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Many machine learning tasks have a measure of success that is naturally continuous, such as error under a

loss function. We generalize the Algorithmic Search Framework (ASF), used for modeling machine learning
domains as discrete search problems, to the continuous space. Moving from discrete target sets to a continuous
measure of success extends the applicability of the ASF by allowing us to model fundamentally continuous
notions like fuzzy membership. We generalize many results from the discrete ASF to the continuous space and
prove novel results for a continuous measure of success. Additionally, we derive an upper bound for the expected
performance of a search algorithm under arbitrary levels of quantization in the success measure, demonstrating
a negative relationship between quantization and the performance upper bound. These results improve the
fidelity of the ASF as a framework for modeling a range of machine learning and artificial intelligence tasks.

1 Introduction

The Algorithmic Search Framework (ASF) is a theo-
retical model that has been used to rigorously study
properties of machine learning (ML), artificial intel-
ligence (AI), and search problems (Montanez, 2017;
Montafiez et al., 2019; Montafiez et al., 2021). This
framework has been used to bound the performance
of learning models, prove trade-offs between bias and
expressivity (Lauw et al., 2020), derive generaliza-
tion bounds for supervised classification (Ramalingam
et al., 2022), and quantify performance bounds on
transfer learning (Williams et al., 2020). However, one
fundamental limitation of the ASF is that it measures
the performance of a machine learning algorithm with
a binary target set to which elements in the search
space (also referred to as hypotheses) either belong or
do not belong, rendering them indistinguishable from
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one another. This limitation makes it impossible to
account for the fuzzy membership of hypotheses over
a search space where each hypothesis may have a vary-
ing degree of fidelity. As a result, the strongest and
weakest satisfactory hypotheses are treated equally. By
using a continuous metric instead we can incorporate
meaningful information about the relative certainty
of our hypothesises, allowing us to both strengthen
existing results and prove novel theorems.

Many modern applications of machine learning
could benefit from a continuous success measure,
which we term the satisfaction of a hypothesis. Hence,
we propose a degree of satisfaction as a continuous-
scale measure of the quality of a hypothesis function,
instead of having the notion of binary membership
in a target set. Examples of continuous measures of
success include cross-entropy loss, mean squared er-
ror, hinge loss, accuracy, and F score. To accurately
model such problems in the ASF, we must account for
continuous membership measures. Prior work avoided
this limitation by implicitly defining some threshold
of acceptability, where the target set was defined as
the set of all elements with acceptable satisfaction val-
ues (Montafiez, 2017). By defining such a threshold
we lose information about the underlying satisfaction



structure between different hypotheses in the target set.
However, employing a framework that directly inter-
faces with the underlying satisfaction structure enables
us to generalize the results of the ASF, and measure
the performance of machine learning algorithms more
effectively, accounting for the fuzzy membership of
hypotheses functions.

We examine related work to machine learning as
search and fuzzy membership, rigorously and math-
ematically define the continuous ASF, present novel
results, and show a real-world example applying these
novel bounds.

2 Related Work

Machine learning can be modeled as search (Mitchell,
1982; Montaiiez, 2017). The conversion of machine
learning problems to search problems enables us to
perform a variety of analyses on their performance,
using a mathematical and information-theoretic per-
spective. This approach helps us prove bounds on
the performance of machine learning algorithms and
gain an improved understanding of ‘big picture’ con-
cepts in machine learning such as the bias-expressivity
trade-off (Lauw et al., 2020).

Since its introduction, many results have been
proven within the context of the ASF. For instance,
researchers have demonstrated that a well-performing
machine learning algorithm cannot exist without a
predisposition to a certain group of outcomes (bias)
(Montaifiez et al., 2019). Defining expressivity as the
variability of outputs a machine learning algorithm
can generate with different training data (Lauw et al.,
2020), the ASF has been employed to prove the ex-
istence of fundamental trade-offs between bias and
expressivity in machine learning (Lauw et al., 2020).
Therefore, the ASF has proven effective in establishing
fundamental properties of machine learning and ma-
chine learning algorithm performance. The framework
has been used to prove ‘famine’ results, such as the
fact that favorable algorithms for a specific task are
scarce (Montaiez, 2017).

