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A B S T R A C T   

The ability to communicate about exact number is critical to many modern human practices spanning science, 
industry, and politics. Although some early numeral systems used 1-to-1 correspondence (e.g., ‘IIII’ to represent 
4), most systems provide compact representations via more arbitrary conventions (e.g., ‘7’ and ‘VII’). When 
people are unable to rely on conventional numerals, however, what strategies do they initially use to commu
nicate number? Across three experiments, participants used pictures to communicate about visual arrays of 
objects containing 1–16 items, either by producing freehand drawings or combining sets of visual tokens. We 
analyzed how the pictures they produced varied as a function of communicative need (Experiment 1), spatial 
regularities in the arrays (Experiment 2), and visual properties of tokens (Experiment 3). In Experiment 1, we 
found that participants often expressed number in the form of 1-to-1 representations, but sometimes also 
exploited the configuration of sets. In Experiment 2, this strategy of using configural cues was exaggerated when 
sets were especially large, and when the cues were predictably correlated with number. Finally, in Experiment 3, 
participants readily adopted salient numerical features of objects (e.g., four-leaf clover) and generally combined 
them in a cumulative-additive manner. Taken together, these findings corroborate historical evidence that 
humans exploit correlates of number in the external environment – such as shape, configural cues, or 1-to-1 
correspondence – as the basis for innovating more abstract number representations.   

Representations of large exact number - like the numerals 15 and 
2028 - have fueled some of the most important achievements of human 
societies. By allowing humans to represent large quantities exactly, 
numerals have provided a critical foundation to the development of 
mathematics and science, the coordination of economic activity in large 
groups, and the development of human infrastructure and technology. 
However, humans have not always had the capacity to precisely encode 
numbers, and many humans currently remain either partially or fully 
innumerate (Frank, Everett, Fedorenko, & Gibson, 2008; Gordon, 2004; 
Pica, Lemer, Izard, & Dehaene, 2004). Further, the anthropological re
cord indicates that written numeral systems evolved slowly over a 
period of thousands of years, concurrent with changes in complex social 
institutions and concrete material environments (Beller et al., 2018; 
Chrisomalis, 2010; Høyrup, 1994; Malafouris, 2010; Robson, 2008; 
Schmandt-Besserat, 1978, 2010). Finally, experimental research in 
psychology indicates that, prior to acquiring verbal and written nu
merals, children are unable to represent exact quantities larger than 3–4, 
and that in absence of such symbols, perception of number is severely 
limited (Carey, 2004; Carey & Barner, 2019; Feigenson, Dehaene, & 

Spelke, 2004). These observations raise the question of how our ances
tors converged upon numerals as a solution to representing exact 
number, and why such innovation was so elusive in the history of our 
species. What psychological mechanisms might explain the process by 
which humans create and share novel representations of large exact 
number? 

In the absence of a numeral system, humans, like many other species, 
represent large quantities approximately, relying on the approximate 
magnitude system (or AMS). While the AMS is able to represent quan
tities up to 3 or 4 with precision, representations become noisier as 
quantities increase, and sets are discriminated on the basis of their ratio, 
compatible with Weber’s law (Dehaene, 1997; Whalen, Gallistel, & 
Gelman, 1999). Evidence of the AMS is found across human cultures, 
independent of their adoption of exact numerical symbols. First, when 
numerate adults are asked to discriminate two sets of rapidly presented 
dots, they readily identify the larger set when the ratio between the sets 
is large (e.g., 40 vs. 80 dots, or 2:1), but struggle as the ratio becomes 
smaller (e.g., 70 vs. 80 dots, or 7:8). Second, innumerate adults, such as 
the Mundurukú, an Amazonian indigenous group, easily discriminate 
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dot arrays that stand in a 2:1 ratio (e.g., 20 dots vs. 10 dots), but show 
declining performance for tighter ratios, like 3:2 (Pica et al., 2004). 
Similar results have been found in studies of innumerate Pirahã adults. 
For example, when shown a set of 8 objects and asked to match that set 
with another set of objects, Pirahã participants often provide approxi
mate matches, and are precise for only the smallest sets up to around 3–4 
(Gordon, 2004; Everett & Madora, 2012; cf. Frank et al., 2008). Similar 
results are found in US children who have not yet learned to count 
(Schneider, Brockbank, Feiman, & Barner, 2022). Finally, evidence for 
the AMS is also found in preverbal human infants and in non-human 
animals, including birds, rodents, and fish (Brannon & Merritt, 2011; 
Dehaene, 1997). 

Numeral systems transcend the limits of the AMS by providing 
symbols and operations that differentiate large quantities exactly. Ver
bal numerals, body count systems (Bender & Beller, 2011; Comrie, 2011; 
Epps, 2006; Hammarström, 2010; Saxe, 1981), written numerals 
(Changizi & Shimojo, 2005; Chrisomalis, 2020; Ifrah, 2000), and 
physical calculators like the abacus (Frank and Barner, 2012; Hatano & 
Osawa, 1983; Stigler, 1984), use similar strategies to extend the human 
ability to quantify large sets (for reviews, see Barner, 2017; O’Shaugh
nessy, Gibson, & Piantadosi, 2021). Often, these systems use 1-to-1 
correspondence to represent the smallest numbers - using 4 fingers, 
abacus beads, or vertical lines to represent sets of 4 things (see Fig. 1A). 
For example, clay envelopes created as early as 11,000 years ago in 
Mesopotamia often used 1-to-1 correspondence to indicate the number 
of tokens they contained (Schmandt-Besserat, 2010). Also, a 1-to-1 
strategy is found in more recent written number systems such as the 
familiar Roman numerals (e.g., I, II, III), but also in ancient Greek, 
Hittite, Cretan, Aramaic, Mayan, and other systems (Ifrah, 2000). When 
such systems are extended to represent larger numbers, they generally 
do so in one of two ways. Some systems use configural strategies such as 
horizontal spacing (e.g. ‘IIII II’ to represent ‘6’) or stroke directionality 
(e.g. ‘IIII I’; Chrisomalis, 2020). Also, they generally exhibit similar 
rules, only allowing new chunks to be created when all previous chunks 
attain a maximum value (e.g., allowing III III II, but not IIII II II). Other 
systems however, use arbitrary conventions to express larger numbers. 
For example, the Roman numeral system represents 5 as V and 10 as X. 
Likewise, the Soroban abacus (Fig. 1B) uses horizontal space to repre
sent place value, such that some beads have a value of 1, others a value 
of 10, and others 100, and uses vertical space to assign some beads (i.e., 
“heavenly beads”) values of 5, 50, 500, etc. (e.g., Frank and Barner, 
2012; Hatano & Osawa, 1983; Stigler, 1984). Finally, count systems 
based on the human body typically use arbitrary positions to represent 
numbers beyond 20 (Bender & Beller, 2011; Saxe, 1981). 

