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Abstract

We consider a continuum active polar fluid model for the spreading of ep-
ithelial monolayers introduced by R. Alert, C. Blanch-Mercader, and J. Casade-
munt, 2019. The corresponding free boundary problem possesses flat front
traveling wave solutions. Linear stability of these solutions under periodic per-
turbations is considered. It is shown that the solutions are stable for short-wave
perturbations while exhibiting long-wave instability under certain conditions
on the model parameters (if the traction force is sufficiently strong). Then,
considering the prescribed period as the bifurcation parameter, we establish
the emergence of nontrivial traveling wave solutions with a finger-like periodic
structure (pattern). We also construct asymptotic expansions of the solutions
in the vicinity of the bifurcation point and study their stability. We show that,
depending on the value of the contractility coefficient, the bifurcation can be a
subcritical or a supercritical pitchfork.
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1 Introduction

The spreading of epithelial tissues plays an important role in the physiology of living
organisms. For instance, epithelial cells heal wounds by the collective migration of
large sheets of cells bound together by intercellular connections [15]. Other examples
include tissue morphogenesis and tumor invasion. It is observed in experiments both
in vivo and in vitro that the tissue front experiences instabilities similar to the cele-
brated Saffman-Taylor instabilities [22], leading via multicellular protrusions to the
formation of finger-like patterns, see, e.g., [19, 24, 18].

In this work, we study this phenomenon in the framework of a free-boundary
model for epithelial monolayers spreading introduced in [2], that is based on the the-
ory of active polar fluids [20]. The epithelial monolayer is regarded as a compressible
fluid flowing subject to hydrodynamic viscous forces, cell-substrate friction, surface
tension, and active traction and contractile forces. The active forces are described
by the polarity field.

We establish nontrivial traveling wave solutions describing the onset of finger-like
patterns. These patterns emerge for a critical scale as the result of competition of
destabilizing traction forces with stabilizing contractile stresses and surface tension.
It was observed in [2] by means of linear stability analysis that solutions with flat
interfaces are unstable under long-wavelength perturbations via the following kine-
matic mechanism. A small perturbation of the monolayer edge results in a velocity
gradient that makes peaks move faster than troughs. This leads, as shown in [23] via
numerical simulations, to the formation of finger-like patterns.

In the present work we analytically establish traveling wave solutions with finger-
like patterns. Specifically, we find flat-front traveling wave solutions, study their
stability under periodic perturbations with a prescribed period, and, considering
the period as a bifurcation parameter show that at a critical value of the period, a
pitchfork bifurcation occurs and a new branch of nontrivial traveling wave solutions
emerges. Next, we study the linear stability of these new traveling wave solutions
and identify whether the bifurcation is subcritical or supercritical. This stability
issue has important biophysical implications. Namely, a subcritical bifurcation cor-
responds to an abrupt onset of finger-like patterns while a supercritical bifurcation
implies a gradual transition. We show that the type of bifurcation depends on the
mechanical properties of tissue and both subcritical and supercritical pitchforks can
happen. Specifically, varying the contractility parameter we observe that a subcritical
pitchfork corresponds to large or sufficiently small values of the contractility, while in
another range of rather small values of the contractility, there occurs a supercritical
pitchfork.

Many non-equilibrium physics systems, in particular hydrodynamic systems man-
ifest pattern formation phenomenon [12]. An important example of interfacial pat-



terns in fluids confined in a quasi-two-dimensional geometry, the Hele-Shaw cell, was
first addressed by P. Saffman and G. I. Taylor in the seminal work [22]. The corre-
sponding free boundary model has been attracting a lot of attention in both physical
and mathematical communities, see, e.g., [5], [13], [17]. Moreover, free boundary
problems of this type (with additional scalar field) appear in recent biological models
of tumor growth [10], [11] or cell motility [4], [3], [14], [8], [21]. In [9] A. Friedman
and F. Reitich discovered symmetry-breaking steady states bifurcating from radial
solutions of the tumor growth free boundary problem, thus revealing pattern forma-
tion in this model. Another example of symmetry breaking bifurcation is studied in
work [21] dealing with a cell motility model, where stability issue is also addressed.

The paper is organized as follows. Section 2 is devoted to the description of the
model. In Section 3 we study the linearized operator, in particular, we show that it
has a discrete spectrum. Next, we consider the flat front traveling wave solution and
calculate its spectral representation via the Fourier analysis. The explicit formula
for eigenvalues is given and analyzed in Section 4, while its derivation is presented in
Appendix A. Then we study the case of the critical period such that the kernel of the
linearized operator (around the flat traveling wave) has nonconstant eigenfunction.
We show that a new branch of traveling waves with a finger-like structure bifurcates
and study their stability. The theory of M. Crandall and P. Rabinowitz [6], [7]
is used to study both bifurcation and stability questions. Namely, bifurcation of
nonflat traveling waves is established in Section 5, where we exploit symmetries of
the problem to adjust functional setting for applying Theorem 1.7 from [6] (Theorem
3 below). Addressing stability of traveling waves, we use results of Section 3 and
Theorem 1.16 from [7] (Theorem 5 below) to conclude that stability is determined
by the fact whether the period (bifurcation parameter in the problem) increases
or decreases when departing from the bifurcation point. This makes us construct
several terms in the asymptotic expansion of the traveling wave solutions. Section 6
deals with these constructions, while many technical calculations are transferred to
Appendices B-E. Finally, Section 7 contains some numerical results and conclusions.
There, in particular, we describe how the stability /instability of bifurcating traveling
waves depends on the value of the contractility parameter.

2 Model

Following [2], we employ a continuum active polar fluid model of tissue spreading,
described by a polarity field p(z, y, t) and a velocity field v(z, y, t). A tissue monolayer
spreads by extending its edge towards free space. The phenomenon is mainly caused
by traction forces generated by cells close to the monolayer edge. These cells polarize
perpendicular to the edge, where we prescribe p = n (the unit outward normal).
The field p is assumed to follow purely relaxational dynamics and equilibrate fast
(compared to the spreading dynamics) to the minimum of the energy with density
L?|Vp|? + |p|%, where L, is the characteristic length describing the decay rate of p in
the bulk. For simplicity, we set L. = 1 that can always be achieved by an appropriate



scaling of spatial variables. Thus, p solves
Ap =p in Q(t), p=n on JQt), (1)

where Q(t) denotes the domain occupied by the tissue and n is the unit outward
normal vector to the boundary.
The force balance equation reads

dive +f =0 in Q(¢), (2)

where ¢ is the stress tensor and f is the stress field given by the following constitutive
equations for a compressible active polar fluid:

o= u(Vv+ (V) ) —pop,  f=—tv+Gp  in Q) (3)

where v is the velocity field, ¢ > 0 is the constant effective viscosity, ¢ < 0 is the
constant contractility coefficient, & > 0 is the constant friction coefficient, and (; is
the constant contact active force coefficient. On the free boundary o satisfies

o-n=—ysn on J(t), (4)

where k denotes the curvature of the boundary and v > 0 is the constant surface
tension of the monolayer edge.

While the model in [2] deals with small (linear) perturbations of a rectangular
monolayer of epithelial tissue, in this work we consider half-plane type domains. This
corresponds to modeling of the local behavior near the boundary of sufficiently large
tissue specimens. Mathematically, considering half-plane type domains allows us to
go beyond linear stability analysis and describe the formation of finger patterns via
bifurcation of traveling wave solutions.

The evolution of the boundary 0€(t) is described by equation y = p(z,t), assum-
ing that Q(t) = {(z,y)|y < p(x,t)}. Then the normal vector is given by

where p’ denotes the partial derivative of p in x.

Assuming the continuity of velocities up to the boundary we have the following
kinematic boundary condition relating the normal velocity of the boundary and the
normal component of the tissue velocity field:

(6)

Taking (1)—(6) together, we have the equation

) /
5 = Al), Alp) = (vy = vap)) - "



with v = (vg,vy), P = (ps, py) solving

Ap=p for y < p(,t) (8)
p(Av + Vdivy) — (div(p®@ p) —{v+ (p =0 for y < p(z,1) (9)
p=n for y = p(x, 1) (10)
(Vv +(Vv)") =(p@p)n = —yrn fory = p(z,t).  (11)

We also assume that v and p vanish as y — —oc.

3 Linearized operator and its spectrum

Let p(z) be an arbitrary function from the space C’;;"S(O, IT) of k (k € {3,4,...}) times
differentiable II-periodic functions whose k-th derivatives are Holder continuous with
the exponent 0 < § < 1. Problem (8)—(11) has a unique II-periodic in = and vanishing
as y — —oo solution in the subgraph domain y < p(z). Therefore the operator A(p)
is well-defined by (7). By applying elliptic estimates from [1] to problem (8)-(11) we
get that the operator A maps p € C’Z(S(O, IT) to A(p) € 02_1’5(0, I).

