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A b s t r a c t

We i nt r o d u c e t w o- s c al e l o s s f u n c ti o n s f o r u s e i n v a ri o u s g r a di e nt d e s c e nt al g o ri t h m s a p pli e d
t o cl a s si fi c a ti o n p r o bl e m s vi a d e e p n e u r al n e t w o r k s. T hi s n e w m e t h o d i s g e n e ri c i n t h e s e n s e
t h a t i t c a n b e a p pli e d t o a wi d e r a n g e of m a c hi n e l e a r ni n g a r c hi t e c t u r e s, f r o m d e e p n e u r al
n e t w o r k s t o s u p p o r t v e c t o r m a c hi n e s f o r e x a m pl e. T h e s e t w o- s c al e l o s s f u n c ti o n s all o w t o f o c u s
t h e t r ai ni n g o nt o o bj e c t s i n t h e t r ai ni n g s e t w hi c h a r e n o t w ell cl a s si fi e d. T hi s l e a d s t o a n
i n c r e a s e i n s e v e r al m e a s u r e s of p e rf o r m a n c e f o r a p p r o p ri a t el y- d e fi n e d t w o- s c al e l o s s f u n c ti o n s
wi t h r e s p e c t t o t h e m o r e cl a s si c al c r o s s- e nt r o p y w h e n t e s t e d o n t r a di ti o n al d e e p n e u r al n e t w o r k s
o n t h e M NI S T, CI F A R 1 0, a n d CI F A R 1 0 0 d a t a- s e t s.

1 I n t r o d u c ti o n

We i ntr o d u c e i n t hi s arti cl e a n o v el m ulti- s c al e p er s p e cti v e o n l o s s f u n cti o n s t h at ar e criti c al
f or t h e tr ai ni n g p h a s e of m a c hi n e l e ar ni n g al g orit h m s. T h e m ai n i d e a of t h o s e a d diti o n al s c al e s
i s t o all o w t o f o c u s t h e tr ai ni n g o n t h e o bj e ct s i n t h e d at a s et s t h at ar e still p o orl y h a n dl e d b y
t h e al g orit h m s. A s a fir st st e p i n t h e pr e s e nt arti cl e, w e f o c u s o n t w o- s c al e l o s s f u n cti o n s. O n e
a d v a nt a g e of o ur m ulti- s c al e l o s s f u n cti o n s i s t h at t h e y c a n g e n eri c all y b e a p pli e d t o wi d e r a n g e of
pr o bl e m s a n d t e c h ni q u e s f or l e ar ni n g al g orit h m s, a s t h e y d o n ot r e q uir e a n y c h a n g e i n t h e str u ct ur e
of t h e m et h o d b ut o nl y a str ai g htf or w ar d m o di fi c ati o n of h o w t h e l o s s or c o st i s e sti m at e d. H o w e v er,
f or si m pli cit y i n t hi s arti cl e, w e d e s cri b e a n d t e st t h e m et h o d s o n cl a s si c al cl a s si fi c ati o n pr o bl e m s
b a s e d o n d e e p n e ur al n et w or k s t e c h ni q u e s.

D e e p n e ur al n et w or k s ( D N N s) ar e c o m m o nl y u s e d f or cl a s si fi c ati o n pr o bl e m s, gi v e n t h eir d e m o n-
str at e d p erf or m a n c e ( s e e f or e x a m pl e t h e r e vi e w [ 1]). T o bri e fl y s u m m ari z e, t h e g o al of a cl a s-
si fi c ati o n al g orit h m i s t o pr e di ct t h e cl a s s, i(s ), of e a c h o bj e ct i n s i n a gi v e n d at a s et. D e e p
l e ar ni n g al g orit h m s t y pi c all y l e a d t o st ati sti c al cl a s si fi er s wit h a n o ut p ut of pr e di ct e d pr o b a biliti e s,
p = ( p 1 (s ), p2 (s ), . . . , pn (s )), w h er e p i (s ) i s t h e pr e di ct e d pr o b a bilit y t h at p b el o n g s t o t h e i-t h cl a s s.
O n e t h e n u s u all y a s si g n s t h e i n d e x of t h e l ar g e st pr o b a bilit y a s t h e pr e di ct e d cl a s s.

T o e v al u at e t h e p erf or m a n c e of a cl a s si fi er, o n e m a k e s u s e of a s o- c all e d t e st s et T ∈ S , o n w hi c h
t h e c orr e ct cl a s s i s k n o w. T h er e ar e v ari o u s m e a s ur e s of p erf or m a n c e, w hi c h m a y h a v e di ff er e nt
b e h a vi or s. T h e o v er all a c c ur a c y of T ,

a c c T (φ (α )) =
# { s ∈ T : p i ( s ) = m a x 1 ≤ i ≤ K p i }

# T
,
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is a common choice, together with other measures such as the average accuracy which estimates the
accuracy on each class and then takes the average. Overall accuracy (together with other accuracy
measures) has the drawback of not considering the actual predicted probabilities and for this reason
does not reveal the full picture of DNN performance. For example, consider two objects s1 and
s2 and suppose there are only 2 classes. If pi(s1) = 0.51 and pi(s2) = 0.99, the object s2 is clearly
classified better, but both would just be classified as correct and have the same impact on overall
accuracy. Alternatively, if pi(s1) = 0.01 and pi(s2) = 0.49, both objects are classified incorrectly and
neither object would contribute to the accuracy. However the classifier is clearly doing a better job
on s2. From this example, we see the need for other measures of performance which can take into
account how close objects are to being correctly classified with respect to probability.

One such example is top-k performance, which counts the objects whose probabilities for the
correct class are one of the k largest. Top-k is used frequently in image classification, e.g. the
CIFAR100 data-set and Imagenet [2, 3]. In addition, the CIFAR100 data-set in particular has
several classes which are similar, so an alternative set of “super”-classes, groups of 5 similar classes,
are used to measure performance as well [2]. We will also make use of another measure that
estimates “close-enough” performance to better capture those objects that are close to being well
classified.

When attempting to improve the performance of a classifier, one can try to adjust the structure,
e.g. number, width, and type of layers, of the DNN classifier according to the specific classification
problem. Several DNNs have already incorporated multi-scale structures in order to improve perfor-
mance of certain problems, e.g. in image classification [4], spacecraft control [5], biology [6], and the
MscaleDNN network in PDEs [7]. In all of these cases the structure of the DNN, described in Sec.
2, is modified in order to extract multi-scale features which appear naturally in these problems. For
example, in image classification, features are found at different scales, corresponding for instance
to the contours of objects of very different sizes. These multi-scale neural networks aim to ensure
that all of these features are each captured by creating the appropriate scales in the structure of
their network. Additionally multi-scale average loss functions are studied, where the scales appear
through variations in the data set and due to the network structure [8].