Such examples raise the question of how arbitrary conventions arise 
that transcend 1-to-1 correspondence. According to one cultural- 
historical account, arbitrary conventions emerge from forms that are 
initially grounded in contextually available ad hoc comparisons to 
numerically correlated features of the environment (Cooperrider & 
Gentner, 2019). For example, measurement terms like “foot” are often 

created via comparisons to immediately available physical objects (e.g., 
one’s own foot). These concrete measuring conventions are then shared 
with other people via acts of communication, which leads to standard
ization (e.g., defining a “foot” as the same length regardless of who uses 
it), and systematization, where they become defined by other units 
within a broader network of concepts rather than by their initial, non- 
arbitrary, ad hoc comparison (e.g., a foot is defined as 12 in., 1/3 of a 
yard, etc., but not the foot of whoever is making the measurement). 
Number words often follow a similar trajectory, beginning via ad hoc 
comparison to concrete objects, but culminating in more arbitrary 
conventions over time as they become integrated to a new system of use. 
For example, in the Hup language (spoken in Colombia and Brazil) the 
word for 1 originated from the demonstrative term “that”, 2 from “eye- 
quantity”, and 3 from “rubber tree seed quantity” (since seed pods 
contain 3 seeds; Epps, 2006). Similarly, 10 is expressed as “both hands” 
and 20 as “both feet” - a widely attested practice in the cultural history of 
number (see also Bender & Beller, 2012; O’Shaughnessy et al., 2021; 
Saxe & Esmonde, 2012; Williams, 1940). However, as in the case of 
measure words, these expressions that began as ad hoc comparisons 
have subsequently changed, becoming phonologically distinct from the 
words that served as their historical basis, and used strictly for the ab
stract function of referring to number (and not to eyes, seeds, etc.). Such 
facts suggest that ad hoc reference is a critical first step in the process of 
creating number conventions, followed by the derivation of abstract 
meanings from their position within the system of symbols (Damerow, 
1996). 

While the emergence of numerical conventions in cultural history is a 
topic of significant debate among anthropologists and historians (see 
Chrisomalis, 2004, for review), it is less frequently studied by cognitive 
psychologists, and we know of no systematic experimental study of how 
humans create novel numerals. Psychologists frequently discuss the 
evolutionary origins of numerical perception (Gallistel, Gelman, & 
Cordes, 2006), but few discuss the role of cognitive factors in the cul
tural evolution of numeral systems, with some notable exceptions (for 
some discussion of this topic, see Barner, 2017; Hurford, 1987; O’Sh
aughnessy et al., 2021; Xu, Liu, & Regier, 2020). For example, in one 
recent study, Xu et al. (2020) analyzed the verbal numeral systems of 30 
currently spoken languages, and argued that the evolution of cross- 
linguistic variation is shaped by a need for precise yet cognitively effi
cient communication. Similarly, O’Shaughnessy et al. investigated the 
cultural origins of symbolic number by characterizing the variability in 
attested numeral systems, and reviewing known differences in how 
different cultures and linguistic forms express large and small numbers. 
However, while experimental methods have sometimes been used to 
characterize variability in existing numeral systems (e.g., Bender & 
Beller, 2012; Frank et al., 2008; Gibson et al., 2019; Gordon, 2004; Pica 
et al., 2004; Saxe & Esmonde, 2012), no previous work has investigated 
the creation of novel numerals experimentally. 

Although there is little experimental work related to the evolution of 
numerical symbols, a larger literature has used experimental methods to 
investigate the origin of symbols representing non-numerical concepts 
(Christiansen & Kirby, 2003; Kirby, Cornish, & Smith, 2008). Multiple 
studies have found that abstract conventional symbols emerge gradually 
in interactive communicative games. In Pictionary-style games, while 
participants initially create drawings that are transparently related to 
the things they represent, later drawings tend to become more abstract 
and conventionalized (Fay, Garrod, Roberts, & Swoboda, 2010; Garrod, 
Fay, Lee, Oberlander, & MacLeod, 2007; Hawkins, Sano, Goodman, & 
Fan, 2023). An initial reliance on non-arbitrary symbols can also be 
found in novel communicative modalities, with which participants have 
no previous experience. For example, participants have been found to 
use more complex auditory signals to refer to more complex objects 
(Hofer & Levy, 2019; Verhoef, Kirby, & De Boer, 2016). 

Here we adapt these experimental methods to investigate how par
ticipants use a graphical communication medium (i.e., involving mark- 
making and/or pictures) to convey number. In particular, we asked how 

Fig. 1. A. Three 1-to-1 modes of representing the quantity 4: fingers, abacus 
beads, and written strokes. B. A soroban showing different digits in base-10. 
Much like the western Arabic numerals, each column denotes a place-value, 
such that the column showing 3 represents a magnitude of 30 while the col
umn showing 4 represents a magnitude 4. The white dot indicates the ones- 
place, to the right of which columns represent decimal values. 
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participants express number when prevented from using pre-existing 
conventions (e.g., Arabic numerals), and how their ability to commu
nicate is impacted by the availability of physical shapes and configu
rations that could be used as proxies for number, akin to the use of 
hands, feet, or words for objects like eyes and seeds. In Experiment 1, 
participants were paired up to play a drawing-based communication 
game in which one participant (the sketcher) sought to communicate 
about an array of objects to another participant who could not see the 
array (the viewer). In “number games,” only the number of objects was 
relevant; in “shape games,” only the identity of the objects was relevant. 
We found that drawings produced in the number games were markedly 
different from those in the shape games: they were generally composed 
of marks that stood in 1-to-1 correspondence with the objects but no 
longer resembled them - a form of abstraction that is typical in attested 
numeral systems. Moreover, some sketches seemed to mirror the spatial 
configuration of target sets, while others arranged the objects into 
orderly configurations. Following up on this observation, Experiment 2 
further explored the conditions under which participants might exploit 
configural cues to express number. When the sketcher was shown target 
arrays in the same configuration as the viewer, and was aware of this 
fact, sketchers frequently exploited these configural cues to use strate
gies other than 1-to-1 correspondence. While Experiment 2 provided an 
in-principle demonstration that participants used shared features of 
their physical environment to communicate number, it did so in a way 
that is likely rare in the wild, as most sets seldom occur in reliable 
configurations like rows and columns. Also, in both Experiments 1 and 2 
we required participants to create representations of number de novo, 
whereas people often use existing objects and their labels to express 
number via ad hoc comparison to other objects. In keeping with these 
considerations, in Experiment 3 we asked participants to communicate 
number using a menu of familiar shapes that differed according to 
numerically salient features (e.g., a pair of cherries, a four leaf clover, 
etc.). We measured to what degree participants would seize upon these 
numerical features to transcend the use of 1-to-1 correspondence, and 
also what rules of composition they might use to express larger numbers. 

1. Experiment 1 

In Experiment 1, we conducted a preliminary investigation of how 
people use ad hoc graphical representations to communicate number (i. 
e., without the aid of existing symbols). Participants were paired up 
online to play a sketching-based reference game and, on each trial, were 
presented with four arrays of objects. One participant (sketcher) aimed 
to produce a sketch that would help their partner (viewer) identify 
which array they intended to refer to. To explore the impact of having 
the specific need to communicate about number information, we 
manipulated whether these arrays differed in the number or the kind of 
objects they contained. We sought to characterize what strategies dyads 
used to communicate when only number information was relevant, by 
comparison to the baseline scenario in which only object identity was 
relevant. Towards this end, we both analyzed the visual properties of 
these sketches and recruited naive participants (recognizer) to interpret 
them out of context, providing complementary insight into their content 
and organization. 

