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ARTICLE INFO ABSTRACT

Keywords: The ability to communicate about exact number is critical to many modern human practices spanning science,
Nume.rals industry, and politics. Although some early numeral systems used 1-to-1 correspondence (e.g., ‘IIII" to represent
Drawing 4), most systems provide compact representations via more arbitrary conventions (e.g., ‘7> and ‘VII). When
gzlr?nrgtrllr;catlon people are unable to rely on conventional numerals, however, what strategies do they initially use to commu-
Symbols nicate number? Across three experiments, participants used pictures to communicate about visual arrays of

objects containing 1-16 items, either by producing freehand drawings or combining sets of visual tokens. We
analyzed how the pictures they produced varied as a function of communicative need (Experiment 1), spatial
regularities in the arrays (Experiment 2), and visual properties of tokens (Experiment 3). In Experiment 1, we
found that participants often expressed number in the form of 1-to-1 representations, but sometimes also
exploited the configuration of sets. In Experiment 2, this strategy of using configural cues was exaggerated when
sets were especially large, and when the cues were predictably correlated with number. Finally, in Experiment 3,
participants readily adopted salient numerical features of objects (e.g., four-leaf clover) and generally combined
them in a cumulative-additive manner. Taken together, these findings corroborate historical evidence that
humans exploit correlates of number in the external environment — such as shape, configural cues, or 1-to-1

correspondence — as the basis for innovating more abstract number representations.

Representations of large exact number - like the numerals 15 and
2028 - have fueled some of the most important achievements of human
societies. By allowing humans to represent large quantities exactly,
numerals have provided a critical foundation to the development of
mathematics and science, the coordination of economic activity in large
groups, and the development of human infrastructure and technology.
However, humans have not always had the capacity to precisely encode
numbers, and many humans currently remain either partially or fully
innumerate (Frank, Everett, Fedorenko, & Gibson, 2008; Gordon, 2004;
Pica, Lemer, Izard, & Dehaene, 2004). Further, the anthropological re-
cord indicates that written numeral systems evolved slowly over a
period of thousands of years, concurrent with changes in complex social
institutions and concrete material environments (Beller et al., 2018;
Chrisomalis, 2010; Hgyrup, 1994; Malafouris, 2010; Robson, 2008;
Schmandt-Besserat, 1978, 2010). Finally, experimental research in
psychology indicates that, prior to acquiring verbal and written nu-
merals, children are unable to represent exact quantities larger than 3-4,
and that in absence of such symbols, perception of number is severely
limited (Carey, 2004; Carey & Barner, 2019; Feigenson, Dehaene, &

Spelke, 2004). These observations raise the question of how our ances-
tors converged upon numerals as a solution to representing exact
number, and why such innovation was so elusive in the history of our
species. What psychological mechanisms might explain the process by
which humans create and share novel representations of large exact
number?

In the absence of a numeral system, humans, like many other species,
represent large quantities approximately, relying on the approximate
magnitude system (or AMS). While the AMS is able to represent quan-
tities up to 3 or 4 with precision, representations become noisier as
quantities increase, and sets are discriminated on the basis of their ratio,
compatible with Weber’s law (Dehaene, 1997; Whalen, Gallistel, &
Gelman, 1999). Evidence of the AMS is found across human cultures,
independent of their adoption of exact numerical symbols. First, when
numerate adults are asked to discriminate two sets of rapidly presented
dots, they readily identify the larger set when the ratio between the sets
is large (e.g., 40 vs. 80 dots, or 2:1), but struggle as the ratio becomes
smaller (e.g., 70 vs. 80 dots, or 7:8). Second, innumerate adults, such as
the Mundurukd, an Amazonian indigenous group, easily discriminate
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dot arrays that stand in a 2:1 ratio (e.g., 20 dots vs. 10 dots), but show
declining performance for tighter ratios, like 3:2 (Pica et al., 2004).
Similar results have been found in studies of innumerate Piraha adults.
For example, when shown a set of 8 objects and asked to match that set
with another set of objects, Piraha participants often provide approxi-
mate matches, and are precise for only the smallest sets up to around 3-4
(Gordon, 2004; Everett & Madora, 2012; cf. Frank et al., 2008). Similar
results are found in US children who have not yet learned to count
(Schneider, Brockbank, Feiman, & Barner, 2022). Finally, evidence for
the AMS is also found in preverbal human infants and in non-human
animals, including birds, rodents, and fish (Brannon & Merritt, 2011;
Dehaene, 1997).

Numeral systems transcend the limits of the AMS by providing
symbols and operations that differentiate large quantities exactly. Ver-
bal numerals, body count systems (Bender & Beller, 2011; Comrie, 2011;
Epps, 2006; Hammarstrom, 2010; Saxe, 1981), written numerals
(Changizi & Shimojo, 2005; Chrisomalis, 2020; Ifrah, 2000), and
physical calculators like the abacus (Frank and Barner, 2012; Hatano &
Osawa, 1983; Stigler, 1984), use similar strategies to extend the human
ability to quantify large sets (for reviews, see Barner, 2017; O’Shaugh-
nessy, Gibson, & Piantadosi, 2021). Often, these systems use 1-to-1
correspondence to represent the smallest numbers - using 4 fingers,
abacus beads, or vertical lines to represent sets of 4 things (see Fig. 1A).
For example, clay envelopes created as early as 11,000 years ago in
Mesopotamia often used 1-to-1 correspondence to indicate the number
of tokens they contained (Schmandt-Besserat, 2010). Also, a 1-to-1
strategy is found in more recent written number systems such as the
familiar Roman numerals (e.g., I, II, III), but also in ancient Greek,
Hittite, Cretan, Aramaic, Mayan, and other systems (Ifrah, 2000). When
such systems are extended to represent larger numbers, they generally
do so in one of two ways. Some systems use configural strategies such as
horizontal spacing (e.g. ‘IIII I to represent ‘6’) or stroke directionality
(e.g. ‘HH I'; Chrisomalis, 2020). Also, they generally exhibit similar
rules, only allowing new chunks to be created when all previous chunks
attain a maximum value (e.g., allowing III III II, but not IIII II II). Other
systems however, use arbitrary conventions to express larger numbers.
For example, the Roman numeral system represents 5 as V and 10 as X.
Likewise, the Soroban abacus (Fig. 1B) uses horizontal space to repre-
sent place value, such that some beads have a value of 1, others a value
of 10, and others 100, and uses vertical space to assign some beads (i.e.,
“heavenly beads™”) values of 5, 50, 500, etc. (e.g., Frank and Barner,
2012; Hatano & Osawa, 1983; Stigler, 1984). Finally, count systems
based on the human body typically use arbitrary positions to represent
numbers beyond 20 (Bender & Beller, 2011; Saxe, 1981).

