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Abstract Aqueous solutions of oppositely charged macromolecules exhibit the ubiquitous phenomenon of
coacervation. This subject is of considerable current interest due to numerous biotechnological applications
of coacervates and the general premise of biomolecular condensates. Towards a theoretical foundation of
structural features of coacervates, we present a field-theoretic treatment of coacervates formed by uniformly
charged flexible polycations and polyanions in an electrolyte solution. We delineate different regimes of
polymer concentration fluctuations and structural features of coacervates based on the concentrations of
polycation and polyanion, salt concentration, and experimentally observable length scales. We present
closed-form formulas for correlation length of polymer concentration fluctuations, scattering structure
factor, and radius of gyration of a labelled polyelectrolyte chain inside a concentrated coacervate. Using
random phase approximation suitable for concentrated polymer systems, we show that the inter-monomer
electrostatic interaction is screened by interpenetration of all charged polymer chains and that the screening
length depends on the individual concentrations of the polycation and the polyanion, as well as the salt
concentration. Our calculations show that the scattering intensity decreases monotonically with scattering
wave vector at higher salt concentrations, while it exhibits a peak at intermediate scattering wave vector
at lower salt concentrations. Furthermore, we predict that the dependence of the radius of gyration of a
labelled chain on its degree of polymerization generally obeys the Gaussian chain statistics. However, the
chain is modestly swollen, the extent of which depending on polyelectrolyte composition, salt concentration,
and the electrostatic features of the polycation and polyanion such as the degree of ionization.

1 Introduction

Concentration fluctuations in solutions of uniformly
charged polyelectrolytes can be very strong resulting
in several structural and thermodynamic features that
are not observed in uncharged systems, as revealed
in the pioneering work of Fyl Pincus and collabora-
tors [1]. The concept of double screening [2–4], that is
the confluence of the Edwards screening [5–8] of short-
ranged excluded volume interactions and the Debye
screening of the long-ranged electrostatic interactions
[9], results in the special properties of polyelectrolyte
solutions, such as the spontaneous selection of finite-
size structures (structure factor exhibiting a peak at
non-zero scattering wave vectors) [2,10–14]. In the pres-
ence of multivalent counterions, polyelectrolyte solu-
tions undergo phase separation relatively easily com-
pared to the situation with monovalent counterions [15–
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17]. The extreme example of multivalent counterions is
an oppositely charged polyelectrolyte. When two oppo-
sitely charged polyelectrolytes are mixed in an aqueous
solution, they can spontaneously form inter-molecular
complexes and undergo liquid-liquid phase separation,
broadly classified as coacervation [18–59]. In this tribute
to Fyl Pincus’ long-standing contributions to polyelec-
trolyte physics, we address concentration fluctuations
inside coacervate phases and derive closed-form formu-
las for correlation length of concentration fluctuations,
structure factor, and size of labelled chains in terms of
relevant experimental variables.

Starting from the initial experimental observation
[18] eight decades ago, the phenomenon of coacer-
vate complexation in a mixture of polycations and
polyanions has a long history [19–59]. There are several
reviews on this subject providing excellent summary
of various experimental results, theoretical approaches,
and simulation results [11,57–59]. Furthermore, there
is a rapidly growing literature on liquid-like droplets
of biocondensates reminiscent of coacervates from syn-
thetic polyelectrolytes [60–69]. The primary theoreti-
cal approach to address the coacervate structures and
phase diagrams is based on a mean-field argument orig-
inally introduced by Voorn and Overbeek [19,20]. As
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Fig. 1 a Sketch of length
scales denoting Rg, ξD, and
the proble length Λ (for
kξ � 1). A labelled chain
is depicted with thick
contour. b Four
experimental conditions to
determine structure and
size inside coacervates
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a deviation from the classical approach towards under-
standing coacervation phase behavior, only recently, the
role of correlations among the inter-chain dipoles (ion-
pairs) on coacervation has been addressed [11,53,54].

In parallel, several experimental techniques such as
neutron scattering, conductivity measurements, elec-
tron microscopy, and thermodynamic analysis, have
been used to discern the structure and radius of gyra-
tion of a labelled polyelectrolyte chain inside coacer-
vates [29,30,36,37,41,50,52]. The experimental results
show that the coacervate is a liquid, rubbery, or glassy,
and that a labelled chain adopts either a self-avoiding
walk (SAW) or Gaussian statistics, all depending on
the system-specific experimental conditions [37,50]. To
date, there is no firm theoretical basis to address con-
centration fluctuations in dense coacervates in terms
of strength and range of such correlations and their
consequences on the effective inter-segment electro-
static interaction mediated by topologically correlated
charged polyelectrolytes, and the size of a labelled
chain. A theoretical attempt to address these issues is
the primary goal of this paper.

In general, there are four important length scales in
the system [2], namely, the Bjerrum length (�B), cor-
relation length (ξ) for concentration fluctuations, the
Debye length (ξD ≡ κ−1), and the radius of gyration
(Rg) of a labelled chain, in addition to the monomer
length �. The Bjerrum length denotes the strength of
the electrostatic interaction in the solution. It is the
length at which the electrostatic interaction between
two monovalent charges is the thermal energy kBT (the
Boltzmann constant times the absolute temperature).
The Debye length denotes the range of electrostatic
interaction. ξ, ξD, and Rg depend on the composition of
the system. Let the total polymer concentration in the
coacervate be c(= c1 + c2), where c1 and c2 are, respec-
tively, the monomer concentrations of the first polyelec-
trolyte of degree of polymerization N1, and that of the
oppositely charged second polyelectrolyte of degree of
polymerization N2. Let the concentration of the low
molar mass monovalent electrolyte in the system be
cs. The correlation length ξ and the radius of gyration
Rg depend on c, cs, N1, N2, and �B , as well as the sol-
vent quality represented by the Flory-Huggins param-

eter χ. The Debye length ξD depends inversely on the
square root of the total concentration of fully dissoci-
ated small ions. Since a major driving force for complex-
ation between oppositely charged polyelectrolytes is the
release of adsorbed counterions from the participating
polyelectrolyte chains [28], the total concentration of
dissociated small ions participating in the electrostatic
screening is roughly (c1 + c2 + cs). Here, the prefactors
in front of c1 and c2 depend on the degree of counterion
adsorption on the parent polyelectrolyte chains, which
in turn depends on specific experimental conditions.

