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Abstract

We analyze a nonlinear PDE system describing the motion of a microswimmer in
a nematic liquid crystal environment. For the microswimmer’s motility, the squirmer
model is used in which self-propulsion enters the model through the slip velocity on
the microswimmer’s surface. The liquid crystal is described using the well-established
Beris-Edwards formulation. In previous computational studies, it was shown that the
squirmer, regardless of its initial configuration, eventually orients itself either parallel or
perpendicular to the preferred orientation dictated by the liquid crystal. Furthermore,
the corresponding solution of the coupled nonlinear system converges to a steady state.
In this work, we rigourously establish the existence of steady state and also the finite-
time existence for the time-dependent problem in a periodic domain. Finally, we will
use a two-scale asymptotic expansion to derive a homogenized model for the collective
swimming of squirmers as they reach their steady state orientation and speed.
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1 Introduction

Microswimmers are objects of micron size which are immersed in a fluid and capable
of autonomous motion. They are ubiquitous in nature, as examplified by bacteria and eu-
karyotic cells. Recently, synthetic microswimmers for applications in medicine and material
repair has been introduced in [1], see also reviews [2, 3]. Transport of microswimmers, both
living and synthetic, as well as effective properties of suspensions populated by many such
microswimmers largely depends on how they respond to surrounding environment. Model-
ing microswimmers has become a growing area of research. The case when microswimmers
are immersed in a Newtonian fluid has been intensively studied – see [4, 5, 6, 7, 8, 9, 10]
and reviews [11, 12, 13, 14]. However, bacteria often swim in biofluids which demonstrate
viscoelastic or anisotropic properties very different from those of isotropic Newtonian fluids.
For example, Helicobacter pylori bacteria are present in stomach and are associated with
diseases such as chronic atrophic gastritis and ulcer [15, 16]. The “success” in the inflam-
mation of stomach walls by H. Pylori depends on how the bacterium reorients itself in the
mucous protective layer. Note that mucus is a viscoelastic fluid which exhibits properties
of a liquid crystal for a certain range of macroscopic parameters [17, 18]. In addition to
medical relevance, experimental realization which combines bacteria with a nematic water-
based and non-toxic (to bacteria) liquid crystal led to a wealth of intriguing observations
such as collective phenomena for small bacterial concentrations, moving topological defects,
and visualization of flagella beating [19, 20, 21, 22, 23, 24].
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One of the most well-established model of microswimmer is the so called squirmer. The
model was initially introduced in [25] for Paramecium, a micro-organism which swims with
the help of small elastic appendages called cilia. The main modeling assumption for squirmers
is that the body is non-deformable and the swimming effect is introduced via a given slip
velocity profile on the body surface that models the cilia’s activity. Analysis of squirmers
immersed in a Newtonian fluid, from the well-posedness to the relation between the slip profile
and the resulting velocity has been the focus of many authors, [26, 27, 28, 29, 30, 31, 32].

To describe a nematic liquid crystal we use the well-established Beris-Edwards model [33],
a highly nonlinear PDEmodel coupling Navier-Stokes (or Stokes) equation with a PDE for the
tensor order parameter which indicates the preferred local orientation as well as the strength
of the local alignment of the liquid crystal molecules. Well-posedness of the Beris-Edwards
model in R

2 and R
3 were first studied in [34, 35]. Existence of weak and strong solutions

in a bounded domain with a fixed boundary and both homogeneous and inhomogeneous
boundary conditions for the tensor order parameter were established in [36, 37].

In our work, we consider a model which combines a Beris-Edwards liquid crystal with a
squirmer. Such a system was, for example, used as a computational model in [38] to study
orientation dynamics of the spherical squirmer with respect to the preferred orientation of
the liquid crystal. In [39], we extended this model to elongated squirmers and studied how
the long-term orientation dynamics of the squirmer depends on physical and geometrical
parameters. To the best of our knowledge, there are no analytical results, such as well-
posedness or model reductions via multi-scale limits for squirmers immersed in a liquid crystal
environment. On the other hand, there is a range of results for particles in classical isotropic
fluids. We refer to [40, 41, 42, 43, 44] for some recent works.

The structure of this paper is as follows. In Section 2, we present the Beris-Edwards
model coupled with a squirmer for both the time-dependent and steady state problems.
The latter corresponds to a squirmer moving with a constant velocity. In Section 3, we
formulate our main results on the existence of solutions to both the steady state and time-
dependent problems as well as a two-scale homogenization limit resulting in an effective
model for a suspension of squirmers swimming parallel to each other. The last statement
can be considered as a steady motion of a bacterial colony. Proof of the main results are
presented in Sections 4, 5, and 6. Some calculations and non-dimensionalization are relegated
to Appendix.

2 Model

2.1 Time dependent PDE system

Consider a rigid squirmer swimming in a liquid crystal with translational and angular
velocities V (t) and ω(t), respectively. In the context of the Beris-Edwards model, the liquid
crystal is described by a velocity field u(x, t) : R

d × R+ 7→ R
d and a tensor order field

Q(x, t) : Rd ×R+ 7→ R
d×d taking values in symmetric traceless d× d matrices. Here d = 2, 3

is the spatial dimension. The functions u = (uj)
d
j=1 and Q = (Qij)

d
i,j=1 satisfy the following

system of partial differential equations and boundary conditions, written in the frame moving
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with velocity V (t), so the squirmer is always centered at 0:

ρ(∂t + u · ∇)u+ ρdV
dt

= ∇ · (σhydro + σela), in Π \ P(t) (1)

∇ · u = 0, in Π \ P(t), (2)

u = usq(α(t),x)τ + ω(t)× x, on ∂P(t), (3)

∂tQ+ (u · ∇)Q− S(∇u,Q) = Γ
(

K∆Q+ Ĥ(Q)
)

+ Fext(Q,Q∞), in Π \ P(t), (4)

Q,u,∇p periodic inΠ (5)

K∂νQ = W (Qpref −Q) on ∂P(t). (6)

Here Π = (−L, L)d is a periodic box, P(t) and ∂P(t) are the domain occupied by the squirmer
and its surface in the moving frame. We assume that P(t) ⊂ Π for all t ≥ 0. We will also
use the notation Ω(t) := Π \ P(t) to denote the fluid region.

Equation (1) is a modified Navier-Stokes equation for the velocity u(x, t) which satisfies
the divergence-free condition (2). To this effect, we have σhydro = η(∇u + (∇u)T) − pI to
be the standard isotropic stress tensor where p(x, t) is the pressure of the liquid crystal with
uniform density ρ and viscosity η. The internal structure of the liquid crystal, i.e., local
preferred direction and order, affects the flow through an additional elastic stress σela given
by

σela = K [(Q∆Q−∆QQ)−∇Q⊙∇Q]

−ξ

[

H(Q+
I

d
) + (Q+

I

d
)H− 2(Q+

I

d
)Tr(QH)

]

. (7)

Here K is the elastic constant and ∇Q⊙∇Q is a d × d matrix with the (k, l) component
∑

i,j

∂xk
Qij∂xl

Qij . The parameter ξ measures the ratio between tumbling and aligning that a

shear flow exerts on the liquid crystal molecules. The matrix-valued function H = H(Q) is
defined as H(Q) = Ĥ(Q) +K∆Q where Ĥ(Q) is

Ĥ(Q) := aQ− cQTr(Q2) = −∇Q

( c

4
‖Q‖4 − a

2
‖Q‖2

)

= −∇QF̂(Q). (8)

The scalar potential F̂(Q) is the polynomial part of the Landau-de Gennes free energy
whose coefficients a and c depend on macroscopic parameters of the liquid crystal such as
temperature. The potential F̂(Q) attains minima at Q = 0, corresponding to the isotropic
state when the liquid crystal flows as a Newtonian fluid, and at tensor order parameters Q

with q∞ := ‖Q‖ =

√

a

c
, corresponding to the equilibrium liquid crystalline states.

Boundary conditions (3) describes how the squirmer interacts with the flow u of the
liquid crystal. The orientation of the squrimer is described by a vector α(t) ∈ Sd−1. We
also let τ to be a tangent vector field to the surface of the squirmer which can be chosen
to be τ := (α × ν) × ν where ν is the inward normal vector on the squirmer’s surface
∂P(t). A typical example of the slip velocity usq is given by [25] (which is also used in the
computational work [38, 39])

usq(α(t),x) = vprop sin θ(1 + β cos(θ)), where θ = cos−1

[

x ·α
‖x‖

]

.
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Here θ is the azimuthal angle on the squirmer, the parameter vprop is proportional to propul-
sion strength, and β quantifies the type of the squirmer (puller vs pusher; see [39] for details).
In this work, we consider usq(α(t),x) = sin(θ)g(θ) with a smooth function g(θ). Note that
such usq vanishes at points of singularity of the vector field τ .

The instantaneous angular velocity of the squirmer is denoted by ω(t). Then any material
point x on the squirmer surface ∂P(t) will move with velocity ω(t)×x in the moving frame
for which the system (1)-(6) is written. Then the boundary condition (3) states that there
is a given slip velocity usq(α(t),x)τ with the no-penetration condition:

[u− ω × x]× ν = usq(α(t),x)τ × ν,

[u− ω × x] · ν = 0.

The given non-zero slip velocity models self-propulsion of the squirmer. Such a condition was
originally derived for micro-organisms swimming with the help of small elastic appendages
(cilia) distributed on the surface [25].

The matrix-valued equation (4) describes the dynamics of Q(x, t). While the two first
terms in the left-hand side of (4) is the advection derivative, the third term S(∇u,Q) de-
scribes how the flow gradient ∇u rotates and stretches the order-parameter Q, and is given
by

S(∇u,Q) = (ξD +A)

(

Q+
I

d

)

+

(

Q+
I

d

)

(ξD −A)− 2ξ

(

Q+
I

d

)

tr(Q∇u), (9)

where D =
1

2

[

∇u+ (∇u)T
]

and A =
1

2

[

∇u− (∇u)T
]

are symmetric and anti-symmetric

parts of ∇u, respectively. The right-hand side of (4) consists of the term leading to the
minimization of the total Landau-de Gennes energy

ELdG(Q) =

ˆ

Ω(t)

F̂(Q) +
K

2
|∇Q|2 dx (10)

with the relaxation parameter Γ > 0 and the term Fext(Q,Q∞) describing the aligning effect
with an external field. This term imposes the equilibrium condition for liquid crystal, that
is, in the absence of squirmer we have Q ≡ Q∞. We chose Q∞ = q∞(ex ⊗ ex − I

d
) which

means that if the liquid crystal is not perturbed by a squirmer then its molecules are oriented
parallel to ex (the unit basis vector parallel to x-axis). In this work, we will use the example
of Fext(Q,Q∞) from [21] for d = 2, given by

Fext(Q,Q∞) = −ζQRπ/2Tr[QQ∞Rπ/2], (11)

where ζ ≥ 0 is the aligning parameter and Rπ/2 is the matrix of counterclockwise rotation
by π/2. For d = 3, the formula for Fext(Q,Q∞) is

Fext(Q,Q∞) = ζ
(

tr(Q2)Q∞ − tr(QQ∞)Q
)

(12)

We note that if one considers dynamics Q̇ = Fext(Q,Q∞) then the Euclidean norm of Q is
preserved, i.e. tr(Q2) ≡ const, and Q(t) converges to a multiple of Q∞ as t increases, so
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that Q ·Q∞ = tr(QQ∞) > 0. One can also show that (12) is equivalent to (11) in the case
of two-dimensional Q and Q∞ (with zero third row and column).

We impose anchoring boundary condition (6) onQ along the squirmer surface ∂P(t) which
forces Q to be close to a given tensor Qpref = q∞(npref⊗npref− I

d
). Here, npref = ν in the case

of homeotropic anchoring when the surface orients liquid crystal molecules perpendicular to
it or equivalently, parallel to the normal vector ν. On the other hand, npref = τ in the case
of the planar anchoring when molecules are aligned with the tangential vector field τ . The
boundary condition (6) indeed penalizes the difference Qpref−Q in the sense that if we drop

all terms in (4) except Γ
(

K∆Q+ Ĥ(Q)
)

, then the solution Q to this truncated version of

(4) with boundary condition (6) minimizes the energy

ELdG(Q) +W

ˆ

∂P(t)

|Qpref −Q|2 dSx. (13)

The coefficient W in front of the penalization term in the energy functional (13) and also
the right-hand side of (6) measures the anchoring strength. Mathematically, depending on
if W → ∞ or 0, (6) reduces to Dirichlet or Neumann boundary condition for Q.

To determine the trajectory of the squirmer, that is, its velocity V (t) and angular velocity
ω(t), we consider force and torque balances for the squirmer:

m
dV

dt
=

ˆ

∂P(t)

σν dSx, (14)

d [I(t)ω]

dt
=

ˆ

∂P(t)

x× σν + ℓ dSx. (15)

Here σ = σhydro + σela is the total stress whereas m and I(t) = {Iij}di,j=1 are the mass and
inertia tensor of the squirmer, defined via

m = ρP |P(t)|,

Iij(t) = ρP

ˆ

P(t)

[ei × x] · [ej × x] dx.

Here ρP is the squirmer’s density. The additional torque ℓ comes from the internal structure
of the liquid crystal, namely, from that there is a preferred direction. It translates into the
non-zero asymmetric part of the stress tensor σ. The formula for this additional torque is
[39]

ℓ = µν, where µ = (µij)
d
i,j=1 and µij = −2K

d
∑

m,l,k=1

ǫilkQlmQmk,j. (16)

Here ǫilk is the Levi-Civita symbol. Finally, we note that the orientation α(t) and the angular
velocity ω are related via

α̇ = ω ×α. (17)
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Remark 2.1. Note that the term ℓ admits a simplified form:

ˆ

∂P

ℓi dSx = −2K
d

∑

l,m,k=1

ˆ

∂P

ǫilkQlmQmk,jνj dSx

= −2W
d

∑

l,m,k=1

ˆ

∂P

ǫilkQlm(Qpref,mk −Qmk) dSx.

Here we used boundary conditions (6). Next, for any symmetric matrix B = (Bij)
d
i,j=1 we

have
∑

l,m,k

ǫilkBlmBmk = 0. (18)

Indeed, from properties of the Levi-Civita symbol we have

∑

l,m,k

ǫilkBlmBmk = −
∑

l,m,k

ǫilkBkmBml.

On the other hand, due to symmetry of B we have

∑

l,m,k

ǫilkBlmBmk =
∑

l,m,k

ǫilkBkmBml.