1.1. Methods 

Experimental methods for this and subsequent experiments were pre- 
registered using the Open Science Framework, available at: https://osf. 
io/4q3t9 

1.1.1. Participants 
Participants were recruited for two tasks: a communication task and 

a recognition task. For the communication task, we initially recruited 
134 participants from Amazon Mechanical Turk (AMT), who were 
paired up to form 67 dyads who interacted with one another throughout 

an entire experimental session. Data from six sessions were excluded 
according to our pre-registered criteria: four did not meet the perfor
mance threshold of 50% accuracy, while two others did not follow task 
instructions (e.g., having “drawn” text). Thus data from 122 participants 
(N = 61 sessions) were included in further analysis. Of these partici
pants, 117 individuals completed our optional demographic survey (53 
female; age data was not collected due to a technical error). For the 
recognition task, we recruited a total of 211 participants from Amazon 
Mechanical Turk. Thirteen recognition participants were excluded ac
cording to pre-registered criterion of missing any one of four catch trials, 
and eight further participants were excluded for having participated in 
the communication task, leaving 190 participants, of whom 165 
completed our optional demographic survey (62 female; Mage = 37.65 
years, SDage = 10.80 years). All participants provided informed consent 
in accordance with our IRB. 

1.1.2. Stimuli 
Stimuli were visual arrays of objects, each containing a variable 

number of identical shapes arranged in an arbitrary configuration. These 
arrays could contain between 1 and 8 items and contain one of 4 
different shapes (i.e., bear, deer, owl, rabbit silhouettes), resulting in 32 
number × shape combinations. This range of numbers was chosen to 
include values both above and below the subitizing range of ~3–4. To 
preclude reliance on spatial cues, the configuration of objects within 
each array was independently randomized for each participant and 
across dyads. 

1.1.3. Procedure 

1.1.3.1. Communication task. The communication task was a sketching- 
based reference game for two players (Fig. 2A), in which one participant 
(the sketcher) created sketches to help their partner (the viewer) identify 
one ‘target’ visual array at a time from three similar distractors. While 
the complete set of target arrays was identical across all games (i.e., 
every game featured sets of 1–8 bears, deer, owls, or rabbits), the dis
tinguishing feature between target arrays and distractors within each 
trial varied between two conditions. Some dyads were randomly 
assigned to the Shape condition (N = 29), in which all four visual arrays 
on a given trial featured the same number of animals but differed in the 
kind of animal they contained. Other dyads were assigned to the Num
ber condition (N = 32), in which all four visual arrays featured the same 
kind of animal but differed in the number of animals per array. For each 
array shown to the sketcher, a corresponding array with the same 
number and type of animal was shown to the viewer, but the spatial 
configuration of animals was independently randomized for each 
participant, to preclude reliance on configural cues. Both participants in 
the dyad therefore had the same basis for inferring the which feature of 
the visual arrays – number or shape – was relevant. 

On each trial, the sketcher used a 500 × 500px digital canvas 
embedded in a web browser to produce their sketch. They were required 
to complete this sketch in less than 30 s, after which additional strokes 
could not be registered. Also, they were told that they should not use 
existing numerical symbols (e.g., 5, 6, 7) but that they could create new 
symbols of their own (for complete instructions, see Supplemental Ma
terials, section S1.1). After the sketch was complete, it was shown to the 
viewer, who was then asked to select the array they thought was the 
target, without a time limit. Then both participants received feedback: 
the viewer was shown the identity of the target and the sketcher was 
shown which array the viewer selected. There were 32 trials in each 
game, such that each of the 32 number × shape combinations served as 
the target exactly once. These 32 trials were divided into four blocks of 
eight trials each, such that each number appeared once within each 
block and each animal appeared twice. 

1.1.3.2. Recognition task. Participants in the recognition task were 
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presented with sketches produced in the communication task, and were 
asked to identify shape or number information in each sketch. On each 
trial, these participants were presented with a single sketch and several 
buttons below. Buttons were either labeled with Arabic numerals or 
animal shapes, depending on whether the participant had been assigned 
to the Number or Shape recognition condition. Participants in the 
Number group judged which numeral lying in the range 1–8 best 
matched each sketch; participants in the Shape group judged which 
shape (i.e., bear, deer, owl, or rabbit) provided the best match. 

Each participant was presented with a total of 61 sketches, one 
randomly sampled from each communication game (N = 61 dyads). 
They were thus presented with sketches from both Number and Shape 
communication games, and had to guess intended meanings while naïve 
to the communicative context in which the sketches were originally 
produced. As an attention check, four catch trials were inserted at reg
ular intervals throughout each session, where participants were pre
sented with a sketch that matched one of the buttons exactly. 
Participants were included in analysis only if they selected the matching 
button in all four of these catch trials. 

1.2. Results 

1.2.1. Communicative strategy 
We first asked whether participants communicated number or shape 

information comparably. To this end, we measured (1) how accurate 
pairs were, (2) how long sketchers took, (3) how much virtual ‘ink’ 
sketchers used, and (4) how many strokes sketchers used. We con
structed mixed-effects regression models to predict each of the above 
outcome variables, based on: communication condition (Number vs. 
Shape), trial block number (i.e., 1–4), shape (i.e., bear, deer, owl, rab
bit), and the number of objects in the target array (i.e., 1–8). In all linear 
models, variation across games was modeled by fitting a random 
intercept for each game. 

These models revealed similarly high accuracy in both conditions (b 

= −0.221, z = −0.623, p = .534; see Fig. 2B), but that Shape game 
sketchers used more time and ‘ink’ to create their sketches (time: b =
6.288, t = 7.675, p < .001; ink: b = 0.034, t = 8.98, p < .001). Over 
successive trial blocks, dyads in both conditions became more accurate 
(b = 0.494, z = 5.745, p < .001), took less time (b = −1.369, t =

−23.051, p < .001), used less ink (b = −0.001, t = −4.742, p < .001), 
and made fewer strokes (b = −0.553, t = −11.029, p < .001). These 
results suggest that communication of number and shape was func
tionally comparable, both in getting the point across and in doing so 
better over time. 

We found that participants were more accurate for smaller cardi
nalities (b = −0.252, z = −6.001, p < .001), and produced more strokes 
for larger cardinalities in Number games (b = 1.029, t = 15.782, p <
.001) but not Shape games (b = − 0.734, t = −7.767, p < .001), sug
gesting that a 1-to-1 strategy was used only for communicating number 
(Fig. 2C). To explore this, we therefore analyzed the ‘stroke ratio’ of 
sketches. We reasoned that if the ratio of strokes (in a sketch) to objects 
(in a target) was 1, this would indicate the use of 1-to-1 correspondence 
(e.g., IIII to represent 4 objects), while a smaller number of strokes 
would indicate the use of a compressed form (e.g., IV). With this mea
sure, we found that 77.2% of Number-game sketches used 1-to-1 cor
respondence (CI: [74.7, 79.8]) versus only 14.3% of Shape-game 
sketches (CI: [12.1, 16.6]). 

A qualitative analysis of the sketches (see Fig. 3) produced in these 
games revealed that Number-game sketches sometimes used strategies 
that we had not anticipated. One strategy featured the use of 1-to-1 
correspondence, but was partially depictive, such that the configura
tion of objects within the target array was mirrored by the configuration 
of strokes within the sketch. Another strategy preserved 1-to-1 corre
spondence, but not configural information, instead rearranging strokes 
into patterns that appeared more geometrically regular than the random 
arrays of objects in the target. A rarer strategy appeared to make use of 
geometric shapes that correlated with the cardinality of the target array. 
For example, one participant used a five-pointed star to communicate an 

Fig. 2. A. In the number condition (left), sketchers had to communicate one target image to a viewer from a set of images that differed in the number of objects. In 
the shape condition (right), the set of images differed in the kind of object, but not the number. B. Left panel: viewer accuracy for games in each communication task 
condition. Middle panel: Recognizer accuracy in providing number labels for sketches produced in the number condition (blue) and shape condition (gray). Chance 
performance in dotted lines. Right panel: same as middle, but for recognizers providing shape labels. C. Average number of strokes in sketches for each tested 
cardinality in both number (blue) and shape (gray) games. While a weak correlation exists in shape games, it is almost exactly 1 in number games (error bars are 95% 
CI in all panels). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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array of 5 owls. In general, such strategies are consistent with historical 
observations that humans draw on publicly available correlations in the 
environment to communicate about number (e.g., Epps, 2006). 