In the ASF, researchers make several simplifying
assumptions, including the use of binary target sets
to measure the satisfaction of hypotheses (Montafiez,
2017). Our work extends the ASF and generalizes
the previously mentioned results. Moreover, we relax
some simplifying assumptions within the ASF and gen-
eralize existing results proven within the framework
to a continuous measure of satisfaction of hypotheses
(Montaiiez, 2017; Montaiiez et al., 2019; Lauw et al.,
2020). By extending the framework to account for con-
tinuous measures of satisfaction, we pave the way for

future progress within the ASF, offering a more gen-
eral framework applicable to a larger set of machine
learning problems.

This generalization is especially valuable in the
context of recent machine learning advances that in-
corporate fuzzy membership functions in a variety of
capacities. This includes within models to enhance
their accuracy, and in performing tasks such as im-
age classification and various engineering applications
(Hiillermeier, 2005; Gottwald, 2005; Resti et al., 2022;
Ghofrani et al., 2014). Moreover, expanding the frame-
work to encompass continuous target sets broadens its
applicability, making it relevant to a broader range of
machine learning challenges, thereby increasing its
practicality.

3 The Algorithmic Search
Framework (ASF)

3.1 The Search Problem

The ASF recasts machine learning problems as search
problems, simplifying proofs for results on their per-
formance. Following Montafiez (Montafiez, 2017), we
model the search problem as a modular system of three
parts, (Q,T,F), where Q represents the discrete, finite
search space comprising hypotheses. We search within
this space to find an element in the non-empty subset
T, known as the target set. The external information
resource F guides this search, providing initialization
information, and offering evaluations on sampled ele-
ments from the search space to further steer our search.
For instance, in a machine learning context, the exter-
nal information resource F could be a training dataset
with an accompanying loss function. Therefore, evalu-
ating the external information resource on a particular
element of the search space yields the loss function
value for a specific hypothesis.

The target set T corresponds to the set of hypothe-
ses that attain sufficiently high levels of satisfaction
on a dataset for some desired threshold value of sat-
isfaction. In the context of machine learning, we can
interpret the satisfaction level of hypothesis as a notion
of accuracy or performance on a test dataset. The loss
function included in F directs the algorithm in search-
ing through Q for a hypothesis in 7. This implies that
we use our training data in our external information
resource F to find a hypothesis in the target set 7.

3.2 The Search Algorithm

The search algorithm 4 iteratively assigns a probabil-
ity distribution over the search space, drawing from



its search history and the evaluation of the external
information resource on each element, as shown in
Figure 1. The search history comprises a query trace
and a resource evaluation trace. The query trace holds
the history of the elements that have been sampled by
the search algorithm, and the resource evaluation trace
records the history of the evaluations of the external
information resource on these elements. A search algo-
rithm within this framework is considered successful
if it samples an element of the target set during its
search. Importantly, only the external information re-
source, not the target set, guides the algorithm during
the search process.

next point at time step i

Search History « :
R (w, Fw))

5| (wo, F(w2))
4| (wo, F(wo))
3| (ws, F(ws))
2| (wa, F(wa))
=1 (w1, Flwi))

Figure 1: A black-box search algorithm. Reproduced from
(Montanez et al., 2019)

4 Continuous ASF

4.1 Definitions

The satisfaction measure serves as the continuous case
analog of the target set. It provides an indication of the
quality of a hypothesis in the search space, signifying
how good or bad a particular hypothesis is.

Definition 4.1 (Satisfaction). The satisfaction function
s(®) : Q — [0, c] maps from the search space Q to real-
valued quantities denoted satisfactions. We assume
that these satisfactions exist in the range [0, c] where ¢
is a finite, positive real number. It is possible to assume
that total satisfaction sums to 1 over the search space,
which is achievable without loss of generality since we
can linearly transform any satisfaction space to satisfy
this property!.