Thus, we have (18), from which we have the simplified form expression (simplified because
it is linear in Q as opposed to (16) which is quadratic in Q):

ˆ

∂P

ℓi dSx = −2W

d
∑

l,m,k=1

ˆ

∂P

ǫilkQlmQpref,mk dSx. (19)

Remark 2.2. We end the introduction of the time-dependent problem with the energy
identity satisfied by solutions of this problem. First, consider the energy functional:

E(t) =
mV 2

2
+

Iω · ω
2

+
ρ

2

ˆ

Ω(t)

|u+ V |2 dx

+

ˆ

Ω(t)

F̂(Q) +
K

2
|∇Q|2 dx+

W

2

ˆ

∂P(t)

|Qpref −Q|2 dSx. (20)

Note that in the absence of the squirmer P(t) = ∅ (or when the squirmer is passive, i.e.,
usq = 0) and if the external field Fext equals zero, then the system is dissipative, that is, the
energy is non-increasing:

d

dt
E(t) = −D(t) ≤ 0, where D(t) := η

ˆ

Ω(t)

|∇u|2 dx+ Γ

ˆ

Ω(t)

|H|2 dx. (21)
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On the other hand, when the system experiences the energy input from the self-propulsion
mechanism and external field Fext, the energy identity takes the following form:

d

dt
E(t) = −D(t) +

ˆ

∂P(t)

σν · usqτ dSx +

ˆ

Ω(t)

H : Fext dx. (22)

Note that boundary integral
´

∂P(t)
σν ·usqτ dSx contains nonlinear terms in Q which in turn

depends on the higher order regularity property of Q. This causes difficulty in the analysis of
the time-dependent problem. Hence in this paper, we will only present a short time existence
result and leave the long time behavior to future work.

2.2 Steady state PDE system

In this work, we are also interested in the steady translational motion of the squirmer
in the liquid crystal. In the context of the model (1)-(6) & (14)-(15), the steady motion is
described by the stationary solution of this system:

ρu · ∇u = ∇ · (σhydro + σela), in Π \ Pst, (23)

∇ · u = 0, in Π \ Pst, (24)

u = usq(αst,x)τ , on ∂Pst, (25)

(u · ∇)Q− S(∇u,Q) = Γ
(

K∆Q+ Ĥ(Q)
)

+ Fext(Q,Q∞), in Π \ Pst, (26)

Q,u,∇p periodic inΠ (27)

K∂νQ = W (Qpref −Q) on ∂Pst. (28)

Here, we assume that the squirmer moves with the velocity Vst with the orientation angle αst,
both of which are independent of time. As equations (23)-(28) are written in the squirmer’s
frame, the domain Pst occupied by the squirmer will then be stationary. Similar to the time
dependent case, we use Ω = Π \ Pst to denote the fluid region in the steady state case.

In this setting, the force and torque balances (14), (15) become

0 =

ˆ

∂Pst

σν dSx, (29)

0 =

ˆ

∂Pst

x× σν + ℓ dSx. (30)

The force balance (29), in view of periodic boundary conditions for u and Q together with
u · ν = 0 on ∂Pst (follows from (25)), leads to

0 =

ˆ

∂Pst

σν dSx = −
ˆ

∂Π

σν dSx + ρ

ˆ

Ω

u · ∇udx = −
ˆ

∂Π

pν dSx. (31)

Therefore, since ∇p is periodic, as imposed in (27), it follows from (31) that p(x) is periodic
in Π. Indeed, the fact that ∇p is periodic implies that

p(x) = m · x+ pper(x), (32)

8



where pper(x) is a function which is periodic in Π and m ∈ R
d. Substitution of (32) into

(31) implies that m = 0 and p(x) = pper(x). In this case, the force balance (29) is satisfied
regardless of squirmer’s velocity Vst.

We note that if an external force F(e) =
{

F
(e)
i

}d

i=1
is applied on the squirmer, then the

force balance in stationary case becomes

ˆ

∂Pst

σν dSx + F(e) = 0 (33)

which due to the same arguments as in derivation of (31) is equivalent to

−
ˆ

∂Π

pν dSx + F(e) = 0. (34)

Using (32) and the divergence theorem for the first term in the equation above we get

|Π|m = F(e). (35)

Therefore, an external force results in the pressure difference

F
(e)
i =

L

2
[p]i, i = 1, ..., d, where [p]i = p|xi=L − p|xi=−L. (36)

In terms of the force balance, the periodic problem (23)-(28) is in contrast with the analogous
problem in the exterior domain Π = R

d. Namely, for the latter, we need to impose additional
boundary conditions at x = ∞: u = −V st and Q = Q∞. Then we would have obtained a
Stokes-law-like force-velocity relation instead of the force-pressure relation (36).

In this work, the squirmer swims due to self-propulsion only, without an external force,
F(e) = 0. Thus, we impose periodicity for the pressure p. Taking this into account, we
define a weak solution of (23)-(28) as a couple (u,Q) ∈ H1

per(Ω;R
d) × H2

per(Ω;R
d×d) such

that equations (24), (25) as well as the following two equalities hold for all ψ ∈ H1
per(Ω;R

d)∩
{ψ|∂Pst = 0 and ∇ ·ψ = 0} and Φ ∈ H1

per(Ω;R
d×d) and every integral term is finite :

η

ˆ

Ω

∇u : ∇ψ dx+ ρ

ˆ

Ω

(u · ∇)u ·ψ dx+

ˆ

Ω

σela : ∇ψ dx = 0. (37)

Γ



−K

ˆ

Ω

∇Q : ∇Φ dx+W

ˆ

∂Pst

(Qpref −Q) : Φ dSx





−
ˆ

Ω

((u · ∇)Q− S(∇u,Q)) : Φ dx+

ˆ

Ω

Fext : Φ dx = 0. (38)
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3 Main results

Here we present our three main results.
Our first main result is the existence of a weak solution of the steady state problem (23)-

(28). For the sake of clarity, we restrict our attention to the case when the shape parameter
ξ is 0. Under this simplification, we can represent σela as

σela = −K∇Q⊙∇Q+ σa, where σa(Q,H) = QH−HQ = K(Q∆Q−∆QQ) (39)

and the term S given by (9) satisfies the following equality

S(∇u,Q) : Q = Tr(S(∇u,Q)Q) = 0. (40)

We also impose
Fext(Q,Q∞) : Q = 0. (41)

This condition holds for our specific choices of Fext(Q,Q∞) given by (11) or (12).

Theorem 3.1. Suppose ξ = 0. There is a constant C > 0 independent of K, W , Qpref, Q∞,
η, ρ, usq, Γ, αst such that if

η > 2Cρ‖usq‖L∞(Ω) and Γ > 2C

(

1√
K

‖usq‖L∞(Ω) + ‖usq‖W 1,∞(Ω)

)

, (42)

then there is a weak solution (u,Q) ∈ (H1(Ω), H2(Ω)) of (23)-(28).

Remark 3.1. The condition (42) holds when parameters η and Γ are sufficiently large
enough, given all other parameters. The condition (42) also holds when usq is sufficiently
small which means that self-propulsion is small. In the limit usq → 0 we recover existence of
steady state for a passive swimmer without a condition on parameters.

Remark 3.2. Theorem 3.1 states the existence of a weak solution of (23)-(28) for all ori-
entation angles αst. As discussed in Section 4, the force balance (29) is satisfied since weak
solutions of (23)-(28) have periodic pressure p. To determine the steady orientation αst, one

needs to consider additionally the torque balance (30) which is satisfied for αst =
kπ

2
(k is

an integer). We note that it follows from our numerical studies in [39] that a squirmer can
swim steadily only if it is oriented parallel, αst = kπ, or perpendicularly, αst = (2k− 1)π

2
, to

the vector ex, the liquid crystal orientation in the absence of the squirmer.

Our second main result is the local-in-time existence for the time dependent problem (1)-
(6) with (14) and (15). Here, we simplify the system by considering a spherical squirmer P(t)
in its own moving frame so that Ω and P are independent of time. Under this assumption,
the torque balance equation can be simplified into

I
dω

dt
=

ˆ

∂P

x× σν + ℓ dSx, (43)

where the rotating inertia I(t) = II becomes also independent of time and isotropic.
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Theorem 3.2. Suppose that (usq,Qpref) ∈ H5/2(∂P)×H5/2(∂P) and the initial data (u0,Q0) ∈
H2

σ(Ω)×H3(Ω), where H2
σ(Ω) = H2(Ω)∩{∇ · u = 0}. Then there exists T > 0 and a unique

solution (u,Q) to the system (1)-(6) with (14) and (43) such that

u ∈ H1(0, T ;H2
σ(Ω)) ∩H2(0, T ;L2

σ(Ω)),

Q ∈ H1(0, T ;H3(Ω)) ∩H2(0, T ;H1(Ω)).

Remark 3.3. We adapt techniques from [37] to prove this result in Section 5. The main idea
is to rewrite the problem in a suitable Banach space and then use the Banach’s fixed point
theorem. However, the difference from [37] is an additional difficulty coming from presence
of the squirmer which requires to consider inhomogeneous boundary conditions as well as
force and torque balances (14) and (43). The terms in balance equations involve boundary
integrals with derivatives in integrands. It led to that the spatial regularity of the solution
couple (u,Q) is higher than it is required by a weak solution of the PDE problem (1)-(6).

Our third main result is a formal homogenization limit in the system (23)-(28). This
result can be considered as the derivation of a simplified model describing motion of a colony
with periodically distributed squirmers (e.g., bacterial colony) in the liquid crystal.

Specifically, we introduce a small parameter ε := L
δL
, where L is the linear size of a

periodic box containing a single squirmer and δL is the observation scale. Next, we consider
the problem (23)-(28) where all the parameters are written in physical dimensions. Details of
non-dimensionalization are relegated to Appendix C. After the non-dimensionalization, we
consider the steady state problem (23)-(28) in a periodic box Πε = [−ε, ε]d. The squirmer
occupies domain Pε whose linear size is ∼ ε. Consider the domain U which is Rd or a sub-
domain of Rd composed of many periodic boxes Πε such that the linear size of U is of the
order 1 with respect to ε. Then (23)-(28) becomes (see Appendix C for details):

εγ∆Q+ ãQ− c̃QTr(Q2) + S(∇ũ,Q)− ũ · ∇Q+ ζ̃ F̃ext = G(x) in Ωε, (44)

∂νQ = W̃ (Qpref −Q) on ∂Pε, (45)

ερ̃(ũ · ∇)ũ− εη̃∆ũ +∇p̃ = ε2κ∇ · (∇Q⊙∇Q+Q∆Q−∆QQ) + F(x) in Ωε, (46)

ũ = εũsqτ on ∂Pε. (47)

Here Ωε = Πε \ Pε and ∇ · ũ = 0. Here for simplicity, we assume the corresponding force
and torque balance (29) and (30) are automatically satisfied. This physically means that
the bacterial colony has reached the steady state when every squirmer swims along a stable
direction. G and F are given external fields, varying spatially at the scale 1 (independent of
ε). Parameters γ, ã, c̃, ζ̃, W̃ , ρ̃, η̃, κ are explained in Appendix C.

Our contribution in this regard is the identification of the homogenized limit (u(h),Q(h))
of (ε−1ũ,Q). We relegate the presentation of the limiting equations as well as their derivation
via formal two-scale asymptotic expansions to Section 6. We comment here that Q(h) solves
an algebraic equation (187), whereas u(h) admits the representation (197) similar to that in
the Darcy’s law.
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4 Existence of steady state − proof of Theorem 3.1

In this section, we address solvability of steady state PDE system (23)-(28). To this end,
we first show in Subsection 4.1 that if a solution of the system (23)-(28) exists (with ξ = 0),
then it satisfies a maximum principle for ‖Q‖. Next, in Subsections 4.2, 4.3, 4.4, and 4.5 we
prove the existence for the system (23)-(28) where nonlinearities Ĥ and Fext are truncated
for large values of Q. Finally, combination of the maximum principle and solvability of the
truncated system implies the existence of a solution to the original system (23)-(28).

4.1 L∞-bound on Q

Here we adapt the strategy from [45]. First, we introduce the number q∗ > 0 such that

ΓĤ(Q) : Q ≤ 0 for all |Q| ≥ q∗. (48)

Such a finite number q∗ exists since Fext(Q,Q∞) is a quadratic polynomial of Q whereas Ĥ
is the third order polynomial with a definite negative sign in front the highest power.

Lemma 4.1. Let (u,Q) be a solution of (23)-(28). Then ‖Q‖L∞ ≤ α, where

α := max
{

|Qpref |, q∗
}

. (49)

Proof. Recall the equation for Q:

(u · ∇)Q− S(∇u,Q)−KΓ∆Q− ΓĤ(Q)− Fext(Q,Q∞) = 0. (50)

By multiplying the above by Q, taking the trace of the resulting expression and using (40)
and (41), we get

1

2
u · ∇(|Q|2)− ΓK

2

(

∆(|Q|2)− 2|∇Q|2
)

− ΓĤ(Q) : Q = 0.

As |∇Q|2 is non-negative, we obtain the inequality:

u · ∇(|Q|2)− ΓK∆(|Q|2)− 2ΓĤ(Q) : Q ≤ 0. (51)

Now introduce ψ(Q) := (|Q|2 − α2)+ (α is from (49)). Note that

ψ(Q)D(|Q|2) = ψ(Q)D(|Q|2 − α2) = ψ(Q)Dψ(Q),

where D is either ∆ or ∇.
Next, we multiply (51) by ψ(Q) and integrate over Π \ Pst. Then, we have

1

2

ˆ

∂P

u · νψ2 dsx − ΓK

ˆ

∂P

∂ψ(Q)

∂ν
ψ(Q) dsx

+ΓK‖∇ψ(Q)‖2L2(Ω) − 2Γ

ˆ

Ω

(Ĥ(Q) : Q)ψ(Q) dx ≤ 0. (52)

12



The first term in the left hand side of the above inequality vanishes due to (25) while the
second term is negative:

K

ˆ

∂P

∂ψ(Q)

∂ν
ψ(Q) dsx = 2K

ˆ

∂P∩{|Q|>α}

(
∂Q

∂ν
: Q)(|Q|2 − α2) dsx

= 2W

ˆ

∂P∩{|Q|>α}

((Qpref −Q) : Q)(|Q|2 − α2) dsx

= 2W

ˆ

∂P∩{|Q|>α}

((Qpref : Q)− |Q|2)(|Q|2 − α2) dsx

≤ W

ˆ

∂P∩{|Q|>α}

(|Qpref|2 − |Q|2)(|Q|2 − α2) dsx

≤ 0.