Such examples raise the question of how arbitrary conventions arise
that transcend 1-to-1 correspondence. According to one cultural-
historical account, arbitrary conventions emerge from forms that are
initially grounded in contextually available ad hoc comparisons to
numerically correlated features of the environment (Cooperrider &
Gentner, 2019). For example, measurement terms like “foot” are often

A 1-to-1 Representations of 4 B Abacus Base-10 Representation
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01234567829
Fig. 1. A. Three 1-to-1 modes of representing the quantity 4: fingers, abacus
beads, and written strokes. B. A soroban showing different digits in base-10.
Much like the western Arabic numerals, each column denotes a place-value,
such that the column showing 3 represents a magnitude of 30 while the col-
umn showing 4 represents a magnitude 4. The white dot indicates the ones-
place, to the right of which columns represent decimal values.
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created via comparisons to immediately available physical objects (e.g.,
one’s own foot). These concrete measuring conventions are then shared
with other people via acts of communication, which leads to standard-
ization (e.g., defining a “foot” as the same length regardless of who uses
it), and systematization, where they become defined by other units
within a broader network of concepts rather than by their initial, non-
arbitrary, ad hoc comparison (e.g., a foot is defined as 12 in., /3 of a
yard, etc., but not the foot of whoever is making the measurement).
Number words often follow a similar trajectory, beginning via ad hoc
comparison to concrete objects, but culminating in more arbitrary
conventions over time as they become integrated to a new system of use.
For example, in the Hup language (spoken in Colombia and Brazil) the
word for 1 originated from the demonstrative term “that”, 2 from “eye-
quantity”, and 3 from “rubber tree seed quantity” (since seed pods
contain 3 seeds; Epps, 2006). Similarly, 10 is expressed as “both hands”
and 20 as “both feet” - a widely attested practice in the cultural history of
number (see also Bender & Beller, 2012; O’Shaughnessy et al., 2021;
Saxe & Esmonde, 2012; Williams, 1940). However, as in the case of
measure words, these expressions that began as ad hoc comparisons
have subsequently changed, becoming phonologically distinct from the
words that served as their historical basis, and used strictly for the ab-
stract function of referring to number (and not to eyes, seeds, etc.). Such
facts suggest that ad hoc reference is a critical first step in the process of
creating number conventions, followed by the derivation of abstract
meanings from their position within the system of symbols (Damerow,
1996).

While the emergence of numerical conventions in cultural history is a
topic of significant debate among anthropologists and historians (see
Chrisomalis, 2004, for review), it is less frequently studied by cognitive
psychologists, and we know of no systematic experimental study of how
humans create novel numerals. Psychologists frequently discuss the
evolutionary origins of numerical perception (Gallistel, Gelman, &
Cordes, 2006), but few discuss the role of cognitive factors in the cul-
tural evolution of numeral systems, with some notable exceptions (for
some discussion of this topic, see Barner, 2017; Hurford, 1987; O’Sh-
aughnessy et al., 2021; Xu, Liu, & Regier, 2020). For example, in one
recent study, Xu et al. (2020) analyzed the verbal numeral systems of 30
currently spoken languages, and argued that the evolution of cross-
linguistic variation is shaped by a need for precise yet cognitively effi-
cient communication. Similarly, O’Shaughnessy et al. investigated the
cultural origins of symbolic number by characterizing the variability in
attested numeral systems, and reviewing known differences in how
different cultures and linguistic forms express large and small numbers.
However, while experimental methods have sometimes been used to
characterize variability in existing numeral systems (e.g., Bender &
Beller, 2012; Frank et al., 2008; Gibson et al., 2019; Gordon, 2004; Pica
et al., 2004; Saxe & Esmonde, 2012), no previous work has investigated
the creation of novel numerals experimentally.

Although there is little experimental work related to the evolution of
numerical symbols, a larger literature has used experimental methods to
investigate the origin of symbols representing non-numerical concepts
(Christiansen & Kirby, 2003; Kirby, Cornish, & Smith, 2008). Multiple
studies have found that abstract conventional symbols emerge gradually
in interactive communicative games. In Pictionary-style games, while
participants initially create drawings that are transparently related to
the things they represent, later drawings tend to become more abstract
and conventionalized (Fay, Garrod, Roberts, & Swoboda, 2010; Garrod,
Fay, Lee, Oberlander, & MacLeod, 2007; Hawkins, Sano, Goodman, &
Fan, 2023). An initial reliance on non-arbitrary symbols can also be
found in novel communicative modalities, with which participants have
no previous experience. For example, participants have been found to
use more complex auditory signals to refer to more complex objects
(Hofer & Levy, 2019; Verhoef, Kirby, & De Boer, 2016).

Here we adapt these experimental methods to investigate how par-
ticipants use a graphical communication medium (i.e., involving mark-
making and/or pictures) to convey number. In particular, we asked how
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participants express number when prevented from using pre-existing
conventions (e.g., Arabic numerals), and how their ability to commu-
nicate is impacted by the availability of physical shapes and configu-
rations that could be used as proxies for number, akin to the use of
hands, feet, or words for objects like eyes and seeds. In Experiment 1,
participants were paired up to play a drawing-based communication
game in which one participant (the sketcher) sought to communicate
about an array of objects to another participant who could not see the
array (the viewer). In “number games,” only the number of objects was
relevant; in “shape games,” only the identity of the objects was relevant.
We found that drawings produced in the number games were markedly
different from those in the shape games: they were generally composed
of marks that stood in 1-to-1 correspondence with the objects but no
longer resembled them - a form of abstraction that is typical in attested
numeral systems. Moreover, some sketches seemed to mirror the spatial
configuration of target sets, while others arranged the objects into
orderly configurations. Following up on this observation, Experiment 2
further explored the conditions under which participants might exploit
configural cues to express number. When the sketcher was shown target
arrays in the same configuration as the viewer, and was aware of this
fact, sketchers frequently exploited these configural cues to use strate-
gies other than 1-to-1 correspondence. While Experiment 2 provided an
in-principle demonstration that participants used shared features of
their physical environment to communicate number, it did so in a way
that is likely rare in the wild, as most sets seldom occur in reliable
configurations like rows and columns. Also, in both Experiments 1 and 2
we required participants to create representations of number de novo,
whereas people often use existing objects and their labels to express
number via ad hoc comparison to other objects. In keeping with these
considerations, in Experiment 3 we asked participants to communicate
number using a menu of familiar shapes that differed according to
numerically salient features (e.g., a pair of cherries, a four leaf clover,
etc.). We measured to what degree participants would seize upon these
numerical features to transcend the use of 1-to-1 correspondence, and
also what rules of composition they might use to express larger numbers.

1. Experiment 1

In Experiment 1, we conducted a preliminary investigation of how
people use ad hoc graphical representations to communicate number (i.
e., without the aid of existing symbols). Participants were paired up
online to play a sketching-based reference game and, on each trial, were
presented with four arrays of objects. One participant (sketcher) aimed
to produce a sketch that would help their partner (viewer) identify
which array they intended to refer to. To explore the impact of having
the specific need to communicate about number information, we
manipulated whether these arrays differed in the number or the kind of
objects they contained. We sought to characterize what strategies dyads
used to communicate when only number information was relevant, by
comparison to the baseline scenario in which only object identity was
relevant. Towards this end, we both analyzed the visual properties of
these sketches and recruited naive participants (recognizer) to interpret
them out of context, providing complementary insight into their content
and organization.