On the other hand, techniques not specific to a type of classification problem are used as well,
such as developing new training procedures, e.g. ADAM optimization for DNNs [9], or choosing
alternative loss functions, as in [10]. Our multi-scale loss function is in that spirit as it leaves the
structure of the network fully unchanged.That makes it applicable to a wide variety of DNNs used
for classification, including those with multi-scale structures.

We note that in general the connection between changes in the loss function and the performance
on the test set is delicate and not immediate. A first issue results from the fact that the performance
can be measured both on the training set TR and the test set T , which are typically separate,
T ∩ TR = ∅. In general increasing performance on the training set does lead to an increase of
accuracy on the test set in practice, however that outcome is not guaranteed. Even on the training
set, there may not always be an immediate connection between a decrease in the loss function leads
and an increase in accuracy, leading to various questions of stability for study as in [11].

We describe a basic structure of the type of DNNs that we use in Sec. 2. We present in the same
section our two-scale loss function and explain the procedure to select its scales in order to focus
training onto objects which are close to being correctly or incorrectly classified (e.g. pi(s) ≈ 0.5 if
there are 2 classes). In Sec. 3 we compare the two-scale loss function against a traditional single
scale loss function for various measures of performance for several data-sets, MNIST, CIFAR10, and
CIFAR100. We see large and clear improvements from a small increase of computational complexity
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for each of the data-sets tested for appropriate measures of performance.

2 Two-scale loss functions

2.1 Review of DNN Notation

We first give a brief description of the classification problem. A set of objects S ∈ Rn, is
considered. Each object s ∈ S belongs to exactly one of K classes where each class is denoted by
an integer between 1 and K. The class to which an object belongs is called the correct class and
denoted by an integer 1 ≤ i(s) ≤ K. However the correct class is only known on a finite subset
TR of S, called the training set. The aim of the classification problem is to approximate i(s) on
all objects in S, by using the training set where i(s) is known. To approximate i(s), an family of
classifiers φ(α, s), defined by the parameter α ∈ Rµ is considered. This family of classifiers has an
output of a finite probability distribution,

φ(α, s) = (p1(α, s), p2(α, s), . . . , pK(α, s)),
K∑
i=1

pi = 1, 0 ≤ pi ≤ 1,

where each pi denotes the probability of belonging to the ith class. This is a “soft” or statistical
classifier which gives a probability distribution as an output instead of a class. We can have the
DNN predict which class an object belongs to by taking

arg max
1≤i≤K

pi,

as the predicted class. Since i(s) denotes the correct class, if the predicted class is i(s) then we say
that the object is correctly classified by the DNN.

To describe our original motivation for a two-scale loss function, some basic notations for deep
neural networks for the classification problem are introduced. We consider a DNN as a composition
of M layers, where the first M − 1 layers are compositions of a linear operation followed by a
non-linear operation,

Y l+1
i =

Nl∑
j=1

αl+1
i,j X

l
j , l = 0 . . .M − 2, i = 1, 2, · · ·Nl+1 (1)

X l+1
i = λ

(
Y l+1
i

)
, l = 0 . . .M − 2, i = 1, 2, · · ·Nl+1.. (2)

The value Nl denotes the dimension of the lth layer and X l ∈ RNl is the vector of values at the lth
layer. The terms αl+1

i,j are defined by the parameter α and define the linear operation. The function
λ : R→ R is a nonlinear activation function, with a popular choice being the Rectified Linear Unit
(ReLU), λ(x) = max(x, 0) [12]. For the final layer we consider a probability normalization function,
h : RK → RK , satisfying

K∑
i=1

h (x)i = 1 and 0 ≤ h (x)i ≤ 1 ∀1 ≤ i ≤ K.

and an order-preservation property

xi < xj =⇒ h (x)i < h (x)j for all 1 ≤ i, j ≤ K.
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While our motivation applies to any probability normalization function with order preservation, we
will focus on the frequently used soft-max function,

XM
i := pi (α, s) =

eX
M−1
i

K∑
j=1

eX
M−1
j

, i = 1 . . .K, (3)

in order to clearly explain our motivation for the two-scale loss function.
The structure of a DNN refers to choice of the number of layers, the dimension of each layer,

and the type of linear map chosen. For example the matrix al+1 = [al+1
ij ] ∈ RNl×Nl+1 defining the

linear layer may have restrictions, e.g. al+1 can be restricted to be a Toeplitz matrix, which creates
a type of layer known as a convolutional layer [13]. If there are no restrictions on al+1 then the
layer is called fully connected. Additionally a layer may have no parameters defining (1), and may
instead have a predefined function, e.g. taking the maximum of every 4 elements (assuming Nl is
divisible by 4),

Y l+1
i = max{x4i+1, x4i+2, x4i+3, x4i+4}, i = 1, 2, · · · , Nl/4 = Nl+1,

which is an example of a layer known as a max pooling layer. Much more complex DNN structures
have been introduced, but we will focus on DNNs with layers defined via (1)-(2) for the motivation
of our two-scale network.

To choose a good classifier from the family φ(α, s), i.e. to identify a good choice of parameter
α, one introduces a so-called loss function defined on each object; a typical choice being the cross
entropy,

L(α, s) = − log(pi(s)(α, s)). (4)

The average loss over the training set can then be defined by

L̄(α) =
1

#TR

∑
s∈TR

L(α, s). (5)

Note that the minimum L̄(α) = 0 is reached if and only if pi(s) = 1 for each object s, that is if the
classifier is perfect.

The identification of an appropriate set of parameter α is performed during the so-called training
phase. The goal of the process is find α with L̄(α) as small as possible. Various optimization
algorithms can be used in that regard; early on, iterative gradient descent (GD) algorithm,

αn+1 = αn − τ∇αL̄ (αn) , (6)

were commonly employed. Here n denotes the step of training and α0 is the random initial choice
of parameters.

However, as the training set can be rather large (and is ideally very large to ensure good
performance), this leads to a large computational cost for each step of (6). For this reason, variants
of GD such as the stochastic gradient descent (SGD) are usually preferred nowadays. SGD for
example can be seen as using a randomly sampled loss, instead of the full averaged loss L̄(α, s),
which is given at each step n by

L̂n = L(α, s) =
1

#B

∑
s∈Bn

− log(pi(s)),
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where Bn is set of #B randomly selected objects from the training set. The term #B ∈ N is
called the batch size. How to choose the initial parameter value α0 can be another delicate point;
random initial α0 have proven popular with for example each term in α0 chosen from a Gaussian
distribution.