In this section, we consider the linearized operator 0,.A(p) and show that it has
a discrete spectrum and high magnitude eigenvalues are stable (have negative real
parts). The following lemma establishes differentiability of A(p) and provides a for-
mula for the first derivative.

Lemma 1. The operator A(p) is of the class C* (CM(O IT), C’(k D2, H)), k e
{3,4...}. Its first derivative is given by

0pA(p)p = (W — pibs — p'va) |

y=n(z)
where p, v solve (8)-(11), W is the solution to the system
11 (A, — O, divw — 20" 0yv, —p' (05,0 + 402,v2)) — £ty

+Cie + €02 =C(div(p®a+q®p)), fory<plz), (12)
1 (A, — 8, divw — §"0,v, —p' (05, v, + 202,0,)) — £,

—p
+Gidy + A0y (popy) = C(div(p@a+a®p)), fory<plx),  (13)
with boundary conditions

—20p' 0y + p (Oyy + Optly) — 211 (' Opvy — p' 0/ Oyv,) — pup Oyuy

= —F(C =) =0 (1407 77) fory=pl),  (14)
—pp' (Oy iy 4 Oyty) + 2udy 0y — pup (Byvy — p'Oyvy + Oyv,)
_ /
= ((1+07) ") fory=p(x),  (15)



and q satisfies

AG—7'0,p — 202, p =4 fory < p(), (16)

gx:_pilm fory:p(x), (17)
(14+(1?)

(jy = - 7 372 fOT Yy = p(l’) (18)
(1+)?)

Proof. To find 8,.A(p) consider the perturbation p*) = p + &j of the domain, where
¢ is a small parameter. Let p, p® be the solutions of the following problems in
domains with boundaries y = p(z) and y = p(x) + ep(x) respectively:

Ap=p fory<p(z), p=n fory=p(z), (19)
Ap® =p® fory < p(z)+ep(x), p® =mn fory=p)+ep(x). (20)

Represent p® in the form
P (2,y) = P2,y — £p(x)) + b (2, y — £p(2)), (21)
substitute in the equation (20) to find (after changing variables) that

AP©) — "8, (p +ep®)) — 7 (20, — £79,)d, (p +ep®) =P for y < p(x),

5€) — o _ p'+ep ; _
b = V@r T iy or y = p(x),
s(e) — 1 . 1 ¢ _

Py eVI+(+er)? /1) ory = p(x)

Passing to the limit as ¢ — 0 in this problem using elliptic estimates we see that p®©)
converges in C*9(K) on every compact K C {(z,y)|y < p(x)} to the solution p of
(16)—(18).
Similarly one can show that if v(®) is represented as
v (a,y) = v(z,y — ep(x)) + 9O (2,y — ep(x)), (22)

then v(® converges in C*°(K) on every compact K C {(z,y)|y < p(x)} to the

solution v of (12)-(15). Here the limit transition can be justified by using elliptic
estimates from [1].

Reasoning analogously one establishes the existence of higher order derivatives.

O

Notice that setting

\X’(LL’, y) = ﬁ(m)ayv(:c, y) _'_ W(LL’, y)7 él(l’, y) = ﬁ(l’)ayp(l’, y) + q(SL’, y)v (23)

we can simplify the boundary value problem (12)—(15) as follows. The operator
0,A(p) can be written as

9,A(p)p = (W -n+ pd,v-n) ‘y:p(w)\/ 1+ p?— ﬁ/vx‘y:p(w) (24)
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with w, q solving

Aq=q fory <p(z), (25)

((Aw + Vdivw) — (div(p @ q+q®p) —éw +Gq=0  fory < p(z),  (26)

q= 1+§—p)2t — pO,p for y = p(x),  (27)

u(w + (VW) =5 ((14 %) 7)) n @ fory = p(z), (28)
where

Gy =—=L— (' (20,0, + ¢/ (Dvy + Oyvy) — 20,vy) + 20/ O3, v,
1+(p")? o
B ﬁ (8gyvy + 8531@90))7

G, = 1f(p/)2 (7' (Byvs + Ouvy) + p'p (agyvy + 0§yvx) — 2p0yvy)

/

and t is the unit tangent vector, t, = — 1+1(pf)2’ ty = _\/1‘|p'(T)2'
For every p € Hi/z(O,H) formula (24) defines 9,.A(p)p € H;/z(O,H) since prob-
lem (25)-(28) has a unique solution pair (vanishing as y — —oc0) and ||[w|[z1(q, ) <

CHﬁHHi/Q(o,H)’ where Qy , = {(z,y)|0 < 2z < II, y < p(z)} (the period of the do-

main). Hereafter C' denotes a generic finite constant whose value may change from
line to line.

Theorem 2. Assume that p € C;’g‘s((),ﬂ), d > 0. Then 0,A(p) is a closed operator

in H;/Q(O,H) and the domain of 0,A(p) is Hi/Q(O,H). Its spectrum comprises at
most countable set of eigenvalues (of finite multiplicities) without finite accumulation
points. Moreover, for every eigenvalue X it holds that

where n, > 0 is independent of \.

Proof. Notice that by elliptic estimates 0,.A(p)p € H;ﬁ/z(O, I1), Vp € Hi/z(o, IT), and
the operator 0,.A(p) annihilates constant functions, therefore it is well defined on
Hi/2(0, IT)/R. Consider for A > 0 the equation

0,A(p)p— Ap=f in HJ/*(0,1)/R (30)

and show that for sufficiently large A > 0 there is a unique solution p € Hi/ *(0,11) /R
for every f € H;/Q(o, IT)/R. To this end, we write down a weak formulation of (30)

!/
multiplying by ((1 + 0 2)_3/2¢’) and integrating over the period,

IT
E(5,) = — /0 PO (L4 o) dr e e HY?(0.1), (31)
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where the form £(p, ¢) is given by
il /
£(p, ¢) = /0 (((1 + 0% ) 0,5+ A1+ %) 2ﬁ’¢>’> dr.  (32)

- _ ' -
Since V¢ € H;l/z(O,H) with zero mean value the equation ((1 + p’2) 3/2¢’) = ¢

has a solution ¢ € Hi/ ?(0,11), the variational problem (31) and the equation (30)
are equivalent. Next we show that for sufficiently large A the form (32) satisfies

conditions of the Lax-Milgram theorem. The continuity of £(p, ¢) on Hi/ *(0,1) /R
follows from the boundness of the operator (24), and we proceed with its coercivity.

Consider an arbitrary function p € H;;/ ?(0,11) with zero mean value. Take the dot
product of (26) with w and integrate over € ,. Using (26), (28) we obtain via
integration by parts,

5IVw + Vw 2‘( Vw + Vw P'Q+§|W|2_QQ‘W dxdy
Q 2
#.p

I
2
+C/O (n-qp-W+n~pq~W)‘y:p(m)\/1+p’ dx (33)
1
_ .. . 2
_'u/o (Vw + (Vw)")n W‘y:p(x)\/l—i-pl dr,

Furthermore, by (28) and (24) we have

II
i [ (T w1+ s =060

11 II
Y 12\ 3/ ! 5 2 12\ —3/2
_ 5/0 ((1—|—,02)3 21)1,) (1fp/2)3da:—7/\/0 (14 %) P da (34)

I ;o 1
+7/ (ﬁﬁyv-n\/l—l—pﬂ)%—%/ G -wy/1+ pda.
0 (1+07%) 0

We combine (33) and (34), then applying the Korn inequality and the Cauchy-
Schwarz inequality we find

E(p,p) 2771||W||?{1(Q#,,,) — Cil|wll ) ldllzz @y, (35)
— Col|pll o, W (2, P(SC))HH?(O,H) + (A — C3) |5l 7 0.1y,

where 1,2 > 0 are independent of p and A. Next, we use the inequality for traces
|w(z, p(x))||H;&/z(0’H) < C|wllz (o, ,) and the following bound

11
/’kﬁmwsc/|mwa
Q#,p 0

which follows from (25), (27). Thus, for sufficiently large A > 0 (35) yields the
following bound

E(p. p) = msllwllznay, ) + 1211 0. (36)

8



with 3 > 0. This inequality in turn implies that £(p,p) > 7}4||ﬁ||§{3/2(O m for
# ’

some 1y > 0. Otherwise, for a sequence p™ with ||a = 1 it holds

" HH;/Q(O,H)
that ||p™||z10m — 0 and the corresponding solutions w™ converge to 0 strongly
in H'(Q4,). Then in view of (26) and (28) we have that (5™)" — 0 strongly
in H?;l/ 2(O,H). Therefore, by compactness of the embedding of Hi/ 2(O,H) into
H;/Q(O, IT) the spectrum of d,.A(p) is discrete.

