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Abstract

We analyze a nonlinear PDE system describing the motion of a microswimmer in
a nematic liquid crystal environment. For the microswimmer’s motility, the squirmer
model is used in which self-propulsion enters the model through the slip velocity on
the microswimmer’s surface. The liquid crystal is described using the well-established
Beris-Edwards formulation. In previous computational studies, it was shown that the
squirmer, regardless of its initial configuration, eventually orients itself either parallel or
perpendicular to the preferred orientation dictated by the liquid crystal. Furthermore,
the corresponding solution of the coupled nonlinear system converges to a steady state.
In this work, we rigourously establish the existence of steady state and also the finite-
time existence for the time-dependent problem in a periodic domain. Finally, we will
use a two-scale asymptotic expansion to derive a homogenized model for the collective
swimming of squirmers as they reach their steady state orientation and speed.
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1 Introduction

Microswimmers are objects of micron size which are immersed in a fluid and capable
of autonomous motion. They are ubiquitous in nature, as examplified by bacteria and eu-
karyotic cells. Recently, synthetic microswimmers for applications in medicine and material
repair has been introduced in [1], see also reviews [2, 3]. Transport of microswimmers, both
living and synthetic, as well as effective properties of suspensions populated by many such
microswimmers largely depends on how they respond to surrounding environment. Model-
ing microswimmers has become a growing area of research. The case when microswimmers
are immersed in a Newtonian fluid has been intensively studied — see [4, 5, 6, 7, 8, 9, 10]
and reviews [11, 12, 13, 14]. However, bacteria often swim in biofluids which demonstrate
viscoelastic or anisotropic properties very different from those of isotropic Newtonian fluids.
For example, Helicobacter pylori bacteria are present in stomach and are associated with
diseases such as chronic atrophic gastritis and ulcer [15, 16]. The “success” in the inflam-
mation of stomach walls by H. Pylori depends on how the bacterium reorients itself in the
mucous protective layer. Note that mucus is a viscoelastic fluid which exhibits properties
of a liquid crystal for a certain range of macroscopic parameters [17, 18]. In addition to
medical relevance, experimental realization which combines bacteria with a nematic water-
based and non-toxic (to bacteria) liquid crystal led to a wealth of intriguing observations
such as collective phenomena for small bacterial concentrations, moving topological defects,
and visualization of flagella beating [19, 20, 21, 22, 23, 24].



One of the most well-established model of microswimmer is the so called squirmer. The
model was initially introduced in [25] for Paramecium, a micro-organism which swims with
the help of small elastic appendages called cilia. The main modeling assumption for squirmers
is that the body is non-deformable and the swimming effect is introduced via a given slip
velocity profile on the body surface that models the cilia’s activity. Analysis of squirmers
immersed in a Newtonian fluid, from the well-posedness to the relation between the slip profile
and the resulting velocity has been the focus of many authors, [26, 27, 28, 29, 30, 31, 32].

To describe a nematic liquid crystal we use the well-established Beris-Edwards model [33],
a highly nonlinear PDE model coupling Navier-Stokes (or Stokes) equation with a PDE for the
tensor order parameter which indicates the preferred local orientation as well as the strength
of the local alignment of the liquid crystal molecules. Well-posedness of the Beris-Edwards
model in R? and R? were first studied in [34, 35]. Existence of weak and strong solutions
in a bounded domain with a fixed boundary and both homogeneous and inhomogeneous
boundary conditions for the tensor order parameter were established in [36, 37].

In our work, we consider a model which combines a Beris-Edwards liquid crystal with a
squirmer. Such a system was, for example, used as a computational model in [38] to study
orientation dynamics of the spherical squirmer with respect to the preferred orientation of
the liquid crystal. In [39], we extended this model to elongated squirmers and studied how
the long-term orientation dynamics of the squirmer depends on physical and geometrical
parameters. To the best of our knowledge, there are no analytical results, such as well-
posedness or model reductions via multi-scale limits for squirmers immersed in a liquid crystal
environment. On the other hand, there is a range of results for particles in classical isotropic
fluids. We refer to [40, 41, 42, 43, 44] for some recent works.

The structure of this paper is as follows. In Section 2, we present the Beris-Edwards
model coupled with a squirmer for both the time-dependent and steady state problems.
The latter corresponds to a squirmer moving with a constant velocity. In Section 3, we
formulate our main results on the existence of solutions to both the steady state and time-
dependent problems as well as a two-scale homogenization limit resulting in an effective
model for a suspension of squirmers swimming parallel to each other. The last statement
can be considered as a steady motion of a bacterial colony. Proof of the main results are
presented in Sections 4, 5, and 6. Some calculations and non-dimensionalization are relegated
to Appendix.

2 Model

2.1 Time dependent PDE system

Consider a rigid squirmer swimming in a liquid crystal with translational and angular
velocities V'(t) and w(t), respectively. In the context of the Beris-Edwards model, the liquid
crystal is described by a velocity field u(x,t) : R? x R, +— R? and a tensor order field
Q(x,t) : R? x R, — R4 taking values in symmetric traceless d x d matrices. Here d = 2,3
is the spatial dimension. The functions u = (u;)}_, and Q = (Q;;){,_, satisfy the following
system of partial differential equations and boundary conditions, written in the frame moving



with velocity V'(t), so the squirmer is always centered at 0:

p(0+u-V)u+ pcil—‘; = V - (Ohydro + Oela), in 1T\ P(%)
V.ou=0, in I\ P(t),
U = ugg(a(t), z)T + w(t) x x, on IP(t),

Q + (u-V)Q - S(Vu,Q) =T (KAQ + H(Q) ) + Fue(Q, Quc). in T\ P(1),
Q. u,Vp periodic inll
KaVQ = W(Qpref - Q) on ap(t)

Here Il = (—L, L)% is a periodic box, P(t) and 9P(t) are the domain occupied by the squirmer
and its surface in the moving frame. We assume that P(t) C II for all £ > 0. We will also
use the notation () := 1T\ P(¢) to denote the fluid region.

Equation (1) is a modified Navier-Stokes equation for the velocity w(x,t) which satisfies
the divergence-free condition (2). To this effect, we have onyaro = 7(Vu + (Vu)T) — pl to
be the standard isotropic stress tensor where p(x, t) is the pressure of the liquid crystal with
uniform density p and viscosity 7. The internal structure of the liquid crystal, i.e., local
preferred direction and order, affects the flow through an additional elastic stress o, given
by

(
(
(
(
(
(

Oela — K [(Q AQ - AQ Q) - VQQVQ]
~e[H@+ @+ pr-2Q+ ). )

Here K is the elastic constant and VQOVQ is a d X d matrix with the (k,[) component
> 02, Qii0x,Qij. The parameter & measures the ratio between tumbling and aligning that a
2%

shear flow exerts on the liquid crystal molecules. The matrix-valued function H = H(Q) is
defined as H(Q) = H(Q) + KAQ where H(Q) is

H(Q) = aQ — cQTx(Q?) = —Vo ({01 - SIQI*) = ~VoF(@Q). (®)

The scalar potential F (Q) is the polynomial part of the Landau-de Gennes free energy
whose coefficients a and ¢ depend on macroscopic parameters of the liquid crystal such as
temperature. The potential F (Q) attains minima at @ = 0, corresponding to the isotropic
state when the liquid crystal flows as a Newtonian fluid, and at tensor order parameters Q

a
with ¢ = ||Q| = \/j , corresponding to the equilibrium liquid crystalline states.
c

Boundary conditions (3) describes how the squirmer interacts with the flow w of the
liquid crystal. The orientation of the squrimer is described by a vector a(t) € S 1. We
also let 7 to be a tangent vector field to the surface of the squirmer which can be chosen
to be 7 := (a X v) X v where v is the inward normal vector on the squirmer’s surface
OP(t). A typical example of the slip velocity ug, is given by [25] (which is also used in the
computational work [38, 39])

Usq((t), T) = Vprop sin O(1 + B cos(f)), where § = cos™* {ﬁ} :
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Here 6 is the azimuthal angle on the squirmer, the parameter vy, is proportional to propul-
sion strength, and 3 quantifies the type of the squirmer (puller vs pusher; see [39] for details).
In this work, we consider usq(e(t), ) = sin(#)g(f) with a smooth function g(#). Note that
such usq vanishes at points of singularity of the vector field 7.

The instantaneous angular velocity of the squirmer is denoted by w(t). Then any material
point & on the squirmer surface P (t) will move with velocity w(t) x & in the moving frame
for which the system (1)-(6) is written. Then the boundary condition (3) states that there
is a given slip velocity us,(a(t), )T with the no-penetration condition:

[u—wxz]|xv = ugylalt),z)T xv,

[u—wxez]-v = 0.

The given non-zero slip velocity models self-propulsion of the squirmer. Such a condition was
originally derived for micro-organisms swimming with the help of small elastic appendages
(cilia) distributed on the surface [25].

The matrix-valued equation (4) describes the dynamics of Q(x,t). While the two first
terms in the left-hand side of (4) is the advection derivative, the third term S(Vu, Q) de-
scribes how the flow gradient Vu rotates and stretches the order-parameter @, and is given
by

aVummzwa?+A>QQ+g)+(Q+{D<ﬂ?—Aw—%<Q+thdva, (9)

1 1
where D = 3 [Vu + (Vu)T] and A = 3 [Vu — (Vu)T] are symmetric and anti-symmetric

parts of Vu, respectively. The right-hand side of (4) consists of the term leading to the
minimization of the total Landau-de Gennes energy

fuc(@ = [ FQ+ 51V e (10)
Q)

with the relaxation parameter I' > 0 and the term Fo(Q, Q) describing the aligning effect
with an external field. This term imposes the equilibrium condition for liquid crystal, that
is, in the absence of squirmer we have @ = Q.. We chose Q_ = ¢oo(€; ® €, — %) which
means that if the liquid crystal is not perturbed by a squirmer then its molecules are oriented
parallel to e, (the unit basis vector parallel to z-axis). In this work, we will use the example

of Forr (@, Q) from [21] for d = 2, given by

Foxt(Q7 Qoo> = _CQRN/ZTI[QQOORW/Q]a (11>

where ¢ > 0 is the aligning parameter and R,/ is the matrix of counterclockwise rotation
by 7/2. For d = 3, the formula for Fo(Q, Q..) is

Fext(Q> Qoo) = C (tr(Q2)Qoo - tr(QQoo)Q) (12)

We note that if one considers dynamics Q = Fxt(Q, Q) then the Euclidean norm of @ is
preserved, i.e. tr(Q?) = const, and Q(t) converges to a multiple of Q_ as t increases, so

b}



that Q - Q. = tr(QQ.,) > 0. One can also show that (12) is equivalent to (11) in the case
of two-dimensional @ and @, (with zero third row and column).