1.1. Methods

Experimental methods for this and subsequent experiments were pre-
registered using the Open Science Framework, available at: https://osf.
i0/4q3t9

1.1.1. Participants

Participants were recruited for two tasks: a communication task and
a recognition task. For the communication task, we initially recruited
134 participants from Amazon Mechanical Turk (AMT), who were
paired up to form 67 dyads who interacted with one another throughout
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an entire experimental session. Data from six sessions were excluded
according to our pre-registered criteria: four did not meet the perfor-
mance threshold of 50% accuracy, while two others did not follow task
instructions (e.g., having “drawn” text). Thus data from 122 participants
(N = 61 sessions) were included in further analysis. Of these partici-
pants, 117 individuals completed our optional demographic survey (53
female; age data was not collected due to a technical error). For the
recognition task, we recruited a total of 211 participants from Amazon
Mechanical Turk. Thirteen recognition participants were excluded ac-
cording to pre-registered criterion of missing any one of four catch trials,
and eight further participants were excluded for having participated in
the communication task, leaving 190 participants, of whom 165
completed our optional demographic survey (62 female; Mg, = 37.65
years, SDqg = 10.80 years). All participants provided informed consent
in accordance with our IRB.

1.1.2. Stimuli

Stimuli were visual arrays of objects, each containing a variable
number of identical shapes arranged in an arbitrary configuration. These
arrays could contain between 1 and 8 items and contain one of 4
different shapes (i.e., bear, deer, owl, rabbit silhouettes), resulting in 32
number x shape combinations. This range of numbers was chosen to
include values both above and below the subitizing range of ~3-4. To
preclude reliance on spatial cues, the configuration of objects within
each array was independently randomized for each participant and
across dyads.

1.1.3. Procedure

1.1.3.1. Communication task. The communication task was a sketching-
based reference game for two players (Fig. 2A), in which one participant
(the sketcher) created sketches to help their partner (the viewer) identify
one ‘target’ visual array at a time from three similar distractors. While
the complete set of target arrays was identical across all games (i.e.,
every game featured sets of 1-8 bears, deer, owls, or rabbits), the dis-
tinguishing feature between target arrays and distractors within each
trial varied between two conditions. Some dyads were randomly
assigned to the Shape condition (N = 29), in which all four visual arrays
on a given trial featured the same number of animals but differed in the
kind of animal they contained. Other dyads were assigned to the Num-
ber condition (N = 32), in which all four visual arrays featured the same
kind of animal but differed in the number of animals per array. For each
array shown to the sketcher, a corresponding array with the same
number and type of animal was shown to the viewer, but the spatial
configuration of animals was independently randomized for each
participant, to preclude reliance on configural cues. Both participants in
the dyad therefore had the same basis for inferring the which feature of
the visual arrays — number or shape — was relevant.

On each trial, the sketcher used a 500 x 500px digital canvas
embedded in a web browser to produce their sketch. They were required
to complete this sketch in less than 30 s, after which additional strokes
could not be registered. Also, they were told that they should not use
existing numerical symbols (e.g., 5, 6, 7) but that they could create new
symbols of their own (for complete instructions, see Supplemental Ma-
terials, section S1.1). After the sketch was complete, it was shown to the
viewer, who was then asked to select the array they thought was the
target, without a time limit. Then both participants received feedback:
the viewer was shown the identity of the target and the sketcher was
shown which array the viewer selected. There were 32 trials in each
game, such that each of the 32 number x shape combinations served as
the target exactly once. These 32 trials were divided into four blocks of
eight trials each, such that each number appeared once within each
block and each animal appeared twice.

1.1.3.2. Recognition task. Participants in the recognition task were
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Fig. 2. A. In the number condition (left), sketchers had to communicate one target image to a viewer from a set of images that differed in the number of objects. In
the shape condition (right), the set of images differed in the kind of object, but not the number. B. Left panel: viewer accuracy for games in each communication task
condition. Middle panel: Recognizer accuracy in providing number labels for sketches produced in the number condition (blue) and shape condition (gray). Chance
performance in dotted lines. Right panel: same as middle, but for recognizers providing shape labels. C. Average number of strokes in sketches for each tested
cardinality in both number (blue) and shape (gray) games. While a weak correlation exists in shape games, it is almost exactly 1 in number games (error bars are 95%
CI in all panels). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

presented with sketches produced in the communication task, and were
asked to identify shape or number information in each sketch. On each
trial, these participants were presented with a single sketch and several
buttons below. Buttons were either labeled with Arabic numerals or
animal shapes, depending on whether the participant had been assigned
to the Number or Shape recognition condition. Participants in the
Number group judged which numeral lying in the range 1-8 best
matched each sketch; participants in the Shape group judged which
shape (i.e., bear, deer, owl, or rabbit) provided the best match.

Each participant was presented with a total of 61 sketches, one
randomly sampled from each communication game (N = 61 dyads).
They were thus presented with sketches from both Number and Shape
communication games, and had to guess intended meanings while naive
to the communicative context in which the sketches were originally
produced. As an attention check, four catch trials were inserted at reg-
ular intervals throughout each session, where participants were pre-
sented with a sketch that matched one of the buttons exactly.
Participants were included in analysis only if they selected the matching
button in all four of these catch trials.

1.2. Results

1.2.1. Communicative strategy

We first asked whether participants communicated number or shape
information comparably. To this end, we measured (1) how accurate
pairs were, (2) how long sketchers took, (3) how much virtual ‘ink’
sketchers used, and (4) how many strokes sketchers used. We con-
structed mixed-effects regression models to predict each of the above
outcome variables, based on: communication condition (Number vs.
Shape), trial block number (i.e., 1-4), shape (i.e., bear, deer, owl, rab-
bit), and the number of objects in the target array (i.e., 1-8). In all linear
models, variation across games was modeled by fitting a random
intercept for each game.

These models revealed similarly high accuracy in both conditions (b

= —0.221, z = —0.623, p = .534; see Fig. 2B), but that Shape game
sketchers used more time and ‘ink’ to create their sketches (time: b =
6.288, t = 7.675, p < .001; ink: b = 0.034, t = 8.98, p < .001). Over
successive trial blocks, dyads in both conditions became more accurate
(b = 0.494, z = 5.745, p < .001), took less time (b = —1.369, t =
—23.051, p < .001), used less ink (b = —0.001, t = —4.742, p < .001),
and made fewer strokes (b = —0.553, t = —11.029, p < .001). These
results suggest that communication of number and shape was func-
tionally comparable, both in getting the point across and in doing so
better over time.

We found that participants were more accurate for smaller cardi-
nalities (b = —0.252, z = —6.001, p < .001), and produced more strokes
for larger cardinalities in Number games (b = 1.029, t = 15.782, p <
.001) but not Shape games (b = — 0.734, t = —7.767, p < .001), sug-
gesting that a 1-to-1 strategy was used only for communicating number
(Fig. 2C). To explore this, we therefore analyzed the ‘stroke ratio’ of
sketches. We reasoned that if the ratio of strokes (in a sketch) to objects
(in a target) was 1, this would indicate the use of 1-to-1 correspondence
(e.g., IIII to represent 4 objects), while a smaller number of strokes
would indicate the use of a compressed form (e.g., IV). With this mea-
sure, we found that 77.2% of Number-game sketches used 1-to-1 cor-
respondence (CL: [74.7, 79.8]) versus only 14.3% of Shape-game
sketches (CI: [12.1, 16.6]).