2.2 Motivation for a two-scale loss function

We recall that, if the output of the DNN for an object s satisfies,

pi(s) (α, s) > max
1≤i≤K,i 6=i(s)

pi (α, s) ,

then we refer to s as correctly classified since the probability of belonging to the correct class i (s)
is the highest. Additionally since soft-max is order preserving, s is correctly classified if

XM−1
i(s) (α, s) > max

1≤i≤K,i 6=i(s)
XM−1
i (α, s) . (7)

We also consider that the linear activation function is often homogeneous of degree one, which is the
case for the ReLU or absolute value function. This results from each layer (1)-(2) being homogeneous
of degree one with respect to α as a composition of a linear function and a homogeneous activation
function. Each XM−1

i (α, s) is then homogeneous of degree M − 1 with respect to α,

XM−1
i (cα, s) = |c|M−1XM−1

i (α, s) . (8)

Observe that if we multiply the parameter α in (7) by some scalar c, we can use the homogeneity
to show that

XM−1
i(s) (cα, s) > max

1≤i≤K,i6=i(s)
XM−1
i (cα, s)⇐⇒ |c|M−1XM−1

i(s) (α, s) > |c|M−1 max
1≤i≤K,i 6=i(s)

XM−1
i (α, s) ,

which is equivalent to (7) without the scaling term c for the parameter α. As a result which class
has the largest probability, second largest probability, etc., does not depend on the size of the
parameters α, which we may simply scale as

R =
(
ΠM−1
i=1 ‖(α

i)‖
)
, (9)

where αi is the vector of all parameters defining the linear layer #i in (1). The norm ‖ · ‖ is the
Euclidean norm. Note that R is positive so we do not need the absolute value sign, when applying
the homogeneity property to R.

Since R does not affect the order of the probabilities, scaling the parameters does not affect the
accuracy, top-k accuracy, or Rand index for example. These measures of performance only depend
on the direction of α which we define as follows

α̂ =
α

R
1

M−1

.

This leads us to introduce the normalized values at the layer before soft-max by

X̂M−1
i (α (t) , s) := XM−1

i (α̂ (t) , s) .
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To see how R influences the loss function we rewrite (4) in terms of X̂m in order to see the influence
of the size of the parameters, R. First note that by combining the soft-max function (3) with the
cross-entropy loss function (4), one obtains

L (α, s) = − log

 e

(
XM−1

i(s)
(α,s)

)
∑

1≤i≤K
e(X

M−1
i (α,s))

 = − log

 e

(
RX̂M−1

i(s)
(α,s)

)
∑

1≤i≤K
e(RX̂

M−1
i (α,s))

 .

Dividing both the numerator and denominator inside the logarithm by the numerator yields

L (α, s) = − log

 1

1 +
∑

1≤i≤K,i 6=i(s)
e
R
(
X̂M−1

i (α,s)−X̂M−1
i(s)

(α,s)
)
 . (10)

If an object is classified correctly, then XM−1
i(s) (α, s) is the largest component of XM−1 (α, s). Then

each exponent in (10) is negative, showing that if R → ∞ then L (α, s) → 0 and all correctly
classified objects are perfectly classified. However sending R → ∞ would make all objects which
are not correctly classified, even those with classification confidence near zero, very poorly classified.
If all objects are correctly classified after some time then it is possible to show that R → ∞, see
[14].

Next we define the classification confidence of an object in the test set T or training set TR as

δX (α, s) := XM−1
i(s) (α, s)− max

i6=i(s)
XM−1
i(s)+1 (α, s) .

and the normalized classification confidence as

δX̂ (α, s) := XM−1
i(s) (α̂, s)− max

i6=i(s)
XM−1
i(s)+1 (α̂, s) = δX (α̂, s) =

δX (α, s)

R
.

If δX (α, s) > 0 then XM−1
i(s) (α, s) would be the largest component of XM−1 (α, s). Therefore

the probability of belonging to the correct class, pi(s) (α, s), would be the largest and s would be
correctly classified. Similarly if δX (α, s) < 0, then the maximum probability is not pi(s) (α, s) and
s is incorrectly classified. Additionally δX (α, s) is uniformly Lipschitz continuous with respect to
s as a composition of Lipschitz functions (1)-(2). Therefore a small change in s will not change the
classification of s.

We now introduce the set of well classified objects with confidence η ≥ 0

Wη,I (α) = s ∈ I : δX (α, s) > η, I ⊂ S.

The accuracy of the DNN with parameter α can be recovered immediately with

acc (α) =
#W0,T (α)

#T
. (11)

The dependence of #Wη,T on η and more generally the distribution of δX(α, s) with respect to s
provides a significantly larger amount of information about the performance of the network than
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other measures of performance, e.g. overall accuracy. For example if #Wη,T is large for η = 0 but
sharply decreases as η grows, we can infer that many objects are just barely classified correctly.

It has already been recognized that cross-entropy loss functions may not always be the best and
there have been many proposed changes to the cross-entropy loss function in an attempt to improve
accuracy or resistance to noise in the training set; see [15, 16, 17]. For example, the paper [15]
introduced a truncated loss function as

LTrunc (α, s) =

{
− log(k) if pi(s) < k

L (α, s) if δX (α, s) ≥ k
, (12)

for 0 ≤ k ≤ 1. If an object has a very low probability for the correct class the loss for that single
object cannot exceed − log(k). As a result a single object can not contribute a very large amount of
loss, thereby mitigating the effect an outlier or mislabeled object might have on training. If k = 0,
LTrunc reverts to the traditional loss function as pi(s) can not be less than 0. This choice of loss
function increased the performance of the chosen DNN on several data-sets where noise was added,
though accuracy was somewhat lower when noise was not added.

The main idea in this article is to instead focus training onto objects which are not yet well
classified. For objects in Wη,TR (α), if R is large, the exponent for each term in (10) decreases,
and pushes L (α, s) closer to 0 irrespective of α̂. Therefore if R is increased only for objects
δX(α, s) > η, the loss decreases on the well classified objects and training should focus on the
other, not well classified objects.

To this end, the introduced loss functions will split the training set into two cases, one for the
set of well classified objects in the training sets, Wη,TR (α), and another for the remaining objects.