We impose anchoring boundary condition (6) on Q along the squirmer surface 9P (t) which
forces @ to be close to a given tensor Qpref = Qoo (Mpref @ Mprer — g) Here, n,f = v in the case
of homeotropic anchoring when the surface orients liquid crystal molecules perpendicular to
it or equivalently, parallel to the normal vector . On the other hand, n. = 7 in the case
of the planar anchoring when molecules are aligned with the tangential vector field 7. The

boundary condition (6) indeed penalizes the difference Q. — @ in the sense that if we drop

all terms in (4) except I’ (K AQ + ﬂ(Q)), then the solution @ to this truncated version of

(4) with boundary condition (6) minimizes the energy

Erac(Q) + W / Qe — QP dS,. (13)

OP(t)

The coefficient W in front of the penalization term in the energy functional (13) and also
the right-hand side of (6) measures the anchoring strength. Mathematically, depending on
if W — oo or 0, (6) reduces to Dirichlet or Neumann boundary condition for Q.

To determine the trajectory of the squirmer, that is, its velocity V'(¢) and angular velocity
w(t), we consider force and torque balances for the squirmer:

dv
aP(1)
t
%: /wxau+£d5m. (15)
aP(1)

Here 0 = Ohydro + Tela is the total stress whereas m and I(t) = {Iij}szl are the mass and
inertia tensor of the squirmer, defined via

m = pP|P(t)|>

Lty = pp / le; x ] - [e; x x] de.
P(t)

Here pp is the squirmer’s density. The additional torque £ comes from the internal structure
of the liquid crystal, namely, from that there is a preferred direction. It translates into the
non-zero asymmetric part of the stress tensor o. The formula for this additional torque is
[39]

d
£ = pv, where p = ()¢, and p;; = —2K Z €itkQumQmr.j- (16)
m,l,k=1
Here €, is the Levi-Civita symbol. Finally, we note that the orientation a(t) and the angular
velocity w are related via
a=wXa. (17)



Remark 2.1. Note that the term ¢ admits a simplified form:

d
/Ez de = 2K E / EilelQOk,jyj de
op

P I,m,k=1
d

= 2w Z / €itk Qum (Qpref,mk — Qi) dS4.
I,m,k=1" 9P
Here we used boundary conditions (6). Next, for any symmetric matrix B = (By)¢,_; we

have

Z €itke Bim B = 0. (18)
I,m,k

Indeed, from properties of the Levi-Civita symbol we have

g €tk Bim Bk = — E €tk Brom Bmi.-
l,m7k lvmvk

On the other hand, due to symmetry of B we have

Z €itk Bim Bmk = Z €itk Brm B

Lm,k lm,k

Thus, we have (18), from which we have the simplified form expression (simplified because
it is linear in @ as opposed to (16) which is quadratic in Q):

d
/&de = =2l Z /Eilelmeref,mdex~ (19)

oP Lmk=1g5p

Remark 2.2. We end the introduction of the time-dependent problem with the energy
identity satisfied by solutions of this problem. First, consider the energy functional:

2 I X
gy = ™V 1w ‘*’+3/|u+w2dw

2 2 2
o)
. K w
s [ FQ+GIvarde G [ 1@ - QP ds.. (20)
Q(t) oP(1)

Note that in the absence of the squirmer P(¢) = () (or when the squirmer is passive, i.e.,
usq = 0) and if the external field Fiy equals zero, then the system is dissipative, that is, the
energy is non-increasing:

%E(t):—l)(t)go, where D(t) ::n/\Vu\2dw+F/\H\2dzc. (21)
Q(t) Q(t)



On the other hand, when the system experiences the energy input from the self-propulsion
mechanism and external field Fi, the energy identity takes the following form:

d
Eé’(t) = —-D(t) + / oV - useT dSy + / H: F,dz. (22)
OP(t) Q)

Note that boundary integral | op() OV UsaT dS, contains nonlinear terms in @ which in turn
depends on the higher order regularity property of Q. This causes difficulty in the analysis of
the time-dependent problem. Hence in this paper, we will only present a short time existence
result and leave the long time behavior to future work.

2.2 Steady state PDE system

In this work, we are also interested in the steady translational motion of the squirmer
in the liquid crystal. In the context of the model (1)-(6) & (14)-(15), the steady motion is
described by the stationary solution of this system:

[\]
w

pt - Vu =V - (Ohydro + Tela), 0 11\ Py, (23)

Vow=0, in I\ Py, (24)

U = Usq (O, )T, on IPy, (25)

(u-V)Q - S(Vu,Q) =T (KAQ+H(Q)) + Fut(Q. Q). in I\ Py (26)
Q,u,Vp periodic inIl (27)

K0,Q = W(Q,ee — Q) on 9P (28)

Here, we assume that the squirmer moves with the velocity Vi; with the orientation angle oy,
both of which are independent of time. As equations (23)-(28) are written in the squirmer’s
frame, the domain Py occupied by the squirmer will then be stationary. Similar to the time
dependent case, we use 2 = II \ Py to denote the fluid region in the steady state case.

In this setting, the force and torque balances (14), (15) become

0 / v dS,, (29)

6Pst
0= /a:xau+£d5m. (30)
6Pst

The force balance (29), in view of periodic boundary conditions for w and Q together with
u v =0 on 0P (follows from (25)), leads to

0= /audSm:—/avdSm—l—p/u-Vudx:—/pudSm. (31)

OPst oIl Q oIl

Therefore, since Vp is periodic, as imposed in (27), it follows from (31) that p(x) is periodic
in II. Indeed, the fact that Vp is periodic implies that

p(x) =m - x + p*(x), (32)

8



where pP®(z) is a function which is periodic in IT and m € R?. Substitution of (32) into
(31) implies that m = 0 and p(x) = pP*(x). In this case, the force balance (29) is satisfied
regardless of squirmer’s velocity V.

d
We note that if an external force F® = {Fi(e)} is applied on the squirmer, then the
=1
force balance in stationary case becomes Z

/ ovdS, +F =0 (33)

OPst

which due to the same arguments as in derivation of (31) is equivalent to

— / prdS, + F® =0. (34)
oIl

Using (32) and the divergence theorem for the first term in the equation above we get
TI|m = F©, (35)
Therefore, an external force results in the pressure difference

F’i(E) = %[p]w L= ]-7 SaS) d> where [p]l = p|xi=L - p|xi=—L' (36)
In terms of the force balance, the periodic problem (23)-(28) is in contrast with the analogous
problem in the exterior domain IT = R%. Namely, for the latter, we need to impose additional
boundary conditions at x = co: © = —V i and Q = Q. Then we would have obtained a
Stokes-law-like force-velocity relation instead of the force-pressure relation (36).

In this work, the squirmer swims due to self-propulsion only, without an external force,
F© = 0. Thus, we impose periodicity for the pressure p. Taking this into account, we
define a weak solution of (23)-(28) as a couple (u,Q) € H} (;RY) x H2, (€;R™) such
that equations (24), (25) as well as the following two equalities hold for all ¢ € H_.(9;R)N
{1]op, =0 and V-4 = 0} and @ € H} (Q;R™?) and every integral term is finite :

n/Vu:Vt/)dx+p/(u-V)u~¢dx+/ada:Vt/)d:CzO. (37)

Q Q Q

r —K/VQ:V@dx+W/(mef—Q):‘Pde
Q OPst

—/((u-V)Q—S(Vu,,Q)):tI)d:):+/FeXt:(I)d:):zO. (39)

Q
Q



3 Main results

Here we present our three main results.

Our first main result is the existence of a weak solution of the steady state problem (23)-
(28). For the sake of clarity, we restrict our attention to the case when the shape parameter
¢ is 0. Under this simplification, we can represent o, as

Teta = ~KVQOVQ + 04, where 0,(Q,H) = QH - HQ = K(QAQ — AQQ)  (39)

and the term S given by (9) satisfies the following equality
S(Vu,Q): Q =Tr(5(Vu,Q)Q) = 0. (40)

We also impose
Fext(Q> Qoo) : Q =0. (41)
This condition holds for our specific choices of Fuy(Q, Q) given by (11) or (12).

Theorem 3.1. Suppose { = 0. There is a constant C > 0 independent of K, W, Q.1 Q,
N, P, Usq, I', oy such that if

1
n > 2Cp||usq||L00(Q) and " > 2C (\/—?HUSqHLm(Q) + ||usq||W1,oo(Q)) , (42)

then there is a weak solution (u, Q) € (H'(Q), H*(Q)) of (23)-(28).

Remark 3.1. The condition (42) holds when parameters n and I' are sufficiently large
enough, given all other parameters. The condition (42) also holds when wuy, is sufficiently
small which means that self-propulsion is small. In the limit usq, — 0 we recover existence of
steady state for a passive swimmer without a condition on parameters.

Remark 3.2. Theorem 3.1 states the existence of a weak solution of (23)-(28) for all ori-
entation angles a. As discussed in Section 4, the force balance (29) is satisfied since weak
solutions of (23)-(28) have periodic pressure p. To determine the steady orientation o, one

needs to consider additionally the torque balance (30) which is satisfied for o, = g (k is

an integer). We note that it follows from our numerical studies in [39] that a squirmer can
swim steadily only if it is oriented parallel, agy = k7, or perpendicularly, o, = (2k — 1), to
the vector e,, the liquid crystal orientation in the absence of the squirmer.

Our second main result is the local-in-time existence for the time dependent problem (1)-
(6) with (14) and (15). Here, we simplify the system by considering a spherical squirmer P(t)
in its own moving frame so that 2 and P are independent of time. Under this assumption,
the torque balance equation can be simplified into
dw
I—:/mxaVJrEdSm, (43)

dt
oP

where the rotating inertia I(t) = Il becomes also independent of time and isotropic.

10



Theorem 3.2. Suppose that (usq, Q,es) € H?*(OP)x H*(OP) and the initial data (ug, Q) €
H2(Q) x H3(Q), where H2(Q) = H*(Q)N{V -u = 0}. Then there exists T > 0 and a unique
solution (u, Q) to the system (1)-(6) with (14) and (43) such that

w € H'(0,T; HA(Q)) N H*(0,T; L2(Q)),
Qc HY(0,T; H*(Q)) N H*(0,T; H'(Q)).

Remark 3.3. We adapt techniques from [37] to prove this result in Section 5. The main idea
is to rewrite the problem in a suitable Banach space and then use the Banach’s fixed point
theorem. However, the difference from [37] is an additional difficulty coming from presence
of the squirmer which requires to consider inhomogeneous boundary conditions as well as
force and torque balances (14) and (43). The terms in balance equations involve boundary
integrals with derivatives in integrands. It led to that the spatial regularity of the solution
couple (u, Q) is higher than it is required by a weak solution of the PDE problem (1)-(6).