A qualitative analysis of the sketches (see Fig. 3) produced in these
games revealed that Number-game sketches sometimes used strategies
that we had not anticipated. One strategy featured the use of 1-to-1
correspondence, but was partially depictive, such that the configura-
tion of objects within the target array was mirrored by the configuration
of strokes within the sketch. Another strategy preserved 1-to-1 corre-
spondence, but not configural information, instead rearranging strokes
into patterns that appeared more geometrically regular than the random
arrays of objects in the target. A rarer strategy appeared to make use of
geometric shapes that correlated with the cardinality of the target array.
For example, one participant used a five-pointed star to communicate an
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array of 5 owls. In general, such strategies are consistent with historical in sketches, and whether this was affected by the relevance of each type
observations that humans draw on publicly available correlations in the of information (e.g., did Shape-game sketchers include irrelevant nu-
environment to communicate about number (e.g., Epps, 2006). merical information?). To answer this question, we asked each recog-
nizer in the recognition task to recover one type of information — number

1.2.2. Message content or shape — from sketches produced in the communication task. Each
We next asked how much number or shape information was included recognizer was presented with one sketch from every game (both
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Number and Shape games), and we measured the content of sketches by
recognizers’ ability to recover this information.

We constructed a binomial linear mixed-effects model, which
included communication game condition (i.e., number or shape),
recognition task condition (i.e., number or shape), communication game
trial block number (i.e., 1-4), and the interaction between communi-
cation game condition and recognition task condition as fixed-effects
predictors, and modeled variation between individual recognizers,
communication games, stimulus cardinality, and shape using random
intercepts.

Overall recognition accuracy was slightly lower for shape games
than for number games (b = —2.364, z = —23.860, p < .001), and was
also lower for recognizers trying to recover shape information rather
than number information (b = —1.732, z = — 20.109, p < .001).
Crucially, recognizers in both conditions were better at recovering in-
formation that was relevant in the original communication task than
information that was not relevant (b = 4.362, z = 50.604, p < .001;
Fig. 2B), suggesting that Number-game sketches included much more
number information than shape information (and vice-versa). In fact,
recovery of irrelevant information was close to chance (0.25) in shape
games at 20.8% (CI: [19.4, 22.3]), and also low, although significantly
higher than chance (0.125), in number games at 28.2% (CI: [26.8,
29.71). Finally, this model also revealed that recognizers were better
able to recover information from sketches produced early in communi-
cation games than sketches produced towards the end of the game (b =
—0.070, z = —3.819, p < .001), which suggests the emergence of some
dyad-specific conventions over the course of the communication games.

1.3. Discussion

In this experiment, we found that participants communicated effec-
tively about both number and shape, when each feature was commu-
nicatively relevant. To communicate about number, they
overwhelmingly relied on 1-to-1 correspondence, ignoring the shapes of
individual objects (and vice versa for shape). Also, we found that larger
numbers were communicated less accurately than smaller ones. This is
consistent with prior work that has found that larger cardinalities are
associated with noisier magnitude representations, particularly under
speeded conditions when counting is impractical. Finally, some dyads
generated novel strategies for encoding number and shape, as evidenced
by the fact that the representations they used were not interpretable to
independent “recognizers”. For example, some participants appear to
have taken advantage of the correlation between spatial configurations
and cardinality in order to create depictive, configural representations
of number.

These results are interesting for a number of reasons. First, despite
the fact that all of the participants in our studies were fully numerate
adults who were familiar with at least one numerical notation system (i.
e., the Arabic numerals) it was clearly not trivial to create arbitrary
representations of number de novo. This result provides experimental
evidence that creating novel conventions for number is a qualitatively
harder task than creating conventions for representing familiar objects.
It also establishes that this method can be used to explore how partici-
pants might overcome this challenge. Second, the results are interesting
because they demonstrate that the strategies preferred by participants
align with the most common early strategies used by human ancestors -
i.e., 1-to-1 correspondence that abstracts away from the identity of the
items being enumerated, and using correlations in the environment as a
proxy for cardinality. Participants created arrays of dots that ignored
shape information almost universally, similar to systems like those
attested in Greek, Hittite, Cretan, Aramaic, Mayan, etc. Also, although 1-
to-1 was readily available and easy to deploy, some dyads nevertheless
innovated, used configural cues, and produced forms that could not be
decoded by others, potentially compatible with the creation of novel
conventions.

In Experiment 2, we explored this last finding, and began to probe
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how participants might make use of publicly shared correlates of num-
ber to transcend the reliance on 1-to-1 correspondence. The history of
numerical symbols indicates that 1-to-1 representations sometimes
evolve over time into more arbitrary conventions by exploiting visual
regularities (Chrisomalis, 2020). For example, the way marks are
consistently arranged on each face of a 6-sided die allows for rapid and
efficient decoding and communication of numerical information. Such
configural cues are also exploited in the design of the abacus to facilitate
the recognition and manipulation of larger cardinalities (Frank &
Barner, 2012; Srinivasan, Wagner, Frank, & Barner, 2018), and in some
early writing systems, as described in the Introduction. In each case,
rather than counting each mark, people can map a recognizable visual
pattern onto a specific cardinality. Because humans are adept at
exploiting incidental correlations to communicate quantity (Cooperrider
& Gentner, 2019), it is possible that the presence of visual regularities of
sets in the world could facilitate the creation of compressed represen-
tations that exploit them. We explored this in Experiment 2 by creating
contexts that enhanced the availability of configural cues, while also
increasing the incentive to innovate by presenting participants with
larger sets.

2. Experiment 2

In Experiment 2, we manipulated the visual regularity of sets to ask
whether this might lead participants to produce sketches that were more
compressed (i.e., using fewer strokes to describe the same number of
objects), rather than relying on 1-to-1 correspondence. Specifically, we
manipulated whether sets of animals were arranged in a regular grid
pattern with columns of 6 animals each, or were instead arranged in an
irregular configuration, similar to Experiment 1. We reasoned that
regular configurations might promote compression, e.g., by allowing
participants to replace complete columns of dots with vertical lines, or
rows with horizontal lines, or to use shapes (like rectangles) to indicate
which grid of dots is intended. In addition, we shifted the range of
cardinalities that were tested from 1 to 8 (in Experiment 1) to sets that
were as large as 20 (in Experiment 2). We reasoned that, given that 1-to-
1 is a common strategy for representing smaller numbers, participants
might only have incentive to create compressed representations when
the cost of 1-to-1 grows, as with larger numbers. Moreover, because
people in serial reproduction experiments implicitly introduce regular-
ity into symbolic systems that render those systems easier for others to
learn (e.g., Kirby et al., 2008; see Wang, Lew, Brady, & Vul, 2023 who
show this with dot arrays similar to our stimuli), we expected stimuli
that already feature visual regularity to be easier for sketchers not only
to communicate about, but also to propose compressed forms that
viewers could accurately decode.