2.3 Two-scale loss functions

This leads us to the definition of the two-scale loss function as

L2,η ((α,R1, R2) , s) =



− log

 1

1 +
∑

1≤i≤K,i 6=i(s)
e
R1

(
X̂M−1

i (α,s)−X̂M−1
i(s)

(α,s)
)
 if δX (α, s) < η

− log

 1

1 +
∑

1≤i≤K,i 6=i(s)
e
R2

(
X̂M−1

i (α,s)−X̂M−1
i(s)

(α,s)
)
 if δX (α, s) ≥ η

,

(13)
where η > 0 is a chosen, fixed parameter. R1 and R2 are two new parameters which denote the two
scales of the parameters used in (13) and can be adjusted during training. With new parameters
to train, the deterministic gradient descent algorithm becomes(

αn+1, Rn+1
1 , Rn+1

2

)
= (αn, Rn1 , R

n
2 )− τ∇(α,R1,R2)

∑
s∈TR

L2,η ((αn, Rn1 , R
n
2 ) , s) , (14)

with corresponding formula for stochastic gradient algorithms.
The desired quality of decreasing loss for well classified objects is achieved with (13) when

R2 � R1 and η > 0. We note that, if we chose η < 0, we cannot predict the effect of a large R2 on
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the loss in general. However, for example, if there are only 2 classes, then R2 � R1 would increase
the loss for the objects with η < δX(α, s) < 0. As a result these objects would be the focus of
more training. This contradicts the original goal of the two-scale loss function, focusing training
on the objects with lower classification confidence, δX(α, s) < η. Therefore we restrict ourselves to
considering η > 0.

We chose to have large R2 as for well classified objects the tendency is to push R to grow
throughout training. Instead of focusing on making the size of the parameters larger, we aim to
have the training procedure focus on improving the direction of the parameter by choosing a larger
scale for the well-classified objects.

While we perform our testing in the next section for the loss function defined by (13), it can be
useful to observe that any loss function into a two-scale loss function using the form

L2,η ((α,R1, R2) , s) =

{
L ((α̂, R1), s) if δX (α, s) < η

L ((α̂, R2), s) if δX (α, s) ≥ η
,

where R1 and R2 are used to replace the size of the parameters. This will similarly decrease loss on
the well classified objects when R2 > R1 if the chosen loss function decreases when the probability
of the correct class increase and all other probabilities either decrease or increase less than the
correct probability. For example the original purpose of decreasing loss on well-classified objects
works on the mean squared error loss as well as alternative loss functions used in [15, 16] as well as
alternatives to the soft-max in [18, 10, 19], e.g. sparsemax.

As claimed in the introduction, the two-scale loss function only depends on the loss function
and normalizing function, e.g. soft-max. As a consequence, no matter the structure of the network
that yields the penultimate layer XM−1, one can use this two-scale loss function (13).There are
consequently a wide variety of DNN structures, data-sets, and loss functions where this novel
modification can be applied, which we plan to explore in future works.

We can infer some elementary behavior of R2 during training by considering two cases. The first
case is where no objects in the training set TR are well-classified. In that case R2 is never used in
calculating the loss, (13), so the partial derivative ∂

∂R2
L2,η ((α̂, R1, R2) , s) is 0 for all s ∈ TR and

R2 does not change. The other case is when at least one object is well classified. If an object s is
well classified the partial derivative of loss with respect to R2 for that object is given by

∂

∂R2
L2,η ((α̂, R1, R2) , s) =

∑
1≤i≤K,i 6=i(s)

(
X̂M−1
i (α, s)− X̂M−1

i(s) (α, s)
)
e
R2

(
X̂M−1

i (α,s)−X̂M−1
i(s)

(α,s)
)

1 +
∑

1≤i≤K,i 6=i(s)
e
R2

(
X̂M−1

i (α,s)−X̂M−1
i(s)

(α,s)
) .

(15)
The classification confidence of the object is greater than zero so by

X̂M−1
i (α, s)− X̂M−1

i(s) (α, s) ≤ max
1≤i≤K,i 6=i(s)

X̂M−1
i (α, s)− X̂M−1

i(s) (α, s) = −δX̂ (α, s) < 0,

the term X̂M−1
i (α, s) − X̂M−1

i(s) (α, s) must be negative. Therefore the expression (15) is negative

for every well classified object s. If s is not well classified the partial derivative is 0 as R2 is
not calculated in loss. This results in R2 growing at each step, since the parameters move in the
direction of the negative gradient during training. Therefore the DNN will have R2 grow throughout
training, as long as one object is well classified. This is reminiscent of a result in [14] where if all
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objects are well classified the magnitude of the parameters α will grow. However with the two scale
training given by (14), we are unable to specify the rate of growth of R2, contrary to [14].

One should also remark that the two-scale loss function (13) may return to a one-scale case if
R2 = R1 after some training, since R1 may grow faster than R2 for example. Alternatively if every
object in TR becomes well classified or every object in TR becomes miss-classified, then only one
of R1 or R2 is used and a one-scale loss function is also recovered for all practical purposes. This
should ensure that training with the loss function (13) will perform at least as well as the traditional
loss function (4) as long as appropriate choices are made for η and initial R1 and R2.

We will also consider a variant of the two-scale loss function where the scales R1 and R2 are
fixed. The loss function is still given by (13), however R1 and R2 are no longer parameters and
instead chosen scalars. The gradient descent training algorithm would then change back from (14)
to

αn+1 = αn − τ∇α
∑
s∈TR

L2,η ((α,R1, R2) , s) . (16)

The above method of training with (13) and (16) will be referred to as fixed two-scale loss for
convenience. The desired quality of decreasing loss for well classified objects is again achieved with
(16) when R2 � R1 and η > 0.

An advantage the fixed two-scale loss has is that the scales R1 and R2 can be ensured to remain
well separated, as they maintain their initial values for all time. The partial derivatives with
respect to R1 and R2 no longer need to be calculated, leading to a small decrease in computational
complexity.

But a major concern with the fixed two-scale loss function however is that training can be
slowed due to the fixed values of R1 and R2, as we will indeed observe in numerical testing. It is
often advantageous to vary the size of the parameters during training, and the fixed two-scale loss
function is unable to capture that advantage while the algorithm in 2.3 does. Additionally a poor
choice of values for R1 and R2 is disadvantageous and cannot be corrected via training with the
fixed two-scale loss function, whereas the algorithm using (14) would improve upon the choice of
values throughout time.