Our third main result is a formal homogenization limit in the system (23)-(28). This
result can be considered as the derivation of a simplified model describing motion of a colony
with periodically distributed squirmers (e.g., bacterial colony) in the liquid crystal.

Specifically, we introduce a small parameter ¢ := é, where L is the linear size of a
periodic box containing a single squirmer and d;, is the observation scale. Next, we consider
the problem (23)-(28) where all the parameters are written in physical dimensions. Details of
non-dimensionalization are relegated to Appendix C. After the non-dimensionalization, we
consider the steady state problem (23)-(28) in a periodic box II. = [—¢,&]?. The squirmer
occupies domain P. whose linear size is ~ €. Consider the domain U which is R? or a sub-
domain of R? composed of many periodic boxes II. such that the linear size of U is of the
order 1 with respect to e. Then (23)-(28) becomes (see Appendix C for details):

AAQ +aQ — ¢QTr(Q%) + S(Vit, Q) — - VQ + ( Foy = G() in U,

0,Q = W(Qyes — Q) on IP.,

ep(t- V) — efAu + Vp = 2,V - (VQOVQ + QAQ — AQQ) + F(x) in €,
U = €lsqT on OP..

N
ot

(
(
(
(

S
\]

Here Q. = II. \ P- and V - @ = 0. Here for simplicity, we assume the corresponding force
and torque balance (29) and (30) are automatically satisfied. This physically means that
the bacterial colony has reached the steady state when every squirmer swims along a stable
direction. G and F are given external fields, varying spatially at the scale 1 (independent of
e). Parameters v, a, ¢, ¢, W, p, 1, k are explained in Appendix C.

Our contribution in this regard is the identification of the homogenized limit (u®, Q™)
of (e7'w, Q). We relegate the presentation of the limiting equations as well as their derivation
via formal two-scale asymptotic expansions to Section 6. We comment here that Q" solves
an algebraic equation (187), whereas u® admits the representation (197) similar to that in
the Darcy’s law.

11



4 Existence of steady state — proof of Theorem 3.1

In this section, we address solvability of steady state PDE system (23)-(28). To this end,
we first show in Subsection 4.1 that if a solution of the system (23)-(28) exists (with £ = 0),
then it satisfies a maximum principle for ||@Q||. Next, in Subsections 4.2, 4.3, 4.4, and 4.5 we
prove the existence for the system (23)-(28) where nonlinearities H and Fl.y are truncated
for large values of Q. Finally, combination of the maximum principle and solvability of the
truncated system implies the existence of a solution to the original system (23)-(28).

4.1 L*-bound on @

Here we adapt the strategy from [45]. First, we introduce the number ¢, > 0 such that
TH(Q) : Q <0 for all |Q| > q.. (48)

Such a finite number g, exists since Fi(Q, Q) is a quadratic polynomial of Q whereas H
is the third order polynomial with a definite negative sign in front the highest power.

Lemma 4.1. Let (u, Q) be a solution of (23)-(28). Then ||Q||L~ < «, where

o = max {\mef|, q*} . (49)

Proof. Recall the equation for Q:

(u-V)Q — S(Vu,Q) — KTAQ —TH(Q) — Furr(Q. Q) = 0. (50)

By multiplying the above by @, taking the trace of the resulting expression and using (40)
and (41), we get

I'K

Su-V(QP) - - (AIQP) ~2VQP) - TH(Q) : @ =0.

As |[VQ|? is non-negative, we obtain the inequality:
u-V(QP) —-TKA(Q]) —2rH(Q) : Q <0. (51)
Now introduce ¥(Q) := (|Q]* — a?), (« is from (49)). Note that

Y(Q)D(IQF) = ¥(Q) D(IQI* — o*) = ¥(Q) DY (Q),

where D is either A or V.
Next, we multiply (51) by ¢(Q) and integrate over II \ Py. Then, we have

1 N(Q)
“w?ds, —TK | Z200(Q) ds,
26{ Bl 81/

ITE|VH(Q) |2 — 2T / (HQ): Qu(@)de <0.  (52)

Q
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The first term in the left hand side of the above inequality vanishes due to (25) while the
second term is negative:

W (Q) 0Q 2 9
K ds, = 2K — — ds,
[ 20D (@)as G aer -t
= 2W (Quet — Q) : Q)(1QI* — a®) ds,y
oP{|Q|>a}
= 2W (Quer - Q) — 1QP)(IQI* — ®) ds,
oP{|Q[>a}
< 44 (‘Qpref‘2 - |Q|2)(‘Q‘2 - OA2) de
oPN{|Q|>a}
< 0.

Hence,
KIVo(@Ii <2 [ (8Q): @) v(Q)ds.
Q
Next, by (48), we have

KIVe@lie < 2 [ (H@:Q)v@dr <0

Q

so that [V¢(@Q)]|72) = 0. The Lemma is thus proved. O

4.2 Galerkin approximation for pair (u, H)

We introduce here Galerkin approximations for the system (23)-(28). For each m € N,
we define:

Uy, = Uos + Uy = Uos + 3 Uk Wp and Hyy = i Py (53)
k=1 k=1

Note that the domain II is a bounded periodic box and both Laplacian and Stokes operators

have a discrete spectrum implying existence of bases:

{W | Uylop, =0, V- Uy, =0, Uyis Il-periodic },- , and {®@y | Py is II-periodic };-,  (54)

in L2(;RY) and L?*(Q; R™*4), respectively. (Recall that = I1\ Py and L2 means L2-space
with divergence-free condition.)

The function u.s above is an offset function used to to take care of non-zero boundary
conditions for w. It solves Stokes equation:

NAUL + Vpes = 0, in (55)
V- uw =0, in Q, (56)
Uos = Usq(Qst, )T on 0Py, (57)
Ues, Pos periodic in I1. (58)
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Anticipating that u = u.s + @, from (57) and (25), we have
=0 on OP. (59)

To continue, for an appropriately large constant M > 0, we introduce a truncated poten-
tial Fur > 0 as follows:

F(Q). for Q]| < M
L T e B P e A E T
lQl=M Q=M
The functional derivative of Fy is given by
ﬂM(Q) = _vQﬁM = H(ng Q= ar where vy = ﬁ : (61)
o 11> T .

We have the following bound on H,,(Q):
| H01(@) |z < Tar, - where Ty = max{|| Hl|z=(z o)) var3- (62)

We now define the function Q,,,, corresponding to the Galerkin approximation H,, as the
solution to the following system:

KAQ, +H,(Q,)=H,, inQ
KaVQm = W(Qpref - Qm) on 8P5t7 (63>
Q,,, periodic in 1l

Below, we will need a priori estimates for the solution to the problem (63), formulated in
the following lemma. Its proof is given in Appendix A.

Lemma 4.2. Let H,, € L*(Q). Then there exists a solution Q,, for (63). Moreover, there
exists a constant C' > 0 such that

VEIIVQ, 2@ + 1@l 2@ + VW@, 20p.0)
< C (1Hnllz0 + VWV Quuelizom +1)  (64)

1Qlr2(0) < C (MIHullr20) + 72| Qpretllcr + 73T n) (65)
where
W+ K and W+ K
M =73 = W Y2 = K

With the above, then the Galerkin approximations (u,,, H,,) are defined so as to satisfy
for each k =1, ..., m, the following conditions: follows:

n/Vﬂm:V\Ifkdx+n/Vuos:V\I!kdx+p/(um-V)um~\Ifkdx
Q Q Q

_ / (KVQ, 6VQ, — 0u(Q,.. H,)) : Vlpdz =0, (66)
Q
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rf H,: .de— [ (um-V)Q,, — S(Vun,,Q,,)) : Ppdx
e

"—/ Foxt,M : (I)k dx = 0.
Q

Here, Fyx ar is defined as a continuous function such that:

Fexta ||Fext|| SMa

Fext,M = F .
M ex ’
HFextH

| Fext|| > M.
Next, we will prove the existence and apriori estimates for (u,,, H,,).

4.3 Energy estimate for Galerkin approximations

Lemma 4.3. Provided that n and I" are large enough, there exists a constant C' independent

of m such that
||V’llm”%2(g) + ||Hm||2L2(Q) <C.

(69)

Proof. Using test function u,, and H,, instead of V), and ®; in (66)-(67) and taking the sum

of two equalities, we obtain the following energy equality:

n/|vam|2dx+r/|Hm|2dx
Q Q

:—p/(um-V)um-'&mdx—n/VuoszV'&mdx
Q Q

- / (04(Q- Hyy) - Vi, + S(Vi,, Q,,) : Hy,) da
Q

+K / (VQ, 0VQ,, : Vi, + (i - V)Q,, : AQ,) dx
Q

+K / (Uos - V)Q,, : AQ,, dz + / (U - V)Q,, : Hy(Q,,) dz

Q

Q
—/S(VUOS,Qm) :H,,dv — /FCXt’M :H,,dz.
Q

Q

(70)

Next, we estimate each integral. Below, C' denotes a generic constant independent of
K, W, Qet, M5 Py Uos, I', m which may change from line to line whereas C* is a generic constant

which is independent of m only and may also change from line to line.
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1. We use the representation u,, = wqs + U, to write
—p/(um N Uy, - Uy dz = —p/(um V) Uy, - Uy, dz — p/(um V) Ues - Uy dz. (71)
Q Q Q
Next, using integration by parts, the non-penetration condition u,, - ¥ = 0 on 9P and the
divergence-free condition V - u,, = 0, we get:
A 1 R
(U, - V) Uy, - Uy dx = 3 Uy, - V|y,|"dz = 0. (72)
Q Q

To estimate the second integral in the right-hand side of (71) we integrate by parts and use
the non-penetration condition again on 0Py to we get:

—p/(um -V)Ups - U dz = ,o/um -V, uys d. (73)

Q Q

Finally, we use the Poincaré estimate for w,, (one can also use (199) with w,, instead of Q)
as well as that the offset function u.s is a smooth function with bounded derivatives:

—p/('u,m V), -y de = p/'&m -V, ues dr + p/uos - VU, U dx
Q Q Q

ngwmmmam@+ma%m
Q

< Collunlime | [ IVanfde |+ (74)
Q

2. Here we bound the second integral in the right-hand side of (70) by the Cauchy-Schwarz
inequality:

—n/VuOS :Va, dz < Z/|V'&m|2dx—l—0*. (75)
0 0

3. We have the equality o,(A, B) : D+ S(D, A) : B = 0 which holds for all matrices A, B,
and D such that A and B are symmetric:

/ (0a(Q,,, Hy) : Vit + S(Vity, Q,,) : Hy,) dz = 0. (76)
Q

4. Note that the integral in the 4th line of (70) vanishes. Indeed, using integration by parts,
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V- a,, =0 and (59), we get

