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Abstract— Autonomous mobile robots play vital roles in
business, industry, manufacturing, e-commerce, and healthcare.
Autonomous navigation and obstacle avoidance involve localizing
a robot to actively explore and map an unknown environment
autonomously without prior knowledge. Simultaneous localization
and mapping (SLAM) present a severe challenge. This paper
proposes a novel approach for robust navigation and robot action
mapping based on Bayesian Actor-Critic (A2C) reinforcement
learning. The principle of Actor-Critic combines policy-based and
value-based learning by splitting the model into two: the policy
model (Actor) computes the action based on the state, and the
value model (Critic) tracks whether the agent is ahead or behind
during the game. That feedback guides the training process, where
both models participate in a game and optimize their output as
time passes. We develop a Bayesian A2C model that generates
robot actions and quantifies uncertainty on the actions toward
robust exploration and collision-free navigation. We adopt the
Bayesian inference and optimize the variational posterior
distribution over the unknown model parameters using the
evidence lower bound (ELBO) objective. The first-order Taylor
series approximates the mean and covariance of the variational
distribution passed through non-linear functions in the A2C
model. The propagated covariance estimates the robot's action
uncertainty at the output of the Actor-network. Experiments
demonstrate the superior robustness of the proposed Bayesian
A2C model exploring heavily noisy environments compared to
deterministic homologs. The proposed framework can be applied
to other fields of research (underwater robots, biomedical
devices/robots, micro-robots, drones, etc.) where robustness and
uncertainty quantification are critical.

Keywords— Simultaneous localization and mapping (SLAM),
uncertainty, Actor-Critic (A2C), variational inference (VI), and
evidence lower bound (ELBO).

I. INTRODUCTION

Reinforcement learning (RL) has been an area of great
interest in machine learning for quite some time due to the
remarkable performance where agents could potentially learn
and outperform human-level skills in tasks related environments
[1]-[5]. RL has achieved tremendous success in several research
areas; one area of interest is active simultaneous localization and
mapping (SLAM). Active SLAM is a set of approaches in which
an autonomous robot localizes itself and simultaneously
navigates and maps an unknown environment [5]-[9].

The main purpose of active SLAM is to efficiently explore
unknown/unseen environments and gather valuable data to
construct a map of the real-world environment. SLAM
technology has demonstrated great potential in many
applications, such as autonomous mobile robotics, autonomous
vehicles with two lasers, LIDAR (light imaging detection and
ranging) and RADAR (radio detection and ranging), augmented
reality, surveillance with unmanned air vehicles, and
autonomous drones [10]-[13]. Many approaches were
introduced in the literature for solving active SLAM problems,
such as filter-base, graph-based, and optimization-based
methods [14]-[16]. However, exploring unknown environments
remains challenging due to a lack of prior knowledge and the
critical need for quantifying uncertainty toward robust
exploration in heavily noisy environments.

Researchers have been continuously developing new
techniques, methods, and solutions to ultimately improve the
performance and robustness of active SLAM. RL approaches,
such as Q-learning, Deep Q-Networks (DQN), double DQN,
dueling double DQN, Actor-Critic (A2C) and its variations have
shown promising results [17]-[21]. Nevertheless, the uncertainty
in a predicted action and its relation to robot behavior in noisy
environments have not been investigated in the literature.
Current robot systems lack resilient mechanisms for exploration
and uncertainty mitigation, which are critical for intelligent
decision-making.

This paper proposes a novel Active SLAM algorithm based
on Bayesian Actor-Critic (A2C) deep reinforcement learning
model. The proposed Bayesian A2C estimates the robot’s
actions and quantifies the uncertainty in the actions. The
uncertainty can guide the robot to move toward the direction of
low uncertainty and avoid collisions. We adopt Bayesian
inference and optimize the variational posterior distribution over
the A2C model parameters given the data. Thus, the
optimization is achieved by minimizing the Kullback-Leibler
(KL) divergence between the approximate and true posterior
distributions. The objective function is known as the evidence
lower bound (ELBO). We extend the uncertainty propagation
framework in [22] by propagating the mean and covariance of
the variational posterior through the Bayesian A2C model
layers. The first-order Taylor linearization is used to
approximate the mean and covariance after non-linear layers.
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The propagated covariance at the output of the Actor network
implies the uncertainty over the predicted action. Quantifying
uncertainty over the robot’s actions improves the robustness of
the autonomous navigation of the robot while exploring noisy
environments. Our experiments show that the Bayesian A2C
model obtains higher reward values as compared to the
deterministic A2C model. Moreover, Bayesian A2C maintains
its performance (similar reward values) when the robot explores
a noisy environment (corrupted with random noise) during
validation (without being trained on the noisy environment).