2.1. Methods

2.1.1. Participants

We recruited 200 participants on AMT, as in Experiment 1. Of the
resulting 100 games, 41 were excluded per our pre-registered criteria:
35 for scoring below our accuracy threshold of 50% (same as Experi-
ment 1),' and 6 for using existing numerical symbols. This left 29
irregular condition games and 30 regular condition games. Of the
remaining participants, 113 answered the optional demographic survey
(50 female; Myge = 36.46 years, SDqg = 11.07 years). Finally, an error in
recording reaction times affected 3 of the remaining games. Note that
while analyses reported below reflect these exclusions, results did not

1 This somewhat high exclusion rate might be explained by some participants
missing the part of the task instructions which explained that the positions of
the arrays were independently randomized for the sketcher and viewer. For
example, some sketchers always drew 1-4 marks, corresponding with the po-
sition of the target array among the distractors
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differ when data from these last 3 games were included.

2.1.2. Design, materials, and procedure

2.1.2.1. Materials. Stimuli were generated as in Experiment 1, with
three differences. First, only larger cardinalities (15-20) were used,
rather than smaller ones (i.e., 1-8). Second, these cardinalities were
presented in two different ways: For games in the Irregular condition,
the spatial layout of animal silhouettes was again generated by sampling
locations for each item at random as in Experiment 1. For games in the
Regular condition, however, the animal silhouettes were arranged in a
rectangular grid pattern, with each column containing 6 items and the
rightmost column containing the remainder (e.g., 15 had a remainder of
3 animals in the rightmost column; Fig. 4A). Finally, only three of the
previous animal types were used (i.e., bear, deer, and owl, but not
rabbit).

2.1.2.2. Procedure. The procedure was identical to Experiment 1, with
two important differences. First, participants saw each animal-
cardinality combination twice, once in the first half of the experiment
(18 trials) and once in the second half (18 more trials), rather than only
once as in Experiment 1. Further, each block of 6 trials contained one
instance of every cardinality as the target. Apart from these constraints,
the presentation order of stimuli was randomly shuffled within each
block of 18 trials. Second, sketchers and viewers saw each array in the
same spatial configuration as each other, allowing configural informa-
tion to be leveraged for communication. This was impossible in Exper-
iment 1, as spatial configuration was randomized independently for
each partner. Furthermore, for each sketcher-viewer dyad, arrays of
each cardinality were consistently presented in the same spatial
configuration across trials, making it possible for sketchers to use the
same configural cues to communicate about particular cardinalities
across trials — and thus to develop ad hoc graphical conventions. We did
not deem it necessary to explicitly inform participants of this fact, based
on our observation that in Experiment 1 most participants in the number
condition produced drawings that preserved information about how
objects were arranged in the target array, even when this information
was irrelevant (because the spatial configuration of objects shown to the
viewer was different).

2.2. Results’

2.2.1. Communicative efficiency

We first investigated communicative efficiency, which we measured
in three ways: (1) how accurate pairs were, (2) how long sketchers took
to make their sketch, and (3) how long viewers took to submit their
guess. We found that dyads in both conditions achieved high accuracy
(Regular: 83.7%, CI: [81.5, 85.9]; Irregular: 87.8%, CI: [85.9, 89.8]). We
constructed a binomial linear mixed-effects model to predict commu-
nicative success similar to Experiment 1, but also included an interaction
term between regularity and cardinality. As in Experiment 1, this model
revealed that dyads were more accurate when communicating small
numbers than large numbers (b = —0.122, z = —2.020, p = .043), more
accurate in later trial blocks (b = 0.421, z = 9.760, p < .001), and more
accurate in the Irregular condition than in the Regular condition (b =
—4.604, z = —3.173, p = .002). Sketchers took less time to communicate
regular arrays than irregular arrays (b = —4.363, t = -3.23, p = .002),
although there was no difference between conditions in the time that
viewers took to make their guesses (b = 22.1036, t = 1.349, p = .178).
This result could reflect the fact that sketchers could estimate arrays

2 Two pre-registered analyses are not reported. The first was a spatial clus-
tering analysis to measure visual chunking, and the second was a classification
task asking online participants to infer sketch strategies, as in Experiment 1;
both proved to be uninterpretable.
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more quickly when organized into groups (Atkinson, Campbell, &
Francis, 1976; Ciccione & Dehaene, 2020; Mandler & Shebo, 1982;
Starkey & McCandliss, 2014; Van Oeffelen & Vos, 1982) or that sketches
of regular arrays can be drawn more quickly than sketches of irregular
arrays. Together with the model predicting accuracy, these results sug-
gest that sketchers presented with regular visual arrays were quicker
than those shown irregular arrays, but that they communicated number
information less reliably (Fig. 4B & 4C). Additionally, while viewers
were slower and less accurate as target arrays grew in size, this effect
was smaller in the Regular condition than in the Irregular condition
(response time:b = —1.709, t = —2.295, p = .022; accuracy: b = 0.236, 2
= 2.942, p = .003). These results suggest that regular arrangements of
objects provide a more scalable representation of large numbers,
allowing viewers to decode the meaning of visual representations faster
despite the increasing size of sets and complexity of representations.

2.2.2. Communicative strategy

We next investigated the degree to which participants used 1-to-1 or
more compressed strategies to communicate about number, such as
relying on configural cues. As in Experiment 1, we did so by computing
stroke ratios, which should be close to 1 when participants use a 1-to-1
strategy and smaller than 1 when they use compressed strategies. Unlike
the Number condition of Experiment 1, in which participants used a 1-
to-1 strategy to communicate about number in 77.2% of trials, partici-
pants in Experiment 2 used much less frequently in both the Irregular
condition (17.5%, CI: [15.2, 19.8]) and the Regular condition (16.8%,
CI: [14.5, 19.0]). Instead, compressed strategies were common: whereas
Number condition participants in Experiment 1 employed compression
in only 2.9% of sketches, participants in Experiment 2 employed
compression frequently in both the Irregular (77.0%, CL: [74.5, 79.6]1)
and Regular (78.2%, CI: [75.7, 80.6]) conditions.

We constructed a linear mixed-effect model to predict the stroke
ratio of each sketch, which revealed that participants employed
compression to a similar degree regardless of the visual regularity of
arrays they had to communicate (b = —0.065, t = —0.993, p = .325).
Also, representations of larger cardinalities were significantly more
compressed than representations of smaller ones (b = —0.014, t =
—6.760, p < .001), and compression was greater in later trial blocks (b =
—0.013, t = —6.393, p < .001). Together, these results suggest that as
participants gained experience with the task, they became more effec-
tive at encoding number in their sketches, and that the regularity of
spatial arrangements had no effect on either the choice of strategies or
the amount of compression employed when participants did depart from
a 1-to-1 strategy.

2.3. Discussion

Experiment 2 asked whether visual regularities in an array of objects
help participants create compressed representations of number. While
participants in Experiment 1 were reluctant to communicate about
number information using strategies other than 1-to-1 correspondence,
sketches in Experiment 2 were much more compressed, relying sub-
stantially less on 1-to-1 correspondence. Two features of Experiment 2
may explain this finding. First, arrays in Experiment 2 were presented in
configurations - either regular or irregular - that were shared between
the sketcher and the viewer. Second, the sets in Experiment 2 were
larger than those in Experiment 1. Compatible with the idea that this
may have promoted compression, participants in Experiment 2 were
significantly more likely to use compressed representations for larger
sets than for smaller ones. This suggests that the incentive to create
compressed representations of number may be greatest when in-
dividuals are asked to communicate about large quantities - a fact that is
compatible with the historical record, in which systems often used 1-to-1
strategies for small numbers, but compressed conventions for larger
ones.