Hence,

K‖∇ψ(Q)‖2L2(Ω) ≤ 2

ˆ

Ω

(

Ĥ(Q) : Q
)

ψ(Q) dx.

Next, by (48), we have

K‖∇ψ(Q)‖2L2(Ω) ≤ 2

ˆ

Ω

(

Ĥ(Q) : Q
)

ψ(Q) dx ≤ 0.

so that ‖∇ψ(Q)‖2L2(Ω) = 0. The Lemma is thus proved.

4.2 Galerkin approximation for pair (u,H)

We introduce here Galerkin approximations for the system (23)-(28). For each m ∈ N,
we define:

um = uos + ûm = uos +
m
∑

k=1

ukmΨk and Hm =
m
∑

k=1

hkmΦk. (53)

Note that the domain Π is a bounded periodic box and both Laplacian and Stokes operators
have a discrete spectrum implying existence of bases:

{Ψk |Ψk|∂Pst = 0, ∇ ·Ψk = 0, Ψk is Π-periodic}∞k=1 and {Φk |Φk is Π-periodic}∞k=1 (54)

in L2
σ(Ω;R

d) and L2(Ω;Rd×d), respectively. (Recall that Ω = Π \ Pst and L2
σ means L2-space

with divergence-free condition.)
The function uos above is an offset function used to to take care of non-zero boundary

conditions for u. It solves Stokes equation:



















η∆uos +∇pos = 0, in Ω

∇ · uos = 0, in Ω,

uos = usq(αst,x)τ on ∂Pst,

uos, pos periodic inΠ.

(55)

(56)

(57)

(58)
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Anticipating that u = uos + û, from (57) and (25), we have

û = 0 on ∂Pst. (59)

To continue, for an appropriately large constant M > 0, we introduce a truncated poten-
tial F̂M ≥ 0 as follows:

F̂M(Q) =















F̂(Q), for ‖Q‖ ≤ M

∂F̂
∂‖Q‖

∣

∣

∣

∣

∣

‖Q‖=M

‖Q‖+



F̂
∣

∣

∣

‖Q‖=M
− ∂F̂

∂‖Q‖

∣

∣

∣

∣

∣

‖Q‖=M

M



 for ‖Q‖ > M
. (60)

The functional derivative of F̂M is given by

ĤM(Q) = −∇QF̂M =







Ĥ(Q), ‖Q‖ ≤ M,

γM
Q

‖Q‖ , ‖Q‖ > M,
where γM =

∂F̂
∂‖Q‖

∣

∣

∣

∣

∣

‖Q‖=M

. (61)

We have the following bound on ĤM(Q):

‖ĤM(Q)‖L∞(Ω) ≤ ΓM , where ΓM = max{‖Ĥ‖L∞(BM (0)), γM}. (62)

We now define the function Qm, corresponding to the Galerkin approximation Hm as the
solution to the following system:







K∆Qm + ĤM(Qm) = Hm, in Ω
K∂νQm = W (Qpref −Qm) on ∂Pst,
Qm periodic inΠ

(63)

Below, we will need a priori estimates for the solution to the problem (63), formulated in
the following lemma. Its proof is given in Appendix A.

Lemma 4.2. Let Hm ∈ L2(Ω). Then there exists a solution Qm for (63). Moreover, there
exists a constant C > 0 such that

√
K‖∇Qm‖L2(Ω) + ‖Qm‖L2(Ω) +

√
W‖Qm‖L2(∂Pst)

≤ C
(

‖Hm‖L2(Ω) +
√
W‖Qpref‖L2(∂Pst) + 1

)

(64)

‖Q‖H2(Ω) ≤ C
(

γ1‖Hm‖L2(Ω) + γ2‖Qpref‖C1 + γ3ΓM

)

, (65)

where

γ1 = γ3 =
W +K

W
and γ2 =

√

W +K

K
.

With the above, then the Galerkin approximations (um,Hm) are defined so as to satisfy
for each k = 1, ..., m, the following conditions: follows:

η

ˆ

Ω

∇ûm : ∇Ψk dx+ η

ˆ

Ω

∇uos : ∇Ψk dx+ ρ

ˆ

Ω

(um · ∇)um ·Ψk dx

−
ˆ

Ω

(K∇Qm⊙∇Qm − σa(Qm,Hm)) : ∇Ψk dx = 0, (66)
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Γ

ˆ

Ω

Hm : Φk dx−
ˆ

Ω

((um · ∇)Qm − S(∇um,Qm)) : Φk dx

+

ˆ

Ω

Fext,M : Φk dx = 0. (67)

Here, Fext,M is defined as a continuous function such that:

Fext,M =















Fext, ‖Fext‖ ≤ M,

M
Fext

‖Fext‖
, ‖Fext‖ > M.

(68)

Next, we will prove the existence and apriori estimates for (um,Hm).

4.3 Energy estimate for Galerkin approximations

Lemma 4.3. Provided that η and Γ are large enough, there exists a constant C independent
of m such that

‖∇ûm‖2L2(Ω) + ‖Hm‖2L2(Ω) < C. (69)

Proof. Using test function ûm and Hm instead of Ψk and Φk in (66)-(67) and taking the sum
of two equalities, we obtain the following energy equality:

η

ˆ

Ω

|∇ûm|2 dx+ Γ

ˆ

Ω

|Hm|2 dx

= −ρ

ˆ

Ω

(um · ∇)um · ûm dx− η

ˆ

Ω

∇uos : ∇ûm dx

−
ˆ

Ω

(σa(Qm,Hm) : ∇ûm + S(∇ûm,Qm) : Hm) dx

+K

ˆ

Ω

(∇Qm⊙∇Qm : ∇ûm + (ûm · ∇)Qm : ∆Qm) dx

+K

ˆ

Ω

(uos · ∇)Qm : ∆Qm dx+

ˆ

Ω

(um · ∇)Qm : ĤM(Qm) dx

−
ˆ

Ω

S(∇uos,Qm) : Hmdx−
ˆ

Ω

Fext,M : Hm dx. (70)

Next, we estimate each integral. Below, C denotes a generic constant independent of
K,W,Qpref, η, ρ,uos,Γ, m which may change from line to line whereas C∗ is a generic constant
which is independent of m only and may also change from line to line.
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1. We use the representation um = uos + ûm to write

−ρ

ˆ

Ω

(um · ∇)um · ûm dx = −ρ

ˆ

Ω

(um · ∇)ûm · ûm dx− ρ

ˆ

Ω

(um · ∇)uos · ûm dx. (71)

Next, using integration by parts, the non-penetration condition ûm · ν = 0 on ∂Pst and the
divergence-free condition ∇ · um = 0, we get:

ˆ

Ω

(um · ∇)ûm · ûm dx =
1

2

ˆ

Ω

um · ∇|ûm|2 dx = 0. (72)

To estimate the second integral in the right-hand side of (71) we integrate by parts and use
the non-penetration condition again on ∂Pst to we get:

−ρ

ˆ

Ω

(um · ∇)uos · ûm dx = ρ

ˆ

Ω

um · ∇ûmuos dx. (73)

Finally, we use the Poincaré estimate for ûm (one can also use (199) with ûm instead of Q)
as well as that the offset function uos is a smooth function with bounded derivatives:

−ρ

ˆ

Ω

(um · ∇)um · ûm dx = ρ

ˆ

Ω

ûm · ∇ûmuos dx+ ρ

ˆ

Ω

uos · ∇ûmuos dx

≤ ρ

ˆ

Ω

|∇ûm|(|ûm||uos|+ |uos|2) dx

≤ Cρ‖uos‖L∞(Ω)





ˆ

Ω

|∇ûm|2 dx



 + C∗. (74)

2. Here we bound the second integral in the right-hand side of (70) by the Cauchy-Schwarz
inequality:

−η

ˆ

Ω

∇uos : ∇ûm dx ≤ η

4

ˆ

Ω

|∇ûm|2 dx+ C∗. (75)

3. We have the equality σa(A,B) : D + S(D,A) : B = 0 which holds for all matrices A, B,
and D such that A and B are symmetric:

ˆ

Ω

(σa(Qm,Hm) : ∇ûm + S(∇ûm,Qm) : Hm) dx = 0. (76)

4. Note that the integral in the 4th line of (70) vanishes. Indeed, using integration by parts,
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∇ · ûm = 0 and (59), we get
ˆ

Ω

∇Qm⊙∇Qm : ∇ûm dx

= −1

2

ˆ

Ω

(ûm · ∇)|∇Qm|2 dx−
ˆ

Ω

(ûm · ∇)Qm : ∆Qm dx+

ˆ

∂Pst

[(∇Qm⊙∇Qm) ν] · ûm dSx

= −1

2

ˆ

∂Pst

(ûm · ν)|∇Qm|2 dSx +
1

2

ˆ

Ω

(∇ · ûm)|∇Qm|2 dx−
ˆ

Ω

(ûm · ∇)Qm : ∆Qm dx

= −
ˆ

Ω

(ûm · ∇)Qm : ∆Qm dx. (77)

5. We use the Cauchy-Schwarz inequality, (59), and the a priori bound (64) to estimate the
5th line of (70):

K

ˆ

Ω

(uos · ∇)Qm : ∆Qm dx+

ˆ

Ω

(um · ∇)Qm : ĤM(Qm) dx

=

ˆ

Ω

(uos · ∇)Qm : Hm dx+

ˆ

Ω

(ûm · ∇)F̂M(Qm) dx

≤ C‖uos‖L∞(Ω)(
√
K‖∇Qm‖2L2(Ω) +

1√
K

‖Hm‖2L2(Ω)) +

ˆ

∂Pst

(ûm · ν)F̂M(Qm) dSx

≤ C‖uos‖L∞(Ω)(
√
K‖∇Qm‖2L2(Ω) +

1√
K

‖Hm‖2L2(Ω))

≤ C√
K

‖uos‖L∞(Ω)‖Hm‖2L2(Ω) + C∗. (78)

6. We use again the a priori bound (64) and the Cauchy-Schwarz inequality to estimate the
first term in the 6th line of (70):

ˆ

Ω

S(∇uos,Qm) : Hmdx < C‖uos‖W 1,∞(Ω)(‖Qm‖2L2(Ω) + ‖Hm‖2L2(Ω))

< C‖uos‖W 1,∞(Ω)‖Hm‖2L2(Ω) + C∗. (79)

7. Finally, the last term in (70) is estimated as follows
ˆ

Ω

Fext,M : Hmdx <
Γ

4
‖Hm‖2L2(Ω) + C∗. (80)

Collect (74)-(80) and substitute them in (70):
(

3η

4
− Cρ‖uos‖L∞(Ω)

)

‖ûm‖2L2(Ω)

+

(

3Γ

4
− C√

K
‖uos‖L∞(Ω) − C‖uos‖W 1,∞(Ω)

)

‖Hm‖2L2(Ω) ≤ C∗.

Under the restrictions (42), the inequality (69) holds proving the Lemma.
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4.4 Existence of Galerkin approximations

We will use the following result [46, Lemma IX.3.1, p. 597]:

Theorem 4.1. Let P : Rp → R
p be a continuous mapping such that for some R > 0:

P(ξ) · ξ ≥ 0 for all ξ ∈ R
p with |ξ| = R. (81)

Then there exists ξ0 ∈ R
p with |ξ0| ≤ R such that P(ξ0) = 0.

Next, we introduce the mapping P for our problem. Given m ≥ 1, let

ξ = (u1m, ..., umm, h1m, ..., hmm) ∈ R
2m

and the kth component mapping P : R2m → R
2m (p = 2m) is the left-hand side of (66) for

1 ≤ k ≤ m and the left-hand side of (67) for m+ 1 ≤ k ≤ 2m. We obtain that

P(ξ) · ξ = η‖∇ûm‖2L2(Ω) + Γ‖Hm‖2L2(Ω) −R(um,Hm),

where R(um,Hm) is the right-hand side of (70). In the proof of Lemma 4.3 we showed that

|R(um,Hm)| ≤
(η

4
+ Cρ‖uos‖L∞(Ω)

)

‖ûm‖2L2(Ω)

+

(

Γ

4
+

C√
K

‖uos‖L∞(Ω) + C‖uos‖W 1,∞(Ω)

)

‖Hm‖2L2(Ω) + C∗.

Therefore, using this inequality we obtain the following:

Lemma 4.4. Assume η and Γ are large enough so Lemma 4.3 holds. Then there exists
constants C1, C2 > 0 independent of m such that

P(ξ) · ξ ≥ C1

(

‖∇ûm‖2L2(Ω) + ‖Hm‖2L2(Ω)

)

− C2.

The condition (81) is satisfied for large R > 0 and thus we have the following existence
result for our Galerkin approximations:

Theorem 4.2. Assume η and Γ are the same as in Lemma 4.3. Then there exists a solution
(ûm,Hm) of (66)-(67). Moreover, if Qm is defined via (63), then the solution satisfies

‖ûm‖2H1(Ω) + ‖Qm‖2H2(Ω) + F̂M(Qm) + ‖Qpref −Qm‖2L2(∂Pst)
+ ‖Hm‖2L2(Ω) < C. (82)

4.5 Passing to limit m → ∞
From (82) we get that there is a subsequence of {(ûm,Hm)} such that

ûm ⇀ û in H1(Ω) (83)

Hm ⇀ H in L2(Ω) (84)

Qm ⇀ Q in H2(Ω). (85)

Next, we will use the following auxiliary lemma [47, Lemma 1.3]:
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Lemma 4.5. Let O be a bounded domain. Let pm(x) and p(x) be such functions from Lq(O),
1 < q < ∞, such that

‖pm‖Lq(O) ≤ C and pm → p a.e. in O. (86)

Then pm ⇀ p in Lq(O).

From (82) and Lemma 4.5 we get

ĤM(Qm) ⇀ ĤM(Q) in L2(Ω). (87)

Using (84), (85), and (87) as well as the trace theorem, we can pass to the limits m → ∞ in
the weak formulation of (63):

K

ˆ

Ω

∇Q · ∇G dx+W

ˆ

∂Pst

(Qpref −Q) : G dSx +

ˆ

Ω

ĤM(Q) : G dx =

ˆ

Ω

H : G dx (88)

for all smooth test functions G.
Next, we pass to the limit in (66)-(67) using (83), (85), H2(Ω) →֒ H1(Ω) →֒ L2(Ω), and

the property that product of strongly and weakly converging sequences weakly converges to
the product of corresponding limits. We get (u = uos + û):

η

ˆ

Ω

∇û : ∇Ψk dx+ η

ˆ

Ω

∇uos : ∇Ψk dx+ ρ

ˆ

Ω

(u · ∇)u ·Ψk dx

+

ˆ

Ω

σa(Q,H) : ∇Ψk dx = K

ˆ

Ω

∇Q⊙∇Q : ∇Ψk dx. (89)

Γ

ˆ

Ω

H : Φk dx−
ˆ

Ω

((u · ∇)Q− S(∇u,Q)) : Φk dx+

ˆ

Ω

Fext,M : Φk dx = 0. (90)

Finally, we can drop subscript M in ĤM(Q) and Fext,M(Q,Q∞) due to the L∞-a-priori
bound on solution of (23)-(28) in Lemma 4.1.