Definition 4.2 (Continuous Search Problem). Let the
tuple (Q,s,F) define a search problem. The search
space Q contains the elements (hypotheses) to be
queried/explored. For each @ € Q, s(®) denotes the
level of satisfaction corresponding to the hypothesis
®. The function s(®) can be represented by a vec-

s()—ming s(®)

!One such transformation is s'(®) = T 5(0)—ming s(@)

tor s € Rl where sy = s(®). This deviation from
binary membership target sets allows us to account for
a continuous measure of satisfaction for hypotheses.
F denotes the external information resource available
to the learning algorithm, and for each element ® € Q,
let F(®) be the evaluation of the external information
resource corresponding to the element of the search
space ®. Thus, the only departure from the classic ASF
lies in replacing binary 7 with continuous satisfaction
measure s.

Definition 4.3 (Expected Per-Query Satisfaction). In
Montafiez’s ASF (Montanez, 2017), success is mea-
sured using an expected per-query probability of suc-
cess metric. In the continuous case, this generalizes
to an expected per-query satisfaction metric. We do
so by weighting the probability that each element is
sampled by a search algorithm with its corresponding
satisfaction level. Let H be the history of the search
algorithm, F the external information resource, Pa
sequence of probability distributions over the search
space assigned by the search algorithm, and P; be the
probability distribution assigned by the search algo-
rithm over the search space at a time step i in the search
history H. Formally, we define the expected per-query
satisfaction as

112 TplF
— ) s P;
P ; 1

Definition 4.4 (Decomposability). We observe that
each ¢(s, F') can be decomposed into the inner product
of s and Pp:

Q(SvF) = EP,H

||
q(s,F) =Epy HZSTPi ]
i=1
1 |P| €))
-

=S EI’SH = PlF
= ]

:ST?F,

where we have defined Pr :=Ej {‘%‘ Zyjl P; | F} as
the expected average conditional distribution on the
search space given F'. Intuitively, this is equivalent to
weighting each satisfaction value with its correspond-
ing probability mass in Pr.

Our notation is summarized in Table 1. We include
a real-world example in Section 6, anchoring the ASF
to a practical machine-learning problem. Note that
there are many learning processes, and some may dif-
fer from the examples below (for example, an unsuper-
vised learning problem must have a different measure
of success from a supervised classification problem).
The ASF is general enough to encompass any algorith-
mic search problem.



Table 1: Notation

SYMBOL  DEFINITION

Qw Search space, element of search space,
e.g., an element could be a set of param-
eters, like weights.

s,s(®) Satisfaction vector, satisfaction of ele-
ment M, e.g., how good a particular hy-
pothesis is, such as performance on the
test set.

Tt Target set in the binary ASF (the equiv-
alent of s in the continuous ASF), e.g.,
a set of hypothesis that are sufficiently
satisfactory, possibly performing above
some threshold on the test set. The bi-
nary vector representation of this set is
given by t.

External information resource, evalua-
tion of external information resource on
an element ®, e.g., our training measure
of how good a hypothesis is, such as
training data and some loss function.

F,F(m)

Expected per-query satisfaction.

Expected per-query probability of suc-
cess in ASF.

(0] Decomposable satisfaction metric, e.g, g.

Tx A closed-under-permutation set of s such
thatalls'1 = k.

Dr, Distribution over a set of satisfaction vec-
tors in Tg.

Aa An abstract search algorithm which itera-
tively explores the search space.

P; Distribution assigned by A4 over Q at step
i during the iterative search process. This
could be conditioned on F.

]

Sequence of probability distributions as-
signed by algorithm 4, each element is a
P;. This could be conditioned on F.

Pr Expected averaged conditional distribu-
tion assigned by the search algorithm
given the external information resource
F.

5 Results

5.1 Famine of Favorable Satisfactions

Theorem 5.1. For fixed k € R>o, fixed information
resource F, decomposable, non-negative satisfaction
metric ¢ such as q, and minimum acceptable per-query

satisfaction qpin, we define

12|
T = {S S Rlﬂl | ZSI‘ = k},and

i=1

Tmin = {S €Tk ‘ ¢(st> > %nin}~

Then
M(Tqmin) S 14
/J(Tk) dmin
where p is the expected per-query satisfaction under
uniform random sampling and u is Lebesgue measure.