Having both scales fixed is hence restrictive and for this reason, we also introduce a third variant
where R1 remains fixed but the ratio R2/R1 is allowed to change, leading to the following

L2sep,η ((α,Rs) , s) =



− log

 1

1 +
∑

1≤i≤K,i 6=i(s)
e
R
(
X̂M−1

i (α,s)−X̂M−1
i(s)

(α,s)
)
 if δX (α, s) < η

− log

 1

1 +
∑

1≤i≤K,i 6=i(s)
e
RsR

(
X̂M−1

i (α,s)−X̂M−1
i(s)

(α,s)
)
 if δX (α, s) ≥ η

(17)
where R is fixed but the term Rs denotes how well separated the scales are and evolves with training.
Correspondingly, the gradient descent must be modified to(

αn+1, Rn+1
s

)
= (αn, Rns )− τ∇(α,Rs)

∑
s∈TR

L2sep,η ((αn, Rns ) , s) , (18)
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since Rs is a trainable parameter.
Notice that the partial derivative of the loss with respect to Rs is strictly non-negative by the

same reasoning that R2 is increasing in 2.3. Therefore if Rs evolves via training, the scales can
only become ever more separated. This is not necessarily the case in our initial loss function 2.3:
The growth of R1 may be larger than the growth of R2, leading R2/R1 to shrink. This third loss
function is more restrictive but can still work well when a separation of scales is desirable.

2.4 Theoretical conjectures

While in this paper we do not address theoretical justification of the 2-scale loss function intro-
duces in Sec. 13, we nevertheless formulate several conjectures for our future works. First, given
a network and data sets (at least a training set), one would like to find the minimizant α∗ for the
classical loss function L(α) together with the minimizant α∗η for the 2-scale loss function Lη(α).
Then one would want to compare the accuracy for these two values, α∗ and α∗η, and the two other
measures of performance, top-k and close enough.

However, fully identifying the minimizants, α∗ and α∗η, even in toy settings is a very a difficult
task because of non-convexity and dependence on the data-set. That is why we will consider the
following three subsets for some cut-off µ > 0 to be determined in terms of η

Well classified = W (α) = {s, δX̂(α, s) > µ},
Poorly classified = P (α) = {s, δX̂(α, s) < −µ},
Marginally classified = M(α) = {s, |δX̂(α, s)| ≤ µ}.

In our future analysis we plan to address the following issues:

• The minimizant for the 2-scale loss, α∗η, will have a low mass (measure) of miss-classified
objects whenever the minimizant for the single scale loss,α∗, has a low mass of miss-classified
objects. In more precise terms, we conjecture the mass (measure) of poorly classified objects
|P (α∗η)| for the minimizant α∗η is at worst comparable to the mass C |P (α∗)| for some constant
C > 0, depending on the data set and network structure. This ensures that if there are few
poorly classified objects for α∗ then there are also few poorly classified objects for α∗η.

• We also conjecture that the total mass (measure) |P (α∗η)| cannot be larger than C |M(α∗η)|.
This is of course not the case for α∗ where |P (α∗)| would be much larger than |M(α∗)|. In
other words, the 2-scale loss function should prevent too many objects from being poorly
classified.

• We expect that using the 2-scale loss function L2,η(α,R1, R2), will improve the stability in
the sense of [11]. This is because we would have a necessarily small loss function when the
mass (measure) of well classified objects |W (α)| is close to one; whereas this may not be the
case for the classical loss function L(α) (see [11]).
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3 Numerical Results

3.1 Measures of performance

Before comparing the two-scale loss network with the traditional single scale loss network, we
first introduce the measures of performances that we will use to compare the networks. The first
measure of performance is overall accuracy, referred to as accuracy for convenience, as defined in
(11). Accuracy measures the proportion of objects which are correctly classified, and it can be seen
as a good approximation of the likelihood of a new object not used for training being classified
correctly by the DNN.

However, accuracy certainly does not give the entire picture about the performance of a clas-
sification DNN. As we mentioned in the introduction, accuracy cannot differentiate between an
object that is very poorly classified and objects that are almost well classified. The top-k measure
of performance is a commonly used alternative to accuracy which can capture this distinction. In
the top-k measure of performance an object is counted if the correct class has one of the k largest
probabilities. This yields the following definition of top-k performance on the test set T ,

acctop−k =
#{s ∈ T : pi(s) is one of the k largest probabilities}

#T
,

and a similar definition can be created for the training set by replacing T with TR. For data-sets
with a large number of classes or very similar classes, such as oak tree and maple tree in CIFAR100,
this is very useful. For example for CIFAR100 with 100 classes, an object considered as accurate
by acctop−2 but not correctly classified still has a better predicted probability for the right class
larger than 98% of other predicted probabilities.

However, a drawback of top-k performance is that an object s can be included as performing well
when the actual probability of belonging to the correct class is very low. For example if the correct
class for an object s is the second class, then both the top-k performance and the overall accuracy
cannot distinguish between the two cases (0.9, 0.1, 0, . . . , 0) and (0.51, 0.49, 0, . . . , 0). However it is
quite clear that the second case is preferable and the first case is actually even worse than simply
assigning every class the same probability.

For this reason we introduce a family of so-called close-enough measures of performance which
counts the proportion of objects within a fixed probability, at, of being classified correctly,

accat =
#{s ∈ T : pi(s) ≥ max1≤i≤K pi − at}

#T
.

The measure of performance accat counts objects which are close to being correctly classified in
terms of probability. By varying 0 ≤ at ≤ 1 we can observe the quantity of objects the network has
slightly, moderately, or egregiously miss-classified. This measure of performance allows to observe
the distribution on poorly classified objects, which accuracy is unable to do. One flaw is that an
untrained network can achieve very high performance with this measure as all probabilities are
nearly equal. Therefore it is necessary to look at the other measures of performance in conjunction
with close-enough performance. We look at all three measures of of performance on CIFAR100 to
give a more complete picture of the performance of the DNN.
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3.2 CIFAR100 Numerical comparison: Two-scale loss function with vary-
ing scales

To check the potential improvement in performance numerically, we consider the first training
scheme (13) from Sec. 2.3 on a variety of data-sets including MNIST, CIFAR10 and CIFAR100.
For all data-sets a stochastic gradient descent algorithm is implemented with a batch size of 128 and
learning rate of τ = 0.1. Various choices of 0 < η were tested. In addition R1 and R2 were chosen
initially as R1 = R and R2 = 10R1, where R is the size, (9), of the initial choice of parameters α0.
To train the network with a traditional one scale loss function we simply replace R2 by R1 in (13).
In that case we have a single scale traditional loss function, which we use as a baseline to compare
the performance of the two-scale loss network with. The python package PyTorch [20] was used to
build and train the neural networks as well as the two-scale loss functions.