Assume now that A is an eigenvalue and p is a corresponding eigenfunction. Sub-
tract from p its mean value then the resulting function, still denoted by p, satisfies
0, A(p)p — Ap = (A — A)p up to a constant. Therefore arguing as above (but work-
ing with real and imaginary parts of p) one can show that if p is normalized by
1Al 10,y = 1 then

Re(A) <€ — ?74||ﬁ||§,;/z (37)

(0,11’

On the other hand
= 2\ —3/2
N <O [ (14 %) P
0
~ ~I/ ~/ ~12
< ClHaPA(p)pHH;&m(Q’H) (Hp ||H;1/2(0,H) + ||p ||H;1/2(0,H)> < O2||p||H;/2(0’H)'

Combining this bound with (37) we obtain (29). O

4 Flat front solutions and their stability analysis

We are interested in a particular form of solutions of problem (8)—(11) that evolve
translationally, traveling waves. The system (8)—(11) has, inter alia, a flat front trav-
eling wave solution whose boundary is a straight line moving with constant velocity
V() along y-axis. This solution does not depend on the z-variable and is stationary
in the moving frame: v(z,y,t) = V(y — VO¢), p(z,y,t) = P(y — VOt). Moreover,
it is defined up to a translation in the direction of y-axis and we stick to the one with
p =0. Then we have P, =0, V, = 0 and
{8§yPy:Py for y < 0, (o P o
P,=1 for y =0, Y ’

2Ma§yvy — &V, —2Ce* + (e = 0 for y < 0, (38)
210y Vy = ¢ for y = 0.
The unique (vanishing as y — —o0) solution of (38) is given by
V) = g (269 — Lo V) ¢l (VEBIVE ) (30)



so that it travels with constant velocity

0) _ _ ¢ Gi
VI =Vl = trvae t e (40)

A flat front traveling wave solution can be considered as a periodic one with
an arbitrary period II. Our interest however is in finding non-flat Il-periodic in =
traveling wave solutions, that is we seek a pair of Il-periodic function p(z) and a
constant C, (velocity of this wave) such that

Alp) = Cp, (41)

where the operator A(p) is given by (7) via II-periodic in z and vanishing as y — —oo
solution of (8)—(11).

In order to perform the bifurcation analysis of the flat front traveling wave solution
(p = 0) consider the linearized operator

L5 = 0,A(0)p. (42)

By (25)(28),
¢
Lp = (0,Vyp +vy) ‘yzo = Ep + Uy‘yzoa (43)
where the (linearized) velocity v = (v,,v,) and the (linearized) polarity p = (ps, py)
fields solve the system

p(Av + Vdivv) — (div(p@ P+ P®p) —év+ (p=0 for y < 0,

Ap=p for y < 0, (44)
puvy +0yv.) = —Cpl, 2u0yv, = =2p05 V| p+p"  fory =0,
Pe=—p Dy =0, P,y| _op=—p for y = 0.

Next, we study the spectral properties of the operator £ that amounts to finding
solutions v = €“*v(y), p = €“*p(y) (Fourier modes) for p(z) = €"*, so that
Lek® = (i + 0,(0)) e’ (45)

We have ' '
Pz = _'éqequ—‘r v q2+1y’ by = —e' Ty q2+1y’ (46)

while components of v satisfy for y < 0 the equations
pu(Av, + 0,divv) — v, = iq@eiqxﬂ/ﬁy
—igC(V @+ 1+ 1)eiqw+<\/@+1>y’ (47)
u(Av, + 0,divv) — v, = gl.eiq”\/@y
n q2geiqx+(\/ﬁ+l)y (VP 1)eiqm+(m+1)y (48)

10



with boundary conditions on the line y = 0,

p(0yvy + Oyvy) = —igCe’®,

zq:c

2,LLay’Uy = _C<4“+\/ﬂ + 2) “ax + Cz\[+r q Ve

iqT

Here we have used the formula
=0 2u(dp+V2puE)  V2uE+2u  p

which follows from (38) and (40).
We represent the solution of (47)—(50) as the sum

V=GV ve+av®

(51)

of three terms caused by the traction force, the contractile stress and the surface
tension. More precisely, v* solves (47)-(50) with ¢; = 1, ( = v = 0; for v® we set
(=1,¢=~v=0; for v® weset vy =1, ( = (; = 0. Solutions of the corresponding

problems (103), (104), (105) are found explicitly in Appendix A, so that

vbl o = A ©) €97, 5| o= A(q, 1, &) €, w3 o = Mg, 1, ) €,

where

e+ 5 (2000 - V@) + VERE(L - 1+ L))
D(q’“’£>< q2+1+\/@) (vV2HE + 2p)
(L V@) 2+ 5

A(g, 1, &) =

(52)

+D(q,u,€)(\/q2+§+\/q2+§>( FHi+Je+ ) (Je+i+VE+)
(

§

¢+ ,
qug(m+1+ﬁ)<q :

A(q, 1, &) =

(\/q+ +1+\/q+ (Y@ + 5% + @2+ ) )

§r/ ¢ +2—
+ D( 5; 4u+5\/2u€+2_ §q2 ¢ |’
a, 1, \/q2+ﬂ+\/q2+ﬁ

E/@+ 5 ,

A (g, 1, &) = Dol

11

/q2_|_1_

53)

(55)



D(q, j, 5)—4u2q2\/q + = \/q +5 — (2ug® + €)%, (56)

Thus, according to (45) we have the following formula for the eigenvalue of the
linearized operator corresponding to the mode e%:

For simplicity hereafter we omit dependence on the parameters p, (, ;, &,y and write
A(q) and A%“*(q). Notice that A°(q) — —ﬁ, A(q) = —% +O(|}T|) and At(q) = O(%)

q
as |q| — oo, ie.

A(g) = —1lq| + = =+ O0(5) as |g — oo (58)
Expanding A in a neighborhood of ¢ = O we get

= Gi 2v/2u(vVE+2p)
A(q) < (\/%4-2# 2u (3 2\/7 T (2v2u+/€)? ) \/gﬁ) q2 + O(q4). (59)

Thus in a neighborhood of ¢ = 0, A > 0 for large enough (; while A — —oo when
|g| — oo. Then there exists a non-zero root ¢ = qo > 0 of the transcendental equation

Aq) = 0. (60)

We show below that this go defines a critical period Iy = 27 /qo for which a bifurcation
of nontrivial traveling wave solutions occurs.

5 Bifurcation of traveling wave solutions

Let go > 0 be a solution of (60). We apply the celebrated theory of bifurcation
from the simple eigenvalue (see Theorem 3) to show that there emerges a family
of nontrivial traveling wave solutions with periods close to the critical period Ily =
27/ qo-

It is convenient to pass from the prescribed period II to another bifurcation pa-
rameter § = I1/T]y (scaling factor). Introduce new coordinates z = 0%, y = 0y and
change the unknowns p = 1p(0%), v = $v(0z,6y) and p = p(6%,07). This allows us
to reduce the analysis to the fixed period Iy, while the parameter 6 appears in the
rescaled version of problem (8)-(11) (where we drop ~ to simplify the notation)

Ap = 0°p for y < p(z),
p=n for y = p(x),
AV + Vdivv) — (div(p®@ p) — 0*¢v +0¢p =0 for y < p(x), (61)
w(Vv+ (Vv)')n = (¢ - %/{)n for y = p(x).

Then the problem (41) of finding traveling wave solutions is equivalent to
.A(p, 9) = (Uy - Umﬂ)‘y:p(m) = th (62)

12



where C, is an unknown constant, and v, p solve (61).

Notice that the linearized operator £(f) has the eigenvalue A (2, p,¢, ¢, €,7)
given by (57) whose corresponding eigenfunction is p = %%, This eigenvalue becomes
zero for # = 1. In this case, however, zero is a multiple eigenvalue since p = 1
and p = e 0% are also eigenfunctions. To get rid of this multiplicity issue observe
that A(p + C,0) = A(p,0), YC = const. Therefore we can pass to the quotient
spaces C";&(Ho) /R and C’;‘fl’é(ﬂo) /R identifying constant functions with zero. This
eliminates the eigenfunction p = 1. Furthermore, the multiplicity can be reduced to
one by assuming the natural symmetry p(z) = p(—z).

In view of above mentioned we can apply the following

Theorem 3 (Crandall-Rabinowitz [6]). Let X,Y be Banach spaces. Let U C X be
a neighborhood of 0 and let

O:Ux(1—00,1+6) =Y (63)
have the following properties:
(1) ©(0,0) =0 for all @ € (1 —0y,1+ 6y),
(ii) ® € C*(U x (1 — 6y, 1+ 6y)),
(111) dim Ker (0,9(0,1)) = codim Ran (9,®(0,0)) = 1,
(iv) 93, ®(0, 1)z € Ran (9,9(0, 1)) where Ker (0,9(0,1)) = Span{zo}.