This theorem shows that the proportion of satis-
faction functions for which our algorithm performs
extremely well (with more than ¢,,;, expected satis-
faction) is small. In most practical applications, p is
extremely small, as k will typically be extremely small
in comparison to the size of the search space. The
upper bound for the probability of successful search
decreases linearly with the increase of threshold value

qmin-
5.2 Success Under Dependence

Theorem 5.2. Let ¢ be a finite positive constant, and
restrict s to an arbitrary quantization Q = {i-c |
i€{l,...,m}}. Let Ty be the set of satisfaction vec-
tors such that T, = {s | s € QI® sT1 =k}, and let
H(Uy,.)q)) denote the information-theoretic entropy
of the uniform distribution over T for a search space
of cardinality |Q)|.

Let the satisfaction vector S ~ D, be a vector-
valued random variable over the set T. Let X be the
random variable such that X ~ Pr over the elements
of Q. S(X) is similar to s(®), except we are dealing
with random variables S and X rather than specific re-
alizations s and ®. Then for any non-negative constant
u,

I(S;F) + Dkr(Dy || Us,) +H(S(X) | X)
H(Ugo-1) —H(Uy_o-1)

Theorem 5.2 provides a bound on the probability
of sampling an element with a sufficiently large satis-
faction defined by threshold u. This expression tells
us that the upper bound of the probability of success
monotonically improves as dependence between the
satisfaction vector values and information resource
values increases. The term Dgy (D, || Uy, ) represents
the Kullback-Leibler (KL) divergence between the ac-
tual distribution over the set T, Dr, and the uniform
distribution over the same set T, Uy, . This can be in-
terpreted as the predictability of the distribution of sat-
isfaction vectors, where large values of KL-divergence

Pr(S(X) > u) <




represent more probability mass concentrated on a few
elements. The H(S(X) | X) term indicates the condi-
tional entropy or surprisal associated with the possible
satisfaction values for an element X sampled from the
search space. This term is large when there are large
variations in the satisfaction values thus resulting in
an increase in the upper bound for the probability of
sampling an element with a sufficiently large satisfac-
tion value. The denominator in the bound essentially
serves as a normalizing factor appropriately scaling
the value of the upper bound.

We see that our upper bound increases with an in-
crease in the predictability of the satisfaction vector,
the dependence between the satisfaction vector and
the external information resource, and the conditional
entropy in the satisfaction values associated with an el-
ement in the search space. Thus, this theorem gives us
an interpretable upper bound on the probability of sam-
pling an element with a sufficiently large satisfaction
value. Moreover, this theorem is particularly useful
to allow us to determine situations where we cannot
expect to perform well.

5.3 Expected Satisfaction Under
Dependence

Theorem 5.3. We will continue using all the defini-
tions from Theorem 5.2. Let
q=E[SX)] =) Pr(S(X)=c)-c.
ceQ
Then,
1($;F) 4+ Dii(Dy, || Uy) +H(S(X) | X)

1= o (H(Ugjo1-1) —H(Us,_, jol-1))

Cm

)

where cy = infQ and c,, = sup Q.

Extending from the bound on Pr(S(X) > u) pre-
sented in Theorem 5.2, we present a similar bound for
the expected satisfaction, i.e., ¢ = E[S(X)], without the
need to specify a target satisfaction value defined by a
constant threshold u. Compared to Theorem 5.2, this
bound gives more context of the search problem, and
can serve as a more robust metric since it’s not suscep-
tible to the skewness and kurtosis of the distribution
of satisfaction values over the search space.

The interpretation of this bound is similar to The-
orem 5.2 with a small change in the scaling factor
in the denominator. Here, the bounded quantity is
the expected satisfaction instead of the probability of
exceeding a certain satisfaction. Comparing the two
bounds in 5.2 and 5.3, we see that the bound in 5.3
is useful when sub-optimal elements contribute to the
success of the search algorithm, whereas the bound
in 5.2 is useful when sub-optimal elements do not
contribute to the success of the search algorithm.

5.4 Difference in Satisfaction

We next quantify and bound the difference between
expected per-query satisfaction (i.e., for continuous
targets) and expected per-query probability of suc-
cess (i.e., for binary targets), beginning with a helpful
lemma.

Lemma 5.4. Let g be the threshold value for convert-
ing a continuous target set into a discrete (binary)
target set where all elements with satisfaction greater
than or equal to the threshold g are included in the
target set and the rest are excluded. Given a probabil-
ity vector w, satisfaction vector s, target vector t, and
vector v=-:s—t,

[viw| < max(1 —g,g).