The two-scale loss function was tested on the CIFAR100 data-set, a set of color images with
100 classes (dogs, cars, deer, oak tree, maple tree, etc.) for two types of DNNs, a simple network
and a network with state of the art performance, wide residual network (WRN) with adaptive
sharpness-aware minimization (ASAM) from [21]. The structure of the simple network used is
LeNet-5 adjusted for CIFAR100 [22]. For the simple network there are two sets of convolutional
layers, each followed by a max pooling layer. Afterwards two fully connected layers are used. Lastly,
the soft-max function is used to obtain the probabilities as in (3). Training was performed for 128
epochs with a batch size of 128, (one epoch contains {#TR}/(batch size) number of steps). For
CIFAR100, the networks were tested for 10 different seeds, leading to different initial random α0.
The measures of performance were then averaged over all seeds. For all data-sets, accuracy for the
batch used is recorded at each iteration and used to approximate the accuracy of the training set.
The accuracy on the test set is measured exactly at the end of training and intermittently during
training, with frequency depending on the length of training. The other measures of performance
were measured at the end of training over the entire test set or the entire training set. Achieving
a high level of performance on CIFAR100 is typically more challenging for DNNs since there are
relatively few objects (500) per class to train from and a large number of classes [23]. In addition
several of the classes are similar, e.g. oak tree and maple tree.

Note that when we compute the probabilities for the test set, we must choose a scale for the
two-scale loss network as the network should not use the test set’s objects’ correct classes in order
to classify the objects or assign probabilities. The correct class should only be used to determine
performance after the probabilities are determined. We choose the scale as R1, as picking R2 would
yield very large and small probabilities.

First we compare the performance on the WRN with ASAM. We observe fairly high accuracy
however the two-scale loss performs slightly worse at the end of training with roughly 0.5% lower
accuracy on the test set, see Fig. 1. However, as mentioned previously, accuracy does not discern
how the network performs on miss-classified objects which make up a significant portion of objects
in the test set at the end of training. Therefore we next look at the close-enough performance
where we observe a large increase in close-enough performance on the test set for the two-scale loss
network for values of 0.01 < at < 0.8 with a maximum increase of 10% when at = 0.1 , see Fig.
2. This large increase of performance shows that the two-scale loss is ensuring that the network
performs much better on the miss-classified objects. For the traditional loss, there are many objects
which are far from begin correctly classified while the two-scale loss network has almost all objects
counted in the close-enough performance by at ≈ 0.1.

Next we compare the performance on the simple network. We begin by observing a large
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Figure 1: The accuracy throughout training on the test set for two-scale loss WRN (13) was
compared with the traditional single scale loss WRN for various values of η on the CIFAR100
data-set. The performance on the test set was recorded approximately every 390 iterations ( 1
epoch) and the graphs represent the average accuracy of 5 random initial seeds. The right graph is
a zoomed in version of the graph on the left.
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Figure 2: The accuracy throughout training on the test set for two-scale loss WRN (13) was
compared with the traditional single scale loss WRN for various values of η on the CIFAR100 data-
set. The performance on the test and training set was recorded at the end of training( 200 epochs)
and the graphs represent the average performance of 5 random initial seeds.

increase in performance for all three measures of performance on the training set by using the
two-scale loss network with η = 0.01, see Figs. 3-5. The two-scale networks have a lower accuracy
than the traditional loss up through 20 epochs, and then reverse the trend and attain a much larger
accuracy, see Fig 3. After 128 epochs, with η = .01, the two-scale network has an average increase
of accuracy of 13.4%. We also observe as that η increases the accuracy of the two-scale network
approaches the traditional loss function, as expected since for larger η the second scale will be used
less.

At first look, the performance on the testing set appears indistinguishable for the two-scale loss
and the classical cross-entropy with the two-scale network having an average increase of accuracy of
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Figure 3: The accuracy throughout training on the training set (left) and the test set (right) for
two-scale loss network (13) was compared with the traditional single scale loss network for various
values of η on the CIFAR100 data-set. Accuracy on the test set was recorded once every 2000
iterations (≈5 epochs) and the graphs represent the average accuracy of 10 random initial seeds.
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Figure 4: The close-enough performance on the training set (left) and the test set (right) for the
two-scale loss network (13) was compared with the traditional single scale loss network for various
values of η on the CIFAR100 data-set. The performance is measured after 128 epochs of training.
The graphs represent the average performance of 10 random initial seeds.

0.1% near the end of the training. While this is correct when looking only at the overall accuracy,
it masks an actual large increase in performance on not well classified objects. This point is made
obvious when looking at the close-enough performance, accat, on the test set for 0.01 < at < 0.05,
see Fig 4: The two-scale loss network achieves a substantial improvement over the traditional loss
network for all at ≥ 0.01 and the improvement increases as at grows, see Fig 4 (right). This
indicates that the two-scale loss function has still drastically improved the number of objects that
are close to being correctly classified.

Rather naturally, an increase of top-k performance of 1.5% at k = 10 on the test set is also
observed at the end of training for the two-scale loss network with η = 0.01 and the increase grows
slightly larger at k increases, see Fig 5 (right). We want to emphasize that such a 1.5% increase
(3% in relative performance) comes from a very small increase in computational complexity of a net
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Figure 5: The top-k performance on the training set(left) and the test set (right) for the two-scale
loss network (13) was compared with the traditional single scale loss network for various values
of η on the CIFAR100 data-set after 128 epochs of training. The graphs represent the average
performance of 10 random initial seeds.
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Figure 6: A histogram of the max probabilities of objects on the test set for the two-scale loss
network (13) with η = 0.01 (left) and traditional single scale loss network (right) on the CIFAR100
data-set after 128 epochs and across 10 seeds.

increase of one parameter in the loss function for a network with over 50,000 parameters. Obtaining
any noticeable improvement while only increasing the total parameters by one is a significant
gain where improvements of even 0.5% are often considered significant. When comparing top-k
performance the improvement on the training and test set are quite similar for large k. But for the
training set, we observe that the improvement in top-k performance for two-scale over traditional
loss decreases as k increases. For small k, we again found a larger improvement in performance for
the two-scale loss on the training set vs. the test set.

To understand why see such a large increase in the close-enough performance on the test set in
Fig. 4, we take a closer look at the distribution of probabilities over the test set. We first consider
the maximal probability assigned for each object on the test set by the DNNs. We immediately
emphasize that this max probability may not be the correct probability of course if the object is
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Figure 7: A histogram of the correct probabilities of objects on the test set for the two-scale loss
network (13) with η = 0.01 (left) and traditional single scale loss network (right) on the CIFAR100
data-set after 128 epochs and across 10 seeds.

not well classified.
We observe that the traditional single scale loss network tends to have many more objects with

large maximal probabilities in general, see Fig. 6. Some of this effect can just be explained by our
changes in the scales: We are using the scale R1 for the two-scale loss and R1 is slightly smaller
than the R obtained in the traditional loss. An increase in R, will either increase or maintain
the max probability of each object, therefore since R1 is less than R in the traditional single scale
loss we expect lower max probabilities for the two-scale loss network. However, as the accuracy is
only approximately 30%, some of these very large max probabilities are actually from the incorrect
classes. If the maximal probability is assigned to the wrong class, then it is actually beneficial to
reduce it. We hence conjecture that the reason the single scale loss function is performing much
worse on those misclassified objects is because it assigns them large probabilities on the wrong class.