In both Experiments 1 and 2, we provided participants with
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Fig. 4. A. In the regular condition (left), all arrays were organized into columns of 6, with a remainder column on the right. In the irregular condition (right), arrays
were organized randomly, as in Experiment 1. B. Viewers were slightly less accurate when decoding sketches of regular arrays (error bars are 95% CI). C. Sketchers
made sketches in much less time when encoding regular arrays than irregular ones (error bars are 95% CI).

numerical arrays and asked them to spontaneously generate novel
symbols that might be used to represent number. These studies found
evidence that participants are eager to use shared correlates of number
to communicate, but also that generating conventions to represent
number de novo is no easy task in such contexts. However, as noted in
the Introduction, evidence from the historical record indicates that
conventions for labeling number and numerical measures rarely
emerged from purely arbitrary innovations, and very frequently arose by
processes of ad hoc comparison to ubiquitous, publicly available objects,
like body parts. Also, although numeral systems sometimes exploit
configural cues to represent number, most systems do not, perhaps
because configural cues are not reliable properties of the things that
humans wish to communicate about.

In Experiment 3, rather than burdening participants with the need to
create entirely novel representations from scratch, we probed their in-
terest in exploiting publicly shared correlates of number by providing
them with objects that could act as candidate conventions, by virtue of
their numerically relevant shapes (e.g., a pair of cherries, or a four-leaf
clover). This allowed us to not only explore this idea, but also to test
whether, when using such objects to communicate, participants show
evidence of using combinatorial rules akin to those found in numeral
systems in the attested historical record.

3. Experiment 3

Experiment 3 asked how, if at all, communicators would exploit
numerical features of familiar objects in their shared environment to
express number, and whether their use of such features might facilitate
the use of combinatorial rules. The use of ad hoc comparison to convey
quantity is frequently attested in human languages (Cooperrider &
Gentner, 2019; Epps, 2006), as is the combination of small number
words to express larger quantities (Comrie, 2011). To facilitate the
adoption of such ad hoc comparisons, we allowed participants to
communicate using visual tokens that featured conspicuous numerical
properties (e.g., a pair of cherries, a four leaf clover, etc.). These visual
tokens were included on a keyboard that participants used to commu-
nicate with a partner, and permitted the combination of multiple, con-
crete images to express larger numbers. We asked whether participants
would persist in using a 1-to-1 correspondence strategy (e.g., 1 clover or
pair of cherries per item), or instead use the numerical information
available in these images as symbols for number. Also, we asked whether
participants would adopt rules for combining these shapes, and if so,
which rules.

3.1. Methods

3.1.1. Participants

We recruited 110 participants from Prolific. Twenty-nine games
were excluded according to pre-registered criteria of finishing all trials
(10 games) and having a minimum of 50% accuracy (19 games), leaving
62 participants paired in 31 games (27 female; Myg = 26.48 years, SDgg
= 8.16 years). All participants provided informed consent as per the IRB.

3.1.2. Design, materials, and procedure

3.1.2.1. Materials. Stimuli were generated according to the same pro-
cess as in Experiments 1 and 2, but included both small and large car-
dinalities (1-16), and contained only dots instead of different kinds of
animals. This was because based on the results of Experiments 1 and 2,
the exact animals appeared to no longer be theoretically relevant. Rather
than a sketchpad, participants were presented with a virtual keyboard
consisting of four buttons. Each button featured a different natural ob-
ject, each of which had a different number of conspicuous physical
features ranging from 1 to 4 (Fig. 5A). These were an apple, a pair of
cherries, three connected oak leaves, and a four-leaf clover. There was
also a ‘delete’ key. While no explicit limit was told to participants, the
task interface limited messages to no more than 30 tokens — a limit
which was never reached.

3.1.2.2. Procedure. The procedure was similar to Experiments 1 and 2,
in that a sender (analogous to the sketcher) sent messages to a receiver
(analogous to the viewer) to communicate one image out of a larger set of
images. However, it was different in two respects. First, all 16 cardi-
nalities appeared once in the first half of the experiment, and once again
in the second half, for a total of 32 trials. Second, we reduced the total
number of images presented on each trial from 4 to 3 (i.e., 1 target +2
distractors). This was to discourage participants from trying to
communicate the ordinal position of the target image (e.g., 2nd from the
left) by using the ordinal position of the four response keys, which were
also arranged horizontally. Such a strategy would result in chance per-
formance, as the ordinal position of images was randomized indepen-
dently between partners. Like Experiment 1, the spatial configuration of
dots within each array was also independently randomized for each
partner, to preclude reliance on configural cues, as well as between
every two occurrences of that array within the task.

3.2. Results

3.2.1. Communicative efficiency
We measured communicative efficiency in three ways: (1) how ac-
curate pairs were, (2) how long senders took to make their message, and
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Fig. 5. A. In Experiment 3, participants communicated about arrays of dots that varied in quantity. Rather than a sketchpad, they communicated using a keyboard of
existing shapes. B. Relative frequency of each of the 4 shapes across all messages (error bars are 95% CI). C. Simpson’s diversity index of messages created to

represent sets of each cardinality.

(3) how long receivers took to submit their guess. To do this, we con-
structed linear mixed effects regressions, modeling the effects of cardi-
nality and trial number on each measured variable. Overall accuracy
was slightly lower than in Experiments 1 (91.9%) and 2 (85.7%), at
78.7%. As in Experiments 1 and 2, participants improved at the task as
they gained experience with it: dyads became more accurate over suc-
cessive trials (b = 0.062, z = 6.154, p < .001), senders took less time to
compose their messages (b = —0.180, t = —3.119, p = .002), and re-
ceivers took less time to make their guesses (b = —0.207, t = —2.374, p
=.018). Also similar to Experiments 1 and 2, larger cardinalities were
communicated less accurately than smaller ones (b = —0.147, z =
—7.13, p < .001), and more slowly both by senders (b = 1.279, t = 11.3,
p < .001) and receivers (b = 1.000, t = 5.849, p < .001).

3.2.2. Communicative strategy

We next investigated the degree to which participants used 1-to-1 or
compressed strategies to communicate number. Analogous to the stroke
ratio measure employed in Experiments 1 and 2, we measured token
ratio: the ratio between the number of tokens used within a message to
the cardinality of its target array. A ratio close to 1 would suggest the use
of 1-to-1 correspondence, while a ratio less than 1 would suggest the use
of a more compressed strategy. By this measure, participants in Exper-
iment 3 used 1-to-1 strategies in 14.9% of trials, similar to the 17.1% of
trials measured in Experiment 2, but much less than the 77.2% of trials
in the Number condition of Experiment 1. Removing trials in which the
target cardinality was 1 (1/16 of all trials), where the use of 1-to-1
would thus be indistinguishable from other strategies, this proportion
was only 9.2% - significantly lower than in Experiment 2 (Fisher’s exact
test; p < .001). Instead, compressed strategies were evident in 84.6% of
trials, suggesting that the use of 1-to-1 correspondence was relatively
infrequent overall and limited to a small number of games. Finally,
senders were also significantly more likely to compress information
when they were communicating larger cardinalities than smaller ones (b
=—-0.032,t=—7.286, p < .001), and this did not change over successive
trials (b = 0.001, t = 0.540, p = .589). This distribution of strategies
suggests that the presence of objects that support ad hoc comparison
helps communicators to employ strategies that bypass direct 1-to-1
correspondence between tokens and objects.