Theorem 5.5. Let FF,S be the average conditional dis-
tribution assigned by the search algorithm under a
continuous satisfaction measure, and let F[{t be the av-
eraged conditional distribution assigned by the search
algorithm under a discrete target set. Let r be the
maximum rounding amount defined as max(1 — g, g).
Then,

1 _
lq(s,F) —q(t,F)| < ITI\/zDKL (Prs || Pry) +r-

Theorem 5.5 bounds the difference in the success
measure in the discrete and continuous case using the
KL-divergence between the distributions learned in
the continuous and discrete cases. It indicates that the
potential for improved performance obtained by tran-
sitioning from a discrete target set to continuous target
sets relies on the chosen threshold value g and the size
of the target set. The degree of divergence between the
outputs of the search algorithm in the two scenarios is
measured by KL-divergence. This relationship is logi-
cal since the potential for performance improvement
between the case with discrete and continuous target
sets should be proportional to the amount of rounding
required, which is related to both the threshold and
the size of the target set. By transitioning from using
discrete to continuous target sets, we also have the
potential to gain from the divergence between the av-
erage conditional probability mass functions produced
by the search algorithm in both cases. This is because
the external information resource has the potential to
be more useful in the case of a continuous satisfaction
measure.



6 Example

6.1 Setup

To anchor this theoretical framework we provide an
example of how it can be applied to a simple machine
learning regression problem. We first create an inde-
pendent variable X then use some stochastic data gen-
erating process to obtain our dependent variable Y. For
the purposes of this example we use ¥ =2X +5+¢,
with € ~ A((0,100).

Suppose we try to model the data from this learn-
ing problem with a linear regression of the form
Y =aX +b. We would then be able to model the
training process within the ASF as a search over the
space of possible learned parameters. We consider a
finite set of values from which to take a and b. Let A
and B be sets of evenly spaced numbers in the finite
interval [@min, dmayx] and [Bin, biax] With a step size x.
That is, A = {@min, min +X, .-, Amayx } and likewise for
B. Then, Q = A x B or the Cartesian product of A and
B. For this example, we selected A = [0,4] with a step
size of 0.01 and B = [1,7], also with a step size of 0.01.
In general, this is done by inspecting the distribution
of Xand?Y.

We must also determine an external information
resource F that will guide our search through the pa-
rameter space. For this regression problem, we use the
mean squared error (MSE) of our hypothesized model
calculated on the training set. That is, for a particular
hypothesis ® corresponding to a pair of parameters
(a,b) where a € A and b € B, the evaluation of the ex-
ternal information resource is the mean squared error
on the training set, or, F(0) = 1 Y7(Y; — (aX; + b))

The overarching goal of the search algorithm is
to find elements in the search space that have large
satisfaction values associated with them. Our search
algorithm determines the distribution Pr to attempt
to maximize s' Pr, but it only has the information
provided by F. In this example, the satisfaction values
can be interpreted as the mean squared error on the
test set. While we perform our search we don’t use
these values of satisfaction to guide our search, only
the evaluation of F. In machine learning terms, the
algorithm does not have access to the test data during
the training step.

6.2 Example Result

Let us evaluate the bound presented in Theorem 5.2
both on differing levels of quantization and with dif-
ferent evaluation scenarios to gain more insight into
the theorem. If our training data was generated by the
same process as our testing data and success measured

similarly, we would expect our mean squared error on
the training data to be reflective of the mean squared
error of the test data, thus giving us a high satisfac-
tion for a trained model. However, if the test data was
generated via a different process or the measure of suc-
cess between training and testing data were different,
we would not expect our trained model to have high
satisfaction.

Consider a case where mean squared error is used
to evaluate a hypothesized model on the training data
in the information resource, but the satisfaction mea-
sure is the mean absolute error. In this case, the infor-
mation a learning algorithm is guided by during search
is systematically different from the information it is
supposed to learn. This would be reflected by a lower
value in the mutual information term I(S; F).