In addition to the above mentioned two length scales
of ξ and Rg characterizing specific coacervates, the key
length scale in scattering experiments that probe coac-
ervates is the probe length Λ ∼ k−1, where k is the
scattering wave vector. Experimental determination of
ξ and Rg as functions of c, cs, N1, N2, and T depends
crucially on the appropriate tuning of the probe length.
These three length scales are cartooned in Fig. 1a.
Depending on the relation among ξD ≡ κ−1, Rg, and
Λ ∼ k−1, four regimes (kRg<1, kRg>1, kξD<1, kξD>1)
arise as shown in Fig. 1b. We present below formulas
for ξ and Rg in these four regimes.

Generally speaking, there are three concentration
regimes as illustrated in Fig. 2. for consideration of ξ
and Rg [2,6,7]. Considering the concentration c1 of the
first polyelectrolyte (either polycation or polyanion),
with the corresponding N1-dependent overlap concen-
tration c�

1, these regimes are dilute (for c1<c�
1), semidi-

lute (for c�
1<c1<c��

1 ), and concentrated (for c1>c��
1 ).

As well known for polyelectrolyte solutions [2,3,11], the
concentration fluctuations are strong in the semidilute
regime and weak in the concentrated regime, with c��

1
being the boundary between the regimes. Analogously,
these three regimes exist also for the second polyelec-
trolyte. For the symmetric case (N1 = N2), these three
regimes are portrayed in Fig. 2, where the polymer con-
centration c is the total concentration from both poly-
electrolytes (c = c1 + c2).

In dilute solutions containing sufficient added salt or
dissociated counterions, the chains are expected to be
far from each other and each chain behaving like a
self-avoiding walk (SAW) chain. As the polymer con-
centration increases in the dilute regime, the radius of
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Fig. 2 a Sketch of the concentration dependence of the
radius of gyration Rg of a labelled chain in a symmetric
mixture (N1 = N2) of polycations and polyanions in the
presence of added salt. c is the total polymer concentra-
tion. c� and c�� denote the overlap concentration and the
concentration boundary between the regimes of strong fluc-
tuations (c�<c<c��) and weak fluctuations (c>c��). In the
dilute regime, chains shrink from self-avoiding walk con-
formation to globule-like conformation as c increases. The
chain re-swells upon an increase in c to reach an asymptotic
value for c>c��

gyration of a labelled chain is expected to decrease due
to formation of branched structures from inter-chain
binding among oppositely charged polymers, eventually
reaching a globular conformation [11]. Once c is higher
than the overlap concentration c�, the chains would
interpenetrate into each other. As a result, we expect
the Rg of a labelled chain to be higher than its value at
c ≤ c�. Therefore, the chain is expected to re-swell into
swollen conformations in the semidilute regime. Upon
further increase in c into the concentrated regime, the
concentration fluctuations become weak and theoretical
methods equivalent to the random phase approximation
(RPA) can be implemented for investigating structure
and fluctuations in concentrated coacervates. Based on
the above expectations, the Rg of a labelled chain is a
function of N1, c, and cs, as indicated in Fig. 2.

If the temperature is low enough (equivalently �B

is high enough), the ion-pairs formed by oppositely
charged monomers are strong so that highly branched
structures [11] would form. For such experimental con-
ditions, the coacervates would possess internal
microstructures [61,67]. On the other hand, if the tem-
perature is high enough, but below the critical tem-
perature Tc for liquid-liquid phase separation, then the
coacervate is expected to be liquid-like without sub-
stantial branched architectures. In the present paper,
we address only this state of coacervates. Furthermore,
we assume that the polymer concentration of the coac-
ervate is high enough to guarantee only weak concen-
tration fluctuations. Using an analytical treatment of
a field-theoretic representation of coacervates, we show
that the static structure factor exhibits a peak in terms
of the scattering wave vector and that the radius of
gyration of a labelled chain obeys Gaussian chain statis-
tics with only modest swelling contributed by concen-
trations of the polyelectrolytes and added salt.

The rest of the paper is organized as follows. The
theoretical model is presented in Sect. 2. After intro-
ducing theoretical framework in Sect. 3, results based
on mean field theory and fluctuations are derived in
Sects. 4 and 5, followed by calculations of the struc-
ture factor in Sect. 6 for the four cases in Fig. 1b. The
effective inter-segment interaction for a labelled chain
is derived in Sect. 7, followed by a calculation of the
radius of gyration of a labelled chain in Sect. 8. The
main results are summarized in the last section.

2 Model

Consider a system of n1 flexible polycations each con-
taining N1 segments, n1c counterions of the polyca-
tion chains, n2 flexible polyanions each containing N2

segments, n2c counterions of the polyanion chains, nγ

ions of species γ from dissolved salt, and ns solvent
molecules in volume V . Let α be the fixed degree of
ionization per chain, for both polycations and polyan-
ions, so that each segment of the chains carries a charge
of ezp where e is the electronic charge. The total num-
ber of counterions is nc = αzp(n1N1 + n2N2)/zc where
zc is the valency of the both kinds of counterions. Let
ezi be the charge of the i-th charged species. We repre-
sent the polycation and polyanion chains as continuous
curves of length L1 = N1� and L2 = N2�, respectivly,
where � is the Kuhn step length. The Helmholtz free
energy F of the system is given by

e
− F

kBT =
1

n1!n2!n1c!n2c!ns!
∏

γ nγ !

∫ n1∏

α=1

D[Rα]

∫ n2∏

β=1

D[Rβ ]
∫ nc+ns+

∑
γ nγ∏

i

dri

× exp [−Lα − Lβ − U − Ub] , (1)

where

Lα = exp

[

− 3
2�2

n1∑

α=1

∫ N1

0

dsα

(
∂Rα(sα)

∂sα

)2
]

, (2)

Lβ = exp

⎡

⎣− 3
2�2

n2∑

β=1

∫ N2

0

dsβ

(
∂Rβ(sβ)

∂sβ

)2
⎤

⎦ , (3)

U =
1
2

n1∑

α=1

n1∑

α′=1

∫ N1

0

dsα

∫ N1

0

dsα′Uαα′ [Rα(sα)

−Rα′(sα′)]

+
1
2

n2∑

β=1

n2∑

β′=1

∫ N2

0

dsβ

∫ N2

0

dsβ′Uββ′ [Rβ(sβ)

−Rβ′(sβ′)]