Then if X is any complement of Span{zo} in X, there exists ¢ > 0 and continuously
differentiable functions i : (—e,e) — R and ¢ : (—,€) — X such that $(0) = 0,
¥(0) =0, and ®(azo+ag(a),1+(a)) =0 Va € (—¢,g). Moreover, ®1({0}) near
(0,1) consists precisely of the curves x = 0 and (axg + ap(a), 1 + ¥ (a)), a € (—¢,¢)

Using Theorem 3 we establish bifurcation of nontrivial traveling wave solutions
for the problem (8)—(11), (41).

Theorem 4. Assume that equation (60) has a root qo > 0 and A(jqo) # 0 for
Jj = 2,3,... Assume also that 0,A(qo) # 0. Then there is a family of nontrivial
(non-flat) traveling wave solutions p = p(x,a) of (41) with periods 11 = 270(a)/qo,
depending on a small parameter a. Moreover, p(x,a) and 6(«) smoothly depend on
the parameter a and p(x,0) =0, 0(0) = 1.

Proof. Recall that problem (41), where the prescribed period II is considered as a
bifurcation parameter, is reduced via rescaling with the factor > 0 to equation (62)
with fixed period Ily = 27/qp. Observe that for every even function p € C’;’(S(O, iy
there is a unique Ily-periodic in x and vanishing as y — —oo solution v, p of the
rescaled problem (61), and the symmetry

Uy(—l’,y) :Uy(l’,y), py(—x,y) :py(x,y),
Vo (=2, y) = —02(2,y),  Pu(—7,y) = —pa(z,9)
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holds. Thus we can apply Theorem 3 to the family of operators A(p, ) with X and
Y being subspaces of CZ’J(O, IIp)/R and C';_L‘S(O, IIH)/R (0<éd<1,k=2,3,...) of
even functions.

The flat front traveling wave solution for p = 0 constructed in Section 4 satisfies
the condition (i) of Theorem 3. By virtue of Theorem 1, (i7) is also satisfied. Since
the linearized operator £(#) has the following spectral representation:

L(0) : cos jgoxr — A (j%) cosjqox, j=1,2,..., (64)

the kernel of £ = £(1) is one-dimensional and is spanned by {cos gz }.
We claim that

Ran (£) = {p € C;fl’é((), ITy)/R } p is even, / p cos qordr = O} : (65)
Iy

Indeed, consider the equation Lo = p, where p belongs to the space given by the
right-hand side of (65). Then expanding p into Fourier series p = ., ¢; cos jgox
we have

¢ . p 8 ) .
0= — COS JqoT = — + - C;COS )qox
2 NGao) 7 2 ( JER I

= S\ 4(907)?

1 ¢ .
+Z< ( + a + a )CjCOquolL'.

. ‘ —
= \AU@) a7 4(vq05)

(66)

Let us show that ¢ € C’;;"S(O, IIy). It follows from (58) that the second term in the

right-hand side of (66) belongs to W;H’Q(O, I1p) and hence to C:;‘S(O, I1y). Using the
Sokhotski-Plemelj formulas another term can be represented as

—HICp — 'u—ilCzp, where Kp = ip.v. /HO cot W /Z p(s)dsdz. (67)
Y 4y Iy 0 0
Since the Hilbert transform involved in (67) continuously maps C’;;"S(O, IIy) to C’;;"S(O, I1y),

the first term of right-hand side of (66) also belongs to C’;;"S(O, IIy).
And finally, the transversality condition (iv) is satisfied since

OpL(1) cos gor = —qo0,A(qo) cos gox & Ran (L) . (68)

Thus all of the conditions of Theorem 3 are fulfilled. Also according to Theorem 1.18
from [6], p(z, ) and () are infinitely differentiable in « functions. O

Remark 1. Note that traveling wave problem (62) is invariant with respect to shifts
in z-axis, moreover, for any even solution p of (62), its shift by the half-period is
still an even solution. Thus we can assume that Yo p(x,—a) = p(x — 1/2, a),

0(—a) =0(a).

Now we address the issue of stability of traveling wave solutions. To this end we
apply the following result obtained in [7].
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Theorem 5. Assume that conditions of Theorem 3 are fulfilled and X C'Y with con-
tinuous embedding. Then for sufficiently small o there exists the smallest in absolute
value simple eigenvalue A(«) of the linearized operator 0,P(axy + ap(a),l + P(«a))
and

Ma) = —aXN(1)f'(a)(1+ O(a)) as a — 0, (69)
where \(0) is the smallest in absolute value eigenvalue of 9,(0,8).

Consider traveling wave solution and linearized operator d,.A(p,f(cv)) near the
bifurcation point, i.e. when |a| is small. Its spectrum has the following structure.
There is a zero eigenvalue of multiplicity two corresponding to infinitesimal shifts
with eigenfunctions equal 1 (vertical shifts) and p’ (horizontal shifts) respectively.
By Theorem 5 the smallest in absolute value nonzero eigenvalue of 9,.A(p, 0(«)) is
given by the asymptotic formula

Ma) = qd,A(go)at () (1 4+ O(a)) as a — 0, (70)

so the sign of A(a) is determined by that of af’(«). Other eigenvalues either remain
bounded and converge as a — 0 to those of 0,.A(0,1), or have a negative sufficiently
large in absolute value imaginary part (and therefore do not affect stability).

6 Asymptotic expansions of traveling wave solu-
tions near the bifurcation point

Let go > 0 be a solution of (60), and assume that other conditions of Theorem 4
are satisfied. Then we have a family of Ily-periodic (Ily = 27/qp) traveling wave
solutions p(z, ) of problem (62). The corresponding polarisation and velocity fields,
p(x,y,a), v(x,y, «) are unique solutions of (61).

For o« = 0 we have flat front solution p(x,0) =0, 6(0) = 1, and p(z,y,0) = P(y),
v(z,y,0) = V(y), where P(y) = (0,¢¥) and V(y) = (0,V,(y)) with V,(y) given by
(39). Now, for small o we consider asymptotic expansions

O(a) =1+ ba* + O(a?) (71)

C, =V +a?V® 1 0(a?), (72)

plz,a) = ap(z) + a?p? (z) + a®p¥ (2) + O(a?), (73)
p(z,y,0) = P(y) + apV(z,y) + ’p? (2,y) + @’pP(z,y) + O(a"),  (74)
v(z,y,a) = V(y) +avW(z,y) + o>v? (2, y) + >vP(z,9) + O(a?), (75)

where V© is given by (40), p*)(z) are even functions with zero mean value, and
in view of Remark 1, the expansions (71)—(72) contain only even powers of a. Our

main objective here is to identify the sign of the parameter b that is decisive for the
stability of the traveling wave solution.
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We substitute the expansions above into (61)-(62) and equate the terms corre-
sponding to the same powers of a. At the order o we arrive at the linearized problem
(44) for p = p) and v = v(V) coupled with the equation £p") = 0 for II;-periodic
even fuction p™®. According to spectral analysis of the operator £ (Section 3) we
have, up to a multiplicative constant,

p!Y = cos oz, (76)
and
) = goe¥v 9%+ sin gy, pél) = —eVV BT cos g, (77)

while v(1) is the real part of v = (vl 4+ (v° + yv* explicitely found in Appendix A.
Next, equating terms of the order o in (61) we find the following system

Ap®? =p® 4+ 2P fory <0,  (78)

pf’ (‘M&”p( ) — [P fory =0,  (79)
2

PP = —0,P,p® — 102 P,[p"M]? = 9,p1 p) — L[pVY fory =0,  (80)

w(Av® 4 Vdivw®?) — ¢div(p® @ P + P @ p?)
— (div(p" @ pM) — &v® — 260V + (p® + QbP =0 fory<0, (81

u(@xvf + 8,0 ) = 200, v [pM] — (aiy vy, +02 ) M
—¢ [p(z’]’ - 7[/)(”]’[/}(”]” fory =0, (82)
200,07 = (0,0 + 9,0M) [pM) — — uds,, VylpM)?
—2u05, M pM 4 A [p®)]" fory =0, (83)
and from (62) we get
) +0,V,p® = —102 V, [pV]? + o[V — 9,0 pW + VA for y=0.  (84)

Observe that p® can be represented as
p® = pD 4 p(22) (85)
where
P = _@ VIR gin 2401, (86)
py21 _ q0+2\/ﬁ 1 y\/mcoszqox_i_ (by—l—@)ey, (87)

4

and p®? solves the problem

{Ap(22 =p® for y <0,

88
PP = —[p?), pfP =—p®  fory=0. (88)
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Bearing in mind (85) we represent the vector v(?) as
v® = v 4 () (89)
with v(?) found explicitly in Appendix B and v*? satisfying