/VQmQVQm : Va,, dx

Q
1
= — [ (@, -V)|VQ,,*dz — [ (@, - V)Q,, : AQ,,dz + [ [(VQ,,OVQ,,) V] iy, dS,
./ / J
1 1
= —— [ (U -)|VQ,, [*dS, + = [ (V- 10,)|VQ,, [*dz — [ (@, - V)Q,, : AQ,, dx
./ :/ /
= — /(’&m -V)Q,, : AQ,, dx. (77)
Q

5. We use the Cauchy-Schwarz inequality, (59), and the a priori bound (64) to estimate the
5th line of (70):

K / (tes - V)@, - AQ,, dr + / (- V)Q,, < Ly (Q,,) do
Q

Q

:/(UOS.V)Qm : Hmdx+/(am-v)fM(Qm) dz

Q Q
\/7 2 1 2 ~ T
< Clttos[ oo ) (VE V@2 () + \/—?HHmHLz(m) + [ (Gn - v)Fu(Q,) dS,
OPst
1
< Ol tos | oo () (VEIVQ, 120 + \/—EHHmH%z(Q))
C "
< —KHUOSHL‘X’(Q)HHMH%Q(Q) +C". (78)

6. We use again the a priori bound (64) and the Cauchy-Schwarz inequality to estimate the
first term in the 6th line of (70):

/QS(Vuos,Qm):Hmdw < Olltoslwre(@) (1Qumll72(@) + I Hul72(0))
< C||UOSHW1’°°(Q)HHmH%Q(Q)"'_C*- (79>

7. Finally, the last term in (70) is estimated as follows
| Fosar  Hode < [l +C° (30)
Collect (74)-(80) and substitute them in (70):
(%~ Coltunlini) il
# (5 - olallimi — Cllualssg ) [ <
Under the restrictions (42), the inequality (69) holds proving the Lemma. O
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4.4 Existence of Galerkin approximations

We will use the following result [46, Lemma IX.3.1, p. 597]:
Theorem 4.1. Let P : RP — RP be a continuous mapping such that for some R > 0:
PE)-£€>0 forall & € R? with |€] = R. (81)
Then there exists &, € RP with |&,| < R such that P(&,) = 0.
Next, we introduce the mapping P for our problem. Given m > 1, let
€ = (Ui, o, U Ry - oy R ) € RZ™

and the kth component mapping P : R*™ — R*™ (p = 2m) is the left-hand side of (66) for
1 < k < m and the left-hand side of (67) for m + 1 < k < 2m. We obtain that

'P(ﬁ) ’ € = 77||v'£”7n||%2(9) + F||I—Im||2L2(Q) - R(uma Hm)>

where R(w,, Hy;,,) is the right-hand side of (70). In the proof of Lemma 4.3 we showed that
Ui N
R (utn, Ho)| < (2 + Cpllten]l o=@ ) 30

r c .
+ <Z Tl + C||uos||W1v°°m>) L |72 ) + €.

Therefore, using this inequality we obtain the following:

Lemma 4.4. Assume n and " are large enough so Lemma 4.3 holds. Then there exists
constants C, Cy > 0 independent of m such that

P(€) € > Ci (V220 + [Hnl3z) ) = Co

The condition (81) is satisfied for large R > 0 and thus we have the following existence
result for our Galerkin approximations:

Theorem 4.2. Assume n and I are the same as in Lemma 4.3. Then there exists a solution
(U, Hyy,) of (66)-(67). Moreover, if Q,, is defined via (63), then the solution satisfies

7 0) + 11Qun () + Fr (@) + |Qpret = QuallZ2(op,y + HimllZz) < C- (82)

4.5 Passing to limit m — oo
From (82) we get that there is a subsequence of {(u,,, H,,)} such that
@, — @in HY(Q)
H, — Hin L*Q)
Q. — QinH*Q). (

Next, we will use the following auxiliary lemma [47, Lemma 1.3]:

(02¢]
ot
~—

18



Lemma 4.5. Let O be a bounded domain. Let p,,(x) and p(x) be such functions from L1(O),
1 < g < o0, such that
||pmHLq(o) < C and p,, = p a.e. in O. (86)

Then p, — p in L1(O).
From (82) and Lemma 4.5 we get
Hy(Q,,) = Hu(Q) in L*(9). (87)

Using (84), (85), and (87) as well as the trace theorem, we can pass to the limits m — oo in
the weak formulation of (63):

K [VQ -VGdz+W [ (Qui—Q):GdS,+ [ Hy(Q):Gdz= [H:Gdx ()
/ / / /

apst

for all smooth test functions G.

Next, we pass to the limit in (66)-(67) using (83), (85), H*(Q) — H'(Q) — L*(Q), and
the property that product of strongly and weakly converging sequences weakly converges to
the product of corresponding limits. We get (u = uos + 0):

n/V'&:V\Ilkdx—l-n/VuOS:V\I/kdx+p/(u-V)u~\I/kd:c
Q Q Q

—l—/aa(Q,H) : VU, dr = K/VQ@VQ :VU,dz. (89)
0 Q

' H:®pdze — | (u-V)Q —S(Vu,Q)) : pdz+ | Feoenr: Prdz=0. (90)
- | /

Q
Q

Finally, we can drop subscript M in ﬂM(Q) and Feum(Q, Qo) due to the L®-a-priori
bound on solution of (23)-(28) in Lemma 4.1.

5 Well-posedness of time dependent problem — Proof
of Theorem 3.2

In this Section, we prove the local-in-time existence of the unique solution with additional
regularity by using Banach fixed point theorem. In Section 5.1, we will write the time
dependent problem in operator form. In Section 5.2 and 5.3, we will address the Lipshitz
properties of the non-linear part and the solvability of the linear part of PDE system. In
Section 5.3, we will prove the local-in-time existence and uniqueness by Banach fixed point
theorem.
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5.1 Operators and function spaces

We first define the projection operator P, : H~'(Q) — H;'(Q) onto the space of
divergence-free functions so that if we apply P, to (1), the pressure p is eliminated. Specifi-
cally, the equation (1) becomes

Oru+ Po(V - (u @ u)) + % — p P (Au) = p7 Po(V - 00a(Q))- (91)

Now we consider the problem consisting of (91), (2)-(6) with force and torque balances
(14), (43). The tuple of unknowns is U = (u, Q,w, V)*. We rewrite the problem as

LU = NU), (92)

where we define linear operator £ and non-linear operator N as

u u p~'nPs(Au)
c|®Q| 2|9 TEAQ (93)
w w 0
Vv Vv 0
and
u PP (V- (0n(Q) — pu e w) -
N Q2| -u - VQ+THQ) + S$(Vu, Q) + Fur(@.Q.) | . (94)
w %fapwxaijEdS
4 %f ovdS,

To handle the nonlinear and inhomogeneous boundary conditions, we represent unknown
functions w and @Q as
U= U+ Uy, and Q = Q), + Q..

The offset function u. is given by

—NAUys + Vpos = 0 in 2 (95)
Uos = Usq((t), )T + w(t) X & on IP (96)
s periodic in 11 (97)

The offset function Q. is defined such that

Kal/Qos = W(Qpref - Qos) on 9P (98)
Q.. periodic in TI (99)

Specifically, we define

xTr

Qos(w) = Qpref <|—

Edl

)¢wmm zell\ P (100)

Here ¢(||z]|) > 0 is a smooth function such that ¢ (||z||) = 1 for & € (0P + B,,(0)) NII\ P
with 7, = dist(9ll,0P)/4, and ¢(||z||) = 0 when ||x| > 2r,. Boundary condition (98)
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is satisfied since 0,Q.,; = 9)z|Qus = 0 and Q. |sp = Q- The offset function Q,, can
be extended periodically so it satisfies (99) since Q.. = 0 on OII. We point out that Q.
is the solution of the Poisson problem with boundary conditions (98)-(99) and the partial

differential equation —AQ , = f with f = —A (mef (Hi—”) w(HmH)) Note that the offset

function u,s depends on unknown orientation angle a(t) and angular velocity w(t) whereas
Q.. does not. Therefore, u,s changes in time t while @ is independent of time t.

With the above, the functions w;, and @, satisfy homogeneous boundary conditions.
Their equations in 2 are similar to the original (91) and (4). More precisely, these equations
with force and torque balances in the form of (92) look as follows:

uy, Uy Up, + U Uos

L Qh =7 Qh —. N Qh + Qos - Qos (101)
w w w 0
\'4 \'4 \'4 0

To describe the domains of the operator £, we introduce the following Banach spaces:

(102)

X, = {u € H2(0.T: L2(9) 0 H'(0,T: HE (%) \ u =0 on 5P, }

u periodic in II

Xg = {Q € H*(0,T; H'(Q))n HY(0,T; H3(Q)) %ger:io;i/ﬁ 1%“ P, } (103)

with corresponding norms

1
2
ulx, = (’|u’|§{2(07T;L?,(Q)) + HuH?{l(O,T;H&J(Q)) + Hu}t:()H?{g’J(Q) + Hﬁtu‘tZOHfH&J(Q))

o

2

1Qllxg = (I1QUr2(0.r,111 ) + QU 0 1113 + 1@ Wiy + 1R,y 2y
Introduce also
Yu=H'0,T;L3(Q), Yo=HY0,T;H'(Q).

Then X = X, x Xg x H*(0,T) x H*(0,T) and Y =Y, x Yo x H'(0,T) x H'(0,T) are the
domain and the range of the operator £. The corresponding norms are:
1
l(w, @ w, V)lx = (lulx, +1Ql%, + lwlizor + 1VIiemn)?
1
I(w, Q. w, V)ly = (llully, + QI + lwlinor + 1V IEom)?-

5.2 Lipschitz property of the non-linear part

In this section we show the Lipschitz property of the non-linear operator J with respect to
the norms of the spaces X and Y. Below, we will use short notations for spaces of functions
depending on both ¢ and @, for example, H*(0,T; L*(2)) will be denoted by H*L?. We start
with the following estimates with constants vanishing as T — 0.
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Proposition 5.1. There exists a constant C(T') such that C(T) — 0 as T'— 0 and each of
inequalities (i)-(iv) below hold for all f and g as long as the left-hand side of the inequality
is finite:

(@) Ml pepoe < CODSf a2, (104)
(i) Nl pee < CE@)VNS Mgz + 11 | 212) (105)
(@) Nfglaa < CO)W grmz + 1 lg2r2) - (9llgrme + 9l g2 r2), (106)
(iv) 1f gl < CYUS N ggrs + W ) - 119l o - (107)

Proof. In the proof, below C' is independent from 7" unless the dependence is indicated via
the following notation C(7"). All constants C'(T") vanish as " — 0. We will use the following
inequalities in the proof