+
n1∑

α=1

n2∑

β=1

∫ N1

0

dsα

∫ N2

0

dsβUαβ [Rα(sα)
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−Rβ(sβ)], (4)

and

Ub =
n1∑

α=1

∫ N1

0

dsα

ns∑

i=1

Uαs[Rα(sα) − ri]

+
n2∑

β=1

∫ N2

0

dsβ

ns∑

i=1

Uβs[Rβ(sβ) − ri]

+
n1∑

α=1

∫ N1

0

dsα

nc+
∑

γ nγ∑

i=1

Uαi[Rα(sα) − ri]

+
n2∑

β=1

∫ N2

0

dsβ

nc+
∑

γ nγ∑

i=1

Uβi[Rβ(sβ) − ri]

+
1
2

ns∑

i=1

ns∑

j=1

Uss(ri − rj)

+
1
2

nc+
∑

γ nγ∑

i=1

nc+
∑

γ nγ∑

j=1

Uij(ri − rj). (5)

Here Rα(sα) is the position vector of the arc length
variable sα(0 ≤ sα ≤ N1) of the α-th chain. Simi-
larly, Rβ(sβ) denotes the arc length position for the
β-th chain. Uαα′(r) is the interaction energy between
two segments of polycations separated by a distance r.
Similarly, the pairwise interaction energies for two seg-
ments of polyanion chains and for a pair of a polycation
segment and a polyanion segment are given by Uββ′(r)
and Uαβ(r), respectively,

Uαα′(r) = w11�
3δ(r) +

α2z2p�B

r
, Uββ′(r) = w22�

3δ(r)

+
α2z2p�B

r
, Uαβ(r) = w12�

3δ(r) − α2z2p�B

r
, (6)

where w11, w22, and w12 are excluded volume pseu-
dopotentials, which are related to the Flory-Huggins
parameters χ11, χ22, and χ12, according to w11 = (1 −
2χ11)�3, w22 = (1 − 2χ22)�3, and w12 = (1 − 2χ12)�3.
δ(r) is the Dirac delta function and r = |r|. The sec-
ond terms on the right hand side of Eq. (6) represent
the Coulomb interaction energy between the segments,
where �B is the Bjerrum length,

�B =
e2

4πε0εkBT
. (7)

The short-ranged interactions between the polymer seg-
ments and solvent molecules (Ups = Uαs, Uβs) and
between solvent molecules (Uss) are given by

Ups(r) = wpsδ(r) and Uss(r) = wssδ(r), (8)

where wps and wss are the corresponding pseudopo-
tential excluded volume parameters. The electrostatic

interactions between charged segments (p = α, β) and
various ions are given by

Upi(r) =
αzpzi�B

r
and Uij(r) =

zizj�B

r
.

(9)

The above set of equations defines the model.

3 General theory

As a first step, all degrees of freedom associated with
mobile (dissociated) counterions, electrolyte ions, and
solvent molecules are integrated out in Eq. (1). This
step is carried out with the Debye–Hückel theory of
a charged plasma (here corresponding to the charged
solution background which neutralizes the polyelec-
trolyte charges). As a result, the inter-segment interac-
tion between polymer segments is given by the screened
Coulomb potential (in addition to the hydrophobic
part) as [3]

vαα′(r) = w11�
3δ(r) + wc

e−κr

4πr
,

vββ′(r) = w22�
3δ(r) + wc

e−κr

4πr
,

vαβ(r) = w12�
3δ(r) − wc

e−κr

4πr
, (10)

where

wc = 4πα2z2p�B , (11)

and

κ2 =
4π�B

V

(

z2cnc +
∑

γ

z2γnγ

)

. (12)

It should be noted that the above form of the screened
Coulomb electrostatic interaction is only within the
Debye–Hückel theory. This is valid even when the back-
ground medium contains a net charge, due to counteri-
ons from nonstoichiometric composition of polycations
and polyanions (as in one-component plasma). If the
electrolyte concentration is very high, deviations from
the Debye–Hückel theory will arise and a treatment of
non-linear Poisson-Boltzmann formalism needs to be
implemented. Furthermore, the excluded volume inter-
actions among the electrolyte ions, due to their finite
size, are also ignored. In the present paper, we con-
sider only the simple Debye–Hückel screening form in
the interest of analytical tractability in obtaining phys-
ically significant results of experimental relevance.

After the first step, the system consists of only
n1 polycations and n2 polyanions which are coupled
through both intra-chain and inter-chain interaction
potential v(r) given by Eq. (10). The Helmholtz free
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energy F of the whole system is now given by the free
energy Fp of these chains and the free energy of the
background Fb as

F = Fp + Fb. (13)

The free energy of the background fluid consists of the
entropy of mixing terms and the charge fluctuations in
the neutralizing background,

Fb = Fb0 + Ffl,i, (14)

where

Fb0

kBTV
= cs ln cs − cs + c1c ln c1c − c1c + c2c ln c2c

−c2c +
∑

γ

[cγ ln cγ − cγ ] +
1
2
wssc

2
s + wpsccs,

(15)

and

Ffl,i

kBTV
= − κ3

12π
. (16)

It should be noted that the expression for Ffl,i given by
Eq. (16) is strictly valid only in the region of validity
of the Debye–Hückel theory, namely the local electric
potential being less than kBT . Extensions can be made
to go beyond the linearized Poisson-Boltzmann formal-
ism [2]. Extension to include the finite size of the ions
generalizes Eq. (16) to

Ffl,i

kBT
= − V

4π�3
[ln(1 + κ�) − κ� +

1
2
κ2�2]. (17)

The free energy Fp of n1 polycations and n2 polyan-
ions in the background, where the interaction energy
between any two segments separated by distance r is
given by Eq. (10), follows from Eq. (1) as

e
− Fp

kBT =
1

n1!n2!

∫ n1∏

α=1

D[Rα]

∫ n2∏

β=1

D[Rβ ] exp [−Lα − Lβ − v] , (18)

where

v =
1
2

n1∑

α=1

n1∑

α′=1

∫ N1

0

dsα

∫ N1

0

dsα′vαα′ [Rα(sα)

−Rα′(sα′)]

+
1
2

n2∑

β=1

n2∑

β′=1

∫ N2

0

dsβ

∫ N2

0

dsβ′vββ′ [Rβ(sβ)

−Rβ′(sβ′)]

+
n1∑

α=1

n2∑

β=1

∫ N1

0

dsα

∫ N2

0

dsβvαβ [Rα(sα)

−Rβ(sβ)]. (19)

Let us introduce two collective coordinates as the
local monomer concentrations of the polycations and
polyanions. Defining the local monomer concentration
c1(r) of polycations as

c1(r) =
n1∑

α=1

∫ N1

0

dsαδ(r − Rα(sα)) (20)

and its Fourier transform as

c1,k =
1
V

∫

dreik·rc1(r) =
1
V

n1∑

α=1
∫ N1

0

dsαeik·Rα(sα), (21)

so that the relation between c1(r) and c1,k is

c1(r) = V

∫
d3k

(2π)3
c1,ke−ik·r =

∑

k

c1,ke−ik·r.