1.2.2. Message content 
We next asked how much number or shape information was included 

in sketches, and whether this was affected by the relevance of each type 
of information (e.g., did Shape-game sketchers include irrelevant nu
merical information?). To answer this question, we asked each recog
nizer in the recognition task to recover one type of information – number 
or shape – from sketches produced in the communication task. Each 
recognizer was presented with one sketch from every game (both 

Fig. 3. Some Example Sketches. Above. A selection of nine target arrays from number game trials, with the sketch made for each to its right. Below. Same as above, 
but shape game trials. 
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Number and Shape games), and we measured the content of sketches by 
recognizers’ ability to recover this information. 

We constructed a binomial linear mixed-effects model, which 
included communication game condition (i.e., number or shape), 
recognition task condition (i.e., number or shape), communication game 
trial block number (i.e., 1–4), and the interaction between communi
cation game condition and recognition task condition as fixed-effects 
predictors, and modeled variation between individual recognizers, 
communication games, stimulus cardinality, and shape using random 
intercepts. 

Overall recognition accuracy was slightly lower for shape games 
than for number games (b = −2.364, z = −23.860, p < .001), and was 
also lower for recognizers trying to recover shape information rather 
than number information (b = −1.732, z = − 20.109, p < .001). 
Crucially, recognizers in both conditions were better at recovering in
formation that was relevant in the original communication task than 
information that was not relevant (b = 4.362, z = 50.604, p < .001; 
Fig. 2B), suggesting that Number-game sketches included much more 
number information than shape information (and vice-versa). In fact, 
recovery of irrelevant information was close to chance (0.25) in shape 
games at 20.8% (CI: [19.4, 22.3]), and also low, although significantly 
higher than chance (0.125), in number games at 28.2% (CI: [26.8, 
29.7]). Finally, this model also revealed that recognizers were better 
able to recover information from sketches produced early in communi
cation games than sketches produced towards the end of the game (b =
−0.070, z = −3.819, p < .001), which suggests the emergence of some 
dyad-specific conventions over the course of the communication games. 

1.3. Discussion 

In this experiment, we found that participants communicated effec
tively about both number and shape, when each feature was commu
nicatively relevant. To communicate about number, they 
overwhelmingly relied on 1-to-1 correspondence, ignoring the shapes of 
individual objects (and vice versa for shape). Also, we found that larger 
numbers were communicated less accurately than smaller ones. This is 
consistent with prior work that has found that larger cardinalities are 
associated with noisier magnitude representations, particularly under 
speeded conditions when counting is impractical. Finally, some dyads 
generated novel strategies for encoding number and shape, as evidenced 
by the fact that the representations they used were not interpretable to 
independent “recognizers”. For example, some participants appear to 
have taken advantage of the correlation between spatial configurations 
and cardinality in order to create depictive, configural representations 
of number. 

These results are interesting for a number of reasons. First, despite 
the fact that all of the participants in our studies were fully numerate 
adults who were familiar with at least one numerical notation system (i. 
e., the Arabic numerals) it was clearly not trivial to create arbitrary 
representations of number de novo. This result provides experimental 
evidence that creating novel conventions for number is a qualitatively 
harder task than creating conventions for representing familiar objects. 
It also establishes that this method can be used to explore how partici
pants might overcome this challenge. Second, the results are interesting 
because they demonstrate that the strategies preferred by participants 
align with the most common early strategies used by human ancestors - 
i.e., 1-to-1 correspondence that abstracts away from the identity of the 
items being enumerated, and using correlations in the environment as a 
proxy for cardinality. Participants created arrays of dots that ignored 
shape information almost universally, similar to systems like those 
attested in Greek, Hittite, Cretan, Aramaic, Mayan, etc. Also, although 1- 
to-1 was readily available and easy to deploy, some dyads nevertheless 
innovated, used configural cues, and produced forms that could not be 
decoded by others, potentially compatible with the creation of novel 
conventions. 

In Experiment 2, we explored this last finding, and began to probe 

how participants might make use of publicly shared correlates of num
ber to transcend the reliance on 1-to-1 correspondence. The history of 
numerical symbols indicates that 1-to-1 representations sometimes 
evolve over time into more arbitrary conventions by exploiting visual 
regularities (Chrisomalis, 2020). For example, the way marks are 
consistently arranged on each face of a 6-sided die allows for rapid and 
efficient decoding and communication of numerical information. Such 
configural cues are also exploited in the design of the abacus to facilitate 
the recognition and manipulation of larger cardinalities (Frank & 
Barner, 2012; Srinivasan, Wagner, Frank, & Barner, 2018), and in some 
early writing systems, as described in the Introduction. In each case, 
rather than counting each mark, people can map a recognizable visual 
pattern onto a specific cardinality. Because humans are adept at 
exploiting incidental correlations to communicate quantity (Cooperrider 
& Gentner, 2019), it is possible that the presence of visual regularities of 
sets in the world could facilitate the creation of compressed represen
tations that exploit them. We explored this in Experiment 2 by creating 
contexts that enhanced the availability of configural cues, while also 
increasing the incentive to innovate by presenting participants with 
larger sets. 

2. Experiment 2 

In Experiment 2, we manipulated the visual regularity of sets to ask 
whether this might lead participants to produce sketches that were more 
compressed (i.e., using fewer strokes to describe the same number of 
objects), rather than relying on 1-to-1 correspondence. Specifically, we 
manipulated whether sets of animals were arranged in a regular grid 
pattern with columns of 6 animals each, or were instead arranged in an 
irregular configuration, similar to Experiment 1. We reasoned that 
regular configurations might promote compression, e.g., by allowing 
participants to replace complete columns of dots with vertical lines, or 
rows with horizontal lines, or to use shapes (like rectangles) to indicate 
which grid of dots is intended. In addition, we shifted the range of 
cardinalities that were tested from 1 to 8 (in Experiment 1) to sets that 
were as large as 20 (in Experiment 2). We reasoned that, given that 1-to- 
1 is a common strategy for representing smaller numbers, participants 
might only have incentive to create compressed representations when 
the cost of 1-to-1 grows, as with larger numbers. Moreover, because 
people in serial reproduction experiments implicitly introduce regular
ity into symbolic systems that render those systems easier for others to 
learn (e.g., Kirby et al., 2008; see Wang, Lew, Brady, & Vul, 2023 who 
show this with dot arrays similar to our stimuli), we expected stimuli 
that already feature visual regularity to be easier for sketchers not only 
to communicate about, but also to propose compressed forms that 
viewers could accurately decode. 