An exploratory linear model predicting accuracy from token ratio
revealed that compressed forms did not significantly contribute to
higher accuracy (b = —0.428, z = —1.175, p = .240), and may have
reduced accuracy as numbers became larger (b = 0.195, z = 3.166, p =
.0015). This may be because larger numbers could be expressed in a
greater number of ways, as they appear to have been in senders’ mes-
sages. For example, while there was only one attested form across all
games for expressing the number 1 (that is, a single apple token), there
were 5 unique forms for expressing the number 2, and 19 forms for
expressing the number 12. Furthermore, the share of trials exhibiting the
most commonly used form for each number dropped as numbers

increased. While all 62 occurrences of the number 1 were represented by
a single apple, the most common expression for the number 2 was used
51 times, and the most common expression for 12 was used only 29
times. This is reflected in the Simpson’s diversity index of messages used
to represent sets of each cardinality, which is close to 0 when the same
expression is always used to represent a cardinality, and close to 1 when
many different expressions are used to represent a cardinality, with
equal frequency. In our data, this index is closest to O for the smallest
cardinalities, and is close to 1 for large cardinalities (Fig. 5C).

3.2.3. Rule use

We next performed several exploratory analyses to determine which
strategies were employed. We first asked whether participants made use
of different kinds of rules in their messages. To do this, we measured the
Levenshtein distance® (Levenshtein, 1966) between messages that
senders produced and each of four model strategies. For any given game,
the distance of every message from a model system was summed over all
trials, providing a measure of how closely the sender in that game
adhered to the use of one strategy or another. Finally, the distance of
each game to one or another strategy was compared, and each game was
assigned the strategy of the model to which it had the shortest distance.

The four possible strategies we assessed were: 1-to-1, cumulative-
additive, place-value, and a ‘single token’ strategy. The 1-to-1 strategy
entails repeating one shape as many times as there were objects in the
target set (e.g., using 4 apples to represent a set of 4). The cumulative-
additive strategy involved summing tokens to communicate a number,
but drawing on the more complex shapes to represent the numbers 2, 3,
and 4 (e.g., using 2 cherry pairs plus 1 apple to represent 5). Under this
strategy, expressing numbers greater than the largest image (the four
leaf clover) involved repeating that image as many times as 4 could be
divided into the number, with a remainder expressed via other shapes
with smaller cardinal meanings. For example, the number 10 might be
expressed as clover-clover-cherries, or 442. The third strategy, which we
expected to be quite unlikely, was a place-value system, similar to
Arabic notation. In a system with only 4 possible shapes to use as
symbols, the second place value represents multiples of 4, such that a
shape representing 1 (e.g., apple) produces a value of 4, while a shape
representing 2 (e.g., cherry) produces a value of 8, such that a string like
cherry-apple represents 9. Finally, we modeled an ordinal system, where
the characteristic cardinality of the shape chosen represented the
ordinal position of the target among the distractors, ignoring their car-
dinality entirely (i.e., 1 apple for 1st set from the left, a pair of cherries
for 2nd, etc.).

3 A measure of string distance defined as the number of character insertions
and deletions required to turn one string into another, often used in studying
artificial symbol systems (e.g. Cornish, Dale, Kirby, & Christiansen, 2017;
Vokey & Brooks, 1992).
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This analysis suggested that most games relied on a cumulative-
additive system (17 games), while a smaller number relied primarily
on 1-to-1 correspondence (3 games). A cumulative additive system is
also reflected in the frequency of each token (apple, cherries, oak leaves,
and clover): the apple and clover were the most common tokens
(Fig. 5B). Preliminary classifications suggested that 6 additional games
were closest to the ordinal strategy, and 5 to the place-value system.
However, on closer, qualitative inspection, the strategies in these latter
two groups of games may reflect a naive grouping strategy, where
groups of objects in the target image are represented in order as they’re
viewed, so that 8 objects arranged into groups of 1, 2, 1, 3, and 1 are
represented as 12,131. Given the observed distribution of strategies, the
cumulative-additive strategy may be the only strategy reliably used by
participants across our studies to feature a regular syntax — perhaps
enabled by the change of communicative medium.

3.2.4. Order

Finally, one property of the cumulative-additive system that was
common across games was the arrangement of tokens in a decreasing
order, where ‘smaller’ tokens were always to the right of larger tokens
(e.g., 442 is decreasingly ordered but 424 or 244 are not). Overall,
87.7% of messages were decreasingly ordered in this way, a number that
did not significantly differ between correct and incorrect trials (88.1%
and 86.3%). To understand whether this trend should be expected by
chance, we generated a random message for each trial, such that the sum
of all tokens in the participant’s message and the random message were
the same. We then used a permutation test to ask whether our random
messages exhibited decreasing order as often as participants’ messages,
and found that participants’ messages were significantly more likely to
be decreasingly ordered (¢t = 8.24, p < .001). This preference was found
across most games, and may have facilitated the process of reading those
messages. Exploratory t-tests indicate that the reaction time of receivers
was much faster when confronted with decreasingly ordered messages
from their sender (t = 5.21, p < .001). More surprisingly, a similar trend
holds for the time it took senders to construct their messages, as
decreasingly ordered messages were also faster to make (t = 5.742, p <
.001), though this trend may owe itself to faster reactions and better
performance of those participants who also opted to use this strategy,
rather than an effect of the strategy per se.

3.3. Discussion

In Experiment 3, we provided participants with pictures of familiar
objects that had stable numerical properties (e.g., a pair of cherries, a
four leaf clover), and asked whether they would exploit these properties
to communicate about number. We found that few participants persisted
in using 1-to-1, and that most instead used the features of provided
objects to compress their representations of number. The prevalence of
compressed strategies (84.6%) was slightly greater than in Experiment 2
(77.6%). Unlike Experiment 2, however, the modality of Experiment 3
required participants to arrange a set of discrete shapes in a linear order.
Given this constraint, many participants invented a numerical base out
of the 4-leaf clover shape with the result that most messages in shared
two features that are characteristic of historically attested numeral
systems. One feature was the use of a cumulative-additive structure,
taking advantage of the highest available base (e.g., expressing 5 as
clover + apple, rather than as cherries + cherries + apple). The other
characteristic feature was the ordering of tokens from largest to smallest,
similar not only to the familiar Arabic numeral system, and also to the
majority of linear numeral systems in historical record (Chrisomalis,
2020).