5 Well-posedness of time dependent problem − Proof

of Theorem 3.2

In this Section, we prove the local-in-time existence of the unique solution with additional
regularity by using Banach fixed point theorem. In Section 5.1, we will write the time
dependent problem in operator form. In Section 5.2 and 5.3, we will address the Lipshitz
properties of the non-linear part and the solvability of the linear part of PDE system. In
Section 5.3, we will prove the local-in-time existence and uniqueness by Banach fixed point
theorem.
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5.1 Operators and function spaces

We first define the projection operator Pσ : H−1(Ω) → H−1
σ (Ω) onto the space of

divergence-free functions so that if we apply Pσ to (1), the pressure p is eliminated. Specifi-
cally, the equation (1) becomes

∂tu+ Pσ(∇ · (u⊗ u)) +
dV

dt
− ρ−1ηPσ(∆u) = ρ−1Pσ(∇ · σela(Q)). (91)

Now we consider the problem consisting of (91), (2)-(6) with force and torque balances
(14), (43). The tuple of unknowns is U = (u,Q,ω,V )T. We rewrite the problem as

LU = N (U), (92)

where we define linear operator L and non-linear operator N as

L









u

Q

ω

V









= ∂t









u

Q

ω

V









−









ρ−1ηPσ(∆u)
ΓK∆Q

0
0









(93)

and

N









u

Q

ω

V









=











ρ−1Pσ (∇ · (σela(Q)− ρu⊗ u))− dV

dt
−u · ∇Q+ ΓĤ(Q) + S(∇u,Q) + Fext(Q,Q∞)

1
I

´

∂P
x× σν + ℓ dSx

1
m

´

∂P
σν dSx











. (94)

To handle the nonlinear and inhomogeneous boundary conditions, we represent unknown
functions u and Q as

u = uh + uos and Q = Qh +Qos.

The offset function uos is given by

−η∆uos +∇pos = 0 in Ω (95)

uos = usq(α(t),x)τ + ω(t)× x on ∂P (96)

uos periodic in Π (97)

The offset function Qos is defined such that

K∂νQos = W (Qpref −Qos) on ∂P (98)

Qos periodic in Π (99)

Specifically, we define

Qos(x) = Qpref

(

x

‖x‖

)

ψ(‖x‖), x ∈ Π \ P (100)

Here ψ(‖x‖) ≥ 0 is a smooth function such that ψ(‖x‖) = 1 for x ∈ (∂P +Br∗(0)) ∩ Π \ P
with r∗ = dist(∂Π, ∂P)/4, and ψ(‖x‖) = 0 when ‖x‖ > 2r∗. Boundary condition (98)

20



is satisfied since ∂νQos = ∂‖x‖Qos = 0 and Qos|∂P = Qpref. The offset function Qos can
be extended periodically so it satisfies (99) since Qos ≡ 0 on ∂Π. We point out that Qos

is the solution of the Poisson problem with boundary conditions (98)-(99) and the partial

differential equation −∆Qos = f with f = −∆

(

Qpref

(

x

‖x‖

)

ψ(‖x‖)
)

. Note that the offset

function uos depends on unknown orientation angle α(t) and angular velocity ω(t) whereas
Qos does not. Therefore, uos changes in time t while Qos is independent of time t.

With the above, the functions uh and Qh satisfy homogeneous boundary conditions.
Their equations in Ω are similar to the original (91) and (4). More precisely, these equations
with force and torque balances in the form of (92) look as follows:

L









uh

Qh

ω

V









= J









uh

Qh

ω

V









=: N









uh + uos

Qh +Qos

ω

V









− L









uos

Qos

0
0









(101)

To describe the domains of the operator L, we introduce the following Banach spaces:

Xu =

{

u ∈ H2(0, T ;L2
σ(Ω)) ∩H1(0, T ;H2

0,σ(Ω))

∣

∣

∣

∣

u = 0 on ∂P,
u periodic in Π

}

(102)

XQ =

{

Q ∈ H2(0, T ;H1(Ω)) ∩H1(0, T ;H3(Ω))

∣

∣

∣

∣

∂νQ = −WQ on ∂P,
Q periodic in Π

}

(103)

with corresponding norms

‖u‖Xu
=

(

‖u‖2H2(0,T ;L2
σ(Ω)) + ‖u‖2H1(0,T ;H2

0,σ(Ω)) + ‖u
∣

∣

t=0
‖2H2

0,σ(Ω) + ‖∂tu
∣

∣

t=0
‖2H1

0,σ(Ω)

)
1
2

‖Q‖XQ
=

(

‖Q‖2H2(0,T ;H1(Ω)) + ‖Q‖2H1(0,T ;H3(Ω)) + ‖Q
∣

∣

t=0
‖2H3(Ω) + ‖∂tQ

∣

∣

t=0
‖2H2(Ω)

)
1
2
.

Introduce also

Yu = H1(0, T ;L2
σ(Ω)), YQ = H1(0, T ;H1(Ω)).

Then X = Xu ×XQ ×H2(0, T )×H2(0, T ) and Y = Yu × YQ ×H1(0, T )×H1(0, T ) are the
domain and the range of the operator L. The corresponding norms are:

‖(u,Q,ω,V )‖X = (‖u‖2Xu
+ ‖Q‖2XQ

+ ‖ω‖2H2(0,T ) + ‖V ‖2H2(0,T ))
1
2 ,

‖(u,Q,ω,V )‖Y = (‖u‖2Yu
+ ‖Q‖2YQ

+ ‖ω‖2H1(0,T ) + ‖V ‖2H1(0,T ))
1
2 .

5.2 Lipschitz property of the non-linear part

In this section we show the Lipschitz property of the non-linear operator J with respect to
the norms of the spaces X and Y . Below, we will use short notations for spaces of functions
depending on both t and x, for example, H2(0, T ;L2(Ω)) will be denoted by H2L2. We start
with the following estimates with constants vanishing as T → 0.
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Proposition 5.1. There exists a constant C(T ) such that C(T ) → 0 as T → 0 and each of
inequalities (i)-(iv) below hold for all f and g as long as the left-hand side of the inequality
is finite:

(i) ‖f‖L∞L∞ ≤ C(T )‖f‖H1H2 , (104)

(ii) ‖f‖H1L∞ ≤ C(T )(‖f‖H1H2 + ‖f‖H2L2), (105)

(iii) ‖fg‖H1H1 ≤ C(T )(‖f‖H1H2 + ‖f‖H2L2) · (‖g‖H1H2 + ‖g‖H2L2), (106)

(iv) ‖fg‖H1H1 ≤ C(T )(‖f‖H1H3 + ‖f‖H2H1) · ‖g‖H1H1 . (107)

Proof. In the proof, below C is independent from T unless the dependence is indicated via
the following notation C(T ). All constants C(T ) vanish as T → 0. We will use the following
inequalities in the proof

‖f‖L∞(Ω) ≤ C‖f‖H2(Ω) (General Sobolev Inequality, [48]) (108)

‖f‖L∞(0,T ) ≤ C‖f‖1/2L2(0,T )‖f‖
1/2

H1(0,T ) (Agmon’s inequality in 1D) (109)

‖f‖L∞(Ω) ≤ C‖f‖1/4L2(Ω)‖f‖
3/4

H2(Ω) (Agmon’s inequality in 2D and 3D) (110)

‖f‖L2(0,T ) ≤ T 1/2‖f‖L∞(0,T ) (111)

‖f‖L∞(0,T ) ≤ C‖f‖H1(0,T ) (112)

‖fg‖H1(Ω) ≤ C
(

‖f‖H1(Ω)‖g‖L∞(Ω) + ‖f‖L∞(Ω)‖g‖H1(Ω)

)

(113)

‖fg‖H1(Ω) ≤ C
(

‖f‖L2(Ω)‖g‖W 1,∞(Ω) + ‖f‖W 1,∞(Ω)‖g‖L2(Ω)

)

(114)

Proof of (i):

‖f‖L∞L∞ ≤ ‖f‖L∞H2 (use (108))

≤ ‖f‖
1
2

L2H2 ‖f‖
1
2

H1H2 (use (109))

≤ CT 1/4 ‖f‖
1
2

L∞H2 ‖f‖
1
2

H1H2 (use (111))

≤ CT 1/4 ‖f‖H1H2 (use (112)). (115)

Proof of (ii):

‖f‖H1L∞ ≤ C (‖f‖L2L∞ + ‖∂tf‖L2L∞)

≤ C(T 1/2 ‖f‖L∞H2 + ‖∂tf‖1/4L2L2 · ‖∂tf‖3/4L2H2) (use (108), (111), and (110))

≤ C(T 1/2 ‖f‖L∞H2 + T 1/8 ‖∂tf‖1/4L∞L2 · ‖∂tf‖3/4L2H2) (use (111))

≤ C(T 1/2 ‖f‖H1H2 + T 1/8 ‖∂tf‖1/4H1L2 · ‖∂tf‖3/4L2H2) (use (112))

≤ C(T 1/2 ‖f‖H1H2 + T 1/8 ‖f‖1/4H2L2 · ‖f‖3/4H1H2)

≤ C(T )(‖f‖H1H2 + ‖f‖H2L2). (116)

Proof of (iii):

‖fg‖H1H1 ≤ ‖f‖H1L∞‖g‖L∞H1 + ‖g‖H1L∞‖f‖L∞H1

+ ‖f‖H1H1‖g‖L∞L∞ + ‖g‖H1H1‖f‖L∞L∞ (use (113)) (117)
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Next, estimate each term in the right-hand side of (117):

‖f‖H1L∞‖g‖L∞H1 ≤ C(T )(‖f‖H1H2 + ‖f‖H2L2) · ‖g‖H1H1 (use (116) and (112)) (118)

‖g‖H1L∞‖f‖L∞H1 ≤ C(T )(‖g‖H1H2 + ‖g‖H2L2) · ‖f‖H1H1 (use (116) and (112)) (119)

‖f‖H1H1‖g‖L∞L∞ ≤ C(T )‖f‖H1H1‖g‖H1H2 (use (115)) (120)

‖g‖H1H1‖f‖L∞L∞ ≤ C(T )‖g‖H1H1‖f‖H1H2 (use (115)). (121)

Combining (117)-(121), we obtain (106).

Proof of (iv):

‖fg‖H1H1 ≤ ‖f‖H1W 1,∞‖g‖L∞L2 + ‖f‖H1L∞‖g‖L∞H1

+ ‖f‖L∞W 1,∞‖g‖H1L2 + ‖f‖L∞L∞‖g‖H1H1 (use (114)) (122)

Next, estimate each term in the right-hand side of (122):

‖f‖H1W 1,∞‖g‖L∞L2 ≤ C(T )(‖f‖H1H3 + ‖f‖H2H1) · ‖g‖H1L2 (use (116) and (112)) (123)

‖f‖H1L∞‖g‖L∞H1 ≤ C(T )(‖f‖H1H2 + ‖f‖H2L2) · ‖g‖H1H1 (use (116) and (112)) (124)

‖f‖L∞W 1,∞‖g‖H1L2 ≤ C(T )‖f‖H1H3 · ‖g‖H1L2 (use (115)) (125)

‖f‖L∞L∞‖g‖H1H1 ≤ C(T )‖f‖H1H2 · ‖g‖H1H1 (use (115)). (126)

Combining (122)-(126), we obtain (107).

Remark 5.1. It is useful to rewrite (107) with the norm of space XQ:

‖fg‖H1H1 ≤ C(T ) ‖f‖XQ
‖g‖H1H1 . (127)

Lemma 5.1. For all R > 0, there exists a time T > 0 such that for all (u
(i)
h ,Q

(i)
h ,ω(i),V (i)) ∈

BX(0, R) = {(uh,Qh,ω,V ) ∈ X
∣

∣‖(uh,Qh,ω,V )‖X ≤ R}, i = 1, 2, then

‖J (u
(1)
h ,Q

(1)
h ,ω(1),V (1))−J (u

(2)
h ,Q

(2)
h ,ω(2),V (2))‖Y

≤ C(T,R)‖(u(1)
h ,Q

(1)
h ,ω(1),V (1))− (u

(2)
h ,Q

(2)
h ,ω(2),V (2))‖X . (128)

Moreover, the constant coefficient C(T,R) → 0 when T → 0.

Proof.
STEP 1. We first establish the Lipschitz continuity of uos, the solution of (95),(96),(97),
with respect to α and ω. For given α(i)(t) and ω(i)(t), i = 1, 2, such that α(1)(0) = α(2)(0),
one has

− η∆
(

u(1)
os − u(2)

os

)

+∇
(

p(1)os − p(2)os

)

= 0 in Ω,

u(1)
os − u(2)

os =
(

usq(α
(1)(t),x)− usq(α

(2)(t),x)
)

τ + (ω(1)(t)− ω(2)(t))× x on ∂P,

u(1)
os ,u

(2)
os periodic in Π.