2.1. Methods 

2.1.1. Participants 
We recruited 200 participants on AMT, as in Experiment 1. Of the 

resulting 100 games, 41 were excluded per our pre-registered criteria: 
35 for scoring below our accuracy threshold of 50% (same as Experi
ment 1),1 and 6 for using existing numerical symbols. This left 29 
irregular condition games and 30 regular condition games. Of the 
remaining participants, 113 answered the optional demographic survey 
(50 female; Mage = 36.46 years, SDage = 11.07 years). Finally, an error in 
recording reaction times affected 3 of the remaining games. Note that 
while analyses reported below reflect these exclusions, results did not 

1 This somewhat high exclusion rate might be explained by some participants 
missing the part of the task instructions which explained that the positions of 
the arrays were independently randomized for the sketcher and viewer. For 
example, some sketchers always drew 1–4 marks, corresponding with the po
sition of the target array among the distractors 
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differ when data from these last 3 games were included. 

2.1.2. Design, materials, and procedure 

2.1.2.1. Materials. Stimuli were generated as in Experiment 1, with 
three differences. First, only larger cardinalities (15–20) were used, 
rather than smaller ones (i.e., 1–8). Second, these cardinalities were 
presented in two different ways: For games in the Irregular condition, 
the spatial layout of animal silhouettes was again generated by sampling 
locations for each item at random as in Experiment 1. For games in the 
Regular condition, however, the animal silhouettes were arranged in a 
rectangular grid pattern, with each column containing 6 items and the 
rightmost column containing the remainder (e.g., 15 had a remainder of 
3 animals in the rightmost column; Fig. 4A). Finally, only three of the 
previous animal types were used (i.e., bear, deer, and owl, but not 
rabbit). 

2.1.2.2. Procedure. The procedure was identical to Experiment 1, with 
two important differences. First, participants saw each animal- 
cardinality combination twice, once in the first half of the experiment 
(18 trials) and once in the second half (18 more trials), rather than only 
once as in Experiment 1. Further, each block of 6 trials contained one 
instance of every cardinality as the target. Apart from these constraints, 
the presentation order of stimuli was randomly shuffled within each 
block of 18 trials. Second, sketchers and viewers saw each array in the 
same spatial configuration as each other, allowing configural informa
tion to be leveraged for communication. This was impossible in Exper
iment 1, as spatial configuration was randomized independently for 
each partner. Furthermore, for each sketcher-viewer dyad, arrays of 
each cardinality were consistently presented in the same spatial 
configuration across trials, making it possible for sketchers to use the 
same configural cues to communicate about particular cardinalities 
across trials – and thus to develop ad hoc graphical conventions. We did 
not deem it necessary to explicitly inform participants of this fact, based 
on our observation that in Experiment 1 most participants in the number 
condition produced drawings that preserved information about how 
objects were arranged in the target array, even when this information 
was irrelevant (because the spatial configuration of objects shown to the 
viewer was different). 

2.2. Results2 

2.2.1. Communicative efficiency 
We first investigated communicative efficiency, which we measured 

in three ways: (1) how accurate pairs were, (2) how long sketchers took 
to make their sketch, and (3) how long viewers took to submit their 
guess. We found that dyads in both conditions achieved high accuracy 
(Regular: 83.7%, CI: [81.5, 85.9]; Irregular: 87.8%, CI: [85.9, 89.8]). We 
constructed a binomial linear mixed-effects model to predict commu
nicative success similar to Experiment 1, but also included an interaction 
term between regularity and cardinality. As in Experiment 1, this model 
revealed that dyads were more accurate when communicating small 
numbers than large numbers (b = −0.122, z = −2.020, p = .043), more 
accurate in later trial blocks (b = 0.421, z = 9.760, p < .001), and more 
accurate in the Irregular condition than in the Regular condition (b =
−4.604, z = −3.173, p = .002). Sketchers took less time to communicate 
regular arrays than irregular arrays (b = −4.363, t = -3.23, p = .002), 
although there was no difference between conditions in the time that 
viewers took to make their guesses (b = 22.1036, t = 1.349, p = .178). 
This result could reflect the fact that sketchers could estimate arrays 

more quickly when organized into groups (Atkinson, Campbell, & 
Francis, 1976; Ciccione & Dehaene, 2020; Mandler & Shebo, 1982; 
Starkey & McCandliss, 2014; Van Oeffelen & Vos, 1982) or that sketches 
of regular arrays can be drawn more quickly than sketches of irregular 
arrays. Together with the model predicting accuracy, these results sug
gest that sketchers presented with regular visual arrays were quicker 
than those shown irregular arrays, but that they communicated number 
information less reliably (Fig. 4B & 4C). Additionally, while viewers 
were slower and less accurate as target arrays grew in size, this effect 
was smaller in the Regular condition than in the Irregular condition 
(response time:b = −1.709, t = −2.295, p = .022; accuracy: b = 0.236, z 
= 2.942, p = .003). These results suggest that regular arrangements of 
objects provide a more scalable representation of large numbers, 
allowing viewers to decode the meaning of visual representations faster 
despite the increasing size of sets and complexity of representations. 

2.2.2. Communicative strategy 
We next investigated the degree to which participants used 1-to-1 or 

more compressed strategies to communicate about number, such as 
relying on configural cues. As in Experiment 1, we did so by computing 
stroke ratios, which should be close to 1 when participants use a 1-to-1 
strategy and smaller than 1 when they use compressed strategies. Unlike 
the Number condition of Experiment 1, in which participants used a 1- 
to-1 strategy to communicate about number in 77.2% of trials, partici
pants in Experiment 2 used much less frequently in both the Irregular 
condition (17.5%, CI: [15.2, 19.8]) and the Regular condition (16.8%, 
CI: [14.5, 19.0]). Instead, compressed strategies were common: whereas 
Number condition participants in Experiment 1 employed compression 
in only 2.9% of sketches, participants in Experiment 2 employed 
compression frequently in both the Irregular (77.0%, CI: [74.5, 79.6]) 
and Regular (78.2%, CI: [75.7, 80.6]) conditions. 

We constructed a linear mixed-effect model to predict the stroke 
ratio of each sketch, which revealed that participants employed 
compression to a similar degree regardless of the visual regularity of 
arrays they had to communicate (b = −0.065, t = −0.993, p = .325). 
Also, representations of larger cardinalities were significantly more 
compressed than representations of smaller ones (b = −0.014, t =

−6.760, p < .001), and compression was greater in later trial blocks (b =
−0.013, t = −6.393, p < .001). Together, these results suggest that as 
participants gained experience with the task, they became more effec
tive at encoding number in their sketches, and that the regularity of 
spatial arrangements had no effect on either the choice of strategies or 
the amount of compression employed when participants did depart from 
a 1-to-1 strategy. 

2.3. Discussion 

Experiment 2 asked whether visual regularities in an array of objects 
help participants create compressed representations of number. While 
participants in Experiment 1 were reluctant to communicate about 
number information using strategies other than 1-to-1 correspondence, 
sketches in Experiment 2 were much more compressed, relying sub
stantially less on 1-to-1 correspondence. Two features of Experiment 2 
may explain this finding. First, arrays in Experiment 2 were presented in 
configurations - either regular or irregular - that were shared between 
the sketcher and the viewer. Second, the sets in Experiment 2 were 
larger than those in Experiment 1. Compatible with the idea that this 
may have promoted compression, participants in Experiment 2 were 
significantly more likely to use compressed representations for larger 
sets than for smaller ones. This suggests that the incentive to create 
compressed representations of number may be greatest when in
dividuals are asked to communicate about large quantities - a fact that is 
compatible with the historical record, in which systems often used 1-to-1 
strategies for small numbers, but compressed conventions for larger 
ones. 