(22)

Similarly, the local monomer concentration of polyanion
and its Fourier transform are related as

c2(r) =
n2∑

β=1

∫ N2

0

dsβδ(r − Rβ(sβ))

= V

∫
d3k

(2π)3
c2,ke−ik·r

=
∑

k

c2,ke−ik·r (23)

and

c2,k =
1
V

∫

dreik·rc2(r) =
1
V

n2∑

β=1

∫ N2

0

dsβeik·Rβ(sβ),

(24)

Using Eq. (10) and the Fourier transform of vαα′(r)
defined below, we get

vαα′ [Rα(sα) − Rα′(sα′)]

=
∫

d3k

(2π)3
(
w11�

3 + vk

)
e−ik·[Rα(sα)−Rα′ (sα′ )],

(25)

where

vk =
4πα2z2p�B

k2 + κ2
≡ wc

k2 + κ2
. (26)
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Using Equations (21) and (25), the first term on the
right-hand-side of Eq. (19) becomes

1
2

n1∑

α=1

n1∑

α′=1

∫ N1

0

dsα

∫ N1

0

ds′
αvαα′ [Rα(sα) − Rα′(s′

α)]

=
V 2

2

∫
d3k

(2π)3
(
w11�

3 + vk

)
c1,kc1,−k

=
V

2

∑

k

(
w11�

3 + vk

)
c1,kc1,−k. (27)

Similarly, the other two terms on the right-hand-side of
Eq. (19) are given by

1
2

n2∑

β=1

n2∑

β′=1

∫ N2

0

dsβ

∫ N2

0

ds′
βvββ′ [Rβ(sβ) − Rβ′(s′

β)]

=
V

2

∑

k

(
w22�

3 + vk

)
c2,kc2,−k, (28)

n1∑

α=1

n2∑

β=1

∫ N1

0

dsα

∫ N2

0

dsβvαβ [Rα(sα) − Rβ(sβ)]

= V
∑

k

(
w12�

3 + vk

)
c1,kc2,−k. (29)

Using the collective coordinates c1,k and c2,k, the free
energy term U from the segment-segment interactions
given by Eq. (4) becomes

U = Uexcluded-volume + Uelectrostatic, (30)

where

Uexcluded-volume =
V �3

2

∑

k

[w11c1,kc1,−k

+w22c2,kc2,−k + 2w12c1,kc2,−k] (31)

and

Uelectrostatic =
V

2

∑

k

vk (c1,k − c2,k)2 . (32)

Note that not all c1,k are independent since c1,−k =
c�
1,k. Therefore, we choose c1,k with k>0 as independent

components representing all fluctuations. The k = 0
component is obviously the mean field component given
as

c1,k=0 =
n1N1

V
= c01and c2,k=0 =

n2N2

V
= c02, (33)

where c01 and c02 are the average monomer concentra-
tions of the polycation and polyanion, respectively.

4 Mean field theory

Using the incompressibility constraint, and ignoring the
constant terms linear in c01 and c02, the mean field part
of Uexcluded-volume follows from Eqs. (31) and (34) as

Uexcluded-volume = V �3χc01c
0
2, (34)

where χ is the Flory-Huggins parameter denoting the
chemical mismatch among the backbones of polycation
and polyanion and solvent,

χ =
[

w12 − 1
2

(w11 + w22)
]

. (35)

The mean field contribution to the electrostatic free
energy Uelectrostatic follows from Eqs. (32) and (33) as

Uelectrostatic =
V

2
v0

(
c01 − c02

)
, (36)

where v0 is wc/κ2. Hence, for the symmetric case c01 =
c02, the mean field part of Uelectrostatic is zero,

Uelectrostatic = 0. (37)

Thus at the mean field level, there is no electrostatic
contribution to the conformation of individual chains
and thermodynamics in a symmetric coacervate system,
and the system follows the behavior of the correspond-
ing uncharged system. For example, in the absence of
excluded volume interactions, the chains obey Gaussian
chain statistics with the size exponent ν = 1/2.

5 Fluctuations

In order to treat concentration fluctuations in the sys-
tem, let us define the non-local order parameter ψ(r)
in terms of the local concentrations of polycation and
polyanion as

ψ(r) =
1
2

[c1(r) − c2(r)] , (38)

with the constraint

c1(r) + c2(r) = c0, (39)

where c0 is the average total polymer concentration.
Introducing these constraints, the polymer contribution
to the free energy Fp follows from Eq. (18) as

e
− Fp

kBT =
1

n1!n2!

∫

δψ

∫ n1∏

α=1

D[Rα]

∫ n2∏

β=1

D[Rβ ] exp [−Lα − Lβ − v]
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×
∏

r

δ [2ψ(r) − c1(r) + c2(r)]
∏

r

δ [c1(r)

+c2(r) − c0] . (40)

Expressing c1(r), c2(r), and ψ(r) in terms of their cor-
responding Fourier transforms c1,k, c2.k, and ψk, we get
[2–4]

e
− Fp

kBT =
∫ ∏

k>0

δψk exp

[

−V

2

∑

k

(−2χ�3+4vk

)
ψkψ−k

]

×
∫ ∏

k>0

dφk

π2

∫ ∏

k>0

dφ′
k

π2

∫ n1∏

α=1

D[Rα]

∫ n2∏

β=1

D[Rβ ] exp [−Lα − Lβ ]

× exp

⎡

⎣i
∑

k�=0

θkφ−k + i
∑

k�=0

θ′
kφ′

−k

⎤

⎦ , (41)

where φ−k and φ′
−k are field variables as described in

detail in Refs.2-4, and

θk = 2ψk − 1
V

n1∑

α=1

∫ N1

0

dsαeik·Rα(sα)

+
1
V

n2∑

β=1

∫ N2

0

dsβeik·Rβ(sβ), (42)

and

θ′
k =

1
V

n1∑

α=1

∫ N1

0

dsαeik·Rα(sα)