In addition there are very few objects whose max probability is less than 5% and none whose
max probability is less than 2% for both networks. Therefore accat can indeed be used as a
reasonable measure of performance as few objects are automatically included for the values of at
tested, 0 < at < 0.05, and none are automatically included for at < 0.02.

We looked at the distribution of probabilities for the correct class of objects, pi(s) on the test
set. We again observe that the single scale loss has more objects with larger probabilities in general,
see Fig. 7. This is natural as again R is larger than R1. Moreover this does not tell us how close an
object is to being correctly classified or even if the object is correctly classified at all if pi(s) < 0.5.
For example if an object had pi(s) = 0.2 and is correctly classified, then we would say this is a
better performance than if the object had a slightly larger correct probability, pi(s) = 0.21, but was
miss-classified.

For this reason, the histogram of the probability confidence is more relevant to our analysis: the
difference between the correct class and the max probability for miss-classified objects,

δp(α, s) := pi(s)(α, s)− max
1≤i≤K

pi(α, s). (19)

We observe, for the traditional loss network that many objects are miss-classified by a large
probability while for two-scale loss network most miss-classified objects are miss-classified by a
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Figure 8: A histogram of the difference of the correct probabilities and max probabilities of miss-
classified objects on the test set for the two-scale loss network (13) with η = 0.01 (left) and
traditional single scale loss network (right) on the CIFAR100 data-set after 128 epochs and across
10 seeds.

small probability, see Fig. 8. This confirms the conjecture that the two-scale loss network is
performing much better on objects which are miss-classified by decreasing the difference between
the probability on the correct class and the higher probability on some incorrect class(es).

Finally, we also investigated the relative performance of the two algorithms on CIFAR100 so-
called super-classes. In addition to the original 100 classes, CIFAR100 also has 20 super-classes
where each super-class is composed of 5 similar classes of the original 100 (e.g. the tree super-class is
composed of the maple, oak, pine, willow, and palm classes) [2]. Measuring the super-class accuracy
as

accsuper−class =
#{s ∈ T : the index for the maximum pi belongs to the same super-class as i(s)}

#T
,

(20)
takes into account the similarity of classes, which the other measures of performance we have used
are unable to do. Of course the super-class accuracy also ignores the probability of belonging the
original correct class.

The results for super-classes turn out to be quite similar to the previous discussion. We see
a drastic improvement in close-enough performance for the two-scale loss function both on the
training and testing sets, see Fig. 9. In terms of overall accuracy, the two-scale network enjoys a
significant gain on the training set, but very similar results on the testing set.

The conclusion of this analysis, based on three different measures of performance, is that the
two-scale loss network has many more objects on the test set which are close to being correct with
regards to both

i how many incorrect probabilities are higher than the correct one, pi(s),

ii how close pi(s) is to the maximum pi.

This justifies the original motivation of focusing training on not-well classified objects in order to
improve their performance.
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Figure 9: The close-enough performance on the training set (left) and the test set (right) for the
two-scale loss network (13) was compared with the traditional single scale loss network for various
values of η on the CIFAR100 data-set’s super-classes. The performance is measured after 128 epochs
of training. The graphs represent the average performance of 10 random initial seeds.

3.3 CIFAR10 and MNIST Numerical comparison: Two-scale loss func-
tion with varying scales

The two-scale loss network was next tested on the CIFAR10 data-set [2], a set of color images
with 10 classes (dogs, cars, deer, etc.). The structure of the network used is LeNet-5 adjusted for
CIFAR10 [22]. There are two sets of convolutional layers, each followed by a max pooling layer.
Afterwards two fully connected layers are used. Lastly, the soft-max function was used to obtain
the probabilities as in (3).

For training times of approximately 50 epochs, we observe that the two-scale loss network
exhibits a large increase of 12% in accuracy for η = .01 when compared on the training set, see Fig
10 (left). Accuracy on the test set increased by a significant amount, 1.5%, over the same training
period see Fig 10 (right and below). As η increases, the accuracy of the two-scale loss network
approaches that of the traditional loss as expected. The two-scale loss network was also tested for
η = 10 on CIFAR10 and the results were nearly indistinguishable compared to the traditional loss
as expected.

We also compare the performance for CIFAR10 using the WRN with ASAM. We observe very
high and similar accuracies on the test set for both the two-scale and single scale networks, see Fig.
11. The single scale network ends with a marginal increase in accuracy, < 0.2%. We next look at
the close-enough performance to see the effect of two-scale loss on the miss-classified objects. We
observe that the gap in performance shrinks as at grows but is never overcome, see Fig. 12, contrary
to what was observed in CIFAR100. This lack of change in performance when at is increased is
likely due to the very high accuracy on both the test and training sets. The high accuracy on the
test set means there are less objects to capture in order for the two-scale network to improve the
close-enough performance and pass the single scale network performance. The high accuracy on
the training set (¿99.7%) also shows that the two-scale network is mostly acting as a single scale
network by the end of the training and will not have an significant advantage at that point.

Testing was next performed on the MNIST data-set [24], a set of gray-scale, 28x28 pixel images
of handwritten digits. In this case the structure of the network was two fully connected layers
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Figure 10: The accuracy throughout training on the training set (left) and the test set (right) for
two-scale loss network (13) was compared with the traditional loss network for various values of η
on the CIFAR10 data-set. A zoomed in version of the accuracy on the test set is also displayed
(bottom). Accuracy on the test set was recorded once every 2000 iterations (≈ 5 epochs) and the
graphs represent the average accuracy over 10 random initial seeds.

followed by the soft-max function (3). A total of 30 seeds were tested for approximately 2 epochs
(1000 iterations of SGD). The network was run for 30 different initial random α0, and the accuracy
is averaged over all seeds.

The two-scale loss network with η = 0.01 had a larger accuracy on the training set by approx-
imately 7.1% after 2 epochs (1000 iterations of (14)), see Fig. 13 (left). In addition the two-scale
loss network had a comparable gain of overall accuracy, 6.7%, on the test set as well.

As observed on CIFAR10, for larger η the behavior of the two-scale network approaches the
traditional loss network. We tested the two-scale loss network on MNIST for η = 10 and η = 100 as
well. For η = 10 the graph of accuracy was indistinguishable from the traditional loss, as accuracy
differed by less than .1% on average throughout training. The two-scale loss network with η = 100
had the exact same accuracy on each batch in training and the test set as the traditional loss for
each initial α0 tested.