In both Experiments 1 and 2, we provided participants with 

2 Two pre-registered analyses are not reported. The first was a spatial clus
tering analysis to measure visual chunking, and the second was a classification 
task asking online participants to infer sketch strategies, as in Experiment 1; 
both proved to be uninterpretable. 
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numerical arrays and asked them to spontaneously generate novel 
symbols that might be used to represent number. These studies found 
evidence that participants are eager to use shared correlates of number 
to communicate, but also that generating conventions to represent 
number de novo is no easy task in such contexts. However, as noted in 
the Introduction, evidence from the historical record indicates that 
conventions for labeling number and numerical measures rarely 
emerged from purely arbitrary innovations, and very frequently arose by 
processes of ad hoc comparison to ubiquitous, publicly available objects, 
like body parts. Also, although numeral systems sometimes exploit 
configural cues to represent number, most systems do not, perhaps 
because configural cues are not reliable properties of the things that 
humans wish to communicate about. 

In Experiment 3, rather than burdening participants with the need to 
create entirely novel representations from scratch, we probed their in
terest in exploiting publicly shared correlates of number by providing 
them with objects that could act as candidate conventions, by virtue of 
their numerically relevant shapes (e.g., a pair of cherries, or a four-leaf 
clover). This allowed us to not only explore this idea, but also to test 
whether, when using such objects to communicate, participants show 
evidence of using combinatorial rules akin to those found in numeral 
systems in the attested historical record. 

3. Experiment 3 

Experiment 3 asked how, if at all, communicators would exploit 
numerical features of familiar objects in their shared environment to 
express number, and whether their use of such features might facilitate 
the use of combinatorial rules. The use of ad hoc comparison to convey 
quantity is frequently attested in human languages (Cooperrider & 
Gentner, 2019; Epps, 2006), as is the combination of small number 
words to express larger quantities (Comrie, 2011). To facilitate the 
adoption of such ad hoc comparisons, we allowed participants to 
communicate using visual tokens that featured conspicuous numerical 
properties (e.g., a pair of cherries, a four leaf clover, etc.). These visual 
tokens were included on a keyboard that participants used to commu
nicate with a partner, and permitted the combination of multiple, con
crete images to express larger numbers. We asked whether participants 
would persist in using a 1-to-1 correspondence strategy (e.g., 1 clover or 
pair of cherries per item), or instead use the numerical information 
available in these images as symbols for number. Also, we asked whether 
participants would adopt rules for combining these shapes, and if so, 
which rules. 

3.1. Methods 

3.1.1. Participants 
We recruited 110 participants from Prolific. Twenty-nine games 

were excluded according to pre-registered criteria of finishing all trials 
(10 games) and having a minimum of 50% accuracy (19 games), leaving 
62 participants paired in 31 games (27 female; Mage = 26.48 years, SDage 
= 8.16 years). All participants provided informed consent as per the IRB. 

3.1.2. Design, materials, and procedure 

3.1.2.1. Materials. Stimuli were generated according to the same pro
cess as in Experiments 1 and 2, but included both small and large car
dinalities (1–16), and contained only dots instead of different kinds of 
animals. This was because based on the results of Experiments 1 and 2, 
the exact animals appeared to no longer be theoretically relevant. Rather 
than a sketchpad, participants were presented with a virtual keyboard 
consisting of four buttons. Each button featured a different natural ob
ject, each of which had a different number of conspicuous physical 
features ranging from 1 to 4 (Fig. 5A). These were an apple, a pair of 
cherries, three connected oak leaves, and a four-leaf clover. There was 
also a ‘delete’ key. While no explicit limit was told to participants, the 
task interface limited messages to no more than 30 tokens – a limit 
which was never reached. 

3.1.2.2. Procedure. The procedure was similar to Experiments 1 and 2, 
in that a sender (analogous to the sketcher) sent messages to a receiver 
(analogous to the viewer) to communicate one image out of a larger set of 
images. However, it was different in two respects. First, all 16 cardi
nalities appeared once in the first half of the experiment, and once again 
in the second half, for a total of 32 trials. Second, we reduced the total 
number of images presented on each trial from 4 to 3 (i.e., 1 target +2 
distractors). This was to discourage participants from trying to 
communicate the ordinal position of the target image (e.g., 2nd from the 
left) by using the ordinal position of the four response keys, which were 
also arranged horizontally. Such a strategy would result in chance per
formance, as the ordinal position of images was randomized indepen
dently between partners. Like Experiment 1, the spatial configuration of 
dots within each array was also independently randomized for each 
partner, to preclude reliance on configural cues, as well as between 
every two occurrences of that array within the task. 

3.2. Results 

3.2.1. Communicative efficiency 
We measured communicative efficiency in three ways: (1) how ac

curate pairs were, (2) how long senders took to make their message, and 

Fig. 4. A. In the regular condition (left), all arrays were organized into columns of 6, with a remainder column on the right. In the irregular condition (right), arrays 
were organized randomly, as in Experiment 1. B. Viewers were slightly less accurate when decoding sketches of regular arrays (error bars are 95% CI). C. Sketchers 
made sketches in much less time when encoding regular arrays than irregular ones (error bars are 95% CI). 
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(3) how long receivers took to submit their guess. To do this, we con
structed linear mixed effects regressions, modeling the effects of cardi
nality and trial number on each measured variable. Overall accuracy 
was slightly lower than in Experiments 1 (91.9%) and 2 (85.7%), at 
78.7%. As in Experiments 1 and 2, participants improved at the task as 
they gained experience with it: dyads became more accurate over suc
cessive trials (b = 0.062, z = 6.154, p < .001), senders took less time to 
compose their messages (b = −0.180, t = −3.119, p = .002), and re
ceivers took less time to make their guesses (b = −0.207, t = −2.374, p 
= .018). Also similar to Experiments 1 and 2, larger cardinalities were 
communicated less accurately than smaller ones (b = −0.147, z =

−7.13, p < .001), and more slowly both by senders (b = 1.279, t = 11.3, 
p < .001) and receivers (b = 1.000, t = 5.849, p < .001). 

3.2.2. Communicative strategy 
We next investigated the degree to which participants used 1-to-1 or 

compressed strategies to communicate number. Analogous to the stroke 
ratio measure employed in Experiments 1 and 2, we measured token 
ratio: the ratio between the number of tokens used within a message to 
the cardinality of its target array. A ratio close to 1 would suggest the use 
of 1-to-1 correspondence, while a ratio less than 1 would suggest the use 
of a more compressed strategy. By this measure, participants in Exper
iment 3 used 1-to-1 strategies in 14.9% of trials, similar to the 17.1% of 
trials measured in Experiment 2, but much less than the 77.2% of trials 
in the Number condition of Experiment 1. Removing trials in which the 
target cardinality was 1 (1/16 of all trials), where the use of 1-to-1 
would thus be indistinguishable from other strategies, this proportion 
was only 9.2% - significantly lower than in Experiment 2 (Fisher’s exact 
test; p < .001). Instead, compressed strategies were evident in 84.6% of 
trials, suggesting that the use of 1-to-1 correspondence was relatively 
infrequent overall and limited to a small number of games. Finally, 
senders were also significantly more likely to compress information 
when they were communicating larger cardinalities than smaller ones (b 
= −0.032, t = −7.286, p < .001), and this did not change over successive 
trials (b = 0.001, t = 0.540, p = .589). This distribution of strategies 
suggests that the presence of objects that support ad hoc comparison 
helps communicators to employ strategies that bypass direct 1-to-1 
correspondence between tokens and objects. 

