = ( ; ) ( , ).
10. Using ADAM optimizer to optimize model

parameters.
11. Update network parameters with learning rate ,

+ J( , ) and + J( , )

12. end While
13.end While

III. EXPERIMENTS AND RESULTS

We conduct experiments using the Gazebo simulator as an
open-source Open-AI gym extension. The Linux operating 
system and Robot Operating System (ROS) are also used to 
construct the software framework, libraries, messages and tools 
for the robot and its environment. We compare the proposed 
Bayesian A2C model with the deterministic (DET) A2C model. 
The proposed Bayesian A2C and the DET A2C models are
trained, tested, and examined in a simulated Gazebo 
environment. We evaluate the robustness of the proposed 
Bayesian A2C model against noisy environments by adding 
random (Gaussian) noise to images/frames during testing. In 
real-world applications, many external factors, such as outside 
signals, may distort the images, thus causing noisy corrupted 
images. The noise analysis is performed for both the proposed 

Bayesian and DET models for fair comparison. The Actor and 
Critic CNNs are trained with the same learning rate and batch 
size (16). The size of the input image/frame is 32 × 32. We use 
the SoftMax function at the output of the Actor network to 
classify (three) actions as moving straight, right, or left. The 
CNNs architecture is 10 layers with 32 kernels (5 × 5) in the 
first 3 layers, 64 kernels (3 × 3) in the following 3 layers and 
128 kernels (1 × 1) in the subsequent 3 layers. The last layer is 
fully-connected. The performance is evaluated using the moving 
average and the cumulative rewards.

Figs. 3(a) and 3(b) demonstrate the moving average reward
and the cumulative reward for the proposed Bayesian (Bayes) 
A2C model (green curves) and deterministic (DET) A2C model 
(red curves). The experiment includes two cases: a clean (No 
Noise) environment (dashed curves) and a noisy (or corrupted)
environment (solid curves). We notice that the moving average 
as well as the cumulative rewards of the DET model are 
drastically higher in the clean environment as compared to the 
noisy environment. The rewards highly decrease when the 
environment becomes noisy (solid curve).

On the other hand, the Bayesian A2C model maintains its
performance under noisy environments. The moving average 
and cumulative reward presented by the green curves (both 
dashed and solid ones) have almost the same values in clean and 
noisy cases. Thus, the proposed Bayesian A2C model manifests
superior robustness against noisy environments, as evidenced by 
the rewards values.

We link the robustness of the proposed Bayesian A2C model 
against noisy environments with the model’s ability to propagate 
uncertainty through the Actor and Critic networks’ layers and 
non-linearities. The uncertainty is given by the covariance 
matrix of the variational posterior distribution of the Actor and 
Critic networks parameters. We consider that during navigation 
and exploration of the environment (during training), the 
availability of additional information in the form of the second 
moment (covariance matrix) helps the learning process and 
results in the proposed model that is more robust to noise.

IV. CONCLUSION

In this paper, we proposed a robust and uncertainty-aware
active simultaneous localization and mapping (SLAM) 
approach based on Bayesian Actor-Critic (A2C) reinforcement
learning. We adopt Bayesian inference and propagate the mean 
and covariance matrix of the variational posterior distribution 
over the model parameters through the layers of the Actor and 
Critic networks. Using the first-order Taylor approximation, we 
estimate the mean and covariance after non-linear activation 
functions in the networks. Propagating the mean and covariance 
of the variational distribution allows computing the mean and 
covariance of the predictive distribution over the robot’s action. 
The mean of the predictive distribution represents the predicted 
robot’s action, while the covariance matrix provides information 
about the uncertainty in that action (or move). Our proposed 
models have significantly enhanced the robust navigation in 
noisy environments. The experimental results using the Open-
AI gym Gazebo simulator have established superior robustness
of the proposed model against Gaussian noise in the simulated 
environment as compared to the deterministic A2C model.
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In future work, we plan to investigate the robustness of the 
proposed Bayesian A2C model against attacked environments 
by introducing different types and levels of adversarial attacks 
during testing.
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Fig 3. The performance evaluation of the proposed Bayesian (Bayes) A2C model as compared to the deterministic (DET) A2C model measured by (a) Moving 
average reward (left graph) and (b) cumulative reward (right graph). The rewards of the Bayesian A2C are presented in green color, while the rewards of the DET 
A2C model are presented in red color. The evaluation includes two cases: a clean (No noise) environment (dashed curves) and a noisy environment (solid curves).

(a) Moving Average Reward (b) Cumulative Reward 
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