AV 4+ Vdivv(??) — ¢v(22)
—(div(p® @ P+ P e p®) +(p® =0  fory <0,

90
11(0y 'Uy22 + 8y (22) ) = —([p(2)]’, for y =0, (50)
2ud, v = 20102, Vyp® + ~[p@]” for y = 0.
Then from (88), (90) we have
22 ¢ 2
v 3 )+ Lp?, (91)

Substituting expressions p®, v, v{*" into (84) and taking into account (91) we

conclude that Lo € Span{1,cos2qyz}. This in turn implies that p® = S cos2gox
and we find that constants 8 and V() are given by formulas (130) and (131), see
Appendix B. Having established p(® we get the following explicit form of p(??

pl?2) = Qquey\/‘lqu sin 2qo, pfz) = _5634\/4%%T cos 2qo. (92)
Now considering term of the order o in (61) we get
Ap(g) =p® 4 2bp(1) for y <0, (93)
p® = =0, = 0,2 — 53, pV [P — (o) + %[Mg,
p§,’ = =0, p® — 8yp§, — 30, 0" [V = 0, P, p® — 2 P, pM) p?
— 50 Py [0V — [p( T, fory =0; (94)

w(AV®) + Vdivv®) — ¢div (p ®oP+Pep® +pYep?+p?e p(l)),

—&v® —2¢bv) 1 p® + ¢op =0 for y <0, (95)
and for y = 0 we have
(0 v + 5‘ o) = 2u0§y oM pW W] + 208,00 [0 + 268,03 [pM)
acs y Vo 85,0) 0 = 5 (02,007 + 85, 00) [P
— w(D2,08 + 3, 02) M = ) = A [V [pP) = APV [PV, (96)

200,08 = (0,0 + 0,08 [pP] + (92,0 + 92,08) pD [P

zy y
+ (@0 + 0,02 [pM] ~ 2u82 Vyp® — 2M3§’yy yp M
4 3 2 1) 3 1) 2
gayyyy [ )] - Q'uayyvz(/ ,u@ [10( ] ayy y
2
+ 001" =20 = $A [ ), (97)
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Finally, collecting terms of the order o in (62) we derive that for y = 0

—i—@%p +82 Vyp p éaz?;yy [ ]3+8yv§1) %aiy Uy [(1)]

+8yv§f W= W] o) = o) = 0. (98)

Similarly to the previous two steps the solution of (93)—(97) can be found in an
explicit form. However, this task is rather cumbersome. Instead, we only identify
the parameter b appearing in the expansion (71) of 6, whose sign determines the
bifurcation type, b > 0 (b < 0) corresponds to the supercritical (subcritical) bifur-
cation (see (70) and Figure 2). We notice that calculations of the Fourier coefficient
corresponding to cos gz in (98) give a linear function of b, kb + ks, moreover

k1 cos qoxr = OgL(1) cos qor = DpA(q0/6) cos o = —qo0,A(qo) cos go. (99)

To find k, first we represent p®, v® as
p® = pBh 4 pB2 O = B 4 62 (100)

where p©®? and v®?) are solutions of problem (44) with p = p®. Observe that
(0532) +0,V,p®) ‘yzO is orthogonal to cos goz in L?(0,11y). Next we write p®®!) and

v in the form
pBl = pB) 4 pB1D) - B — 61D 4 (312) (101)
where
’U:(Egll) _ 1};311) (y> Sin qo, ’U?(ngl) — 62(1311) (y) COS qo T,

while p&®™ and o™ (pg(,m) and vz(,?’lz)) absorbs all the terms that contain the factor

sin 3gox (cos 3gow) or/and b. An explicit form (147)-(148) of the vector function vV
is found in Appendixes C, D. Then considering the Fourier coefficients of functions
in (98) we find (see Appendix E) that for y =0

: 5
vt + (ﬁDl—F%‘i‘ﬁ(—%ﬂLCVQSﬂL _%+% - qu ﬁ%]o)
8;”/4(184-%

38 &¢ Gi _
+7(2u(4u+x/ﬂ) oS ) bqo0, A(qo)) cos qor = 0, (102)

where Dy and D, are defined by (122) and (138). Substituting (148) into (102) we
get equation (170) for finding b.

7 Conclusions

In this section, we present and discuss several numerical results relevant to the bifur-
cation of nonflat traveling waves. Computations are done for the typical value of the

18



characteristic length L. = 25 um [2] by adjusting to the case of the unit length via a
spatial rescaling.

The finger-like pattern in the shape of the traveling wave solution is shown in
Figure 1, where the approximate shape corresponding to the two-term expansion
p = ap® +a?p?® (a = 0.5) is depicted. The shape is computed by using explicit
formulas (111) for pV) and (135) for p®, taking some typical values of parameters

2].

0.6}

. 04f

)

S 02

> 0f
-0.2 +

-0.4 . n . ) 1
-2 0 2 4 6 8x

Figure 1: Approximate shape of the traveling wave.

Figure 2 depicts graphs of the eigenvalue A(q) (growth rate, computed by the
formula (57)) for different values of the intercellular contractility —(.

%10

0 5 10 15 1 20 25 30
q(pm™)

Figure 2: Growth rate A(g) as a function of wave number ¢ for different contractilities
—(. For this plot —¢ = 0, 6, 12, 18, 24, 30 (kPa). Other parameters are (; =
0.1kPa/pm, £ = 100Pa-s/pum? v = 0.2mN/m, u = 25 MPa - s.

Next, we study the dependence of the critical period Il = z—g on the contractility.
It amounts to numerical solving of the equation A(gg) = 0. The results are depicted
in the Figure 3. Note that for contractility —( ~ 20 kPa the value of the period is
close to one hundred micrometers which is in agreement with the measured finger
spacing [24].
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I, (pm)

0 é 16 15 26 2‘5 30
-¢ (kPa)
Figure 3: Dependence of the critical period on the contractility coefficient —(. Com-
putations carried out for ¢; = 0.1kPa/um, £ = 100Pa-s/um?, v = 0.2mN/m,

w=25MPa-s

Finally Figures 4 and 5 present results of computations of the coefficient b. Recall
that b is the coefficient in the asymptotic expansion (71) of 6(«) = II /1. It follows
from (70) that the sign of the smallest in absolute value eigenvalue of the operator
linearized around the traveling wave solution coincides (for sufficiently small ) with
the sign of the product b0,A(qp), while other nonzero eigenvalues have a negative
real part. Since 9,A(qp) < 0 (see Figure 2), b > 0 correspond to stable case, while
b < 0 correspond to unstable case. In other words, for b > 0 we have a supercritical
bifurcation, while for b < 0 we have a subcritical one. Notice that b < 0 for large
values of the contractility as seen from Figure 4.

0 5 10 15 20 25 30
-¢ (kPa)

Figure 4: Coefficient b for contractility —( from 1 kPa to 30 kPa. Other parameters
are ¢; = 0.1kPa/um, £ = 100Pa - s/um?, v = 0.2mN/m, u = 25MPa - s.
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0 05 1 15 2
-¢ (kPa)

Figure 5: Coefficient b for contractility —( from 0 to 2 kPa. Other parameters are
¢ = 0.1kPa/um, £ = 100Pa-s/um?, v = 0.2mN/m, yu = 25 MPa - s.

It is interesting to observe in Figure 5 that for smaller —( both cases b > 0 and b < 0
occur. Thus the model exhibits both subcritical and supercritical bifurcation.
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Appendix A Fourier analysis of the linearized op-
erator

The solution of (47)-(50) can be represented as v = (;v! + (v°+ yv® with v!, v¢ and
v*® solving

p(AVE + O, divv?t) — €l = igel V@Y for ¢ < 0,
n(Av) + 9, divv') — vl = etV Py for y < 0,

(103)
(00, + Oyvl) =0 for y =0,
2udyv;, = \/E+5ﬁe a for y =0,
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((AVE + 9,divve) — vt = —ig(\/q® + 1+ 1)V e+l for ¢ < 0,
(A + 9, divve ) fv
_ q261qm+y+y >+1 _ /q +14+ 1 igzt+y+yr/q?>+1 for y <0, (104)
(005 + Oyvs) = —ige's” for y = 0,
c _ £ iqr _
\Q,uﬁyvy——(mjLQ)eq for y =0,
w(AV® + Vdivv®) — EvP =0 for y < 0,
p(0xv; + Oyv;) =0 for y =0, (105)
2u0yv; = —q*e' " for y = 0.