Due to the stability of the Stokes operator (similar to [46, Theorem IV.6.1])

‖uos‖H2(Ω) ≤ Cη−1
(

‖usq‖L2(∂P) + |ω(t)|
)

(129)
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and smooth dependence of usq in α(t), we have

‖u(1)
os − u(2)

os ‖H2L2 + ‖u(1)
os − u(2)

os ‖H1H2

≤ Cη−1
(

‖α(1) −α(2)‖H2(0,T ) + ‖ω(1) − ω(2)‖H2(0,T )

)

. (130)

‖u(1)
os − u(2)

os ‖H1H2 ≤ Cη−1
(

‖α(1) −α(2)‖H1(0,T ) + ‖ω(1) − ω(2)‖H1(0,T )

)

. (131)

Since α(i)(t) = α(i)(0) +
´ t

0
ω(i)(τ)×α(i)(τ)dτ (see (17)) and |α(i)(t)| = 1, i = 1, 2 as well as

T́

0

|h(t)|2 dt ≤ T 2
T́

0

|ht(0, T )|2 dt for all h ∈ H1(0, T ), one gets

‖α(1) −α(2)‖H2(0,T ) ≤ T‖ω(1) − ω(2)‖H2(0,T ), (132)

‖ω(1) − ω(2)‖H1(0,T ) ≤ C(T )‖ω(1) − ω(2)‖H2(0,T ). (133)

Then (130) and (131) become

‖u(1)
os − u(2)

os ‖H2L2 + ‖u(1)
os − u(2)

os ‖H1H2 ≤ Cη−1(1 + T )‖ω(1) − ω(2)‖H2(0,T ), (134)

‖u(1)
os − u(2)

os ‖H1H2 ≤ C(T )η−1‖ω(1) − ω(2)‖H2(0,T ). (135)

Applying (129) to ∂k
t u

(i) with k = 0, 1, 2 and using the definition of time-independent
Qos (100), there is a C > 0 depending on Ω and q∞ such that

‖u(i)
os ‖H2L2 + ‖u(i)

os ‖H1H2 ≤ Cη−1(‖ω(i)‖H2(0,T ) + 1), i = 1, 2. (136)

‖Qos‖H2H1 + ‖Qos‖H1H3 ≤ C. (137)

(Though Qos is independent of time, here we use its H2H1 and H1H3 norms for the clarity
of arguments below.) We will also need the following inequality:

‖Q(i)‖H1H3 + ‖Q(i)‖H2H1 ≤ C +R, i = 1, 2. (138)

Indeed,

‖Q(i)‖H1H3 + ‖Q(i)‖H2H1 ≤ ‖Q(i) −Qos‖H1H3 + ‖Q(i) −Qos‖H2H1

+‖Qos‖H1H3 + ‖Qos‖H2H1

≤ ‖Q(i)
h ‖XQ

+ ‖Qos‖H1H3 + ‖Qos‖H2H1

≤ C +R.

STEP 2. Here we establish the following inequality:

‖ρ−1Pσ∇ ·
[

σela(Q
(1))− σela(Q

(2))
]

‖H1L2
σ
≤ C(T )‖Q(1)

h −Q
(2)
h ‖XQ

. (139)

To this end, we first note that since Pσ∇· : H1(Ω) → L2
σ(Ω) is a bounded operator [49,

Lemma II.2.5.2], the inequality (139) follows from

‖σela(Q
(1))− σela(Q

(2))‖H1H1 ≤ C(T )‖Q(1)
h −Q

(2)
h ‖XQ

. (140)
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We decompose σela into five parts σela = σK + σa + σ1
s + σ2

s + σ3
s , where

σK = −K∇Q⊙∇Q

σa = K(Q∆Q−∆QQ)

σ1
s = −2ξ

d
H

σ2
s = −ξ [HQ+QH] +

2ξ

d
Tr(QH)

σ3
s = 2ξ [QTr(QH)] .

Here σ1
s , σ

2
s , σ

3
s are the linear, bilinear and trilinear part of σs := σ1

s + σ2
s + σ3

s , respectively.

Part 1 : σK(Q).

‖σK(Q
(1))− σK(Q

(2))‖H1H1 = ‖(K∇Q(1)⊙∇Q(1) −K∇Q(2)⊙∇Q(2))‖H1H1

≤ CK
(

‖∇Q(1)⊙∇(Q(1) −Q(2))‖H1H1 + ‖∇(Q(1) −Q(2))⊙∇Q(2)‖H1H1

)

= CK
(

‖∇Q(1)⊙∇(Q
(1)
h −Q

(2)
h )‖H1H1 + ‖∇(Q

(1)
h −Q

(2)
h )⊙∇Q(2)‖H1H1

)

. (141)

Using (106), (137) and that (u
(i)
h ,Q

(i)
h ,ω(i),V (i)) ∈ BX(0, R), we get

CK
(

‖∇Q(1)⊙∇(Q
(1)
h −Q

(2)
h )‖H1H1 + ‖∇(Q

(1)
h −Q

(2)
h )⊙∇Q(2)‖H1H1

)

≤ C(T )K
(

‖∇(Q
(1)
h −Q

(2)
h )‖H1H2 + ‖∇(Q

(1)
h −Q

(2)
h )‖H2L2

)

[(

‖∇Q(1)‖H1H2 + ‖∇Q(1)‖H2L2

)

+
(

‖∇Q(2)‖H1H2 + ‖∇Q(2)‖H2L2

)]

≤ C(T )K(R+ 1)‖Q(1)
h −Q

(2)
h ‖XQ

≤ C(T )‖Q(1)
h −Q

(2)
h ‖XQ

. (142)

We note that the generic constant C(T ) may change from line to line and may depend on,
for example, K, R, C from (137) and T (but recall that notation C(T ) also means that
C(T ) → 0 as T → 0). We sometimes do not merge a parameter, as for example, K in the
second line of the above chain of inequalities, to indicate what we used to obtain a bound.

Part 2 : σa(Q)).

‖σa(Q
(1))− σa(Q

(2))‖H1H1

≤ K‖Q(1)∆Q(1) −Q(2)∆Q(2)‖H1H1 +K‖∆Q(1)Q(1) −∆Q(2)Q(2)‖H1H1 . (143)

Applying (107) for the first term in the right hand side of (143), one can get

‖Q(1)∆Q(1) −Q(2)∆Q(2)‖H1H1

≤ ‖(Q(1)
h −Q

(2)
h )∆(Q

(1)
h +Qos)‖H1H1 + ‖(Q(2)

h +Qos)∆(Q
(1)
h −Q

(2)
h )‖H1H1

≤ C(T )‖Q(1)
h −Q

(2)
h ‖XQ

· ‖∆(Q
(1)
h +Qos)‖H1H1

+C(T )‖Q(2)
h +Qos‖XQ

‖∆(Q
(1)
h −Q

(2)
h )‖H1H1

≤ C(T )(R + 1)‖Q(1)
h −Q

(2)
h ‖XQ

. (144)
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Applying same arguments for the second term in the right-hand side of (143), one can obtain

‖σa(Q
(1))− σa(Q

(2))‖H1H1 ≤ KC(T,R)‖Q(1)
h −Q

(2)
h ‖XQ

.

Part 3 : σ1
s(Q).

‖σ1
s (Q

(1))− σ1
s (Q

(2))‖H1H1 =
2ξ

d
‖H(Q(1))−H(Q(2))‖H1H1

≤ 2ξK

d
‖∆Q(1) −∆Q(2)‖H1H1 +

2ξ|a|
d

‖Q(1) −Q(2)‖H1H1

+
2ξ|c|
d

‖Q(1)Tr((Q(1))2)−Q(2)Tr((Q(2))2)‖H1H1 . (145)

The first two terms in the right-hand side of (145) are bounded as follows:

2ξK

d
‖∆Q(1) −∆Q(2)‖H1H1 +

2ξ|a|
d

‖Q(1) −Q(2)‖H1H1 ≤ C‖Q(1) −Q(2)‖XQ
.

Next, we bound the third (cubic) term in the right-hand side of (145). Note

‖Q(1)Tr((Q(1))2)−Q(2)Tr((Q(2))2)‖H1H1 ≤ ‖(Q(1) −Q(2))Tr(Q(1)Q(1))‖H1H1

+ ‖Q(2)Tr((Q(1) −Q(2))Q(1))‖H1H1

+ ‖Q(2)Tr(Q(2)(Q(1) −Q(2)))‖H1H1 (146)

We show how to bound the first term in the right-hand side of (146). Other terms are
bounded in the same way. Apply (127) twice to obtain

‖(Q(1) −Q(2))Tr(Q(1)Q(1))‖H1H1

≤ C(T )‖Q(1)
h −Q

(2)
h ‖XQ

‖|Q(1)||Q(1)|‖H1H1

≤ C(T )‖Q(1)
h −Q

(2)
h ‖XQ

(

‖Q(1)
h ‖XQ

+ ‖Qos‖L2H3

)(

‖Q(1)
h ‖H1H1 + ‖Qos‖H1H1

)

≤ C(T )(R + 1)2‖Q(1)
h −Q

(2)
h ‖XQ

. (147)

Thus, we have

‖H(Q(1))−H(Q(2))‖H1H1 ≤ C(T,R)‖Q(1)
h −Q

(2)
h ‖XQ

, (148)

which, in view of (145), implies

‖σ1
s(Q

i)− σ1
s(Q

j)‖H1H1 ≤ C(T,R)‖Q(1)
h −Q

(2)
h ‖XQ

. (149)

Part 4 : σ2
s(Q). This is part, we will need the following bound

‖H(Q(i))‖H1H1 ≤ C(T,R), i = 1, 2. (150)

which can be obtained by applying same arguments as in (145)-(147) for i = 1, 2

‖H(Q(i))‖H1H1 ≤ C(‖∆Q(i)‖H1H1 + ‖Q(i)‖H1H1 + ‖Q(i)Tr((Q(i))2)‖H1H1)

≤ C(T )(‖Q(i)
h ‖XQ

+ ‖Q(i)
h ‖3XQ

+ 1) ≤ C(T,R).
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Now, we can estimate,

‖σ2
s (Q

(1))− σ2
s (Q

(2))‖H1H1 ≤ ξ‖Q(1)H(Q(1))−Q(2)H(Q(2))‖H1H1

+ ξ‖H(Q(1))Q(1) −H(Q(2))Q(2)‖H1H1

+
2ξ

d
‖Tr(Q(1)H(Q(1))−Q(2)H(Q(2)))‖H1H1

≤ C‖Q(1)H(Q(1))−Q(2)H(Q(2))‖H1H1 . (151)

Next, we use the triangle inequality, (127), (148), and (150):

‖Q(1)H(Q(1))−Q(2)H(Q(2))‖H1H1

≤ C(T )‖Q(1)
h −Q

(2)
h ‖XQ

‖H(Q(1))‖H1H1

+ C(T )‖Q(2)
h +Qos‖XQ

‖H(Q(1))−H(Q(2))‖H1H1

≤ C(T,R)‖Q(1)
h −Q

(2)
h ‖XQ

.

Therefore,

‖σ2
s(Q

(1))− σ2
s(Q

(2))‖H1H1 ≤ C(T,R)‖Q(1)
h −Q

(2)
h ‖XQ

. (152)

Part 5 : σ3
s(Q).

‖σ3
s(Q

(1))− σ3
s(Q

(2))‖H1H1 ≤ 2ξ‖Q(1)Tr(Q(1)H(Q(1)))−Q(2)Tr(Q(2)H(Q(2)))‖H1H1

≤ C‖(Q(1) −Q(2))Tr(Q(1)H(Q(1)))‖H1H1

+ C‖Q(2)Tr((Q(1) −Q(2))H(Q(1)))‖H1H1

+ C‖Q(2)Tr(Q(2)(H(Q(1))−H(Q(2))))‖H1H1 . (153)

Next, applying the same arguments as in (147) with bounds (148) and (150) we get

‖σ3
s(Q

(1))− σ3
s(Q

(2))‖H1H1 ≤ C(T,R)‖Q(1)
h −Q

(2)
h ‖XQ

. (154)

STEP 3. Here we establish the following inequality:

‖S2(∇u(1),Q(1))− S2(∇u(2),Q(2))‖H1H1

≤ C(T )
(

‖Q(1)
h −Q

(2)
h ‖XQ

+ ‖u(1)
h − u

(2)
h ‖Xu

+ ‖ω(1) − ω(1)‖H2(0,T )

)

. (155)

To this end, similar to how we treated σs in STEP 2, we split S(∇u,Q) into three parts:

S(∇u,Q) = (ξD +A)

(

Q+
I

d

)

+

(

Q+
I

d

)

(ξD −A)− 2ξ

(

Q+
I

d

)

tr(Q∇u)

= S1 + S2 + S3, (156)

where

S1(∇u) =
2ξ

d
D

S2(∇u,Q) = ξ(DQ+QD) + (AQ−QA)− 2ξ

d
tr(Q∇u)

S3(∇u,Q) = −2ξQtr(Q∇u)
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are correspondingly the linear, bilinear and trilinear part of S. First note that using (134),
(135) and (136), one gets

‖u(1) − u(2)‖H1H2∩H2L2 ≤ ‖u(1)
h − u

(2)
h ‖Xu

+ ‖u(1)
os − u(2)

os ‖H1H2∩H2L2

≤ ‖u(1)
h − u

(2)
h ‖Xu

+ Cη−1(1 + T )‖ω(1) − ω(2)‖H2(0,T ) (157)

and

‖u(i)‖H1H2∩H2L2 ≤ ‖u(i)
h ‖Xu

+ ‖u(i)
os ‖H1H2∩H2L2

≤ ‖u(i)
h ‖Xu

+ Cη−1(‖ω(i)‖H2(0,T ) + 1), i = 1, 2. (158)

Part 1 : S1(∇u,Q).
Since D(u) = 1

2
(∇u+ (∇u)T ), using (135) one gets

‖D(u(1))−D(u(1))‖H1H1 ≤ ‖u(1) − u(2)‖H1H2

≤ ‖u(1)
h − u

(2)
h ‖H1H2 + ‖u(1)

os − u(2)
os ‖H1H2

≤ ‖u(1)
h − u

(2)
h ‖Xu

+ C(T )η−1‖ω(1) − ω(2)‖H2(0,T ). (159)

Then

‖S1(∇u(1),Q(1))− S1(∇u(2),Q(2))‖H1H1

≤ C(T )
(

‖Q(1)
h −Q

(2)
h ‖XQ

+ ‖u(1)
h − u

(2)
h ‖Xu

+ ‖ω(1) − ω(2)‖H2

)

. (160)

Part 2 : S2(∇u,Q).

‖S2(∇u(1),Q(1))− S2(∇u(2),Q(2))‖H1H1 ≤ C‖∇u(1)Q(1) −∇u(2)Q(2)‖H1H1

≤ C‖(∇u(1) −∇u(2))Q(1)‖H1H1 + C‖∇u(2)(Q(1) −Q(2))‖H1H1 (161)

Apply (107), (138) and (157) to obtain

‖(∇u(1) −∇u(2))Q(1)‖H1H1

≤ C(T )‖∇u(1) −∇u(2)‖H1H1

(

‖Q(1)‖H1H3 + ‖Q(1)‖H2H1

)

≤ C(T )‖u(1) − u(2)‖H1H2

(

‖Q(1)‖H1H3 + ‖Q(1)‖H2H1

)

≤ C(T )(R+ 1)
(

‖u(1)
h − u

(2)
h ‖Xu

+ ‖ω(1) − ω(2)‖H2(0,T )

)

Applying the similar arguments to the second term in the right-hand side of (161), we
obtain

‖S2(∇u(1),Q(1))− S2(∇u(2),Q(2))‖H1H1

≤ C(T )
(

‖Q(1)
h −Q

(2)
h ‖XQ

+ ‖u(1)
h − u

(2)
h ‖Xu

+ ‖ω(1) − ω(2)‖H2(0,T )

)

. (162)
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Part 3 : S3(∇u,Q).