By making reasonable assumptions about the struc-
ture of our example problem, we can compute the
value of I(S; F) and the bound for Theorem 5.2. First,
we set k = 1, and |Q| = |A| x |B] = 400 x 600 (the
bounds assigned in the previous section). We compute
the bounds for levels of quantization m = 2 (binary)
and m = 3 (ternary). For binary we set our ¢ = 0.5 so
s; € {0,0.5}. For ternary, we set c = 1 sos; € {0, 1,3}
We assume that Dr, = Uy, |qf, that is S ~ Uy g
While this assumption is not necessary it simplifies
our calculations.

We produce these results in Table 2. The column
Match means that MSE is used for evaluating in both
the train and test phase (i.e F and s), while the column
Not Match means that MSE was used in the train phase
and MAE was used in the test phase. The rows m = 2
and m = 3 mean a binary level and ternary level of
quantization, respectively.

Table 2: Example Results

Not Match

I(S;F) =027
Pr(s(x)>1)<o0.14

| Match

I(S;F) = 0.60
Pr(S(X) > 1) <031

m=2

I(S;F) =0.97

. I(S;F) =0.55
Pr(S(X) > %) <0.34

Pr(S(X)>2%)<0.19

m=3

From the table, we can observe that having the
same evaluation metric for our train and test set raises
our potential for performing well. This change is
largely driven by the decreased mutual information
term I(S;F) displayed for each. Comparing across
levels of quantization does not necessarily make sense,
especially since the selection of u (i.e.,% and %) differ
in the two cases based on the level of quantization.

This demonstrates how these bounds can be ap-
plied to real-world problems, and show how changes
in I(S; F) influence our ability to perform well. Our



ability to do well on a problem is limited by the quality
of our information with respect to what we are trying
to learn. In other words: garbage in, garbage out.

7 Conclusion

We extend the Algorithmic Search Framework from
discrete target sets to a continuous measure of suc-
cess, addressing one the framework’s core limitations
and increasing its versatility. We generalize theorems
previously proven using the discrete ASF to the con-
tinuous and quantized cases, and derive novel results.
Specifically, we prove an upper bound on performance
under an arbitrary level of quantization, demonstrating
that increasing the granularity of our success metric
reduces our maximum theoretical performance. We
bound the absolute difference in performance between
the binary and continuous cases. We provide an ex-
ample how the ASF can be applied to a regression
problem and show how different processes for generat-
ing data or measuring success change key terms, like
I(S;F), thus varying our bound on performance.
These results improve the ability of the ASF to
model machine learning problems that naturally have
continuous measures of success, unlocking the poten-
tial to further the body of existing ASF research. There
remain many opportunities for extension. One possible
application of this framework is that it can be used for
an information theory-based analysis of auto-ML algo-
rithms by giving us a framework to better understand
the performance of this domain of machine learning
algorithms. Strengthening this theoretical framework
will give researchers the tools to analyze learning algo-
rithms with a naturally continuous measure of success.
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APPENDIX

Theorem 5.1. For fixed k € R>, fixed information

resource f, decomposable, non-negative satisfaction

metric ¢, and minimum acceptable per-query satisfac-
tion gin, we define

12|

T = {s e R | Zsi =k},and

i=1

Tgin = 18 € & | O(8,F) > Gumin }-

Then % < qﬁi’n where p is the per-query expected

satisfaction under uniform random sampling and u is
Lebesgue measure.



Proof. Under uniform sampling on T¢, we have

M(Tguin) _ .
ﬁ = Pr(0(S,F) > Gumin)

< E i, [0(s,F)]

4dmin
where U[t] is the uniform distribution over Ty, s ~
U[ty], and the second step follows from Markov’s
inequality. By the decomposability of ¢ and linearity
of expectation, we have:

'u(Tqmin) < E‘u[Tk] I:STF(D#F:I
/J(Tk) o dmin

— EU[T/(] [ST] P¢F

4dmin -

As U[ty] is uniform, Eqyir,; [s"] = p-17. Tt follows
that =
‘u(T‘Imin) < pl Pq)’F

‘u(Tk) o dmin

Furthermore, as Pz is a probability distribution,

YoPor(®)=1and1"P r = 1. Hence, we conclude

H(Tgniy) < P
:u(Tk) o dmin

O
Theorem 5.2. Let X be the random variable such that
X ~ Pr. For any non-negative u € Q:

I(S;F)+Dxp(Dr, || U H(S(X) | X
PI'(S(X)ZM)S (’ )+ KL( Tk” Tk)+ (( )‘ )
H(Uy0-1) —H(Uy, o)1)

Proof. Q is a set of integer multiples of a constant spacing

¢ (an arbitrary quantization) and can be expressed as Q =
{0,¢9,¢1,....cm}, Where ¢ corresponds to the minimum

positive value and ¢, corresponds to the maximum value.