We find explicit solutions to these problems, starting with problem (103). Represent
the equations in (103) as

AV + Vdivv') — &vF
where V+ = (=0y,0;). Then

vi = —q%+/ 2+1v iqr++/q?+1y +Z \/ vJ_ iqr++/q?+1y

o 2u 3
+ A v 4 A9, (107)

where

v = vleiqx+y\/q2+£/u’ 72 = yeiartyy @@ +£/(2p)

are linearly independent solutions of the corresponding homogenous equations, van-
ishing as y — —oo. Substituting (107) into boundary conditions of (103) we get a
linear system for constants A;, As, resolving which we obtain

vt = Ve (Veiqm+y\/q2+1 + Ay v +A112\7(2))

2p—¢
+iq7\/q+11 (vJ_ iqr+ys/q*+1 +A121V ‘|‘A122V )
+ AV + Apppv® (108)

with

A = —%(2%2 &= 20/ + €/ UV + 1),
Ang = D}{f( (214" + OV + 1 2p¢° W)
A = 52 P+ R (262 + V)VP €20 — 2V 1),
Ay = =52 (202° + DV + €/ = 2206> + V@ +1),
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A — —2uiqy/ ?+&/(2p) Nem A — —(2uq2+5) V2p
131 D(q,11,6) VERV2R? 132 D(q.mf) VE+/2n

and D(q, p1,€) given by (56). Analogously we find solutions v, v* to problems (104)
and (105). We have

2_./0241— . /
V= 45(\/1121:1); <V€Z¢1x+y+y T Ay 4 A212‘~’(2)>

3

+ q
(E—2p(\/@+1+1) (/2 +141)

+ Ag3 v 4 Agzov @ (109)

(vleiqx+y+y\/q2+1 —I—A221‘7(1) +A222{,(2)>

where

iq(n/q2+1+1
Agyy = 2N (26 + € — 2/ + €/ ) (VP + 1+ 1)),

Apip = %((%ﬁ +OWEHT+1) = 2 VE +E/n),
A221:4—w<m(q +VE+1+1) = ¢ (\/qT—l—l))
A = =280 (2 /@ + €/ (P + VP F 1+ 1) = g+ (VE T 1+1)),
Ao = D(quam(%m m+2)

Aoy = b (2n4® +©) (5 +2) — 206*V/ @ + /1),

and

s _ 20ig°\/d®+€/(2p) - (1 o @Cue’+8) £(2)
V= T Do VT D V- (110)

Notice that v(!) appearing in the first order term of the expansion (75) can be
obtain by taking the real part of v = (;v' + (v + yv®. This yields vgsl) |y:0 =

(Cz’At(QOa 1, §)+CA(qo, 1, &) +YN(qo, 11, € )) cos qox (with A“**(qo, 1, §) given by (53)~
(55)). For gy satisfying (60) this formula is simplified to

¢
v ly=0 = 2 COS Qo (111)

To find higher order terms in the expansions (71)-(75) we will also need to compute

ORI Although an explicit formula for vV is available via (108)—(110 , We can
y=0

derive a more compact expression in the case ¢ = g. Recall that v(?) solves equations

,u(Avg(Cl) + chivv(l)) — fvg) = —qo(;e’V %+ gin qQox
+ qu( @+1+ 1)6y+y\/ B+ sin gy, (112)
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/J,(AUZ(/U + 9, divv®) — 5’0?51) = (eVVaT cos gox + LV TV BT cos gy

- 2§<\/q8 +1+ 1>ey+y\/ 6+ cos gox (113)

with boundary conditions for y = 0

u(@xvél) + 9,v'M) = Cqo sin gox (114)
2,u0yv?51) - (—C(ﬁm + 2) - Q% - 7q2) COS qoT. (115)

It follows from (113) that for y =0
2002 v = (ugs + &) vl — pd? vl + (Q +q¢—20(Va@ +1+ 1)) cos qoz. (116)

On the other hand differentiating (114) in = we get ,u@iyvg(gl) = quv?(,l) + 3¢ cos qox
for y = 0, and substituting (111) we obtain
2

pd2, v = % COS Qo (117)

zy“x

Therefore (116) yields
2#553421?51) ‘y:O = (Cz' — QC(\/ @+1+1+ i)) COS o (118)
Now we find divv(). From (112)-(113)
2puAdivv®) — ¢divv) = Ci( Vi +1— qg) cos qoz €YV a3+l

+2C(q§\/q§+1—2\/qg+1—2> cos g eV YV AT (119)
also by (117)—(118) we have for y = 0
2
10, divv = (% — ((«/qg +14+1+ ﬁ - %)) COS Qo (120)
One can find an explicit solution to the problem (119)-(120), in particular
divv® \y:o = D; cos gz, (121)
where
D Q( q8+i+q§)
1 pumy
g g
iz (Jobe v/ 122)
2 2 _ 2 —
s R A R R S A QV"O“f).
mad+a; \/qgﬁﬂﬂ/q%Jrﬁ
Then taking into account (115)
(1) — ce G 2C+’vq2>
O,vy) = (Dl + o(intvaE) | VIR + =g ) os qoz, (123)
and

(1 _ 1 € G 2<+wq3) .
Uy ™ = qo0 (Dl + 2#(4M+ Tuﬁ) PmES + % Sin qox.

(124)
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Appendix B Calculations of v(¥ and p®

From (81) and taking into account explicit formulas (86)—(87) for p®!) we have that
v(2Y satisfies the equations

p(Av + 9, divv ) — g2V (125)
_ _Qp(2l qux/q§+1(12+\/4q§+1) /AR 2o
+ (o (qo — V@ + 1)€2yV 9%+ sin 2qo7,

= 266V, = bGP, = Gy + C(Va§ 1 = i) eV cos 20
T e Y N )

2

+ OV + 1 VET 4 ¢(20+ dby +20/qF + 1 — g — 1)

Moreover, from (82)—(83) using (38), (112), (114), (118), (123) we find the boundary
conditions for v(?Y) as y = 0:

u(@xvl(fl) + 0yv§,21)) = T, sin 2qox

2u8yvézl) = Ty(l) + Ty(2) cos 2qo,

where

T, - %0(@ W FT-¢) -4
¢e G 2¢+v43
2q0 (4’uq0 + 5) (Dl + 2u(4u+\/m) V2uE+2p + 2u 0)’

2 2 2
T =¢(V@+1-4+E&) -6 TP =¢(VET1+4+E) -1

We represent v?Y in the following way
UQ(E21) _ (Bg(ﬂl)ey\/4q§+l + B§2)ey+y\/4q8+1 + B§3)62y\/q8+1) sin 2qo
- (2quey\/ 1a5+e/Cn) 4 P [AgE + g/ueyv4q3+f/ﬂ) sin2qox,  (127)

Ug(fl) (B 1) ey\/4q0+1 + B ) ¥ty 4g3+1 4 B(3 2y+/ q0+1) cos 2qox
I ( 12 + &/( (2p)evV 406/ 4 940 Fey\/4qo+5/“) cos 2qo
Wy 4 o) (6) 2 (7) 42 (8) g2u\/ a3 +1
+ B, e’ + B, ye’ + B, e™ + B,"ye™ + B, eV%h
1 B yenEIVE | GV (128)
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B! = m((u(% +2) = &g/ @ + 1 — pao/A3 + 1( + 2/ @ +1— 1)),

B _ _C90vVa + 11+ v4g + 1) (4pla + VG +1+1) ¢
‘ 641:2g3 + 4(8p2 — 3p€) (1 + /4q3 + 1) + 2¢2
L Son(l + Vg5 + D((@+2V@+1-1D)(1+ A +1) = 2¢3\/Z + 1)
3202g3 + 2(8p2 — 3p€) (1 + /g3 + 1) + €2

)

l@—va+1
B® = % <4qu’ + (8 —&)go — 4#@10\/@)7

Bz(/l) W( NQO\/4QO+1\/QO 1_‘( 1_4% )(qo+2\/qo 1—1))

RO _ Cadpn/ad + 1(463 + 24/4¢3 + 1+ 2)
v 2,2 2 2 2
32u2qg + 2(8p% — 3pu&) (1 + /4g5 + 1) +¢€
C(—4g +2/4@3 +1+2) — &) (g +2v/ad +1—-1) 1—|—\/4q0 1) —2¢3\/ @2 + 1)
6412q8 + 4(8u? — 3ul) (1 + /4¢3 + 1) +2€2

\—+/a3+1
B = 32;’?2;;%2 (—4qu\/ @+ 1+4pg3 — dp+ £>,

BW _ _ & (2\/q§+1—q(2)—1 B b) B(s) _ b

Y 2u—¢& 4

(6) — 21 (1) _ 4¢h
By SM 8u—¢& (2 +1 dp 1 2b)7 B 8# &
B®) — _SVatl O _ G e

Y 8u(gg+1)—¢’ v 2u—¢  2u(8u—9)’

B =~ by (Ao T €70 (e (B VAFT T4 B (14 VI D) + 250 VBT T)

+2uqo(B{Y + B + B®)) + T,)
(s + ©) (<2 (B VAGF T+ BO 0+ VAG+D) + 250V 1) + 707 ).
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F= D<2q><(8“%+f( ( VAR +1+ BY (1+W)+23§3>m)

+2ug0 (B + B + B + Tx>

+4p10\/36% + €/ ) (— 201 BS" /A + 1+ B (1+\/4q8+1)+2B§3)«/q3+1)—i—TZ,(z))),

G=7=T" - /2 (B + BY + 280" + B + 2B /& +1+B).