‖S3(∇u(1),Q(1))− S3(∇u(2),Q(2))‖H1H1

≤ 2ξ‖Q(1)tr
(

∇u(1)Q(1)
)

−Q(2)tr
(

∇u(2)Q(2)
)

‖H1H1

≤ 2ξ‖
(

Q(1) −Q(2)
)

tr
(

∇u(1)Q(1)
)

‖H1H1

+2ξ‖Q(2)tr
(

∇
(

u(1) − u(2)
)

Q(1)
)

‖H1H1

+2ξ‖Q(2)tr
(

∇u(2)
(

Q(1) −Q(2)
))

‖H1H1 . (163)

Using same arguments as in (147) and taking into account (136) and (138), we obtain

‖
(

Q(1) −Q(2)
)

tr
(

∇u(1)Q(1)
)

‖H1H1

≤ C(T )‖Q(1) −Q(2)‖H1H3∩H2H1‖Q(1)‖H1H3∩H2H1‖∇u(1)‖H1H1

≤ C(T )(R2 + 1)‖Q(1)
h −Q

(2)
h ‖XQ

.

Applying similar arguments for the other two terms in the right-hand side of (163), we
obtain

‖S3(∇u(1),Q(1))− S3(∇u(2),Q(2))‖H1H1

≤ C(T,R)
(

‖Q(1)
h −Q

(2)
h ‖XQ

+ ‖u(1)
h − u

(2)
h ‖Xu

+ ‖ω(1) − ω(2)‖H2(0,T )

)

. (164)

STEP 4. Finally, we show the Lipschitz properties of all the remaining terms in J .

Part 1 : Pσ(∇ · (u⊗ u)).
We again use the fact that Pσ∇· : H1(Ω) → L2

σ(Ω) is a bounded operator:

‖Pσ(∇ · (u(1) ⊗ u(1)))− Pσ(∇ · (u(2) ⊗ u(2)))‖H1L2
σ

≤ ‖u(1) ⊗ u(1) − u(2) ⊗ u(2)‖H1H1

= ‖(u(1) − u(2))⊗ u(1) − u(2) ⊗ (u(1) − u(2))‖H1H1 . (165)

We apply the same arguments in Part 1 of STEP 2, that is, apply (106), along with (157)
and (158), to get:

‖u(1) ⊗ (u(1) − u(2))‖H1H1 + ‖(u(1) − u(2))⊗ u(2)‖H1H1

≤ C(T )
(

‖u(1) − u(2)‖H1H2 + ‖u(1) − u(2)‖H2L2

)

×
[(

‖u(1)‖H1H2 + ‖u(1)‖H2L2

)

+
(

‖u(2)‖H1H2 + ‖u(2)‖H2L2

)]

≤ C(T )
(

‖u(1)
h − u

(2)
h ‖Xu

+ C
(

‖ω(1) − ω(2)‖H2(0,T )

)

)

×
[(

‖u(1)
h ‖Xu

+ C(‖ω(1)‖H2(0,T ) + 1)
)

+
(

‖u(2)
h ‖Xu

+ C(‖ω(2)‖H2(0,T ) + 1)
)]

≤ C(T )(R+ 1)
(

‖(u(1)
h ,Q

(1)
h ,ω(1),V (1))− (u

(2)
h ,Q

(2)
h ,ω(2),V (2))‖X

)

.
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Thus, we obtained

‖Pσ(∇ · (u(1) ⊗ u(1)))− Pσ(∇ · (u(2) ⊗ u(2)))‖H1L2
σ

≤ C(T,R)
(

‖(u(1)
h ,Q

(1)
h ,ω(1),V (1))− (u

(2)
h ,Q

(2)
h ,ω(2),V (2))‖X

)

.

Part 2 : u · ∇Q.

‖u(1) · ∇Q(1) − u(2) · ∇Q(2)‖H1H1

≤ ‖(u(1) − u(2)) · ∇Q(1)‖H1H1 + ‖u(2) · ∇(Q(1) −Q(2))‖H1H1 .(166)

Apply the same arguments as in Part 1 of STEP 2, that is, apply (106), :

‖u(1) · ∇(Q(1) −Q(2))‖H1H1 + ‖(u(1) − u(2)) · ∇Q(2)‖H1H1

≤ C(T )
(

‖u(1)‖H1H2 + ‖u(1)‖H2L2

)

(

‖∇Q
(1)
h −∇Q

(2)
h ‖H1H2 + ‖∇Q

(1)
h −∇Q

(2)
h ‖H2L2

)

+ C(T )
(

‖u(1) − u(2)‖H1H2 + ‖u(1) − u(2)‖H2L2

)

(

‖∇Q(2)‖H1H2 + ‖∇Q(2)‖H2L2

)

≤ C(T )
(

‖u(1)‖H1H2 + ‖u(1)‖H2L2

)

‖Q(1)
h −Q

(2)
h ‖XQ

+ C(T )
(

‖u(1) − u(2)‖H1H2 + ‖u(1) − u(2)‖H2L2

)

(

‖Q(2)‖H1H3 + ‖Q(2)‖H2H1

)

. (167)

Using (157), (158), and (138) one gets

C(T )
(

‖u(1)‖H1H2 + ‖u(1)‖H2L2

)

‖Q(1)
h −Q

(2)
h ‖XQ

+ C(T )
(

‖u(1) − u(2)‖H1H2 + ‖u(1) − u(2)‖H2L2

)

(

‖Q(2)‖H1H3 + ‖Q(2)‖H2H1

)

≤ C(T )
(

‖u(1)
h ‖Xu

+ C(‖ω(1)‖H2(0,T ) + 1)
)(

‖Q(1)
h −Q

(2)
h ‖XQ

)

+ C(T )
(

‖u(1)
h − u

(2)
h ‖Xu

+ C
(

‖ω(1) − ω(2)‖H2(0,T )

)

)(

‖Q(2)‖H1H3 + ‖Q(2)‖H2H1

)

≤ C(T )(R + 1)‖(u(1)
h ,Q

(1)
h ,ω(1),V (1))− (u

(2)
h ,Q

(2)
h ,ω(2),V (2))‖X . (168)

Thus, we obtained

‖u(1) · ∇Q(1) − u(2) · ∇Q(2)‖H1H1

≤ C(T,R)‖(u(1)
h ,Q

(1)
h ,ω(1),V (1))− (u

(2)
h ,Q

(2)
h ,ω(2),V (2))‖X .

Part 3 : Ĥ(Q). Here, we need to show

‖H(Q(1))−H(Q(2))‖H1H1 ≤ C(T,R)‖(u(1)
h ,Q

(1)
h ,ω(1),V (1))− (u

(2)
h ,Q

(2)
h ,ω(2),V (2))‖X .

This bound follows directly from the proof on Part 3 of STEP 2.

Part 4:
dV

dt
.

‖dV
(1)

dt
− dV (2)

dt
‖H1(0,T ) ≤ ‖V (1) − V (2)‖H2(0,T )

≤ C(T )(‖(u(1)
h ,Q

(1)
h ,V (1),ω(1))− (u

(2)
h ,Q

(2)
h ,V (2),ω(2))‖X). (169)
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Part 5: Fext(Q,Q∞). We first note that for both definitions (11) and (12), Fext(Q,Q∞) is a
quadratic function of Q:

Fext(Q,Q∞) = B(Q,Q) =
d

∑

k,l,m,n=1

bklmnQklQmn,

where coefficients bklmn depend on Q∞. Then use of the triangle inequality and (127):

‖Fext(Q
(1),Q∞)− Fext(Q

(2),Q∞)‖H1H1 ≤ ‖B(Q(1) −Q(2),Q(1))‖H1H1

+‖B(Q(2),Q(1) −Q(2))‖H1H1

≤ C(T )‖Q(1) −Q(2)‖XQ
(‖Q(1)‖H1H1 + ‖Q(2)‖H1H1)

≤ C(T,R)‖Q(1)
h −Q

(2)
h ‖XQ

.

Part 6: 1
I

´

∂P
x× σν + ℓ dSx.

Since σ = σhydro + σela we use (140) and (159)

‖σ(∇u(1),Q(1))− σ(∇u(1),Q(1))‖H1H1

≤ C(T,R)(‖(u(1)
h ,Q

(1)
h ,V (1),ω(1))− (u

(2)
h ,Q

(2)
h ,V (2),ω(2))‖X .

Using trace theorem, we get

∥

∥

∥

∥

1

I

ˆ

∂P

x× σ(Q(1))νdSx − 1

I

ˆ

∂P

x× σ(Q(2))νdSx

∥

∥

∥

∥

H1(0,T )

≤ C‖σ(Q(1))− σ(Q(2))‖H1H1

≤ C(T,R)‖(u(1)
h ,Q

(1)
h ,V (1),ω(1))− (u

(2)
h ,Q

(2)
h ,V (2),ω(2))‖X . (170)

To estimate the term with ℓ, recall its simplified form (19):

∥

∥

∥

∥

∥

∥

ˆ

∂P

ℓ(Q(1)) dSx −
ˆ

∂P

ℓ(Q(2)) dSx

∥

∥

∥

∥

∥

∥

H1(0,T )

≤ C‖Q(1) −Q(2)‖H1(0,T ;L1(∂P))

≤ C‖Q(1)
h −Q

(2)
h ‖H1H1

≤ C(T )‖Q(1)
h −Q

(2)
h ‖H2H1

≤ C(T )‖(u(1)
h ,Q

(1)
h ,V (1),ω(1))− (u

(2)
h ,Q

(2)
h ,V (2),ω(2))‖X . (171)

Part 7 : 1
m

´

∂P
σνdSx. The same argument for Part 6 also works for 1

m

´

∂P
σνdSx.

Part 8 : ∂tuos. Using (135), we have

‖∂tu(1)
os − ∂tu

(2)
os ‖H1L2

σ
≤ C(T )‖ω(1) − ω(2)‖H2(0,T ). (172)

Now, collecting all bounds from STEPS 2 - 4, we have (128) and thus Lemma 5.1 is
proven.
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5.3 Proof of Theorem 3.2 (local in time existence)

In this section we prove the well-posedness of the time-dependent problem. The equation
(101) can be rewritten as KUh = Uh where K := L−1J : X → X and Uh = (uh,Qh,ω,V ).
The inverse linear operator L−1 is bounded, as stated in the following proposition.

Proposition 5.2. For all (fu, fQ, fω, fV ) ∈ Y , and time T ∈ (0, 1], linear system

L(uh,Qh,ω,V ) = (fu, fQ, fω, fV ) (173)

has a unique solution such that uh|t=0 = 0, Qh|t=0 = 0, ω|t=0 = V |t=0 = 0 and

‖(uh,Qh,ω,V )‖X ≤ C‖(fu, fQ, fω, fV )‖Y , (174)

where the constant C is independent of time T and choice of (fu, fQ, fω, fV ).

To prove this proposition, one can follow [37]. Specifically, for the first two components,
uh and Qh, of system (173), we adapt the proof from [37, Proposition 4.2]. For the last two
components, which are not present in [37], the statement naturally follows from the classical
ODE theory.

Next, according to propositions 5.1 and 5.2, we have that

‖K(u
(1)
h ,Q

(1)
h ,ω(1),V (1))−K(u

(2)
h ,Q

(2)
h ,ω(2),V (2))‖X

≤ C(T )‖(u(1)
h ,Q

(1)
h ,ω(1),V (1))− (u

(2)
h ,Q

(2)
h ,ω(2),V (2))‖X . (175)

Recall that C(T ) depends on T in such a way that C(T ) → 0 when T → 0. Choose T such
that C(T ) < 1. Then using Banach’s fixed point theorem, we obtain that there exists a
unique fixed point (uh,Qh,ω,V ) of operator K. Next, define uos via (95)-(97). Finally, the
tuple (uh + uos,Qh +Qos,ω,V ) is a solution to the original system (91), (2)-(6) with force
and torque balances (14), (43) for 0 ≤ t ≤ T . Theorem 3.2 is proven.

6 Homogenization: two-scale expansion

In this section, we will perform formal two-scale expansion for (44)-(47). To this end, we
introduce fast variable y = ε−1x and represent the unknowns as







u(x; ε) = ū(x,y) = u(0)(x,y) + εu(1)(x,y) + · · ·
p(x; ε) = p̄(x,y) = p(0)(x,y) + εp(1)(x,y) + · · ·
Q(x; ε) = Q̄(x,y) = Q(0)(x,y) + εQ(1)(x,y) + · · ·

(176)

We will frequently use following identities for f(x, ε) = f̄(x,y) with y = ε−1x:

∇f = ∇xf̄ + ε−1∇yf̄ , (177)

∆f = ∆xf̄ + 2ε−1∇y · ∇xf̄ + ε−2∆yf̄ . (178)

The derivation of the homogenized limit consists of the following steps.
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STEP 1. Show that u(0) = 0. Substitute two-scale representations (176) for u,Q, and p into
(46) and ∇ · u = 0. We get that at level ε−1:

−η̃∆yu
(0) +∇yp

(0) = 0 and ∇y · u(0) = 0,

with the boundary condition u(0) = 0 on ∂Pε. Thus, we can conclude that u(0) = 0.