+
1
V

n2∑

β=1

∫ N2

0

dsβeik·Rβ(sβ) − c0. (43)

The k = 0 contribution in Eq. (40) carries the trans-
lational entropy of the chains. Performing the inte-
grals over polymer conformations, Eqs. (41)–(43) yield
within the random phase approximation,

∫ n1∏

α=1

D[Rα]
∫ n2∏

β=1

D[Rβ ] exp

⎡

⎣ − Lα − Lβ

+i
∑

k�=0

θkφ−k +
∑

k�=0

θ′
kφ′

−k

⎤

⎦

= exp

⎡

⎣2i
∑

k�=0

ψkφ−k − 1
2V

∑

k�=0

φk (S1(k)

+S2(k)) φ−k

⎤

⎦

× exp

⎡

⎣− 1
2V

∑

k�=0

φ′
k (S1(k) + S2(k)) φ′

−k

+
1
V

∑

k�=0

φk (S1(k) − S2(k)) φ′
−k

⎤

⎦ , (44)

where S1(k) is given by

S1(k) =
n1N1

V
SD1(k), (45)

with SD1(k) being the Debye structure factor for the
polycation (polymer component 1)

SD1(k) =
2N1

k4R4
g1

(
e−k2R2

g1 − 1 + k2R2
g1

)
, (46)

where Rg1 is the radius of gyration of a Gaussian
chain with N1 Kuhn segments each of segment length
� (R2

g1 = N1�
2/6). Since n1N1/V = c01 = φ1/�3, where

φ1 is the volume fraction of the polycation, Eqs. (45)
and (46) give

S1(k) =
φ1

�3
2N1

k4R4
g1

(
e−k2R2

g1 − 1 + k2R2
g1

)
, (47)

Similarly, S2(k) is defined for the polyanion (second
component) by replacing the subscript 1 in Eqs. (45)–
(47) by 2.

Now, performing the integrations
∫ ∏

k>0
dφk

π2

∫ ∏
k>0

dφ′
k

π2 in Eq. (41) over the argument given by Eq. (44),
we get

πV
√

S1(k)S2(k)
e
− V

2

∑
k�=0

(
1

S1(k)+
1

S2(k)

)
ψkψ−k (48)

Substituting this result in Eq. (41) yields

e
− Fp

kBT =
∫ ∏

k>0

δψk exp

⎡

⎣−V

2

∑

k�=0

(
1

S1(k)
+

1
S2(k)

−2χ�3 + 4vk

)
ψkψ−k

⎤

⎦ , (49)

where the pre-exponential factor in Expression (48) is
ignored. The two-point correlation function of the fluc-
tuation ψk follows from the Gaussian distribution given
by Eq. (49) as

〈ψkψ−k〉 =
1

V
[

1
S1(k)

+ 1
S2(k)

− 2χ�3 + 4vk

] . (50)

Using the above equations, we present below results
on the scattered intensity I(k) which is proportional to
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〈ψkψ−k〉 in the four regimes (kRg<1, kRg>1, kξD<1,
kξD>1) described in Fig. 1b. This result is a general-
ization of the classical Ornstein–Zernike form for the
two-point correlation function of concentration fluctu-
ations.
V.1. Regime 1 (kRg � 1,high salt):

Expanding S1(k) given by Eq. (47) in the limit of
kRg � 1, we get

1
S1(k)

=
�3

φ1N1

(

1 +
k2N1�

2

18
+ · · ·

)

= �3
[

1
φ1N1

+
1
18

k2�2

φ1
+ · · ·

]

. (51)

Similarly, 1/S2(k) is given by

1
S2(k)

=
�3

φ2N2

(

1 +
k2N2�

2

18
+ · · ·

)

= �3
[

1
φ1N2

+
1
18

k2�2

φ2
+ · · ·

]

. (52)

Substituting Eqs. (51) and (52) in Eq. (50), we get

〈ψkψ−k〉
=

1

V �3
1[(

1
φ1N1

+ 1
φ2N2

− 2χ + 4 vk
�3

)
+ k2�2

18

(
1
φ1

+ 1
φ2

)]

(53)

Since the total polymer volume fraction φ0 is φ1 + φ2,
we get

〈ψkψ−k〉
=

1

V �3
1[(

1
φ1N1

+ 1
φ2N2

+ 4 vk
�3

− 2χ
)
+ φ0

18φ1φ2
k2�2

](54)

This result can be rewritten as

〈ψkψ−k〉 =
1

V �3
1

[
2 (χs − χ) + φ0

18φ1φ2
k2�2

] ,

(55)

where the spinodal chi (χs) is

χs =
1
2

[
1

φ1N1
+

1
φ2N2

+ 4
vk

�3

]

. (56)

In the high salt limit (κ2 � k2), vk of Eq. (26) is
given by

vk

�3
=

wc

�

1
κ2�2

. (57)

Substituting this result in Eq. (56), χs becomes

χs =
1
2

[
1

φ1N1
+

1
φ2N2

+
4wc

κ2�3

]

=
1
2

(
1

φ1N1
+

1
φ2N2

)

+
8πα2z2p�B

κ2�3
. (58)

Thus, the spinodal chi is shifted up by the electrostatic
interactions as given by this equation. Combining Eqs.
(55)–(58), we get the structure factor for the concen-
tration fluctuations as

〈ψkψ−k〉 =
1

V �3
1

[2 (χs − χ) (1 + k2ξ2)]
, (59)

where the correlation length ξ for the concentration
fluctuations is given by

(
ξ

�

)2

=
φ0

36φ1φ2 (χs − χ)
. (60)

Equation (59) is in the Ornstein–Zernike form for the
scattering intensity exhibiting a monotonic decrease
in scattering intensity with scattering wave vector
(sketched in Fig. 3a).The inverse scattering intensity
follows as

1
I(k)

∼ 1
〈ψkψ−k〉 ∼ 2 (χs − χ)

(
1 + k2ξ2

)
. (61)

Therefore, the scattering intensity extrapolated at zero
wave vector diverges as in the mean field theory of crit-
ical phenomena in three-dimensional Ising systems as

I(k → 0) ∼ 1
(χs − χ)γ ∼ 1

| T − Ts |γ , γ = 1 (62)

where γ is the susceptibility critical exponent and upper
critical solution behavior is assumed in connecting tem-
perature with χ. The shift in the spinodal tempera-
ture due to electrostatic interaction is given by Eq.
(58). Analogously, the correlation length ξ of Eq. (60)
diverges as in the mean field theory upon approach
towards the spinodal condition as given by