This study investigates the fundamental issues of intelligent
robotic systems’ robustness and trustworthiness by developing
a principled theoretical and algorithmic framework that impacts
the design of mapping and active sensing algorithms for
autonomous robot systems. Such capabilities are crucial in
security, surveillance, and environmental monitoring, where it
is necessary to quickly gain situational awareness of the terrain,
buildings, and humans in the environment.

II. BAYESIAN ACTOR-CRITIC REINFORCEMENT LEARNING

The actor-critic model is a temporal difference (TD) learning
method that represents the policy function independent of the
value function. The policy function returns the agent’s actions
based on a given state. At the same time, the value function
determines the expected return for an agent starting at a given
state and acting according to a particular policy. In the Actor-
Critic method, the policy is referred to as the actor that proposes
a set of possible actions given a state, and the estimated value
function is referred to as the critic, which evaluates actions taken
by the actor based on the given policy. We consider convolution
neural networks (CNN5s) in both the actor and critic models and
introduce a prior distribution over the networks’ weights
Q~p(Q). The variational posterior distribution of the weights
given the data is p(Q|D,), where D, = {s;, a,}, and s;, a,are
the state and action at time t. The variational posterior
p(Q|D,) is approximated using the variational inference by
optimizing the ELBO objective L(¢; D,) in (1).
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where ¢ represents the variational parameters, i.e., the mean
and covariance of the variational posterior, q,(Q) and t =
1, ..., T, is the number of training steps per epoch.

The ELBO objective (or loss) function £L(¢h; D,) consists of
two parts: the negative expected log-likelihood of the training
data (environment maps) given the network parameters and a
regularization term. The latter is defined by the KL divergence
between the proposed variational distribution g4 () and the
prior distribution p(Q). The ELBO loss function is minimized
as part of the total loss function using the gradient descent
update rule during training of the Bayesian A2C networks. The
total objective function of the Bayesian A2C model is given as,

1$,0) = ) L&D Alsea0) @
t=0
A(sp, a) = R(sp, a) + Vg (Se41) — Vo (sp), 3

where A(s;, a;) is the TD loss, R is the reward, Vy (s;,,) is the
average value of the state, and 0 is the parameters of the Critic
network. Figure 1 shows a schematic description of the Bayesian
A2C model, including the Actor and Critic networks.

We adopt the first-order Taylor approximation to propagate the
mean and covariance matrix after non-linear activation
functions in the model. Let z = f(x), where X and z are the
feature maps before and after activation function, f, for a layer
in the network (Fig. 2). The mean and covariance of X propagate
through f to z using the first-order approximation as follows,

H, = (1),
2, = Iy O (VA(uIVf(u)"). “4)

The derivation of the mean and covariance applies to any
non-linear function in the model. By propagating the mean and
covariance of the variation distribution, we obtain the predictive
distribution over any new action @, given a state § and the
training data D, i.e., p(a;|s;, D), by marginalizing out the
model parameters Q. The mean of p(a;|s;, D) represents the
robot’s action (step or move), while the covariance matrix
reflects the uncertainty associated with the predicted action.
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Fig 1. A schematic description of the proposed Bayesian A2C model with the two convolution neural networks: Actor network and Critic network. The parameters
of the two networks are random variables following variational posterior distribution. We propagate the mean and covariance of the variational distribution
through the non-linear layers of the two networks. The output of the Actor network is the predictive distribution over the action, p(a;|s,, D). The mean and
covariance of p(a.|s;, D) refer to the predicted robot’s action and the uncertainty associated with that action.

64

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on September 08,2023 at 15:42:08 UTC from IEEE Xplore. Restrictions apply.



A

A
X f Z

Feature Map after
Non-linear
. Activation Function

Feature Map
before Non-linear
Activation Function

R

i

Fig 2. A schematic example of the mean-covariance propagation. The first-order
Taylor approximation facilitates the propagation of the mean and covariance
matrix of the variational posterior through the non-linear activation functions in
the proposed Bayesian A2C networks.

The process of using Bayesian A2C model to conduct Active
SLAM training for mobile robots is shown in Algorithm 1.

Algorithm 1. The proposed Bayesian Actor-Critic
Reinforcement Learning.

Require: Total number of training epochs, Max-epoch,
maximum number of training steps per epoch T, and learning
rate 7.

1. Initialize the parameters of the Actor and Critic networks.

2.Sett = 0, and epoch = 0.