4. General discussion

Across three experiments, we investigated how humans create and
combine symbols to express number. In Experiment 1, we found that
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when participants were asked to communicate about number to a
partner, they often created sketches that used a 1-to-1 correspondence
strategy: For each object in a set, they generally created one corre-
sponding dot, mark, or sketch of that thing. However, they sometimes
used configural cues to express number, and in some cases, dyads used
representations that could not be decoded by independent participants,
potentially compatible with the creation of new conventions. In Exper-
iment 2, we directly explored this finding, and found that when con-
figural cues were reliably available across trials participants used 1-to-1
correspondence to communicate number much less frequently, and
often used compressed representations that exploited configural cues. In
Experiment 3, rather than requiring participants to invent new con-
ventions de novo, we asked whether they would exploit publicly shared
correlates of number by providing them with shapes that could act as
candidate conventions (e.g., a pair of cherries, or a four-leaf clover).
Here we found that participants rarely used 1-to-1 correspondence in
favor of compressed representations, and also that when they combined
shapes to communicate number, they often used a descending
cumulative-additive structure, using the largest available “symbol” as a
base (i.e., the clover).

These results suggest two main conclusions. First, the problem of
creating entirely novel representations of number may be uniquely
difficult when proxies for number, like shape, are not available in the
communicative context. Whereas Shape game participants in Experi-
ment 1 readily created conventions that used minimal strokes and were
hard for naive “recognizers” to decode (as in Garrod et al., 2007;
Hawkins et al., 2023), participants in Number games invented conven-
tions much less often, as reflected both by their persistent use of one-to-
one correspondence and the relative ease with which recognizers iden-
tified the target numbers communicated by sketches. This was despite
the fact that our participants were numerate adults who were familiar
with western Arabic numerals. However, a second conclusion is that
participants readily create compressed representations of number when
non-numerical proxy representations are available in the context.
Although most participants in Experiment 1 relied on 1-to-1 corre-
spondence, some tried to communicate number by preserving the con-
figural cues contained within stimuli. In Experiment 2, when these
configural cues were more robust and reliable (i.e., arranging objects
into rows in a consistent manner), participants frequently departed from
the use of 1-to-1 strategies. Finally, this reliance on shape information
was strongest when shapes of familiar objects - like apples, or clovers -
could be combined to express number (Experiment 3).

As noted in the Introduction, humans often use ubiquitous and
publicly available objects like hands, feet, and other body parts to count,
and often use labels for these parts to subsequently name different car-
dinalities (Dahl, 1981; Epps, 2006; Heine, 2004; Rischel, 1997). Also, in
at least some languages, small sets are labeled using names for common
objects that feature specific numbers of things - like the number of seeds
in a fruit, the number of eyes on one’s head, or the number of fingers and
toes on one’s body (Epps, 2006). Similar practices of so-called ad hoc
comparison can also be found in the history of measurement systems
(Cooperrider & Gentner, 2019), but also in other cases such as color,
where hues are labeled via metonymy, using the names of things in the
local environment that have the same color (e.g., orange, lilac, gold, etc.;
Casson, 1994). The logic underlying such instances of metonymy may
help explain why participants in Experiments 1 and 2 did not create
novel conventions as readily as in other studies of graphical communi-
cation. For example, in a study by Fay et al. (2010) some participants
conveyed the concept parliament by initially sketching members of
parliament sitting at tables with the Australian flag, but later included
only the flag, which sufficed as an index of the concept even without the
depiction of the people. This was possible because the concept parlia-
ment is associated with multiple imageable components which, after
being used collectively to identify the intended referent, can be subse-
quently reduced to only one element (e.g., a flag) to create a convention.
However, such a strategy is often not available in the case of number,
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since in a set of, e.g., four ducks, no individual duck has any feature that
can alone communicate the cardinality four. The use of 1-to-1 corre-
spondence appears to be overcome only when there exists an imageable
correlate of number, such as a spatial configuration, or a shape or name
that is strongly associated with a particular cardinality (e.g., eyes, clo-
vers, etc.).

In addition to finding that participants often use physical correlates
of number to communicate about large quantities, the results from this
study also suggest ways in which the medium of numerical symbols may
impact the form that they take. Whereas the reference sets in all ex-
periments — as well as the communicative medium in Experiments 2 and
3 — were two-dimensional visual arrays, only in Experiment 3 did the
communicative medium require a strict linear ordering of component
shapes. This appears to have led participants to create combinatorial
representations of number, perhaps by prompting them to reflect on
their strategy for encoding the objects in the target set. This is poten-
tially important, because previous theories of the history of number
posit that abstraction occurs when representations transition from
purely referential meanings towards meanings that are defined by re-
lations between elements within the symbolic system. New abstractions,
like the rules that govern written numerals, are made possible by the
affordances of the symbolic medium in which the system is instantiated -
in this case a linearly ordered sequence (Overmann, 2018).

While this collection of exploratory studies provides a first step to-
wards understanding the processes that underpin the creation of nu-
meral systems, they had several notable limitations. One is that some of
our pre-registered analyses proved intractable in the face of the data we
collected. For example, a planned analysis of spatial clustering of strokes
within sketches was unable to meaningfully recover coherent clusters
that were apparent to the human eye (e.g., dotted lines drawn by par-
ticipants), rendering results of that analysis questionable. Also, we
initially planned to conduct a recognition task in Experiment 2 that
paralleled Experiment 1, but found that participants gave highly
divergent and often uninterpretable responses to sketches, making it
unclear whether the labeling techniques we offered them were under-
stood. Another limitation is that our methods did not make it possible to
easily identify the cognitive steps involved in the creation of number
representations. For example, it is possible that some participants in
Experiments 1 and 2 did not even consider creating summary repre-
sentations of cardinality, and instead tried to communicate the visual
patterns present in arrays, rather than number.

Another limitation, common to communicative games, is that par-
ticipants in our study could only communicate via the medium we
provided to them, and were not allowed to directly tell partners what
symbols meant. This constraint was important to precluding uninter-
esting strategies in our numerate participants (like creating a direct
translation of existing numerals). If laboratory participants were
allowed to make explicit agreements, they could easily bypass the most
important communicative obstacle to creating numerals from scratch by
using known symbols as anchors for creating new ones - e.g., by
explicitly agreeing to replace “5” with “%” (or some novel form). Also,
we felt that our method might simulate the challenge of expressing exact
number when existing symbols are absent, since this requires expressing
number via some other medium or strategy. Still, most number systems
almost certainly evolved through processes of conspiracy among com-
munity members, in which individuals worked together to create, agree
upon, and teach new symbols. Exploring how such collaborative pro-
cesses might work when existing numeral conventions are not available
should be explored further in future work. Indeed, another limitation of
our study is that all of our participants were numerate adults. Although
their numeracy proved to be of little help in creating novel systems, it
remains an interesting question whether innumerate adults or young
children might deploy different strategies - a question we are currently
exploring.

In summary, results from three experiments suggest that when
numerate adults are tasked with devising novel ways to communicate
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about number, they often default to using 1-to-1 correspondence, but
also readily exploit visual correlates of number to efficiently convey
representations (e.g., configural cues or objects that canonically appear
in certain numbers). Features of the medium of communication may also
influence the creation of conventions by limiting degrees of freedom,
and by prompting communicators to spontaneously organize their
messages in novel ways.
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