ξ ∼ 1
(χs − χ)ν ∼ 1

| T − Ts |ν , ν =
1
2
. (63)

Combining Eqs. (49), (55), and (58), the free energy
functional F [ψ] is of the Landau–Ginzburg form,

F [ψ]
kBT

=
V �3

2
∑

k�=0

[(
1

φ1N1
+

1
φ2N2

+
16πα2z2p�B

κ2�3
− 2χ

)

+
φ0k

2�2

18φ1φ2

]

ψkψ−k. (64)

This expression is useful in predicting phase diagrams
at high enough salt concentrations in the solution.
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Fig. 3 a Sketch of the Ornstein–Zernike behavior of the monotonic dependence of scattering intensity on the scattering
wave vector, to be observed at higher salt concentration. b Emergence of a scattering peak at lower salt concentrations

V.2. Regime 2 (kRg � 1,no salt):
In the low salt limit, κ → 0, vk of Eq. (26) is given

by

vk

�3
=

wc

�

1
k2�2

. (65)

Therefore, Eqs. (49) and (54) give

〈ψkψ−k〉
=

1
V �3

1
[(

1
φ1N1

+ 1
φ2N2

+ 4wc

k2�3 − 2χ
)

+ φ0
18φ1φ2

k2�2
] ,

(66)

and the free energy functional as

F [ψ]
kBT

=
V �3

2

∑

k�=0

[(
1

φ1N1
+

1
φ2N2

+
4wc

k2�3
− 2χ

)

+
φ0k

2�2

18φ1φ2

]

ψkψ−k, (67)

which is in the Landau–Ginzburg–Brazovskii form.
Rewriting Eq. (66), we get

〈ψkψ−k〉

=
1

V �3
k2�2[

4wc
�

+
(

1
φ1N1

+ 1
φ2N2

− 2χ
)

k2�2 + φ0
18φ1φ2

k4�4
]

(68)

This exhibits a peak at the scattering wave vector k�,
as would be seen in scattering intensity (sketched in
Fig. 3b), given by

k�� =
(

72wcφ1φ2

φ0�

)1/4

=

(
288α2z2p�Bφ1φ2

φ0�

)1/4

,(69)

where Eq. (26) has been used.

V.3. Regime 3 (kRg � 1,high salt):
In the limit of kRg � 1, SD1(k) of Eq. (46) becomes

SD1(k) =
12

k2�2
, (70)

so that S1 of Eq. (45) is given by

S1(k) =
n1N1

V
SD1(k) = c01SD1(k)

=
φ1

�3
SD1(k) =

φ1

�3
12

k2�2
. (71)

Substituting this result and the analogous expression
for S2(k) in Eq. (50), we get

〈ψkψ−k〉 =
1

V
[

k2�2

12
�3

φ1
+ k2�2

12
�3

φ2
− 2χ�3 + 4vk

] .

(72)

Using φ1 + φ2 = φ0 (total polymer concentration), this
equation becomes

〈ψkψ−k〉 =
12

V �5
φ1φ2

φ0

1
[
k2 + 12

�2
φ1φ2
φ0

(−2χ + 4vk

�3

)] .

(73)

In the high salt limit, κ � k, and using Eq. (57), the
scattering intensity is proportional to

〈ψkψ−k〉 =
12

V �5
φ1φ2

φ0

1
[
k2 + 12

�2
φ1φ2
φ0

(−2χ + 4wc

κ2�3

)] .

(74)

Again, in this regime, the correlation function is of the
Ornstein–Zernike form (sketched in Fig. 3a) with the
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correlation length ξ given by

ξ−2 =
12
�2

φ1φ2

φ0

(

−2χ +
4wc

κ2�3

)

. (75)

If electrostatic interactions dominate over the short-
ranged excluded volume interactions, the correlation
length is given by

ξ−2 =
48
�2

φ1φ2

φ0

wc

κ2�3
=

192π

�2
φ1φ2

φ0

α2z2p�B

κ2�3
(76)

This result is independent of N1 and N2 in comparison
with Eq. (60) valid for small scattering angles.

V.4. Regime 4 (kRg � 1,no salt):
In the low salt limit, κ → 0, vk is given by Eq. (65).

Therefore, Eq. (74) gives

〈ψkψ−k〉 =
12

V �5
φ1φ2

φ0

1
[
k2 + 12

�2
φ1φ2
φ0

(−2χ + 4wc

k2�3

)] .

(77)

Rearranging this equation we get

〈ψkψ−k〉 =
1

V �3
12
�2

φ1φ2

φ0

k2

[
k4 + 12

�2
φ1φ2
φ0

(−2χ + 4wc

�3

)]

(78)

This is in the form of the Landau–Ginzburg–Brazovskii
correlation function exhibiting a peak in the scat-
tered intensity as sketched in Fig. 3b. The scatter-
ing wave vector k� at the peak position follows from
∂〈ψkψ−k〉/∂k = 0 of this equation as

k�� =
(

48wcφ1φ2

φ0�

)1/4

=

(
192α2z2p�Bφ1φ2

φ0�

)1/4

.(79)

The value of the peak position in this regime is (2/3)1/4

times the corresponding value in regime 2 given by Eq.
(69).

6 Effective inter-segment interaction

Consider a situation where a labelled polycation chain
({R(s)}) of the same kind as that in the coacervate is
added to a concentrated coacervate of large numbers of
polycations and polyanions. Furthermore, let us assume
that the electrostatic interaction dominates over the
excluded volume interaction. The role of excluded vol-
ume has already been discussed in previous publica-
tions [5,7,8] and the corresponding result can be sim-
ply added to the final formulas derived below. The total

free energy of the system Ftot is written as

Ftot

kBT
=

1

kBT
F ({c1(r), c2(r}) + 3

2�2

∫ N1

0

ds

(
∂R(s)

∂s

)2

+
1

2

∫ N1

0

ds

∫ N1

0

ds′ 1
V

∑
k

vke−ik·[R(s)−R(s′)]

+

∫ N1

0

ds

n1∑
α=1

∫ N1

0

dsα
1

V

∑
k

vke−ik·[R(s)−Rα(sα)]

−
∫ N1

0

ds

n2∑
β=1

∫ N2

0

dsβ
1

V

∑
k

vke−ik·[R(s)−Rβ(sβ)]

(80)

The first term on the right-hand-side of this equation
is the free energy of the coacervate before adding the
labelled polycation chain. The second term denotes
chain connectivity. The rest of the terms correspond
to self-interaction, interaction with other polycations,
and interactions with all polyanions in the system.