3. While epoch < Max-epoch

4. Initialize the input environment to get the initial state s,,.

5. Whilet <T

6. According to the observed state s, the current Actor
neural network selects the actions a;to be executed.

7. Apply the selected action to the current environment
for immediate rewards R(s;, a;) and new
environment status S; ;.

8. Calculate the value Vy(s;) and the TD loss A(s;, a;).

9. Calculate the loss J(¢p, 8) = YT_, L(¢p; D) A(s,, ap).

10. Using ADAM optimizer to optimize model

parameters.

Update network parameters with learning rate 1,

$ < ¢ +nVy)(,0) and 6 < 6 + V) (b, 0)
12. end While
13.end While

11.

III. EXPERIMENTS AND RESULTS

We conduct experiments using the Gazebo simulator as an
open-source Open-Al gym extension. The Linux operating
system and Robot Operating System (ROS) are also used to
construct the software framework, libraries, messages and tools
for the robot and its environment. We compare the proposed
Bayesian A2C model with the deterministic (DET) A2C model.
The proposed Bayesian A2C and the DET A2C models are
trained, tested, and examined in a simulated Gazebo
environment. We evaluate the robustness of the proposed
Bayesian A2C model against noisy environments by adding
random (Gaussian) noise to images/frames during testing. In
real-world applications, many external factors, such as outside
signals, may distort the images, thus causing noisy corrupted
images. The noise analysis is performed for both the proposed
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Bayesian and DET models for fair comparison. The Actor and
Critic CNNs are trained with the same learning rate and batch
size (16). The size of the input image/frame is 32 X 32. We use
the SoftMax function at the output of the Actor network to
classify (three) actions as moving straight, right, or left. The
CNNs architecture is 10 layers with 32 kernels (5 X 5) in the
first 3 layers, 64 kernels (3 X 3) in the following 3 layers and
128 kernels (1 X 1) in the subsequent 3 layers. The last layer is
fully-connected. The performance is evaluated using the moving
average and the cumulative rewards.

Figs. 3(a) and 3(b) demonstrate the moving average reward
and the cumulative reward for the proposed Bayesian (Bayes)
A2C model (green curves) and deterministic (DET) A2C model
(red curves). The experiment includes two cases: a clean (No
Noise) environment (dashed curves) and a noisy (or corrupted)
environment (solid curves). We notice that the moving average
as well as the cumulative rewards of the DET model are
drastically higher in the clean environment as compared to the
noisy environment. The rewards highly decrease when the
environment becomes noisy (solid curve).

On the other hand, the Bayesian A2C model maintains its
performance under noisy environments. The moving average
and cumulative reward presented by the green curves (both
dashed and solid ones) have almost the same values in clean and
noisy cases. Thus, the proposed Bayesian A2C model manifests
superior robustness against noisy environments, as evidenced by
the rewards values.

We link the robustness of the proposed Bayesian A2C model
against noisy environments with the model’s ability to propagate
uncertainty through the Actor and Critic networks’ layers and
non-linearities. The uncertainty is given by the covariance
matrix of the variational posterior distribution of the Actor and
Critic networks parameters. We consider that during navigation
and exploration of the environment (during training), the
availability of additional information in the form of the second
moment (covariance matrix) helps the learning process and
results in the proposed model that is more robust to noise.

IV. CONCLUSION

In this paper, we proposed a robust and uncertainty-aware
active simultaneous localization and mapping (SLAM)
approach based on Bayesian Actor-Critic (A2C) reinforcement
learning. We adopt Bayesian inference and propagate the mean
and covariance matrix of the variational posterior distribution
over the model parameters through the layers of the Actor and
Critic networks. Using the first-order Taylor approximation, we
estimate the mean and covariance after non-linear activation
functions in the networks. Propagating the mean and covariance
of the variational distribution allows computing the mean and
covariance of the predictive distribution over the robot’s action.
The mean of the predictive distribution represents the predicted
robot’s action, while the covariance matrix provides information
about the uncertainty in that action (or move). Our proposed
models have significantly enhanced the robust navigation in
noisy environments. The experimental results using the Open-
Al gym Gazebo simulator have established superior robustness
of the proposed model against Gaussian noise in the simulated
environment as compared to the deterministic A2C model.
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Fig 3. The performance evaluation of the proposed Bayesian (Bayes) A2C model as compared to the deterministic (DET) A2C model measured by (a) Moving
average reward (left graph) and (b) cumulative reward (right graph). The rewards of the Bayesian A2C are presented in green color, while the rewards of the DET
A2C model are presented in red color. The evaluation includes two cases: a clean (No noise) environment (dashed curves) and a noisy environment (solid curves).

In future work, we plan to investigate the robustness of the
proposed Bayesian A2C model against attacked environments
by introducing different types and levels of adversarial attacks
during testing.
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