An exploratory linear model predicting accuracy from token ratio 
revealed that compressed forms did not significantly contribute to 
higher accuracy (b = −0.428, z = −1.175, p = .240), and may have 
reduced accuracy as numbers became larger (b = 0.195, z = 3.166, p =
.0015). This may be because larger numbers could be expressed in a 
greater number of ways, as they appear to have been in senders’ mes
sages. For example, while there was only one attested form across all 
games for expressing the number 1 (that is, a single apple token), there 
were 5 unique forms for expressing the number 2, and 19 forms for 
expressing the number 12. Furthermore, the share of trials exhibiting the 
most commonly used form for each number dropped as numbers 

increased. While all 62 occurrences of the number 1 were represented by 
a single apple, the most common expression for the number 2 was used 
51 times, and the most common expression for 12 was used only 29 
times. This is reflected in the Simpson’s diversity index of messages used 
to represent sets of each cardinality, which is close to 0 when the same 
expression is always used to represent a cardinality, and close to 1 when 
many different expressions are used to represent a cardinality, with 
equal frequency. In our data, this index is closest to 0 for the smallest 
cardinalities, and is close to 1 for large cardinalities (Fig. 5C). 

3.2.3. Rule use 
We next performed several exploratory analyses to determine which 

strategies were employed. We first asked whether participants made use 
of different kinds of rules in their messages. To do this, we measured the 
Levenshtein distance3 (Levenshtein, 1966) between messages that 
senders produced and each of four model strategies. For any given game, 
the distance of every message from a model system was summed over all 
trials, providing a measure of how closely the sender in that game 
adhered to the use of one strategy or another. Finally, the distance of 
each game to one or another strategy was compared, and each game was 
assigned the strategy of the model to which it had the shortest distance. 

The four possible strategies we assessed were: 1-to-1, cumulative- 
additive, place-value, and a ‘single token’ strategy. The 1-to-1 strategy 
entails repeating one shape as many times as there were objects in the 
target set (e.g., using 4 apples to represent a set of 4). The cumulative- 
additive strategy involved summing tokens to communicate a number, 
but drawing on the more complex shapes to represent the numbers 2, 3, 
and 4 (e.g., using 2 cherry pairs plus 1 apple to represent 5). Under this 
strategy, expressing numbers greater than the largest image (the four 
leaf clover) involved repeating that image as many times as 4 could be 
divided into the number, with a remainder expressed via other shapes 
with smaller cardinal meanings. For example, the number 10 might be 
expressed as clover-clover-cherries, or 442. The third strategy, which we 
expected to be quite unlikely, was a place-value system, similar to 
Arabic notation. In a system with only 4 possible shapes to use as 
symbols, the second place value represents multiples of 4, such that a 
shape representing 1 (e.g., apple) produces a value of 4, while a shape 
representing 2 (e.g., cherry) produces a value of 8, such that a string like 
cherry-apple represents 9. Finally, we modeled an ordinal system, where 
the characteristic cardinality of the shape chosen represented the 
ordinal position of the target among the distractors, ignoring their car
dinality entirely (i.e., 1 apple for 1st set from the left, a pair of cherries 
for 2nd, etc.). 

Fig. 5. A. In Experiment 3, participants communicated about arrays of dots that varied in quantity. Rather than a sketchpad, they communicated using a keyboard of 
existing shapes. B. Relative frequency of each of the 4 shapes across all messages (error bars are 95% CI). C. Simpson’s diversity index of messages created to 
represent sets of each cardinality. 

3 A measure of string distance defined as the number of character insertions 
and deletions required to turn one string into another, often used in studying 
artificial symbol systems (e.g. Cornish, Dale, Kirby, & Christiansen, 2017; 
Vokey & Brooks, 1992). 
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This analysis suggested that most games relied on a cumulative- 
additive system (17 games), while a smaller number relied primarily 
on 1-to-1 correspondence (3 games). A cumulative additive system is 
also reflected in the frequency of each token (apple, cherries, oak leaves, 
and clover): the apple and clover were the most common tokens 
(Fig. 5B). Preliminary classifications suggested that 6 additional games 
were closest to the ordinal strategy, and 5 to the place-value system. 
However, on closer, qualitative inspection, the strategies in these latter 
two groups of games may reflect a naïve grouping strategy, where 
groups of objects in the target image are represented in order as they’re 
viewed, so that 8 objects arranged into groups of 1, 2, 1, 3, and 1 are 
represented as 12,131. Given the observed distribution of strategies, the 
cumulative-additive strategy may be the only strategy reliably used by 
participants across our studies to feature a regular syntax – perhaps 
enabled by the change of communicative medium. 

3.2.4. Order 
Finally, one property of the cumulative-additive system that was 

common across games was the arrangement of tokens in a decreasing 
order, where ‘smaller’ tokens were always to the right of larger tokens 
(e.g., 442 is decreasingly ordered but 424 or 244 are not). Overall, 
87.7% of messages were decreasingly ordered in this way, a number that 
did not significantly differ between correct and incorrect trials (88.1% 
and 86.3%). To understand whether this trend should be expected by 
chance, we generated a random message for each trial, such that the sum 
of all tokens in the participant’s message and the random message were 
the same. We then used a permutation test to ask whether our random 
messages exhibited decreasing order as often as participants’ messages, 
and found that participants’ messages were significantly more likely to 
be decreasingly ordered (t = 8.24, p < .001). This preference was found 
across most games, and may have facilitated the process of reading those 
messages. Exploratory t-tests indicate that the reaction time of receivers 
was much faster when confronted with decreasingly ordered messages 
from their sender (t = 5.21, p < .001). More surprisingly, a similar trend 
holds for the time it took senders to construct their messages, as 
decreasingly ordered messages were also faster to make (t = 5.742, p <
.001), though this trend may owe itself to faster reactions and better 
performance of those participants who also opted to use this strategy, 
rather than an effect of the strategy per se. 

3.3. Discussion 

In Experiment 3, we provided participants with pictures of familiar 
objects that had stable numerical properties (e.g., a pair of cherries, a 
four leaf clover), and asked whether they would exploit these properties 
to communicate about number. We found that few participants persisted 
in using 1-to-1, and that most instead used the features of provided 
objects to compress their representations of number. The prevalence of 
compressed strategies (84.6%) was slightly greater than in Experiment 2 
(77.6%). Unlike Experiment 2, however, the modality of Experiment 3 
required participants to arrange a set of discrete shapes in a linear order. 
Given this constraint, many participants invented a numerical base out 
of the 4-leaf clover shape with the result that most messages in shared 
two features that are characteristic of historically attested numeral 
systems. One feature was the use of a cumulative-additive structure, 
taking advantage of the highest available base (e.g., expressing 5 as 
clover + apple, rather than as cherries + cherries + apple). The other 
characteristic feature was the ordering of tokens from largest to smallest, 
similar not only to the familiar Arabic numeral system, and also to the 
majority of linear numeral systems in historical record (Chrisomalis, 
2020). 