In view of Eqs. (21), (24), and (38), we get

Ftot

kBT
=

F ({ψk})
kBT

+
3

2�2

∫ N1

0

ds

(
∂R(s)

∂s

)2

+
1
2

∫ N1

0

ds

∫ N1

0

ds′ 1
V

∑

k

vke−ik·[R(s)−R(s′)]

+2
∫ N1

0

ds
∑

k

vkψke−ik·R(s), (81)

where the first term is the free energy of the coacervate
expressed in terms of ψk as

F ({ψk})
kBT

=
1
2

∑

k�=0

ψkψ−k

〈ψkψ−k〉 ≡ V

2

∑

k�=0

ψkψ−k

g(k)
, (82)

with g(k) = V 〈ψkψ−k〉.
Integrating over fluctuations,

∫ ∏

k>0

δψke
− Ftot

kBT = exp

[

− 3
2�2

∫ N1

0

ds

(
∂R(s)

∂s

)2

−1
2

∫ N1

0

ds

∫ N1

0

ds′ 1
V

∑

k

vke−ik·[R(s)−R(s′)]
]

×
∫ ∏

k>0

δψk exp

⎡

⎣−V

2

∑

k�=0

ψkψ−k

g(k)

−2
∫ N1

0

ds
∑

k

vkψke−ik·R(s)

]

. (83)

Performing the integration over δψk, we get

∫ ∏

k>0

δψk exp

⎡

⎣−V

2

∑

k�=0

ψkψ−k

g(k)
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−2
∫ N1

0

ds
∑

k

vkψke−ik·R(s)

]

=
∏

k>0

(
πg(k)

V

)

exp

[
∑

k>0

g(k)
V

∫ N1

0

ds

∫ N1

0

ds′(4v2
k)e−ik·[R(s)−R(s′)]

]

. (84)

Substituting this result in Eq. (83), we obtain

∫ ∏

k>0

δψke
− Ftot

kBT =
∏

k>0

(
πg(k)

V

)

× exp

[

− 3
2�2

∫ N1

0

ds

(
∂R(s)

∂s

)2

− 1
V

∫ N1

0

ds

∫ N1

0

ds′ ∑

k>0

vke−ik·[R(s)−R(s′)]
]

× exp

[
4
V

∫ N1

0

ds

∫ N1

0

ds′

×
∑

k>0

g(k)v2
ke−ik·[R(s)−R(s′)]

]

(85)

This equation is rewritten as

∫ ∏

k>0

δψke
− Ftot

kBT =
∏

k>0

(
πg(k)

V

)

× exp

[

− 3
2�2

∫ N1

0

ds

(
∂R(s)

∂s

)2

− 1
V

∫ N1

0

ds

∫ N1

0

ds′ ∑

k>0

Δke−ik·[R(s)−R(s′)]
]

,

(86)

where Δk is the effective inter-segment interaction
given by

Δk = vk − 4g(k)v2
k. (87)

Here, vk is given by Eq. (26) and g(k) = V 〈ψkψ−k〉 is
given by Eq. (50).

In the scattering angle limit of kRgi � 1 (where i =
1, 2), relevant to length scales within a polymer chain,
and for the high salt limit, g(k) follows from Eq. (74)
as

g(k) =
12
�5

φ1φ2

φ0

1
(k2 + ξ−2)

. (88)

where (see Eq. (76))

ξ−2 =
48
�2

φ1φ2

φ0

wc

κ2�3
. (89)

Substituting this result in Eq. (87) we obtain

Δk = vk

[

1 − 1
(1 + k2ξ2)

]

. (90)

Noting that vk = wc/κ2 in the present limit, Δk follows
as

Δk =
wc

κ2

[

1 − 1
(1 + k2ξ2)

]

. (91)

Upon an inverse Fourier transform, the effective elec-
trostatic interaction between two segments of a labelled
chain separated at a distance r, Δ(r), is given by

Δ(r) =
wc

κ2

[

δ(r) − 1
4πξ2

e−r/ξ

r

]

. (92)

Thus the inter-segment electrostatic interaction is screened
with screening length ξ given by Eq. (89).

7 Size of a labelled chain

Let us identify a single chain of polycations inside a
concentrated coacervate. In addition to its conforma-
tional entropy due to chain connectivity, any pair of
its segments, separated by distance r, interact through
the medium with the effective interaction energy Δ(r)
derived above. The probability distribution function for
finding its end-to-end distance at R is given by

P (R) =
∫ R

0

D[R] exp

[

− 3
2�2

∫ N1

0

ds

(
∂R(s)

∂s

)2

−1
2

∫ N1

0

ds

∫ N1

0

ds′Δ[R(s) − R(s′)]

]

(93)

For the specific situation of high enough salt, Δ(r) is
given by Eq. (92).

The mean square end-to-end distance 〈R2〉 of the
labelled chain can be calculated from P (R) using a
variety of calculational procedures such as perturbation
theory and variational arguments [2]. The most effective
way to calculate 〈R2〉 is using a variational procedure,
as demonstrated for a single self-avoiding walk chain
[2] and polyelectrolyte chains [3]. Instead of reproducing
the derivation given in Ref.3 for the generic form of Eqs.
(92) and (93), we simply quote the results. From Eqs.
(3.49) and (3.50) of Ref. [3], the mean square end-to-
end distance of the labelled polycation of N1 segments
is given by

〈R2〉 = N1��1, (94)

where the effective chain expansion factor �1 is given
as

123



   79 Page 12 of 15 Eur. Phys. J. E           (2023) 46:79 

�31

(
1
�

− 1
�1

)

=
12
π�2

wc

κ2
ξ, (95)

where ξ is given by Eq. (89). Due to high concentra-
tions φ1 and φ2 of the polycations and polyanions in
the coacervate, ξ is small and hence we expect �1 as
only a minor perturbation of the bare segment length
�. Therefore, we get from Eq. (95)

(
1
�

− 1
�1

)

=
12
π�5

wc

κ2
ξ, (96)

so that

�1 = �

[

1 +
12
π�4

wc

κ2
ξ + · · ·

]

(97)

Substituting this result in Eq. (94), we get the mean
square end-to-end distance of a labelled polycation
chain of N1 segments as