From (84) we get

o 4 Lo (129)

Y

= —v?(fl) +5(02,V, + Lf) cos? oz — qovi” sin gz + V@ for y = 0.
Observe that the right-hand side of (129) is a linear combination of a constant func-
tion and cos 2gox. Then it follows from the spectral representation (64) (for £ = £(1))
that p® = B cos2gox. Moreover, using (38), (115), (123), (127)-(128) we obtain

B =~y (BY + BY + BY + E\/Ag + €/C20) + 2a0F )

194 3 & _ Gi <
+ gty (D1 + 28) + i (w(wm) Vaeran T u)’ (130)

and

@ _ g 4 po 4 g® ip oyl G ¢
V@ = B 4 BO 1 B +G+2D1+4<2M(4M+m) i + &)

_ 17700 2 2 Gi _ q
=V + (2/F 1~ ¢ 1)(( e )

a(vEg+e)

o ¢V ag+1 1 (1) 1 1 ( <3 _ G Q)
2o A i | VI I+t 24t vIRE) V2 T
=V O, (131)

Next, we establish the boundary values of components of v(?) and some of their
derivatives on the line y = 0, that will be used in (98) and in the calculations of the
stress vector for v®. To this end substitute the expressions for components of V,
p® and p@ in (81) (see (39), (77), (85)—(87), (92)):

(A2 + 9,divv®) — 0@ = Gqo ( Vit 25) YV 195+ gin 2o

~ Cao(1+ VA T) (VB — 95)er oV sin 2
+Cao (g0 — /@ + 1)e®V 5+ sin 2, (132)
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,LL(A’U(2) + 9, divv®) — fvl(f) = (5 B RV ”qgﬂ_l) V4B o5 2g0x

4

V@ +i-a-1 G V¢ e
(2 + b+ by +%>ey+265<2u_57; = f\/_>efy/r
ﬁ+2b+4by+2\/qo - 1) 2y (133)

( Vi SO ) qu/qéijtwqg)ey*y\/m cos 2qoa.

Let w®(z,y) denote the vector function obtained by subtracting from v (z,y) its
average in x over the period. Find the divergence of w®(z,y) for y = 0. Taking
derivative of (82) in x and using (123), (112) we obtain that

u(02w? + 2w?)
= (Gag — Ca5 (V@ + 1+ 1)) cos2qoz + (4¢q38 — vq5) cos 2qox (134)

_ 2 ¢e & 20+743
(4pgy +€) <D1 + (i vmE)  VInera + =35 ) cos 2qo,

for y = 0, also thanks to (129) we have

2 _ _¢8 1 3¢¢ 3G 6¢+4v43
v,” = —3, cos 2qor + 5 <D1 + (it vaE) e + 0> cos 2qpx
_1 1 G _ ¢¢ _< (2)
2D+ (\/mw 2u(4p+v/20€) u) + V. (135)
Since
M(Awéz)—i—aydivw )) — £w(2 = 2u0,divw® — (02,0 152 +8§y w, ) (8uq§+§)w§2),

from (133)—(135) we get the following boundary condition for y = 0:

; 2) _ 2_ ¢ ¢ Gi ¢
2u8ydlvw( ) = (Q;qu — Z) <2u(4u+\/m) — Voo T ﬁ> cos 2qpx

+ <—§D1 g+ G + 2R (4B— BT 1 —1) + VR + 1) cos2qoz  (136)
+ (CL Va0t ><q0+2\/qo 1—1—45) cos 2qo.

Then using (132)—(133) we obtain that divw(®) satisfies the equation

2uAdivw® — ¢divw® = 2¢ (qg — @+ 1)2623/\/‘13T cos 2qox
+ Ci(qg(\/qu —AB) + VAR +1(4B — @ — 2/ @ + 1+ 1)) 6y\/4quCOSQqOI
+50+VAG D) (@ +20/F T 1-1-48)(1+ AG + 1)

203/ @+ 1+ 8ﬁq§) VA oo 2q0,
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solving which with boundary condition (136) we derive

D2 cos2qyz, (137)

where
Dy =—5D1 + g0 + (a3 + 203 (48 — V@@ +1—1) + (V@ + 1

49 _ G <
(Q,UCIO §/4)<2u(4u+\/ﬂ) Vaneian T u)

+ 320+ 201G+ 1= G) (@ + 2V +1—1-4)

divw®

+ & (4808 — BV@+ 1+ 1VAG+ 1 +2V/F +1-1-45))
(\/4(184_%4_\/@) 0 0 0 4 0 ( 0 0 )
2¢ 2 2 2
— B — VvV +1
(\/4q3+§+2\/q8+1) (a6 i +1)

S (RAVATR), (466 - V@ +1

_ (\/4qg+%+1+\/4qu)
@+ 2V/E 1 -1 48)(1+ VAZ +1)). (138)

Now using (83) we get
0,0 QM( g —$+¢ q§+1+§—5)+1(?;fq8+<5+c\/q0

9 ( & G _) .y ) ) 50
Ho 2u(4u+\/m) T Vareran T V458 — cos 2qo, (139)
therefore
2) __ sin2qox D ¢ ¢ c
o) = 22 ( L _Z<3q8+ﬂ+4m_4ﬁ(m+2)>
Vi
it —G( % 1)) (140)

Appendix C Representations of p® and v®

The vector functions p®, v(® appearing at the order a® in the expansions (74), (75)
are represented as

p(s) _ p(311) + p(312) + p(32), v = GBI 4 612) | V(32)’ (141)

and to find the coefficient b in (71) we need to calculate only p®*) and v whose a-
component (y-component) contains all terms with the factor sin goz (cos goz), except
for those additionally having the multiplier b. It follows from (94) that on the line
y=0

Va1 @ .
plB (5(1 q°+ + /465 + (D@3 + 1 - Bg) — % - %) sin gox (142)
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2+1
pé:m) (g(m_gqg_l) — \/qé)—+§qg+%

2
4q¢ + 1( > qi“ + g o g)) COS . (143)

Then since Ap®tV p(311) we have pG (z,y) = p® (z,0)eVV4T, We substitute
this expression for p©' in place of p® in (95) and use (77) and (85)—(87) with (88)
to conclude that components of v satisfy the following equations for y < 0

(A 1 9, dive 1) — £y 31)
= (=GHY + CH®ev 4 CH® yV195+1) vV 6+ sin gz,

p(AvBD 4 9, divv @Dy — g1
= (=GH" + CHPe? + CHP eV v 146+1) UV 46+ cos gy,

where

3
— B4+ AG T (2 VG 1 Ba) -4 - 2,

(144)

2 = a1+ Ve 1) %“—%—i)
+U+¢%+U( GH1(2V@+1-5g) -4 -2),

=)

Vag+1 2
HE = (V2 -8 L) (g —2(1+ /@ + 1))
/2 1 3
+€I0<5CI0 o +\/4q0+1<‘10\/q0+1_5q0)_70_%0>
+

+2(1+\/q3+1)(§(\/q3+1—zqg_1)——vq§“+gq3
4q3+1<\/q8+1+ﬁ 1 6))7

W~

1 — = _ £

H® =B /@ +1-28¢+ (VE+ 1+ VAg +1) (— - %)

2 4 2 a2+
H<3>=‘1—0—%0—%—(\/q3+1+\/4q§+1)(‘{70+ L —i—ﬁ).
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We also have boundary conditions for y = 0:
(0, v B 4 9,0B31)) = Q sin gz, (145)
2u8yvy311 = Rcos qoz, (146)

where constants @), R are obtained from (96)—(97) (see computations in Appendix
D). The solution v3! is represented as follows:

v = (IVe¥ + 1P 4 [P eV 46T eV 6 sin oz
_ <q0Mey\/m + \/qg + %Ney\/q§+§/u> sin g, (147)

15311 (](1 eY + I(z + ](3 ey\/4q0+1)ey\/q0+1 COS Qo
n <\/q0 + & MerVaTe/en quequ0+5/”> CoS G, (148)

where

M=+ (Hf) (u(q§ A/ @ F 1 4) - £)+H§2)uqo(1 + V@ + 1)) ,
£ (Héz) (M(Q B+1+2—q}) - 5) ~ HP pao(1+ V@ + 1)) ,

(1 —
L7 =

dy = 8uPq5 + (164" — 6u€) (14 /g5 + 1) + &2,

I = — e (Hagl)(qu +2p = &) + Hy pigo /@ + 1) ,
) 1 1
P = firs (Hé (= pgd — &) — Hi pao/ad + 1) :

19 = £ (98 + 4p0 + 4/ Tl + 56 + 1 - €) HS
g0 (/@ + 1+ VAG + 1)H§3)) ,
=< ((3uqo + 2+ 2py/Aql + 52 + 1 — ) HY
—pqo (/@ + 1+ /4G + 1) HY )>,

dy = 4pgs (1645 + 18 — 3¢)
+ 20 (16pg; + 8p — 3€) /4qg + 5gd + 1+ 16p* — 6u& + & (149)

The last two terms in (147) and (148) represent the linear combination

MV (e¥V B+ @) cog gox) + NV (e¥V%6+E/b sin gox)
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of vector functions satisfying the homogeneous equation p(A - +Vdiv-) — ¢ = 0,
and coefficients M and N are found from the boundary conditions (145)—(146),

M = —5amg <2W0 a6 + 5 Q + (2ug0 + &) R) (150)
N = W(W% +8) Q + 2uq0\/ @ ) (151)
where
Q=0Q+ uqo(lé” + 19+ I(3>) (152)
p(10 + V@ + 110 + 1) + /g 119,

R=R- QM(I(” VR + 1P+ 1)+ VA ¥ 11(3))
and @), R are obtained below.