4. General discussion 

Across three experiments, we investigated how humans create and 
combine symbols to express number. In Experiment 1, we found that 

when participants were asked to communicate about number to a 
partner, they often created sketches that used a 1-to-1 correspondence 
strategy: For each object in a set, they generally created one corre
sponding dot, mark, or sketch of that thing. However, they sometimes 
used configural cues to express number, and in some cases, dyads used 
representations that could not be decoded by independent participants, 
potentially compatible with the creation of new conventions. In Exper
iment 2, we directly explored this finding, and found that when con
figural cues were reliably available across trials participants used 1-to-1 
correspondence to communicate number much less frequently, and 
often used compressed representations that exploited configural cues. In 
Experiment 3, rather than requiring participants to invent new con
ventions de novo, we asked whether they would exploit publicly shared 
correlates of number by providing them with shapes that could act as 
candidate conventions (e.g., a pair of cherries, or a four-leaf clover). 
Here we found that participants rarely used 1-to-1 correspondence in 
favor of compressed representations, and also that when they combined 
shapes to communicate number, they often used a descending 
cumulative-additive structure, using the largest available “symbol” as a 
base (i.e., the clover). 

These results suggest two main conclusions. First, the problem of 
creating entirely novel representations of number may be uniquely 
difficult when proxies for number, like shape, are not available in the 
communicative context. Whereas Shape game participants in Experi
ment 1 readily created conventions that used minimal strokes and were 
hard for naïve “recognizers” to decode (as in Garrod et al., 2007; 
Hawkins et al., 2023), participants in Number games invented conven
tions much less often, as reflected both by their persistent use of one-to- 
one correspondence and the relative ease with which recognizers iden
tified the target numbers communicated by sketches. This was despite 
the fact that our participants were numerate adults who were familiar 
with western Arabic numerals. However, a second conclusion is that 
participants readily create compressed representations of number when 
non-numerical proxy representations are available in the context. 
Although most participants in Experiment 1 relied on 1-to-1 corre
spondence, some tried to communicate number by preserving the con
figural cues contained within stimuli. In Experiment 2, when these 
configural cues were more robust and reliable (i.e., arranging objects 
into rows in a consistent manner), participants frequently departed from 
the use of 1-to-1 strategies. Finally, this reliance on shape information 
was strongest when shapes of familiar objects - like apples, or clovers - 
could be combined to express number (Experiment 3). 

As noted in the Introduction, humans often use ubiquitous and 
publicly available objects like hands, feet, and other body parts to count, 
and often use labels for these parts to subsequently name different car
dinalities (Dahl, 1981; Epps, 2006; Heine, 2004; Rischel, 1997). Also, in 
at least some languages, small sets are labeled using names for common 
objects that feature specific numbers of things - like the number of seeds 
in a fruit, the number of eyes on one’s head, or the number of fingers and 
toes on one’s body (Epps, 2006). Similar practices of so-called ad hoc 
comparison can also be found in the history of measurement systems 
(Cooperrider & Gentner, 2019), but also in other cases such as color, 
where hues are labeled via metonymy, using the names of things in the 
local environment that have the same color (e.g., orange, lilac, gold, etc.; 
Casson, 1994). The logic underlying such instances of metonymy may 
help explain why participants in Experiments 1 and 2 did not create 
novel conventions as readily as in other studies of graphical communi
cation. For example, in a study by Fay et al. (2010) some participants 
conveyed the concept parliament by initially sketching members of 
parliament sitting at tables with the Australian flag, but later included 
only the flag, which sufficed as an index of the concept even without the 
depiction of the people. This was possible because the concept parlia
ment is associated with multiple imageable components which, after 
being used collectively to identify the intended referent, can be subse
quently reduced to only one element (e.g., a flag) to create a convention. 
However, such a strategy is often not available in the case of number, 
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since in a set of, e.g., four ducks, no individual duck has any feature that 
can alone communicate the cardinality four. The use of 1-to-1 corre
spondence appears to be overcome only when there exists an imageable 
correlate of number, such as a spatial configuration, or a shape or name 
that is strongly associated with a particular cardinality (e.g., eyes, clo
vers, etc.). 

In addition to finding that participants often use physical correlates 
of number to communicate about large quantities, the results from this 
study also suggest ways in which the medium of numerical symbols may 
impact the form that they take. Whereas the reference sets in all ex
periments – as well as the communicative medium in Experiments 2 and 
3 – were two-dimensional visual arrays, only in Experiment 3 did the 
communicative medium require a strict linear ordering of component 
shapes. This appears to have led participants to create combinatorial 
representations of number, perhaps by prompting them to reflect on 
their strategy for encoding the objects in the target set. This is poten
tially important, because previous theories of the history of number 
posit that abstraction occurs when representations transition from 
purely referential meanings towards meanings that are defined by re
lations between elements within the symbolic system. New abstractions, 
like the rules that govern written numerals, are made possible by the 
affordances of the symbolic medium in which the system is instantiated - 
in this case a linearly ordered sequence (Overmann, 2018). 

While this collection of exploratory studies provides a first step to
wards understanding the processes that underpin the creation of nu
meral systems, they had several notable limitations. One is that some of 
our pre-registered analyses proved intractable in the face of the data we 
collected. For example, a planned analysis of spatial clustering of strokes 
within sketches was unable to meaningfully recover coherent clusters 
that were apparent to the human eye (e.g., dotted lines drawn by par
ticipants), rendering results of that analysis questionable. Also, we 
initially planned to conduct a recognition task in Experiment 2 that 
paralleled Experiment 1, but found that participants gave highly 
divergent and often uninterpretable responses to sketches, making it 
unclear whether the labeling techniques we offered them were under
stood. Another limitation is that our methods did not make it possible to 
easily identify the cognitive steps involved in the creation of number 
representations. For example, it is possible that some participants in 
Experiments 1 and 2 did not even consider creating summary repre
sentations of cardinality, and instead tried to communicate the visual 
patterns present in arrays, rather than number. 

Another limitation, common to communicative games, is that par
ticipants in our study could only communicate via the medium we 
provided to them, and were not allowed to directly tell partners what 
symbols meant. This constraint was important to precluding uninter
esting strategies in our numerate participants (like creating a direct 
translation of existing numerals). If laboratory participants were 
allowed to make explicit agreements, they could easily bypass the most 
important communicative obstacle to creating numerals from scratch by 
using known symbols as anchors for creating new ones - e.g., by 
explicitly agreeing to replace “5” with “%” (or some novel form). Also, 
we felt that our method might simulate the challenge of expressing exact 
number when existing symbols are absent, since this requires expressing 
number via some other medium or strategy. Still, most number systems 
almost certainly evolved through processes of conspiracy among com
munity members, in which individuals worked together to create, agree 
upon, and teach new symbols. Exploring how such collaborative pro
cesses might work when existing numeral conventions are not available 
should be explored further in future work. Indeed, another limitation of 
our study is that all of our participants were numerate adults. Although 
their numeracy proved to be of little help in creating novel systems, it 
remains an interesting question whether innumerate adults or young 
children might deploy different strategies - a question we are currently 
exploring. 

In summary, results from three experiments suggest that when 
numerate adults are tasked with devising novel ways to communicate 

about number, they often default to using 1-to-1 correspondence, but 
also readily exploit visual correlates of number to efficiently convey 
representations (e.g., configural cues or objects that canonically appear 
in certain numbers). Features of the medium of communication may also 
influence the creation of conventions by limiting degrees of freedom, 
and by prompting communicators to spontaneously organize their 
messages in novel ways. 
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