[/l @) < Cllfllm2(@) (General Sobolev Inequality, [48]) (108)
1F =y < CIEN L o 1F i 7y (Agmon’s inequality in 1D) (109)
1F |z < CIEN oy 1F 132y (Agmon’s inequality in 2D and 3D) (110)
1Al 20y < T2 Fllo o,y (111)
[0,y < Cllf o) (112)
I fallz@) < C ([ lm@llglee@ + 1= llgllm@) (113)
1 fallm@) < C ([ fllz@llgllwie@) + 1w llgll2@) (114)
Proof of (i):
[fllpeoroe <A fllpoopz (use (108))
1 1
< AN Zepre [N 5 gre (use (109))
< OTY ||l oo 1z g (use (111))
< OTY |l (use (112)) (115)
Proof of (ii):

1 e < CUFpagoe + 10 f1l opoe)
< O || fll gz + 10 F |1 ora - 18 f17552) (use (108), (111), and (110))
< O || Fll gz + TV NS 2 - 100 f1755e) (use (111))

< CTY2 | fllggr g + TR0 a2 - 10 FI13y2) (use (112))
C(
C(

< C@ | Fllgnge + TV Fllgaze - 50 )
SO gz + 1 gzge)- (116)
Proof of (iii):
I fallaia < | fllazeellglloem + gllarreel| fll oo m

A arllgllzeres + gl am [l oo oo (use (113)) (117)
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Next, estimate each term in the right-hand side of (117):

[z oo gl e < CDYANS N iz + 1 g22) - g1l mren (use (116) and (112)) - (118)
gllerzoe | Fll oo < CTYNGN iz + N9l r2p2) - [ s (use (116) and (112)) - (119)
Il llgllzoe e < CO) Sl |9l me (use (115)) (120)
gl a1 f ez < C(D) gl o 1 f |2 (use (115)). (121)
Combining (117)-(121), we obtain (106).
Proof of (iv):
[f gl < [ fllmwreellgllzoers + | f Lo gl Lo
+ 1l eewrellgll e + [ llzoe oo llgll e (use (114)) (122)
Next, estimate each term in the right-hand side of (122):
[l rwrcellgllzoere < YWl grps + 1 Flzi) - [19llmizz (use (116) and (112)) - (123)
1Az oo gl oo < CCDYAF Nz + 1 g2 2) - gl (use (116) and (112)) - (124)
[ fllzeewreellgllze < COfllmrms - gllarze (use (115)) (125)
[fl[zoe o llgllam < CO)[fllaraz - gl aran (use (115)). (126)
Combining (122)-(126), we obtain (107).
U
Remark 5.1. It is useful to rewrite (107) with the norm of space Xg:
gl < CD) [ fllxg gl o - (127)

Lemma 5.1. For all R > 0, there exists a time T > 0 such that for all (ug), ng), w® V) e
BX(O? R) = {(uha Qh>wa V) S X“|(uh> Qhaw> V)HX < R}; =12 then
17 (i, Q) V) = 7 (e, @, w®, V)|
< C(T, R)ll(wy”, @1, wV, V) — (u?, Q7w V)| (128)

Moreover, the constant coefficient C(T, R) — 0 when T"— 0.

Proof.

STEP 1. We first establish the Lipschitz continuity of w.s, the solution of (95),(96),(97),
with respect to a and w. For given a®(t) and w(t), i = 1,2, such that aM(0) = a?(0),
one has

—nA (ul) —ul?) +V (pl) - p?) =0
) — ) = (s (@ (1), 2) — g (1), 2)) 7 + (@D (1) — wO(0)) x & on OP,

os

uV)

os )

u?) periodic in TI.
Due to the stability of the Stokes operator (similar to [46, Theorem IV.6.1])

2tos |20 < Cn7" (llutsq | 2oy + | (2)]) (129)
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and smooth dependence of ug, in a(t), we have

[ul) = uD ) m2re + [ul) — wP||
< Cn~ (Ha(l) _ O¢(2)||H2(07T) + ||w(1) _ w(2)HH2(0,T)) . (130)
lul) = ul|[mimz < O (@ = a®mer) + [0 =P |mern) . (131)
Since o (t) = a®(0) + [ w? (1) x @@ (7)dr (see (17)) and [« (t)| = 1, i = 1,2 as well as
T T
[1h@)>dt < T2 [ |h(0,T))?dt for all h € H*(0,T), one gets
0 0

lat — a® |27y < Tl — 0@ |27, (132)
lw® = W mr) < O = 0@ |l201). (133)
Then (130) and (131) become
[ul) = ulmere + [lul) — w2 mme < O 1+ Tl = w®l200), (134)
lul) = u@mme < O w® = | g2g0.m). (135)

Applying (129) to dFu® with & = 0,1,2 and using the definition of time-independent
Q. (100), there is a C' > 0 depending on 2 and ¢ such that

w2 m2re + [|wl || e < O (|| 2o + 1), i=1,2. (136)
HQ05HH2H1 + ||Qos||H1H3 S C. (137)

(Though Q. is independent of time, here we use its H2H' and H'H? norms for the clarity
of arguments below.) We will also need the following inequality:

1Q s +1Q s < C+ Ry i =1,2 (138)
Indeed,

1Q s+ 1Q o < 1@ — Quullsrs + Q) — Qoo
+HQOSHH1H3 + ||Qos||H2H1

<N1QYIxq + 11Qusll 5 + |Qus |21
< C+ R.

STEP 2. Here we establish the following inequality:
0" PV - [00a(@Y) = 0a(@D)] llnzz < C(DIQY — QP 1xe (139)

To this end, we first note that since P,V-: H'(Q) — L2(Q) is a bounded operator [49,
Lemma I1.2.5.2], the inequality (139) follows from

1060 (QW) = 0a( Q@)1 < C(T)|QY — Q| x4- (140)
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We decompose 0., into five parts oo, = ok + 0, + 0} + 0% + 03, where

ox = —KVQovaQ

K(QAQ — AQQ)
0; = —%H
- ~¢[HQ + QH] + Z1x(QH)

o2
o) = 2¢ [QTr(QH)].
3

Here o}, 02,02 are the linear, bilinear and trilinear part of o, := ol + 02 + 03, respectively.

S S

Part 1: og(Q).
(@) = 1c(Q2) [ isn = (KVQWEVQY — KVQPEVQ®) 11
< CK (IvQUev(QY = Q@) [mm + [V(QY - @®)oVQ® i)
= CK (IvQUev(@Q = @) lmm + V(Q) - QF)oVQ? i ) . (141)
Using (106), (137) and that (u’, Q' w® V?) € By (0, R), we get
CK (IvQUeV(QY = @)llwm + V(@) — @)oVQ® 11 )
<K (IV@L = Q) ue + 19(QS = @)z
(I9QW s + 19QW 5212 ) + (IVQ® iz + 19QP o2 )|

< C(MER+1QS - QP lx,
om)QY - QP x,. (142)

We note that the generic constant C'(T") may change from line to line and may depend on,
for example, K, R, C' from (137) and T (but recall that notation C(7T") also means that
C(T) — 0 as T — 0). We sometimes do not merge a parameter, as for example, K in the
second line of the above chain of inequalities, to indicate what we used to obtain a bound.

Part 2: 0,(Q)).

10.(QW) — 00 (QP)|| 1
< K|QPAQYW — QPAQY | g + K||AQMQYW — AQP QWP || 1pn. (143)

Applying (107) for the first term in the right hand side of (143), one can get
IRWAQY — Q¥ AQ@)HHlHl

<@} - @)AQ;, +QOS>||H1H1+||< Y+ Qo)A@ — Q)i
< <>||Qh Dllxg - 1AQ) +QOS>||H1H1
+C(D)QY + Qusllxo 1A@QY — Q) a1
<CMR+DQY — QP llx,- (144)
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Applying same arguments for the second term in the right-hand side of (143), one can obtain

04(@) = 0, (@) s < KO(T, QS - QI xg.
Part 3: o1(Q).
02(Q) — aH (@) s = 2+ [FHQ) — H(Q®) s
20 - QW
QU TH(@)) - Q@ (@) e (145

The first two terms in the right—hand side of (145) are bounded as follows:
2§K 2K 2¢ |a|

26K
< EX)aQ — Qi +
e

1AQYW = AQP | i + ==11QY = QP < CIQW — Q| xq.

Next, we bound the third (cubic) term in the right-hand side of (145). Note
1QWT((QM)*) = QP Tr((Q®)) | mm: < (@Y — Q@) TH(@QWQW)| 1
+1QPT((QY - @®)QW) |
+HRQPTQZ(@QY - @mm  (146)

We show how to bound the first term in the right-hand side of (146). Other terms are
bounded in the same way. Apply (127) twice to obtain

Q™ — @) Tr(QWQM)| 111
Q) — Q2 NxoIRMNIQ™M] |
QY = @ lxg (191 1xg + 1Qusllzzms ) (1QK sz + |1 Qesllir )
<O(M)R+12QY — QP lxq- (147)
Thus, we have
IHQW) — H(Q®) | mm < C(T,R)QY — QP | xq» (148)
which, in view of (145), implies
loH(Q") — o1 (@) |mm < C(T,R)Q} — Q| xq- (149)
Part 4: 0?(Q). This is part, we will need the following bound
IHQ)|mm < C(T,R), i=12. (150)
which can be obtained by applying same arguments as in (145)-(147) for i = 1,2

Q)| s1ms < C(IIAQ“ s +1Q s + 1QVT(QY)?) )
CT)1Q) Ixq + Q1 1%, + 1) < C(T, R).
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Now, we can estimate,
102(QM) = a2(Q@)|mmn < €[QVH(QY) — QPH(Q™)||wia
+EHQM)QY — H(QP)QP ||
2¢
+ 2 ITHQUHQY) ~ QUHQY))
< CIQVH(QYW) - QPH(Q™) |- (151)
Next, we use the triangle inequality, (127), (148), and (150):
1IQVH(QY) — QPH(Q®)||mim
<OMNQY ~ @3 lxo IH@Q™M) i
+ CMNQE + Quallxg H(Q™) —H(Q™) 111
< ORI - Qg
Therefore,
172(@™) = 2@l < C(T.R)IQL — Q) Ilxe- (152)
Part 5: 03(Q).
1o3(Q@W) = a2 @)l < 26[]QVTHQVH(QM)) — QP Tr(QPH(QW))| 1
< @Y - Q) T(QVH(QM))| i
+C1QPT((QY — QP)H(QW)) || mian
+ QP T QP H(QW) —H(Q™)) | gia- (153)
Next, applying the same arguments as in (147) with bounds (148) and (150) we get
[72Q™) = @)l < C(T. R)IQL — Q) lxe- (154)
STEP 3. Here we establish the following inequality:
15%(Va®, QW) — S*(Vu®, QD) | 1
< (1) (195" = @ lxg + lluf” = ufllx, + |0 = Vllim)) - (155)

To this end, similar to how we treated o, in STEP 2, we split S(Vu, Q) into three parts:

s(Vu@ =0+ (@) + (@) er-a -2 (@) uQv

=St 4 8% + 53, (156)
where
2
SYHVu) = gD
2€

$(Vu. Q) = £(DQ + QD) + (AQ - QA) - Z(QVu)
S%(Vu, Q) = ~2£Qtr(QVu)
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are correspondingly the linear, bilinear and trilinear part of S. First note that using (134),
(135) and (136), one gets

[u® — u® | ipzapere < Jlul) —ui?|lx, + [ — w@||ggeamere
<Ju? = ul | xe + 7 A+ D)0V = 0P |20 (157)
and

| pzemzre <l lx, + 6l 2ome e

< Nl xe + Cr (w0 20y + 1), 0= 1,2. (158)

Part 1: SYV ’l)l, ,Q

)-
Since D( 1(Vu + (Vu)'), using (135) one gets

ID(u®) = DuD) || gigr < [[u® — u® |12
<y — w2 + [[ul) — u®]| e

< i = w? llx, + (T e = w0 a2 0m)- (159)
Then
18" (Tu®, QW) — S'(Vu®, Q)|
< o) (195" = QP llxg + lluf = ufllx, + o = @il ) . (160)

Part 2: S%*(Vu, Q).