Now, observe that

k_
H(Uy,jq)) = log(|T|) = log ((|Q| +f ])> .

c

Note that H(U,;q|) is monotonically increasing on |Q[ and
k. For notational simplicity, let P, = Pr(S(X) > u). We see
that:

H(S|S(X),X) = (1 - P)H(S | S(X) < 0,X)
+PH(S|S(X) > u,X)
< (1 =Po)H(Uqj0)-1)
JrPg["l(urkfu;lmfl)
:H(‘ll.rk;‘m,l)
= Po(H (U q)-1) —H(Uy,_c0)-1))-

The inequality follows from the fact that the entropy of a
distribution of s is not larger than the entropy of uniform
distribution of s.

Also, by the chain rule of conditional entropy,
H(S,S(X) [ X) = H(S|S(X),X)+H(S(X) | X)
H(S,SX)|X)=H(SX)|S,X)+H(S|X)=H(S|X)+0

By the data processing inequality (with the Markov chain
S—F —X),

H(S|F) <H(S|X)
(S,5(X)1X)
(S8(X),X)+H(S(X) | X)

H
H

Then, we have:
H(S|F)=H(S|S(X),
SH( Tk;‘Q.|71)
N———
<H(Us)
= Po(H( U q)—1) — H(Uy,_,;0)-1))
+H(S(X) | X)

X)+H(S(X) | X)

and by the definition of conditional entropy,
H(S) = 1(S;F) < H(Us) = Po(H(Uq,0)-1)

_H(uTk—ui‘Q‘*l))
+H(S(X)|X).

Thus,

Pr(S(X) > u) < 1) Dk (D || Us) +HSXO) | X)

H(U01-1) —H(Uy_0)-1)
O

Theorem 5.3. Let Q be a set of integer multiples of
a constant spacing ¢ and can be expressed as Q =
{0,¢o,c1,...,cm }» Where cq corresponds to the mini-
mum positive value and c¢,, corresponds to the maxi-
mum value. Let P. = Pr(S(X) = ¢), ¢ = Locg >0 Pecs
then we have:

. I(S;F) + Dk (Ds || Us) +H(S(X) [ X)

B ﬁ(H(ﬂTk;m\fl)—H(umco;lﬂ\fl))'
Proof.

H(S|S(X)

==Y P)H(S|S(X)=0,X)
+Y PH(S|S(X ):c,x)
<(1-Y P)H
-l-ZPc'uM
:H(‘u”fk;m%l)
_ZPCC%(H(%;\Q\—O
_H(ru'fkfczlﬁ\fl))
SH(UW;IQH)
_(ZPCC)'é(H U

lol-1)
—H(Ux,_, joi-1)):

‘u’rk;|§2|71 )



The last inequality is due to the monotonicity of
H(Uy,;|q)- Then, following the same steps as used in
Theorem 5.2,

H(S)—I(S;F) < H(Uq,q/-1)
——
<H(Us)

_(ZPCC)CL(H u
S —cm

e Q—1)
=q
*H(urkﬂ-o;lﬂlfl))'

After simplification,
I(S;F) + Dx (D || Us) +H(S(X) [ X)
- i(H(‘Uq;\m—l)—H(‘UT,(,CO;\m—O)

O

Lemma 5.4. Given a probability vector w and a vector
v=s—t
v w| < max(1 —g,g)