〈R2〉 = N1�
2

[

1 +
12
π�4

wc

κ2
ξ + · · ·

]

(98)

Using Eq. (89) for ξ, we get

〈R2〉 = N1�
2

⎡

⎣1 +

(
12
π

α2z2p�B

κ2�3
φ0

φ1φ2

)1/2

+ · · ·
⎤

⎦

(99)

Within the framework of the variational procedure
used in obtaining the above results for 〈R2〉, one of
the assumptions is that the chain undergoes uniform
swelling. With this assumption, the radius of gyration
Rg of the labelled chain is given by the standard result,

R2
g =

〈R2〉
6

. (100)

Thus, for a labelled polycation chain,

√
〈R2〉 ∼ Rg ∼ N

1/2
1 , (101)

so that the size exponent ν is the value of a Gaussian
chain,

ν =
1
2
. (102)

The prefactor of the Gaussian chain result, given by the
terms inside the square brackets of Eq. (99), increases
with a decrease in

√
cs. In addition, the prefactor is

affected by the individual concentrations of polycations
and polyanions. These conclusions drawn from Eqs.
(98)–(102) are valid for a labelled polyanion as well,
by replacing N1 by N2.

8 Conclusions

Considering the high polymer concentration regime of
coacervates formed by uniformly charged flexible poly-
cations and polyanions in aqueous electrolyte solutions,
we present a theory to address correlations of con-
centration fluctuations, effective electrostatic interac-
tion, structure factor, and radius of gyration of labelled
chains. Closed-form formulas are presented for these
quantities in terms of the concentration and degree of
polymerization of polycations and polyanions, salt con-
centration, degree of ionization of the polymers, and
the Bjerrum length.

Due to the opposite signs of charges on the poly-
cations and polyanions, the net electrostatic energy
contribution in the symmetric case of polycation and
polyanion concentrations is zero at the mean field level.
This implies that the chains are expected to behave like
Gaussian chains from the electrostatic point of view.
This means that any experimentally observed molec-
ular weight-dependent chain swelling must arise from
the short-ranged excluded volume interactions repre-
senting the polymer backbone chemistry. However, we
show that concentration fluctuations affect the ther-
modynamics of the system and chain statistics. Even
though the size exponent ν is 1/2, as that of a Gaus-
sian chain, the concentration fluctuations lead to chain
swelling. The swelling factor is derived to depend on
the degree of ionization (α), Bjerrum length (�B), salt
concentration (cs), and the individual polycation con-
centration (c1) and polyanion concentration (c2), as
given in Eq. (99). The swelling factor increases with
an increase in

(
α2�B/(csc1c2)

)1/2. Since most of the
experiments are performed not at very low salt concen-
trations, we have provided the above results pertinent
to experimentally relevant salt concentrations.

The root cause of the emergence of Gaussian size
exponent (ν = 1/2) in concentrated coacervates is the
screening of electrostatic interaction among all charged
segments by the topological correlation of all interpen-
etrating polyelectrolyte chains. The effective electro-
static interaction energy between two charges in the
coacervate is in the same form (Eq. (92)) as for neutral
systems and polyelectrolyte solutions [2-8],

Δ(r) ∼
[

δ(r) − 1
4πξ2

e−r/ξ

r

]

, (103)

where r is the charge separation distance, and ξ is
the electrostatic screening length. Our derivation shows
that, in general for coacervates, the screening length
depends on the individual concentrations of the poly-
cation and polyanion [Eq. (60)],

ξ

�
∼

√
1
c1

+
1
c2

. (104)

This result is in contrast with that for neutral polymers
or polyelectrolytes at high salt condition [2],

123



Eur. Phys. J. E           (2023) 46:79 Page 13 of 15    79 

(c) (d)

Fig. 4 a One-loop polymer diagram used in random
phase approximation valid for concentrated coacervates.
The monomers s and s′ of a polycation or a polyanion chain
interact with each other, mediated by the background of all
other chains in the system [2]. b Higher order correlations
are present as vertex diagrams denoting the correlated par-

ticipation of additional monomers s1 and s2 in the inter-
action between s and s′ [2]. c Parallel and vertical dipole-
dipole interaction of two ion-pairs formed by polycation and
polyanion segments. d Anti-parallel and horizontal dipole-
dipole interaction of two ion-pairs formed by polycation and
polyanion segments

ξ

�
∼ 1√

c
, (105)

where c is the polymer concentration.
In terms of connection with scattering experiments,

we have identified four regimes: kRg � 1, high salt;
kRg � 1, low salt; kRg � 1, high salt; and kRg � 1,
low salt. In general, for the high salt situation, the scat-
tering intensity follows the Ornstein–Zernike behavior
of monotonically decreasing with scattering wave vec-
tor. The distinction between the kRg � 1 and kRg � 1
situations lies only in the temperature-dependent pref-
actor for the screening length. For low salt conditions,
the scattering intensity exhibits a peak at an inter-
mediate scattering wave vector k�, which depends on
the degree of ionization, Bjerrum length, and individ-
ual concentrations of polycation and polyanion (Eqs.
(69) and (79)),

k�� ∼
(

α2�B

�

)1/4 (
1
c1

+
1
c2

)−1/4

, (106)

with the prefactor depending on whether the kRg � 1
regime or the kRg � 1 regime is interrogated in scat-
tering experiments.

The formulas presented in this paper are valid only
for concentrated coacervates at higher temperatures
where the concentration fluctuations are weak. When
the polymer concentration is in the semidilute regime,

we have to include additional inter-segment correla-
tions beyond those treated in the random phase approx-
imation (RPA) used in the present derivations. In
RPA, only one-loop polymer diagram (Fig. 4a) and
its geometric series are accounted for. It is necessary
to account for the vertex diagrams such as the one
in Fig. 4b to describe the semidilute condition as in
the polyelectrolyte solutions [3]. This calculation is rel-
egated to future work.

Furthermore, we expect that ion-pairs formed by
two oppositely charged monomers of polycations and
polyanions are long-lived at sufficiently lower tempera-
tures. Such ion-pairs can lead to physical associations
arising from dipole-dipole interactions as sketched in
Fig. 4c, d [70]. These associations result in reduction of
conformational entropy of polycations and polyanions
and can significantly affect concentration fluctuations
and the consequent experimentally measurable quanti-
ties. Addressing the interference of physical associations
on concentration fluctuations is a difficult task, and is
relegated to future.
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