STEP 2. Find an equation for Q(0). In this step we expand equations (44) and (45) in ε.
To this end, we write the weak formulation of these two equations for arbitrary test function
Φ ∈ H1(Ωε;R

d×d):

−γε

ˆ

Ωε

∇Q · ∇Φdx+ εW̃

ˆ

∂Pε

(Qpref −Q) : Φ dSx

+

ˆ

Ωε

[

ãQ− c̃QTr(Q2)
]

: Φ dx+

ˆ

Ωε

S(∇ũ,Q) : Φ dx

−
ˆ

Ωε

(ũ · ∇)Q : Φ dx+ ζ̃

ˆ

Ωε

F̃ext : Φ dx =

ˆ

Ωε

G : Φ dx. (179)

Introduce Ω1 = ε−1Ωε and P1 = ε−1Pε. We now consider two-scale representation for the
test function Φ:

Φ(x; ε) = Φ̄(x,y) = Φ(0)(x,y) + εΦ(1)(x,y) + · · · .
Rewrite the first integral in (179) in domain Ω1:

−γε

ˆ

Ωε

∇Q · ∇Φdx = −γε1+d

ˆ

Ω1

∇Q(εy) · ∇Φ(εy) dy

= −γε1+d

ˆ

Ω1

[

∇xQ̄(εy,y) + ε−1∇yQ̄(εy,y)
]

·
[

∇xΦ̄(εy,y) + ε−1∇yΦ̄(εy,y)
]

dy

= −ΓKε1+d







ε−2

ˆ

Ω1

∇yQ
(0) · ∇yΦ

(0) dy+

+ε−1

ˆ

Ω1

[

∇xQ
(0) +∇yQ

(1)
]

· ∇Φ(0) +∇Q(0) ·
[

∇xΦ
(0) +∇yΦ

(1)
]

dy + · · ·







. (180)

Expanding analogously other terms in (179) and using that u(0) = 0 we get at level εd−1:

ˆ

Ω1

∇yQ
(0) · ∇yΦ

(0) dy = 0,

which implies, together with periodicity in y, that Q(0)(x,y) = Q(0)(x).
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At level εd, accounting for ∇yQ
(0) = 0, we have

−γ

ˆ

Ω1

[

∇xQ
(0) +∇yQ

(1)
]

· ∇yΦ
(0) dy + W̃

ˆ

∂P1

(Qpref −Q(0)) : Φ0 dSy

+

ˆ

Ω1

[

−ãQ(0) + c̃Q(0)Tr((Q(0))2)
]

: Φ(0) dy

+

ˆ

Ω1

S(∇yu
(1),Q(0)) · Φ(0) dy + ζ̃

ˆ

Ω1

F̃ext(Q
(0),Q∞) : Φ(0) dy

=

ˆ

Ω1

G(x) : Φ(0) dy. (181)

Note that the above integral relation is the weak formulation for the following boundary-value
problem:







−γ∆yQ
(1) = f 1, y in Π1,

γ(∇yQ
(1)) · νy = g1, y on ∂P1.

(182)

Here

f 1 = γ∆yxQ
(0) − ãQ(0) + c̃Q(0)Tr((Q(0))2) + S(∇yu

(1),Q(0)) + ζ̃F̃ext(Q
(0),Q∞)−G(x),

g1 = −γ∇xQ
(0) · νy + W̃ (Qpref −Q(0)),

and ∆yxh = ∇y · ∇xh for arbitrary h.
Next, we have the solvability condition for (182) given as:

ˆ

∂P1

g1 dSy =

ˆ

Ω1

f1 dy. (183)

To evaluate the right-hand side, we use the fact that Q(0) is independent of y and
ˆ

Ω1

∇yu dy =

ˆ

∂P1

usqτν
T dSy. (184)

Hence, we have
ˆ

Ω1

f 1 dy = |Ω1|
(

−ãQ(0) + c̃Q(0)Tr((Q(0))2) + ζ̃F̃ext(Q
(0),Q∞)−G(x)

)

+S(

ˆ

∂P1

usqτν
T dSy,Q

(0)), (185)

ˆ

∂P1

g1 dSy = W̃

ˆ

∂P1

Qpref dSy − W̃ |∂P1|Q(0). (186)
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Substituting (185) and (186) into (183) we get the equation for Q(0):

−
[

ã− W̃ |∂P1|
|Ω1|

]

Q(0) + c̃Q(0)Tr((Q(0))2)

+ζ̃F̃ext(Q
(0),Q∞) + S(Gsq,Q

(0)) = G(x)− W̃

|Ω1|
Qpref. (187)

Here, we denote Gsq =
´

∂P1

usqτν
T dSy and Qpref =

´

∂P1

Qpref dSy. The function Q(0) is the

limit of Q as ε → 0, thus, the algebraic equation (187) determines Q(h) = Q(0).

STEP 3. Find an equation for u(1). At level ε0 in the expansion of (46), accounting for that
u(0) = 0, Q(0) is independent of y, and

ε2κ∇ · (∇Q⊙∇Q+Q∆Q−∆QQ) = ε0κ∇y ·
(

Q(0)∆yQ
(1) −∆yQ

(1)Q(0)
)

+





higher
order
terms





we get

−η̃∆yu
(1) +∇xp

(0) +∇yp
(1) = κ∇y ·

(

Q(0)∆yQ
(1) −∆yQ

(1)Q(0)
)

+ F(x), y in Ω1, (188)

u(1) = usqτ , y on ∂P1. (189)

Next, we aim to remove Q(1) from the right-hand side of (188). To this end, we notice
that due to (182) we have that −γ∆yQ

(1) = f 1 and

∆yxQ
(0) = 0 and Q(0), Q(0)Tr(Q(0)), ζ̃F̃ext(Q

(0),Q∞), G(x) are independent of y.

Thus, we can rewrite (188) as

−η̃∆yu
(1) +∇xp

(0) +∇yp
(1)

= −κγ−1∇y ·
(

Q(0)S(∇yu
(1),Q(0))− S(∇yu

(1),Q(0))Q(0)
)

+ F(x). (190)

The above can be rewritten in component-wise form as

d
∑

m,j,l=1

ηklmju
(1)
m,jl + ∂xk

p(0) + ∂ykp
(1) = Fk(x), k = 1, .., d, (191)

where

u
(1)
m,jl =

∂2u
(1)
m

∂yj∂yl

and ηklmj = −η̃δkmδjl +
κξ

2γ

d
∑

n=1

[

Q
(0)
knQ

(0)
nmδjl −Q(0)

mnQ
(0)
nl δjk −Q

(0)
jnQ

(0)
nl δkm

]

+
κξ

dγ

[

Q
(0)
kmδjl −Q

(0)
mlδjk −Q

(0)
jl δkm

]

+
κ

γ

[

Q
(0)
kj Q

(0)
ml −Q

(0)
kmQ

(0)
jl

]

+
κ

γ

d
∑

n=1

[

Q
(0)
knQ

(0)
nmδjl −Q(0)

mnQ
(0)
nl δjk +Q

(0)
jnQ

(0)
nl δkm

]

. (192)
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Next, rewrite (191) in a vectorial form:

− η(Q(0))∇2
yu

(1) +∇yp
(1) = F(x)−∇xp

(0). (193)

Taking into account the boundary condition u(1)(x,y) = ũsqτ on P1, we obtain the following
representation for u(1):

u(1) = Aη(Q(0))(y)
[

F(x)−∇xp
(0)
]

+ usq, (194)

where Aη(Q(0))(y) is a y-dependent d×d matrix such that u(y) = Aη(Q(0))(y)ei (ei is the ith
basis vector) is the solution of the following cell problem:















−η(Q(0))∇2
yu+∇yp = ei, in Ω1,

∇ · u = 0,
u = 0, on P1,
u is 2-periodic.

(195)

The term usq is defined as the solution of















−η(Q(0))∇2
yusq +∇yp = 0, in Ω1,

∇ · usq = 0,
usq = ũsqτ , on P1,
usq is 2-periodic.

(196)

Finally, we define the homogenized function u(h) by averaging u(1) and using the fact that
Q(h) = Q(0):

u(h) = Bη(Q(h)) [F(x)−∇xp] +

 

Ω1

ūsq dy, (197)

where Bη =
ffl

Ω1
Aη(y) dy and the pressure p can be found from the divergence-free condition

∇ · u = 0.
To conclude, we have derived a system of homogenized equations in the form of (187),

an algebraic equation for Q and (197) for u in the form of Darcy’s law.

7 Concluding remarks

In this work, we initiated the theoretical justification of the active microswimmer model,
also known as a squirmer, in a liquid crystal. This model has been recently developed to
explore a non-trivial response of the microswimmer to surrounding environment possess-
ing a liquid crystalline structure. As computational studies [38, 39] clearly show that the
squirmer eventually converges to an equilibrium, both time-dependent solutions and steady
states are important and were in the focus of our work. In investigating well-posedness of
the corresponding equations, we started with combining techniques from the two fields, the
squirmer in Newtonian fluids and the Beris-Edwards model of liquid crystal. However, such
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a combination is not straightforward. As explained in Remark 2.2, one of the main difficul-
ties, besides that our model is complex and highly nonlinear, is that it is not dissipative:
there is a permanent energy input (not necessarily constant) coming from the activity of the
squirmer. It makes application of a priori energy bounds established for the Beris-Edwards
model not possible here. Therefore, the considered model requires novel approaches for its
analysis. For the steady state problem, using suitable offset functions, we first proved the
existence of a steady state for a truncated system via Galerkin approximations and careful
energy bounds using specific properties of the Beris-Edwards system (see, e.g., (76)), and
then extended the well-posedness from the truncated system to the original one using the
L∞ result formulated in Lemma 4.1. For the time-dependent problem, in order to exploit
the contraction mapping principle, we considered higher regularity solutions (instead of weak
ones) which allowed us to obtain all the necessary bounds including the one for integrals
where activity of squirmer enters as well as the force and torque balances for the squirmer
(see, e.g., (170) & (171)). Periodic settings, in which we considered our model, allowed us
to pose a question of homogenization limit which would be a model describing a colony of
synchronously moving squirmers. We found a scaling which, on the one hand, is consistent
with experimental data (see Appendix C) and, on the other hand, allows for a non-trivial
two-scale expansions so that the homogenized limit takes the form of Darcy’s law perturbed
by an algebraic expression for the liquid crystal order parameter (see equations (187) and
(197)).

Natural extensions of our work are:

(i) Stability analysis of steady states. Namely, we would like to find conditions on parame-
ters when a steady state corresponding to swimming either parallel or perpendicular to
the liquid crystal is stable. This analytical result will be compared with the main ob-
servation from [39] on bifurcations with respect to anchoring strength parameter W . It
would be also important to show that there is no steady state other than corresponding
to swimming parallel or perpendicular to the liquid crystal.

(ii) Force-velocity relation for steady swimming. Though in the squirmer’s frame and pe-
riodic conditions, squirmer’s velocity is not well-defined, we can consider the so-called
superficial velocity [50] V = −

ffl

Ω
u dx, which can be understood as the velocity of the

squirmer with respect to the surrounding flow, and show how it depends on propulsion
force entering the problem via usq. Specifically, given the profile of the active slip ve-
locity usq (with all other physical parameters fixed), what is the resulting velocity V ?
This question is related to the evaluation of the squirmer efficiency in Stokes fluid as a
function of usq [28, 32].

(iii) Rigorous justification of the homogenization limit. We plan to justify the two-scale
limit formally derived in Section 6 and in more general stochastic settings based on
techniques developed for Newtonian fluids [40, 41, 42, 43, 44].
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[47] J. Lions, Quelques méthodes de résolution de problemes aux limites non linéaires. Dunod,
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Appendix

A Proof of Lemma 4.2

Proposition A.1 (A Poincaré-type estimate). There exists cP > 0 such that

‖Q‖2L2(Ω) ≤ cP

(

K

2
‖∇Q‖2L2(Ω) +

W

2
‖Q‖2L2(∂Pst)

)

. (198)

for all Q ∈ H1
per(Ω).

Proof. Here, we first show that there exists ĉP > 0 such that for arbitrary Q ∈ H1
per(Ω) the

following inequality holds

‖Q‖2L2(Ω) ≤ ĉP (‖∇Q‖2L2(Ω) + ‖Q‖2L2(Pst)
). (199)

By contradiction, we assume that there exists a sequence {Qn}∞n=1:

‖Qn‖2L2(Ω) = 1 and ‖∇Qn‖2L2(Ω) + ‖Qn‖2L2(Pst)
≤ 1

n
. (200)
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From boundedness of Qn in L2(Ω) it follows that the sequence {Qn}∞n=1 possesses a weakly
converging sub-sequence in L2(Ω). Consider any such weakly converging sub-sequence {Qnk

}∞k=1,
Qnk

⇀ Q∗ and a function ψ ∈ H1
per(Ω):

ˆ

Ω

Qnk
∂xi

ψ dx =

ˆ

∂Pst

Qnk
ψνi dSx −

ˆ

Ω

∂xi
Qnk

ψ dx → 0, 1 ≤ i ≤ d.

The convergence to 0 follows from strong convergences of Qnk
in L2(∂Pst) and ∇Qnk

in
L2(Ω) which in turn follow from (200). Then

ˆ

Ω

Q∗∂xi
ψ dx = 0 ∀ψ ∈ H1

per(Ω).

Using integration by parts we get
ˆ

∂Pst

Q∗ψνi dSx −
ˆ

Ω

∂xi
Q∗ψ dx = 0 ∀ψ ∈ H1

per(Ω).

By taking first ψ ∈ C∞
c (Ω) we get ∂xi

Q∗ ≡ 0 so the second integral in the equality above
vanishes. Next, we get that the first integral is zero as well by taking ψ with various non-zero
traces. We conclude Q∗ ≡ 0. Moreover, since for any weakly converging sub-sequence the
limit is 0, then entire sequence {Qn}∞n=1 weakly converges to 0.

Note that H1
per(Ω) ⊂ H1(Ω) and thus H1

per(Ω) is compactly embedded in L2(Ω). Hence,
Qn is strongly converging in L2(Ω) and since the weak limit is 0, we conclude Qn → 0
strongly in L2(Ω). However, it contradicts to (200) since it implies that if Qn → Q∗ strongly
in L2(Ω), then ‖Q∗‖2L2(Ω) = 1. Thus, inequality (199) is shown.

Finally, to prove (198) take cP =
2ĉP

min{K,W} .

Next we turn to the proof of Lemma 4.2. We note that an equivalent way to define Qm

from (63) is via minimization of the following energy functional:

E(Q) =

ˆ

Ω

K

2
|∇Q|2 + F̂M(Q) dx+

W

2

ˆ

∂Pst

|Qpref −Q|2 dSx +

ˆ

Ω

Hm : Q dx (201)

among functions Q ∈ H1
per(Ω). The minimizer Q of the energy functional E(Q) exists.

From (198), the Cauchy inequality, and ‖Q−Qpref‖2 ≥
1

2
‖Q‖2−‖Qpref‖2 we obtain that

E(Q) is bounded from below:

E(Q) ≥ K

2
‖∇Q‖2L2(Ω) +

W

2
‖Qpref −Q‖2L2(∂Pst)

− 1

2cP
‖Q‖2L2(Ω) −

cP
2
‖Hm‖2L2(Ω)

≥ −W

2
‖Qpref‖L2(∂Pst) −

cP
2
‖Hm‖2L2(Ω).