152(Vu, QW) — S*(Vu®, Q)| mm < C|Vu QW — Vu® QY| g1
< C||(Vu® — v (2))Q(1)||H1H1+C’]|Vu(2)(Q(l)—Q(z))HHlHl (161)

Apply (107), (138) and (157) to obtain
1(Va® = Vu)QW | gip
< o) Vu® = Vu s (1QV 1w + QY o)
< O u® = u® |1 (||Q<1>1|H1H3 +1QV 2 )
<om)R+1) (Juf - u?lx, + |0 = @)

Applying the similar arguments to the second term in the right-hand side of (161), we
obtain

1S3 (Vu®, QW) — 53(Vu, Q)|
1 2 1 2
<o) (105" = @ lxg + lluf” = ufllx, + |0 = @@llior)) - (162)
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Part 3: S*(Vu, Q).
15°(Vul, QW) — S*(Vu®, Q®)|| g1
< 2¢]|QWtr (Vuu)Q(l)) —QWr (vu@)Q@)) [
<2 (@M - Q®) tr (VuQW) |y
+2€[Qtr (V (u = u®) Q) |y
+261Qtr (Vu® (QV = Q%)) s (163)

Using same arguments as in (147) and taking into account (136) and (138), we obtain

I (Qu) _ Q(2>> tr (Vua)Q(l)) [
<C(MRQY — Q| mmsamzm |QM || i mrsnmz i || VM || g1 pn
<R+ 1)IQY — QP xq-

Applying similar arguments for the other two terms in the right-hand side of (163), we
obtain

||53(Vu(1), Q(l)) _ S?’(VU(Q), Q(2)) [y
< O R) (1Q) = QP lxg + Il = u?llx. + 0 = @]l moiy ) - (164)

STEP 4. Finally, we show the Lipschitz properties of all the remaining terms in J.

Part 1: P,(V - (u®u)).
We again use the fact that P,V-: H(Q) — L2(Q) is a bounded operator:

1P (V- (u @ ul))) = Po(V - (u® @ ul®) 112
~ ® ) @ ut —u® @ ) ). (165

We apply the same arguments in Part 1 of STEP 2, that is, apply (106), along with (157)
and (158), to get:

||u(1) ® (u(l) _ u(2))||H1H1 + ||(u(1) _ u(2)) ® u? [P
< O(T) (Ju® = u® e + [u® = u®lper2)
X [(luM [ maz + [lu | g22) + (0P |grmz + [0 g22)]
< () (I = w21, + € (lw® = 0@ 20m) )
< [ (It lx + Ol i) + 1) + (I x. + CUlw @l + 1) |

<om@+1) (I, @, w, Vi) - (@, P, w®, V)|x).
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Thus, we obtained
12,(V - (u!V @ u)) = P (V- (u? @ u(z)))HHlLZ
<o, m) (I, @, o, V) - @2, @, wl?, V) ).

Part 2: u-VQ.

| - vW —u®.vQ®@ ||H1H1
< (! = u®) - V@ mm + [[u® - V(Q™ — Q®)||r(166)

Apply the same arguments as in Part 1 of STEP 2, that is, apply (106), :
[u - V(@QW — Q)| mu + [|(u) — u®) - VQP|| 1
< () (Ju® e+ [ulleez) (IVQE = VQP e + V@S = VQP 11212
+0(T) (Ju = u® e + ul = u@llese) (IVQ i + [VQ o2
< O(T) (|| e + 6] g2r2) Q5 — @ xg
+C(T) (Jlu™ = u? g + [u — u®)||2p2) <||Q(2)HH1H3 + ||Q(2)HH2H1> . (167)
Using (157), (158), and (138) one gets
) (luM [l + 1D | 222) Q) — QF llxq
+C(T) (Ju™ — u?| gz + Ju™ — )| gare) (||Q(2)||H1H3 + ||Q(2)||H2H1)
< (1) (Juflx, + Clw o + D) (105 - @ l1x, )
+cav@w — u?|lx, + C (o = 0@l 20m) ) (1QP s + 1Q2 1 )
<CMER+ (), QP 0, VW) — (u? QY w® V®)|x. (168)
Thus, we obtained

[u® - vQRW —u® . vQ?| ym
<O(T, R)||(u”,Q",w® V) — (u? QP w?® V).

Part 3: H(Q). Here, we need to show

IH@QY) ~ HQ)|mm < O(T, R)|(u;”, @,V V) — (7, @ &, V) x.
This bound follows directly from the proof on Part 3 of STEP 2.

Part 4: v
t
dv®  qv®
H dt dt 10,y SHV(D_V(Q)HH?(OT)

) ((w, @y, VI, w®) — (w?, Qi V), w®)|x). (169)
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Part 5: Fox(Q, Q). We first note that for both definitions (11) and (12), Fix(Q, Q) is a
quadratic function of Q:

Fext(Q> Qoo) (Q Q Z bklanlemna

k,l,mmn=1

where coefficients by, depend on Q. Then use of the triangle inequality and (127):

HFext(Q(l)a Qoo) - Fext(Q(z)a Qoo)||H1H1 < ||B(Q(1) - Q(2)a Q(l))HH1H1
+HB(Q(2)= Q(l) _ Q(2))HH1H1
< (MR — QP xo IRVl + |Q |
< (T R)Q - Q2 lxq-

Part 6: } [,p @ X ov +{dS;.
Since 0 = Ohydro + Tela We use (140) and (159)

lo(Va®, QW) — o(Vu, QW) g1
C(T R)([[(w”, Q" VY, wh) — (), @7, V), w)]|x.
Using trace theorem, we get
1 W 1 @
- x xo(QV)vdS, — = x x 0(Q)vdS,
1 oP 1 oP H1(0,T)

<O R)| (", @, v, wW) — (u?, QP VP w?)|x.  (170)

< Ollo(@Y) = o (@)1

To estimate the term with ¢, recall its simplified form (19):

[u@as. - [u@®)as, < CIQY — Qoo
P oP Hl(O’T)
< QY - Q2 lmm
CDQS — Q32|
O, @, VW, wM) — (u? QP VP w?)|x. (171)

Part 7: % f ap ovdS,. The same argument for Part 6 also works for % f ap ovdSy.

Part 8: Oyuqs. Using (135), we have

||atu 8{11; ||H1L2 < C( )||w(1) — w(z)HH2(0,T). (172)

Now, collecting all bounds from STEPS 2 - 4, we have (128) and thus Lemma 5.1 is
proven. U
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5.3 Proof of Theorem 3.2 (local in time existence)

In this section we prove the well-posedness of the time-dependent problem. The equation
(101) can be rewritten as KUy, = Uy, where K := L717T : X — X and Uy, = (up, @), w, V).
The inverse linear operator £~! is bounded, as stated in the following proposition.

Proposition 5.2. For all (f,, fq, f., fv) €Y, and time T € (0,1], linear system

E(’U:h,Qh,W,V) = (fu7fQ7fw7fV) (173>
has a unique solution such that wpli—o = 0, Qpli=0 = 0, W|i—o = V|t=0 = 0 and
[(un, @n, w0, V)lix < Cll(fu Fo» Fur o)y, (174)

where the constant C' is independent of time T' and choice of (f., fq: fu, Fv)-

To prove this proposition, one can follow [37]. Specifically, for the first two components,
uy, and Q,,, of system (173), we adapt the proof from [37, Proposition 4.2]. For the last two
components, which are not present in [37], the statement naturally follows from the classical
ODE theory.

Next, according to propositions 5.1 and 5.2, we have that

1K, QP w®, V) — K(u?, QP w®, V®)| x
<o), QY w® V) — (u? QP w® V).  (175)

Recall that C'(T") depends on T in such a way that C(7") — 0 when 7" — 0. Choose 7" such
that C(T) < 1. Then using Banach’s fixed point theorem, we obtain that there exists a
unique fixed point (u, Q,,,w, V') of operator K. Next, define u,s via (95)-(97). Finally, the
tuple (up, + ues, Q) + Qs, w, V) is a solution to the original system (91), (2)-(6) with force
and torque balances (14), (43) for 0 < ¢ < T. Theorem 3.2 is proven.

6 Homogenization: two-scale expansion

In this section, we will perform formal two-scale expansion for (44)-(47). To this end, we
introduce fast variable y = e~'x and represent the unknowns as

u(z;e) = a(z,y) =u(zy) +ecul(z,y) + -
p(x,y) = pO(z,y) +epV(z,y) + - (176)
Qx;e) = Qz,y) =Q"(z,y) +QV (z,y)+ -

=

8

&
I

We will frequently use following identities for f(x,¢) = f(x,y) with y = e 'x:

Vi = Vof +e7'V,f, (177)
Af = A f+2e'V,  Vof +e2A,f. (178)

The derivation of the homogenized limit consists of the following steps.
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STEP 1. Show that u® = 0. Substitute two-scale representations (176) for u, @, and p into
(46) and V - u = 0. We get that at level !

—7A,u® +V,p¥ =0 and V, - =0,

with the boundary condition u(®) = 0 on dP.. Thus, we can conclude that u® = 0.