We finally note that, very early on during training (in particular the first 20 iterations), the
two-scale loss networks performed worse on the training set when compared to the traditional loss
on MNIST. In fact in that very early phase traditional loss outperformed two-scale loss by up to
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Figure 11: The accuracy throughout training on the test set for two-scale loss WRN (13) was
compared with the traditional single scale loss WRN for various values of η on the CIFAR10 data-
set. Accuracy on the test set was recorded approximately every 390 iterations ( 1 epoch) and the
graphs represent the average accuracy of 5 random initial seeds. The right graph is a zoomed in
version of the graph on the left.
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Figure 12: The close enough performance on the test set for two-scale loss WRN (13) was compared
with the traditional single scale loss WRN for various values of η on the CIFAR10 data-set. The
performance was recoreded at the end of training ( 200 epochs) and the graphs represent the average
performance of 5 random initial seeds.

an average of 9.6% per batch. A similar effect can be seen on CIFAR10 in the first 5 epochs or so,
so that training is slightly slower initially for the two-scale network.

To conclude the investigations in this subsection, it appears that the two-scale network also sig-
nificantly outperforms the traditional loss on CIFAR10 and MNIST. For such simpler data sets, the
better performance on originally poorly classified objects also translates to higher overall accuracy.
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Figure 13: The accuracy throughout training on the training set (left) and the test set (right) for
two-scale loss network (13) was compared with the traditional single scale loss network for various
values of η on the MNIST data-set. Accuracy on the test set was recorded once every 100 iterations
(≈0.2 epochs) and the graph represents 30 initial seeds.

3.4 Numerics: Two-scale loss network with fixed scales

To offer a more complete analysis of possible choices of two-scale loss functions, we also investi-
gate the so-called fixed two-scale loss function from Sec. 2. We test the training algorithm defined
by (16) and compare again the performance to the traditional single scale loss function. The initial
R0 is determined by setting R0 = R(α0) when α0 is chosen. The initial choice of of parameters in
(13) are R1 = R0 and R2 = 10R1.

The network is tested on CIFAR10 with the same DNN structure as in Sec. 3.2. We observe
that the the traditional loss outperforms the fixed two-scale loss network on the training set, see
Fig. 14 (left), and even more on the testing set, see Fig. 14 (right). This is of course very different
from the result for the non-fixed two-scale loss network, see again 10 (left). Recalling that the
traditional loss network outperformed the two-scale loss network, the fixed two-scale case never
catches up with the performance of traditional loss and the difference between the accuracy of the
networks is roughly constant. Hence, a key takeaway is the importance of letting the two scales
adapt during training.

On a separate note, the behavior in terms of the choice of η also appears more complex then
before. The fixed two-scale network exhibits its worst performance for intermediary values of η
around 0.1. As before η = 0.01 leads to better results than η = 0.1 but larger values of η such
as η = 1 are also better, likely because they get closer to the performance of the traditional loss
network. For η > 10 the two-scale loss network actually coincided with the gradient descent in
terms of accuracy.

3.5 Numerics: two-scale loss network with varying scale separation

The final loss function we consider is the two-scale separation loss network (17), where the
traditional scale R is used for the not well-classified objects and evolves via gradient descent as
normal. The scale for the well classified objects is RsR, where Rs denotes the separation between
scales. Here Rs evolves via gradient descent, using (18). We again consider the CIFAR10 data-set
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Figure 14: The accuracy on the training set (left) and the test set (right) for the fixed two-scale
loss network from Sec. 2 was compared with the traditional single scale loss function for various
values of η on the CIFAR10 data-set. The accuracy is taken after ≈ 10 epochs of training (4000
iterations). The graphs represent the average accuracy of 10 random initial seeds.
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Figure 15: The accuracy on the training set (left) and the test set (right) for the two-scale loss
network with varying separation from Sec. 2 was compared with the traditional single scale loss
network for various values of η on the CIFAR10 data-set. Accuracy on the test set was recorded
once every 2000 iterations (≈ 5 epochs) and the graphs represent the average accuracy over 10
random initial seeds.

and the same structure of the network as in the previous sub-sections when comparing to traditional
loss.

We observe that the two-scale separation network reaches a significantly higher accuracy on the
training set and a slightly higher accuracy on the test set, see Fig. 15. The behavior of the accuracy
for the two-scale separation loss network is in fact very similar to that of the original two-scale loss
network. This demonstrates that the main reason for the gain in accuracy is to have an adaptive
ratio between the two scales. However, the original two-scale loss network still achieved a higher
accuracy than the two-scale separation loss function; approximately 1% higher on the training set
and 0.5% higher on the test set throughout training.

Overall this justifies the choice of the original two-scale loss network as the best two scale
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algorithms.

4 Discussion

After introducing a notion of classification confidence and size of the parameters, we introduced
three novel two-scale loss functions in Sec. 2. The goal of these loss functions was to achieve a
higher accuracy with the same DNN by focusing training on objects which are not well classified.
The first two-scale loss function has independently varying scales R1 and R2 that were updated via
SGD. The second two-scale loss function considers fixed values of R1 and R2. The third two-scale
loss function fixed the first scale but uses a parameter Rs, updated via GD, to separate the two
scales (17). We specifically focused on the case where the soft-max normalization and cross-entropy
loss functions are used, but the two-scale loss functions can be applied to a large variety of DNN
or machine learning architectures and loss functions.

After the introductions of the two-scale loss functions, numerical comparisons were made with
the traditional single scale loss function on the MNIST, CIFAR10, and CIFAR100 data-sets. We
observed that the first two-scale loss network achieves a higher accuracy than the traditional loss
function by a large amount on the training set on all data-sets tested. On the test sets we observed a
large increase in accuracy for MNIST data-set, a smaller increase for CIFAR10, and similar accuracy
on CIFAR100.

We also compared the performance on CIFAR100 by using top-k performance, and an introduced
measure of performance called close-enough performance. We observed that the two-scale loss
network had a significant increase of performance on both the top-n and close-enough performance
measures. The performance on the super-classes of CIFAR100 was similar to the one on the usual
classes: significantly better accuracy on the training set, comparable accuracy on the testing set
but with significant gains in terms of close-enough performance.

The fixed two-scale loss network did not improve accuracy on CIFAR10, while the two-scale
separation network did improve accuracy over the traditional loss network but did not perform as
well as than the first two-scale loss network.

Those results demonstrate that adaptive multi-scale loss function can provide significant increase
in performance of the classical cross-entropy while only adding a minuscule amount of computational
complexity and being applicable to a wide range of architectures.
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