Thus, there exists a minimizing sequence Q(ℓ) weakly converging in H1
per(Ω). Then using the

lim inf property of a weakly converging sequences we get the existence of minimizer Q = Qm.
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From E(Qm) ≤ E(Q∞) and (198) we get that there exists C > 0 such that

K

8
‖∇Qm‖2L2(Ω) +

1

8cP
‖Qm‖2L2(Ω) +

W

4
‖Qpref −Qm‖2L2(∂Pst)

≤ 3cP‖Hm‖2L2(Ω) + C. (202)

This shows (64). Next, due to the elliptic regularity result (see Appendix B)

{

∆Q = K−1(Hm − ĤM(Qm)) in Ω,
∂νQ|∂Pst = WK−1(Qpref −Q)

we have

‖Q‖2H2(Ω) ≤ C

(

(W +K)2

W 2
‖Hm − ĤM(Qm)‖2L2(Ω) +

W +K

K
‖Qpref‖2C1

)

. (203)

Next, using (62) we get (65) and it completes the proof of Lemma 4.2.

B Elliptic regularity for the squirmer boundary condi-

tions

Here, we consider the following auxiliary elliptic problem:







∆q = F in Ω,
∂νq|∂Pst = β(γ(x)− q),
q is Π-periodic.

(204)

Here F = F (x), γ = γ(x) and β > 0 are given. We aim to prove the elliptic regularity for
(204):

Theorem B.1. Let q be the solution of (204). Then

‖q‖2H2(Ω) ≤ C

(

(1 + β)2

β2
‖F‖2L2(Ω) + (1 + β)‖γ‖2C1

)

(205)

for some constant C independent of β and γ.

This result is well-known from PDE textbooks [51, Theorem 8.12] and [48, Theorem 4 in
§6.3.2] for the Dirichlet boundary conditions. However, we need to re-visit this result due
to our specific boundary conditions for which the afore-mentioned results are not applicable.
For the sake of clarity, the proof below is written for two-dimensional case, d = 2.

Proof. We first address a priori estimates for regions near the boundary ∂Pst of the squirmer.
Choose any point x0 on ∂Pst. Suppose its vicinity on the boundary can be described by
equation x2 = ϕ(x1) so the domain x2 > ϕ(x1) is the interior of domain Ω. Then introduce
change of variables

y = Φ(x) ⇔
{

y1 = x1,
y2 = x2 − ϕ(x1).

(206)
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In variable y, the problem (204) has the form:
{ ∇y · (L(y)∇yq) = F, y2 > 0

L(y)∇yq · νy = β
√

1 + (ϕ′)2 (γ − q), y2 = 0,

where

L =

[

1 −ϕ′

−ϕ′ (1 + (ϕ′)2)

]

, νy =

[

0
1

]

.

We note that L is a positive definite symmetric matrix with the smallest eigenvalue

λmin(y) =
1

2

(

2 + (ϕ′)2 −
√

(2 + (ϕ′)2)2 − 4
)

≥ 1. (207)

Thus, L is uniformly positive definite:

(L(y)u · u) ≥ |u|2 for all y,u ∈ R
2. (208)

Lemma B.1. Let q be the solution of
{

∇y · (L(y)∇yq) = F̂ , y ∈ R
2
+ = {(y1, y2) : y2 > 0}

L(y)∂yq · νy = β̂(γ̂ − q), y2 = 0,
(209)

for some f ∈ L2
loc(R

2
+), γ̂ = γ̂(y1) ∈ H1(R) and β̂(y1) ≥ β0 > 0 and matrix L(y) satisfying

uniform positivity condition (208). Denote also U = B1(0) ∩ {y2 > 0} and V = B1/2(0) ∩
{y2 > 0}.

Then we have the following bound:

‖q‖2H2(V ) ≤ C
(

‖F̂‖2L2(U) + ‖q‖2H1(U) + ‖q‖2L2(U0)
+ β2‖γ‖2C1

)

. (210)

Here U0 = {y2 = 0} ∩ U .

Proof. We adapt arguments from [48]. All gradients ∇ in the proof of this lemma are taken
with respect to variable y. First, we write the weak formulation of (209) for all v ∈ H1(U):

ˆ

Π̃

L∇q · ∇v dy −
ˆ

{y2=0}∩Π̃

β̂(γ̂ − q)v dSy = −
ˆ

Π̃

F̂ v dy. (211)

Here Π̃ is the image of Π\Pst under transformation (206). Next we introduce ζ(y) such that
ζ ∈ C∞ and ζ ≡ 1 in V and ζ ≡ 0 outside of W = B3/4(0) ∩ {y2 > 0}. Take test function
v = D−h

1 (ζ2Dh
1q), where Dh

1 is the difference quotient operator:

Dh
1g =

g(y1 + h, y2)− g(y1, y2)

h
. (212)

Integration by parts for the difference quotient allows us to rewrite the first integral in (211)
as follows:
ˆ

Π̃

L∇q · ∇v dy = −
ˆ

U

ζ2 (LDh
1 (∇q) ·Dh

1 (∇q)) dy − 2

ˆ

U

ζDh
1q(∇ζ · LDh

1 (∇q)) dy

−
ˆ

U

ζ2(
[

Dh
1L

]

(∇q) ·Dh
1 (∇q)) dy − 2

ˆ

U

ζDh
1q(∇ζ ·

[

Dh
1L

]

(∇q)) dy

≤ −1

2

ˆ

U

ζ2|Dh
1 (∇q)|2 dy + C

ˆ

W

|Dh
1q|2 dy + C

ˆ

U

|∇q|2 dy. (213)
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Here, to obtain the estimate we used (208), uniform boundedness of ∇ζ and [Dh
1L], and

Cauchy-Schwarz inequality.
Similarly, we rewrite the second integral in (211):

−
ˆ

{y2=0}∩Π̃

β̂(γ̂ − q)v dSy = −
ˆ

R

β̂(γ̂ − q)D−h
1 (ζ2Dh

1q) dy1

=

ˆ

R

Dh
1 (β̂γ̂ − β̂q) (Dh

1q)ζ
2 dy1

=

ˆ

R

ζ2
[

Dh
1 (β̂γ̂)

]

Dh
1q dy1 −

ˆ

R

ζ2q(Dh
1 β̂)D

h
1q dy1 −

ˆ

R

β̂ζ2|Dh
1q|2 dy1

≤ −β0

2

ˆ

R

ζ2|Dh
1q|2 dy1 + C

ˆ

R

ζ2q2 dy1 + C

ˆ

R

ζ2|Dh
1 (γ̂β̂)|2 dy1. (214)

Finally, we estimate the third integral in (211) using [48, Theorem 3 from §5.8.2] as
follows:

−
ˆ

Π̃

F̂ v dy ≤ C





ˆ

U

|F̂ |2dy





1/2



ˆ

U

|∇(ζ2Dh
1q)|2 dy





1/2

≤ C

ˆ

U

|F̂ |2 dy + 1

8

ˆ

U

|∇(ζ2Dh
1q)|2 dy

≤ C

ˆ

U

|F̂ |2 dy + 1

4

ˆ

U

ζ2|∇(Dh
1q)|2 dy +

1

4

ˆ

U

|∇(ζ)2 ·Dh
1q|2 dy

≤ C

ˆ

U

|F̂ |2 dy + 1

4

ˆ

U

ζ2|∇(Dh
1q)|2 dy + C

ˆ

W

|Dh
1q|2 dy. (215)

Combining (211) with estimates (213), (214), and (215), we get:

1

4

ˆ

U

ζ2|Dh
1 (∇q)|2 dy + β0

2

ˆ

R

ζ2|Dh
1q|2 dy1

≤ C





ˆ

U

|F̂ |2 dy +
ˆ

W

|Dh
1q|2 dy +

ˆ

U

|∇q|2 dy

+

ˆ

R

ζ2q2 dy1 +

ˆ

R

ζ2|Dh
1 (γ̂β̂)|2 dy1



 .
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Using [48, Theorem 3(i) from §5.8.2] we get

1

4

ˆ

V

|Dh
1 (∇q)|2 dy + β0

2

ˆ

R∩V

|Dh
1q|2 dy1

≤ C





ˆ

U

|F̂ |2 dy +
ˆ

U

|∇q|2 dy +
ˆ

R

ζ2q2 dy1 +

ˆ

R

ζ2|∂y1(γ̂β̂)|2 dy1



 .

Then [48, Theorem 3(ii) from §5.8.2] implies

1

4

ˆ

V

|∂y1(∇q)|2 dy + β0

2

ˆ

R∩V

|∂y1q|2 dy1

≤ C





ˆ

U

|F̂ |2 dy +
ˆ

U

|∇q|2 dy +
ˆ

R

ζ2q2 dy1 +

ˆ

R

ζ2|∂y1(γ̂β̂)|2 dy1



 .(216)

Now write ∂y1(γ̂β̂) = β

(

ϕ′′ϕ′

√

1 + (ϕ′)2
γ +

√

1 + (ϕ′)2(γx1 + γx2ϕ
′)

)

. Thus,

ˆ

R

ζ2|∂y1(γ̂β̂)|2 dy1 ≤ Cβ2‖γ‖2C1.

Analogous estimate is valid for ∂2
x2
q since

∂2
y2
q = − 1

1 + (ϕ′)2

[

F̂ − ∂2
y1
q + 2ϕ′∂2

y1y2
q − ϕ′′∂y2q + 2ϕ′ϕ′′∂y2q

]

and then
|∂2

y2
q| ≤ C

(

|F̂ |+ |∂y1(∇q)|+ |∇q|
)

and thus (210) is proven.

Next from from (210) and interior regularity [51, Theorem 8.8] we have that for and
Ω̃ ⊂⊂ Ω:

‖q‖H2(Ω̃) ≤ C
(

‖F‖L2(Ω) + ‖q‖L2(Ω)

)

. (217)

To obtain a bound on ‖q‖L2(Ω), we will use that q from (204) minimizes the energy functional

E0(q) =
1

2

ˆ

Ω

|∇q|2 dx+
β

2

ˆ

Ω

|γ − q|2 dSx +

ˆ

Ω

Fq dx. (218)

From E0(q) ≤ E0(0) we get for all δ > 0

ˆ

Ω

|∇q|2 dx+ β

ˆ

Ω

|q|2 dSx ≤ Cβ‖γ‖2C + Cδ−1‖F‖2L2(Ω) + δ‖q‖2L2(Ω).
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Next, we use Poincaré estimate (199):

‖q‖2L2(Ω) ≤ C

(

1 +
1

β

)

(

β‖γ‖2C + Cδ−1‖F‖2L2(Ω) + δ‖q‖2L2(Ω)

)

.

Take δ :=
1

2C

(

1 +
1

β

)−1

and we get

‖q‖2L2(Ω) ≤ C(β + 1)‖γ‖2C + C

(

1 +
1

β

)2

‖F‖2L2(Ω).

Finally, we conclude that

‖q‖2H2(Ω) ≤ C(β + 1)‖γ‖2C + C

(

1 +
1

β

)2

‖F‖2L2(Ω).

C Rescaling

In this Appendix we present non-dimensionalization of the steady state problem, showing
how the scalings in (44)-(47) arise. We will assume that all quantities are in their physical
dimensions. Representative values of physical parameters can be found in Table 1.

physical parameter value unit representation in δ’s

K 10−8 N 10−8 δf
η 1 N · s/m2 10−4 δT δf/δ

2
L

W 10−6 N/m 10−8 δf/δL
Γ 1 m2/(N · s) 104 δ2L/δfδT
a 0.4 N/m2 4× 10−5δf/δ

2
L

c 0.8 N/m2 8× 10−5δf/δ
2
L

ρ 1.0 g/mL 10−5 δfδ
2
T /δ

4
L

ζ 2.0 s−1 2 δ−1
T

vprop 10−6 m/s 10−4 δL/δT

Table 1: Values of physical parameters, taken from [39, 21].

Introduce characteristic length δL = 10−2m, time δT = 1 s, and force δf = 1N. Non-
dimensional flow velocity and pressure are

u = ũ
δL
δT

and p = p̃
δf
δ2L

. (219)

Note that tensor order parameter Q is non-dimensional and does not require a non-dimensio-
nalization. We also represent the external alignment field Fext as

Fext = ζF̃ext,
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where F̃ext is non-dimensional.
Using ∇x = δ−1

L ∇x̃, PDEs (23) and (26) reduce to

δTΓK

δ2L
∆Q+ δTΓaQ− δTΓcQTr(Q2) + S(∇ũ,Q)− ũ · ∇Q+ δT ζ F̃ext = 0, (220)

ρδ4L
δ2T δf

(ũ · ∇)ũ− ηδ2L
δT δf

∆ũ+∇p̃ =
K

δf
∇ · (∇Q⊙∇Q+Q∆Q−∆QQ). (221)

Here and below in this section all spatial derivatives are taken with respect to x̃.
Boundary condition (25) and (28) becomes

ũ =
δT
δL

vpropu
(p)
sq τ and ∂νQ =

WδL
K

(Qpref −Q). (222)

Here we represented usq = vpropu
(p)
sq where u

(p)
sq is the profile of the propulsion such that

maxu
(p)
sq = 1 and vprop is the propulsion strength. Introduce rescaled parameters:

ε =
L

δL
, γ =

δTΓK

LδL
, ã = δTΓa, c̃ = δTΓc, ζ̃ = δT ζ,

ρ̃ =
ρδ5L

Lδ2T δf
, η̃ =

ηδ3L
LδT δf

, κ =
Kδ2L
L2δf

, W̃ =
W

δL
K, ṽprop =

δT
L
vprop. (223)

Specific values of these parameters can be found in Table 2.

rescaled parameter value

ε 10−4

γ 1
ã 0.4
c̃ 0.8

ζ̃ 2.0
ρ̃ 0.1
η̃ 1.0
κ 1.0

W̃ 1.0
ṽprop 1.0

Table 2: Values of non-dimensional parameters introduced in (223) corresponding to values of
physical parameters from Table (1).

Then PDEs (220) and (221) become

εγ∆Q+ ãQ− c̃QTr(Q2) + S(∇ũ,Q)− ũ · ∇Q+ ζ̃ F̃ext = 0 in Ωε,

ερ̃(ũ · ∇)ũ− εη̃∆ũ+∇p̃ = ε2κ∇ · (∇Q⊙∇Q+Q∆Q−∆QQ) in Ωε,

with boundary conditions

ũ = εũsq τ and ∂νQ = W̃ (Qpref −Q) in ∂Pε,

ũ and Q are 2ε− periodic.

Here, ũsq = ṽpropu
(p)
sq , Ωε = δ−1

L Ω and Pε = δ−1
L P.
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