STEP 2. Find an equation for Q”). In this step we expand equations (44) and (45) in €.
To this end, we write the weak formulation of these two equations for arbitrary test function
® € H'(Q; R9):

—ve [ VQ -VOdz +eW [ (Que— Q) : dS,
/ /

OP:

+/ [aQ — cQTr(Q%)] : @ dm+/S(V'a, Q) : ddx

Qe Qe

—/(ﬁ-V)Q:@dijiZFext:@dw:ZG:(de. (179)

Qe

Introduce Q0 = ¢~ ', and P; = e 'P.. We now consider two-scale representation for the
test function ®:

Rewrite the first integral in (179) in domain ;:

—ye / VQ -Voddx = —7€1+d/VQ(6y) -Vo(ey)dy

Qe 951
= e / VoQ(ey,y) + eV, @y, 9)] - [Vadley, y) + = 'V, ey, y)] dy

Q1

= -TKef? {2 / V,Q v, dy+

951

_|_5—1/ [VmQ(O) + va(l)] Vo +vQW® . [qu)(O) + qu)(l)} dy +--- ».(180)
951

Expanding analogously other terms in (179) and using that «® = 0 we get at level £~

/Vme) 7,30 dy = 0,

1951

which implies, together with periodicity in y, that Q¥ (x,y) = Q¥ (a).
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At level €4, accounting for V,Q”) = 0, we have

~ / V@ +7,QY| -V, 00 dy + W | (Quus— Q) : By,
Q1

P
+ / [—aQ“)) +5Q<O>Tr((Q<O>)2)] 00 dy
Q1
/S(VU“Q ). @ dy+</ For(QY, Q) - 2 dy
/ G(z): 09d (181)

Note that the above integral relation is the weak formulation for the following boundary-value
problem:

—’}/AyQ(l) = fla Yy in H1>

(182)
Y(VyQW) vy =gy, yondP.

Here
i = 7852QY —aQ"” + QO Tr((QY)*) + S(Vyu, Q) + (Fu(Q”, Q..) — G(w),
g, = _f}/va(O) “Vy + W(Qpref - Q(O)>7

and Ayzh =V, - V,h for arbitrary h.
Next, we have the solvability condition for (182) given as:

/ g,dS, = / f1dy. (183)
oP1 (971

To evaluate the right-hand side, we use the fact that Q) is independent of y and

/V udy = /uquvT ds,,. (184)

oP1
Hence, we have

/ frdy = 1] (<aQ" +:QUT(QY)) + (Fui(Q". Q) — G(@))
971

—l—S(/uquuT dSy,Q(O)),

(185)
P

/ g,ds, = W / Qs dSy — W[OP11QY. (186)

oP1 P
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Substituting (185) and (186) into (183) we get the equation for Q)

- [a - —W'm’l‘] QU +:QUTH(@"))

1 CFar(Q®.Q.) + 5(Guy Q) = G(a) — %@W (187)

Here, we denote Gyq = [ usqmvTdSy and Qe = [ Qs dSy. The function Q) is the
P P

limit of Q as e — 0, thus, the algebraic equation (187) determines Q™ = Q.

STEP 3. Find an equation for u®. At level ° in the expansion of (46), accounting for that
u©® =0, QY is independent of y, and

higher
E2kV - (VQOVQ + QAQ — AQQ) = °xV,, - (Q(O)AyQ(l) _ AyQ<l>Q<O>) + | order
terms
we get
—ijiAyu? + Vop©@ + vV, p) = £V, - <Q<O> A,QW — AyQ(l)Q(O)> +F(x), y in Q, (188)
ut =y, y on OP;. (189)

Next, we aim to remove QY from the right-hand side of (188). To this end, we notice
that due to (182) we have that —yA, Q" = f, and

AWQ(O) =0 and QW, Q(O)TI(Q(O)), éﬁext(Q(O), Q..), G(x) are independent of y.
Thus, we can rewrite (188) as
A u® + Vap® + v, p0
=~y (QUS(Vyul", Q) - 5(V,u, Q")QY) + F().  (190)

The above can be rewritten in component-wise form as

d
7 i)y + 00, 0™ + 0,0V = Fi(x), k=1,..d, (191)
m,j,l=1
where
o Puy!
! Ay; Oy,
d
~ K
and  Mgmj = —NOkmOj + % Z [Q;(Q(QQSQ@% - QQLLQS%M - Qﬁ)Qg)ékm]
n=1
K& K
+ 2 Q= Qi — Q8] + = Q)00 - @00 ]
d
KR
o > [QQQ%% —QQN 0+ Qﬁ)Qg)%m] - (192)
n=1
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Next, rewrite (191) in a vectorial form:
—n(Q)Viu" + V,plV) = F(x) — Vap?. (193)

Taking into account the boundary condition uV)(x, y) = fis,™ on P, we obtain the following
representation for u):

u(l) = An(Q(O))(y) [F(w) - pr(O)] +ﬁsq> (194)

where A, o0 (y) is a y-dependent d x d matrix such that u(y) = A, oo, (y)e; (e; is the ith
basis vector) is the solution of the following cell problem:

—U(Q(O))Viu + Vyp =€, in
V-u=0,

u =0, on Py, (195)
u is 2-periodic.
The term g, is defined as the solution of
—n(Q)V2ay, + Vyp =0, in Q
Q") Vylsq + Vyp y 13y,
Vs =0, (196)

Ugq = UsqT, ON P4,
Ug, is 2-periodic.

Finally, we define the homogenized function u™ by averaging ") and using the fact that

Q(h) _ Q(O):

u — B, o) [F(x) — Vap) +][ Uy dy, (197)
1

where B, = le A, (y) dy and the pressure p can be found from the divergence-free condition
V-u=0.

To conclude, we have derived a system of homogenized equations in the form of (187),
an algebraic equation for @ and (197) for w in the form of Darcy’s law.

7 Concluding remarks

In this work, we initiated the theoretical justification of the active microswimmer model,
also known as a squirmer, in a liquid crystal. This model has been recently developed to
explore a non-trivial response of the microswimmer to surrounding environment possess-
ing a liquid crystalline structure. As computational studies [38, 39] clearly show that the
squirmer eventually converges to an equilibrium, both time-dependent solutions and steady
states are important and were in the focus of our work. In investigating well-posedness of
the corresponding equations, we started with combining techniques from the two fields, the
squirmer in Newtonian fluids and the Beris-Edwards model of liquid crystal. However, such
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a combination is not straightforward. As explained in Remark 2.2, one of the main difficul-
ties, besides that our model is complex and highly nonlinear, is that it is not dissipative:
there is a permanent energy input (not necessarily constant) coming from the activity of the
squirmer. It makes application of a priori energy bounds established for the Beris-Edwards
model not possible here. Therefore, the considered model requires novel approaches for its
analysis. For the steady state problem, using suitable offset functions, we first proved the
existence of a steady state for a truncated system via Galerkin approximations and careful
energy bounds using specific properties of the Beris-Edwards system (see, e.g., (76)), and
then extended the well-posedness from the truncated system to the original one using the
L result formulated in Lemma 4.1. For the time-dependent problem, in order to exploit
the contraction mapping principle, we considered higher regularity solutions (instead of weak
ones) which allowed us to obtain all the necessary bounds including the one for integrals
where activity of squirmer enters as well as the force and torque balances for the squirmer
(see, e.g., (170) & (171)). Periodic settings, in which we considered our model, allowed us
to pose a question of homogenization limit which would be a model describing a colony of
synchronously moving squirmers. We found a scaling which, on the one hand, is consistent
with experimental data (see Appendix C) and, on the other hand, allows for a non-trivial
two-scale expansions so that the homogenized limit takes the form of Darcy’s law perturbed
by an algebraic expression for the liquid crystal order parameter (see equations (187) and
(197)).
Natural extensions of our work are:

(i) Stability analysis of steady states. Namely, we would like to find conditions on parame-
ters when a steady state corresponding to swimming either parallel or perpendicular to
the liquid crystal is stable. This analytical result will be compared with the main ob-
servation from [39] on bifurcations with respect to anchoring strength parameter W. It
would be also important to show that there is no steady state other than corresponding
to swimming parallel or perpendicular to the liquid crystal.

(i) Force-velocity relation for steady swimming. Though in the squirmer’s frame and pe-
riodic conditions, squirmer’s velocity is not well-defined, we can consider the so-called
superficial velocity [50] V' = — f, wda, which can be understood as the velocity of the
squirmer with respect to the surrounding flow, and show how it depends on propulsion
force entering the problem via ug,. Specifically, given the profile of the active slip ve-
locity usq (with all other physical parameters fixed), what is the resulting velocity V7
This question is related to the evaluation of the squirmer efficiency in Stokes fluid as a
function of ug, [28, 32].

(iii) Rigorous justification of the homogenization limit. We plan to justify the two-scale
limit formally derived in Section 6 and in more general stochastic settings based on
techniques developed for Newtonian fluids [40, 41, 42, 43, 44].
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Appendix

A  Proof of Lemma 4.2

Proposition A.1 (A Poincaré-type estimate). There exists cp > 0 such that

K w
1@l < cr (R IV @I + 5 1@, ) (198)

for all Q € H} . (Q).

Proof. Here, we first show that there exists ¢p > 0 such that for arbitrary Q € Héer(Q) the
following inequality holds

1QZ2) < er(IVQIIZ2 (o) + 1R 2(p,,))- (199)

By contradiction, we assume that there exists a sequence {Q,,}°2 ;:

(200)

S |-

HQnH%Q(Q) =1 and HVQn||2L2(Q) + ||QnHi2(Pst) <
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From boundedness of Q,, in L*(Q) it follows that the sequence {Q,,}°2, possesses a weakly
converging sub-sequence in L*(£2). Consider any such weakly converging sub-sequence {Q,, }32,,
Q,, — Q" and a function ¢ € 0):

Hy, (
/ana Wdr = /QmwmdS —/8%an1pdx—>0 1<i<d.

OPst

The convergence to 0 follows from strong convergences of @, in L?(9Py) and V@, in
L*(Q2) which in turn follow from (200). Then

/Q*a Yo =0 Ve HlL(Q).

Using integration by parts we get

/wmds —/a% Yde =0 Vi e H ().

apst

By taking first ¢ € C°(Q) we get 0,,Q" = 0 so the second integral in the equality above
vanishes. Next, we get that the first integral is zero as well by taking ¢ with various non-zero
traces. We conclude Q" = 0. Moreover, since for any weakly converging sub-sequence the

limit is 0, then entire sequence {Q,, }22, weakly converges to 0.
Note that H!, (Q) ¢ H'(Q) and thus H! (Q) is compactly embedded in L*(Q2). Hence,

per per
Q,, is strongly converging in L?*(2) and since the weak limit is 0, we conclude @, — 0
strongly in L?(€2). However, it contradicts to (200) since it implies that if Q,, — Q" strongly
in L?(92), then [|Q"[|72q) = 1. Thus, inequality (199) is shown.
9¢
Finally, to prove (198) take cp = m. O

Next we turn to the proof of Lemma 4.2. We note that an equivalent way to define @Q,,
from (63) is via minimization of the following energy functional:

5(Q)-/—|VQ\2+J-"M( Qr+ / Qs — QP dS, +/H Qdz  (201)

Q apst

among functions Q € H,.(©2). The minimizer @ of the energy functional £(Q) exists.