Appendix D Boundary conditions for vV

In order to establish the coefficient @ in (145) we consider each term in the right-hand
side of the first boundary condition of (96) and collect coefficients in front of sin gyz.
Equation (117) yields

2ud? v pM [pM] = —% sin gox + C'sin 3goz. (153)

:vy:v

Hereafter C' denotes a generic constant whose value may possibly change from line
to line. Next, by (123) we have

268,08 [p?) (154)

_ ¢¢ G 204743 \ o :
= —2ubqo (Dl + 2t V) ~ Voiron + =% 0) sin gox + C'sin 3qp,

and (140) entails

20,02 () = % (2 — (363 + 5 + 4B+ 1~ 48 (575 +2))

4q§+ﬁ

+AvgB — Q(Eﬁ_‘;—u - i)) sin goxr + C'sin 3o (155)
Then considering (112) for y = 0 and using (123) we get

(aiy Uy +a§y Uz ) @ = Slnqox<q0§(1 + Va5 + ) qoGi

¢€ Gi 2(+v43
2040 (Dl + 2u(dutv2E)  V2E+2p + =2 0) (156)
£ <€ _ Ci 20+v43 .
+q° (Dl + 2u(4p+v20E)  V2uE+2p + 2u 0)) + C'sin 3qo.
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Differentiating (112) in y and substituting (118) we obtain, for y = 0
—5(,, 050 + 05, 0) [PV (157)

Yy y
=2 smqox(gﬁ — % —2¢(q3 + V@ + 1+ 1)) + C'sin 3gpx.
Similarly to (156) using equation (132) and (140) we get
(9208 + 02 P pM) = —2 (g2 — \ /g2 + 1) sin goz
—l—%(\/qo —48) (1 + /4¢3 + )sinqox—%(\/qgjt — 43) sin qo
4 i <¢4ql2)2 == (3 + &+ AVE T~ 48 (5 +2))

0t
+4yq3 8 — CZ(erF 4>) sin gor + C'sin 3gpx. (158)
Finally,
AP AP [pO) = frgisingor + Csindgr.  (159)

Thus combining (153)—(159) we have

Q=(By—as + qu(\/qo —AB) (1 + V4@ + 1) + 2 /@ +1

— ¢¢ _ Gi 2¢+7q
ﬁ(uqo 2qo) <D1 T 2u(4pt+v2pE)  V2uE+2p T O)

+§(q0§(1+m) +qOQ) _%O(Ci G +1+3 +2§)

Apgg+€ D 1
G (\/4%%;5 + 4 = CZ(WJFW B Z)
n
%<3q§+§+4\/q§+1—4ﬁ<m+2)>). (160)
Next we consider (97) and establish that
2,u0yvl(/3) = b(vqg — 20+ ¢ — SV(O)) cos qox + R cos qox + C' cos 3qo, (161)
where

_ 2 GB_ G £ _ 3pag 3uqg ¢¢ G
R——Qﬂg%_T_Z"'(@_ 40>D1_ 40(2u(4u+m)_\/mm>
2
+ (VBT +VAG+1) + % — 20 /F+1-¢(Ven - ¢) - &
—%(q8+2\/q(%+1—1)(1+\/4qo+1)+‘%<"\/ +1— 3795 +Cg5- (162)

For the first term in the right hand side of (97) we have, by (114),

,u(&vvz(/l) + 9,vi) [p®) = —B(gj cos gox + C cos 3qoa. (163)
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Next two terms are transformed as follows

/2

(3 U(2) +9 0(2))[ Dy 4+ (32 (1) 4 3§y v ) W[pV] = 20,0V [pM)]

— [PV M) = A[pD)*[pD) = (2 — (Bg) cos gz

+ (Dl * 2u(4ufm) B \/W%Hu T 202?%) €08 o + C'cos g0, (164)

where we have used (82) and (123). With the help of (38) we find, for y =0

- 2“a§yy y'O ' ga;yyy ulp W]? = cos qox<ﬁg 2600 —C+ %

_ B ¢ ¢e? NI )
A 8 16p(aptv2pE) | 8(V2uE+2p)

+ C cos 3qoz. (165)
It follows from (118) that
—2u02 vl = COS qoT (5((1 +Va@E+1+ fﬂ) 69) + C cos 3qo. (166)

yyy

Differentiating (112) in x and subtracting the derivative of (113) in y, setting y = 0,
and using (115), (123) we get

azi/)’yy Uy [ (1)] - _% COS%:”(CZ' (qg + q(% + 1) - (2ng + €)D1
2
0

_ 2 ¢ G 20+79
2(“q0+5)<2u(4u+¢m) VaReTm T 2 )

—2¢(1+ g2 +1) ) + C cos 3qo. (167)

Since 2,u8§y1)3(,2) = p(Avf? + 8,divv®) — 18, (8,08 + 8,v)) we derive with the help
of (133)—(135) that

yyy

20, ((2uq§ +5) D1+ E(VE 42V — 4 26

+ (245 + %) <2p(4pf\/m) N \/W%Hu) (3uq5 + 5) 2 Cz(_ —b)

(@ +2V@FT-1-48)(1+ VAG +1) - 14y/F +1 - 463)

+¢(20—1) - % S (g8 + 2@ +1— 1)) cos qox + C' cos 3qox. (168)
Finally, we have

—yb[pM]" — %fy[p(l)]’2 [pM])" = cos o (bfng + %”yqé) + C' cos 3qpz. (169)

Combining (163)—(169) (and taking into account (131)) we obtain (161) with R given
by (162) .
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Appendix E The equation for the coefficient b

Now we consider the boundary condition ( 8) and find the coefﬁcient b which deter-

mines the bifurcation type. Since 2ud,vl" = =202, V,pt) + ~4[pM]" for y = 0, we
have

4
By (118), (139)—(140) and (124) we get, correspondingly,

%dfyvf,l)[p( 2 = 16# ( —-2A(V@+1+1+ )) cos qox + C cos 3qoz,

2
2V, V,pWp® 49, v p? = —BV% cos gox + C cos 3qox.

/ .
ayv?sz)p(l) _ Ug(f)P(l) - i(—%gqg — % +(V@+ 1+ §—§> COS Qo

_l_

2=

( ek LR TR S Rl
q0+ﬁ

&€ ¢
_2“5<2u<4u+m> \/ﬂ.q.Q“ + )) cos qox + C cos 3qoz,

and

—_p(D1,(2) ¢g _ Gi 2¢+v4q3
v [pY] = ﬁ(Dl T v~ vaeran T o 0) cos qox + C' cos 3qo.

Using (38) we obtain

6 " Yyyy

193 Vi, [pW)3 = ﬁ(% +4¢ — Q) cos qox + C' cos 3qo,

and from (117) we have
—0,v M pW[pW] = <o cos gox + C cos 3go.
81

Substituting the expressions obtained above into (98), combining all the terms with
cos qox, and taking into account (99) we get the relation (102). Finally, using (147)—
(148) we obtain

€
g 2+ S
~ bgod, Algo) = D(qo)+2u§q0+52Q i \/ %0 21 p_ [(123)

2pq0D(qo) D(qo0)

i D(qo)+2u£qo+£2< Ji (O \/OT[(HS 711 If”)

2q0D(qo)

2u5\/qo+ 2u <[(1 I \/%7[(123 i 4q T 1I( ))

"~ D(q)

_ ___ Dy 3 £¢ Gi <
AD, 2, £ <2u(4u+v2u £ V2ué+2p T u)’
8u 4q0+2u

02— 1V 1P 4 1) and 17 = 1Y + 1Y + 1Y

where I
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