Proof. First, note that g — 1 < v; < g. This is because
v; is the value that must be subtracted from the i el-
ement of the search space to attain the value #;, since
t =s— v and g is the cutoff threshold for either round-
ing s; up to 1 or down to 0. Therefore, in the case that
we are rounding up, the most extreme value that can be
subtracted is g — 1 (which is equivalent to adding 1 — g
to arrive at 1). In the case that we are rounding down,
the largest value we could subtract is strictly less than
g. Now, we see that [v w| < ||v||[|w||, and since w is a

and ||v|]| < max(g,1— g), given that g — 1 is negative.
Thus, |v' w| < max(g,1—g). O

Theorem 5.5. Given that FRS is the averaged condi-
tional distribution assigned by the search algorithm
where our target set has a continuous satisfaction mea-
sure, Fp)t refers to the averaged conditional distribu-
tion assigned by the search algorithm when we use
a discrete target set, and g is the threshold value for
converting a continuous target set into a discrete target
set (all elements with satisfaction greater than or equal
to the threshold g are included in the target set and the
rest are excluded):

‘Q(SvF) _Q(tﬂF)l

1 —
< |T|\/2DKL(PF,S | Prt) +max(1—g,g).

This theorem bounds the difference in the success mea-
sure in the discrete and continuous case using the KL-
divergence between the distributions learned in the
continuous and discrete cases.

Proof. Consider |q(s,F) —g(t,F)|. Using the decom-
posable probability of success metrics we get:

lg(s,F) — q(t,F)| = |s" Prs—t Py

Now, we define a vector v such that v=s —t. There-
fore,

|s " Prs—t Py = |(t+V) Prg—t Py
= |tTFF,s - tTﬁF,t + VTFFAS‘
< |tTFF7S — tTFF7t| + |VTﬁF_’s‘.

(1—g,g). There-

fore,

[t Prs—t' Pry| +|v Pry|
< |t" (Prs—Pry)| +max(g, 1 —g).

Defining r := max(g, | — g), we note that

t" (Pry —Pry)| +max(g,1 —g)

<|T|sup o(Prs(®) —Pre(w)) +r

1 _ —
< T\/ZDKL(PRS | Pre)+r,

where the last step follows from Pinsker’s inequality.
Hence,

1 - =
lg(s,F) —q(t,F)| < IT\/ZDKL(PF,s | Pre) + 7.
O

Example. We set k = 1. For all levels of quanti-
zation, note that /(S;F) can be found computation-
ally by directly computing s(®) and F(®) for all
o € Q. We know that the Dk, term will equal 0,
since the KL divergence between two identical dis-
tributions is 0. Since S(X) is independent from X,

H(S(X)|X)=H(S(X)). We also know that
1

Hlthcn o ()
i) SEZTk |Tk| ||

So then we simply need to find || for a given |Q]|.
This can be done by simple combinatorics.

First, we set m = 2 and u = 0.5 with ¢ = 0.5 so
s; € {0,0.5}. We know that P(S(X) = 0) = 22 since
there are exactly two non-zero elements (both 0.5 to
sum up to k = 1), and then P(S(X) = 0.5) = 2 so the
distribution is known. To find |t|, we know that it
is formed from all sets s that sum up to 1, so that is
any set with exactly two elements with value 0.5, so
then there are (g) such sets. We also need to compute
| Tk—y| for the subtracted term in the bound, this is T s.
We know this happens when exactly one element is



0.5, so there are (’l’) = n such sets.

Second, we set m = 3 and u = % with ¢ = %

so s; € {0,1,2}. There are two possible cases for

satisfactory vectors in Tx: ones that have 3 elements
with % and those with one % and one % There are ('3’)

sets satisfying the first case, and (’2’) - 2! sets satisfying

the second so |T¢| = (g’) + (;) -2!. We must also find
|Th—u| = |T ! |, this happens when exactly one element

is a % so there are (|) = n such elements. Next, we

must find the distribution over S(X). Let a be the
probability that we have the case of three % (there are

(g’) such sets) and g be the complementary probability

of having one % and one % (there are (;) -2! such

sets). Then, P(S(X) =0) =a- ? +b- "n;z since
there are 3 non-zero elements in a and 2 in b.
P(S(X) = %) :a~%—|—b~% since there are 3 % in the a
case and 1 in the b case. Finally, P(S(X) = %) =b-1

since there is only a % in the b case and only 1.

Now that every term has been determined either
mathematically or computationally, we can combine
them to compute the bounds as given in Section 6.