1
From (198), the Cauchy inequality, and ||Q — Q,«* > §||Q||2 — || @ prefl|* we obtain that
£(Q) is bounded from below:

K W cp
£@Q) = 5||VQII%2<Q)+7|Imef Qll72(op.,) ||Q||Lz(g ||Hm||i2(g>

W Cp
> =@l 2omn) — o [Halzo

Thus, there exists a minimizing sequence Q¥ weakly converging in H;Cr(Q). Then using the

lim inf property of a weakly converging sequences we get the existence of minimizer Q = Q,,.
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From £(Q,,) < £(Q.,) and (198) we get that there exists C' > 0 such that

K 1 W
gHVQmH%%Q) + %HQmH%?(Q) + ZHmef — Q. |72, < 3cpHnmll72) +C. (202)
This shows (64). Next, due to the elliptic regularity result (see Appendix B)

{AQ=JF%Hm—ﬂMQm>mQ
aVQ|6Pst = WK_I(Qprof - Q)

we have

W+ K)? B W+ K
Q72 < € Wt K7 2 ) 1L — Har(Qu) 1 720) + 5 1@prel ) - (203)
W K

Next, using (62) we get (65) and it completes the proof of Lemma 4.2.

B Elliptic regularity for the squirmer boundary condi-
tions

Here, we consider the following auxiliary elliptic problem:

Ag=F in Q,

al/q|8735t = 5(7(33) - q)a (204>
q is Il-periodic.

Here F' = F(x), v = v(x) and 8 > 0 are given. We aim to prove the elliptic regularity for
(204):

Theorem B.1. Let q be the solution of (204). Then

(14 6)?
52

for some constant C independent of 5 and 7.

|m@mnsc< IWan+ﬂ+6Wﬂé) (205)

This result is well-known from PDE textbooks [51, Theorem 8.12] and [48, Theorem 4 in
§6.3.2] for the Dirichlet boundary conditions. However, we need to re-visit this result due
to our specific boundary conditions for which the afore-mentioned results are not applicable.
For the sake of clarity, the proof below is written for two-dimensional case, d = 2.

Proof. We first address a priori estimates for regions near the boundary 0P of the squirmer.
Choose any point gy on JP. Suppose its vicinity on the boundary can be described by
equation xs = @(x1) so the domain xs > p(x;) is the interior of domain 2. Then introduce
change of variables
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In variable y, the problem (204) has the form:
{ Vo (LW)Vy)) =F, v > 0

L( yq Vy = 5\/14— y2 =0,

12 vl L]

We note that L is a positive definite symmetric matrix with the smallest eigenvalue

where

1
Muiny) = 5 (24 (2)2 = VE+ (PP 1) 2 1 (207)
Thus, L is uniformly positive definite:
(L(y)u - u) > |ul? for all y,u € R%, (208)
Lemma B.1. Let q be the solution of
Vy (Ly)Vya) = F, yeRL = {(y1,42) : yo > 0}
A (209)
L(y)Oyq - vy = (7 —q), y2=0,
for some f € L7 (R3), ¥ = 4(y1) € H'(R) and B(y1) > By > 0 and matriz L(y) satisfying

(y
uniform positivity condmon (208). Denote also U = B1(0) N {y2 > 0} and V = By2(0) N
{y= > 0}.

Then we have the following bound:
HQH?“{Z(V) <C (HFH%Z(U) + ||QH.%{1(U) + ||QH%2(UO) + 52”7”%1) : (210)
Here Uy = {y. =0} NU.

Proof. We adapt arguments from [48]. All gradients V in the proof of this lemma are taken
with respect to variable y. First, we write the weak formulation of (209) for all v € HY(U):

/LVq~Vvdy— / ~ B3 - qvdS, = —/Fudy. (211)

I {y2=0}nII 1
Here II is the image of IT\ Py under transformation (206). Next we introduce ((y) such that
¢e€C®and ( =1inV and ¢ = 0 outside of W = Bj,4(0) N {y, > 0}. Take test function
v = D7"(¢?Dhq), where D! is the difference quotient operator:
hos) —
Dlg 9y + ,yzf)l 9, y2)

Integration by parts for the difference quotient allows us to rewrite the first integral in (211)
as follows:

/ LVq-Vody = / C?(LD!(Vq) - DM(Vq))dy — 2 / (Dhg(V¢- LD (Vq))dy

II

(212)

- / C([DIL] (Vo) - Di(Vg)) dy — 2 / CDg(VC - [DIL] (Vg)) dy
< —%/CQID?(W)deJrC/|D?ql2dy+C/IVQI2dy. (213)
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Here, to obtain the estimate we used (208), uniform boundedness of V¢ and [D!'L], and
Cauchy-Schwarz inequality.
Similarly, we rewrite the second integral in (211):

/ By —qvdS, = /5 ¥ —q)D7"(¢*Diq) dyy
{y2=0}NII
— [ D - o) (Db
R

- /g [Dh(ﬁ )} Dhqdy, — /C q¢(D}B)Dyqdy; — /BC |Digl dy,

R

IA

_fo /c Dltgl? dy, +c/<2q2 ay, +c/< D) dyr. (214)

Finally, we estimate the third integral in (211) using [48, Theorem 3 from §5.8.2] as
follows:

1/2 1/2
_ / Fody <C ( / dey) ( / V<<2D?q>2dy)
I
<C/\F|2dy+ /\V 2Dl |* dy
1
sc/\F|2dy+Z/@N(D?qﬂzdyq/\wcf-D?qﬁdy
<C/IF|2dy+ /CZIV (Dlq) |2dy+C/ID1QI2dy (215)

Combining (211) with estimates (213), (214), and (215), we get:

/C |D}(Vg)|* dy + 50/( |DYq|* dy,

<c /\F|2dy+/\D q|2dy+/|Vq|2dy

U w U

+ [ G dy + CQD?(%A)Zdyl].
[eran]

R
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Using [48, Theorem 3(i) from §5.8.2] we get

1 b
1[Ity 2 [ iptpay,

v ROV
<c|[1Fray+ [[watay+ [ ¢eans [ o, GoPd,
U U R R
Then [48, Theorem 3(ii) from §5.8.2] implies

1
Z/Iﬁyl(VQ)deJr— / 10y,q]? dys
1%

ROV

<c / FPdy + / Val? dy + / 2 dys + / 10,/ (43P dy: | (216)

U U R
. Ny ¢y

Now write 0y, (6) = ( fy V1 2(Yay + Van ) Thus,
V14 (¢)

/ ¢10,, (35)12 dys < CB 2.
R

Analogous estimate is valid for 02 ¢ since

2 . - 2 2
00 = ~ T (% [F = 0,0+ 2¢'0,,,,q — 9" 0y, q + 20/0" 0,4
and then

02,0l < C (1] +10,,(Va)| + |Vl

and thus (210) is proven. O

_ Next from from (210) and interior regularity [51, Theorem 8.8] we have that for and
Qcc

lall 2@y < C (I1F |2y + llallz2)) - (217)
To obtain a bound on ||¢||r2(q), we will use that ¢ from (204) minimizes the energy functional
_ 1 2 B 2
Eolg) = 3 |Vq|* dz + 5 |y —¢|*dS, + | Fqdz. (218)
Q Q Q

From &y(q) < &(0) we get for all § > 0

/ Valde 1 8 / g2 dS, < CBIAIE + Co | Iy + 64l22(0.
Q Q
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Next, we use Poincaré estimate (199):
1 _
iy <€ (143 ) (B0l + O 1P sy + Slalln)

1 1\ !
Take ¢ := 20 (1 + B) and we get

1 2
nwamscw+nm%+c(rgg|wmmy

Finally, we conclude that

1 2
Im@mn§0w+iwﬂ%+0<l+g)HFﬁm»

C Rescaling

In this Appendix we present non-dimensionalization of the steady state problem, showing
how the scalings in (44)-(47) arise. We will assume that all quantities are in their physical
dimensions. Representative values of physical parameters can be found in Table 1.

physical parameter value unit representation in §’s

K 1078 N 1078 4
n 1 N -s/m? 107* 670 /0%
%74 1076 N/m 1078 5f/5L
r 1 m?2/(N - s) 10* 62 /667
a 0.4 N/m? 4 x10750;/0%7
c 0.8 N/m? 8 x 107°8;/42
p 1.0 g/mL 107° §40%./07
¢ 2.0 571 2 65"

Uprop 1076 m/s 1074 6. /67

Table 1: Values of physical parameters, taken from [39, 21].

Introduce characteristic length §;, = 107?m, time dr = 1s, and force 6; = 1N. Non-
dimensional flow velocity and pressure are

5
u=1u andp:ﬁé—g. (219)
L

S|

Note that tensor order parameter @ is non-dimensional and does not require a non-dimensio-
nalization. We also represent the external alignment field F as

Fext = gﬁ’exta
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where [ is non-dimensional.

Using V, = 0; 'V, PDEs (23) and (26) reduce to

57T K _
L= AQ + 6T Q — 5:Te QTHQ?) + S(Vat, Q) — - VQ 4 67¢ Fog =0, (220)
L
5 52 K
PL (@ V)i — 2L AG+ Vi = =V - (VQOVQ + QAQ — AQQ). (221)
526 570, 5

Here and below in this section all spatial derivatives are taken with respect to .
Boundary condition (25) and (28) becomes

5T W(;L

U= Evpmpugﬁ)T and 0,Q = Y(Qpref - Q). (222)
Here we represented ugq = vpmpugﬁ) where ugﬁ) is the profile of the propulsion such that
max ugﬁ) = 1 and vp,p is the propulsion strength. Introduce rescaled parameters:
L o' K ~
= — = a = orl’ s ¢ = ol s =0 )
e=5 V=5 @=odrla, c=0rlc ¢ =0r¢
_ pd? _n K& - W 3 or
= —= —= W = —K rop — o TOoD * 223
p L6%6f7 77 L(ST(;f, K L26f7 5L ) Up P va P ( )

Specific values of these parameters can be found in Table 2.

rescaled parameter value

€ 10~4
1
0.4
0.8
2.0
0.1
1.0
1.0
1.0
Toron 1.0

Six i o 2

Table 2: Values of non-dimensional parameters introduced in (223) corresponding to values of
physical parameters from Table (1).

Then PDEs (220) and (221) become
YAQ+aQ — ¢QTr(Q?) + S(Vit, Q) — it - VQ + ( Froyy = 0 in €U,
ep(- V) —enAa + Vp = 2.V - (VQOVQ + QAQ — AQQ) in €.,
with boundary conditions
U = eligq T and 0,Q = V~V(mef — Q) in 0P,
u and @ are 2¢ — periodic.

Here, figq = Dproptith), Qe = 07 and P. = 67'P.
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