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Abstract

We consider a continuum active polar fluid model for the spreading of ep-
ithelial monolayers introduced by R. Alert, C. Blanch-Mercader, and J. Casade-
munt, 2019. The corresponding free boundary problem possesses flat front
traveling wave solutions. Linear stability of these solutions under periodic per-
turbations is considered. It is shown that the solutions are stable for short-wave
perturbations while exhibiting long-wave instability under certain conditions
on the model parameters (if the traction force is sufficiently strong). Then,
considering the prescribed period as the bifurcation parameter, we establish
the emergence of nontrivial traveling wave solutions with a finger-like periodic
structure (pattern). We also construct asymptotic expansions of the solutions
in the vicinity of the bifurcation point and study their stability. We show that,
depending on the value of the contractility coefficient, the bifurcation can be a
subcritical or a supercritical pitchfork.
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1 Introduction

The spreading of epithelial tissues plays an important role in the physiology of living
organisms. For instance, epithelial cells heal wounds by the collective migration of
large sheets of cells bound together by intercellular connections [15]. Other examples
include tissue morphogenesis and tumor invasion. It is observed in experiments both
in vivo and in vitro that the tissue front experiences instabilities similar to the cele-
brated Saffman-Taylor instabilities [22], leading via multicellular protrusions to the
formation of finger-like patterns, see, e.g., [19, 24, 18].

In this work, we study this phenomenon in the framework of a free-boundary
model for epithelial monolayers spreading introduced in [2], that is based on the the-
ory of active polar fluids [20]. The epithelial monolayer is regarded as a compressible
fluid flowing subject to hydrodynamic viscous forces, cell-substrate friction, surface
tension, and active traction and contractile forces. The active forces are described
by the polarity field.

We establish nontrivial traveling wave solutions describing the onset of finger-like
patterns. These patterns emerge for a critical scale as the result of competition of
destabilizing traction forces with stabilizing contractile stresses and surface tension.
It was observed in [2] by means of linear stability analysis that solutions with flat
interfaces are unstable under long-wavelength perturbations via the following kine-
matic mechanism. A small perturbation of the monolayer edge results in a velocity
gradient that makes peaks move faster than troughs. This leads, as shown in [23] via
numerical simulations, to the formation of finger-like patterns.

In the present work we analytically establish traveling wave solutions with finger-
like patterns. Specifically, we find flat-front traveling wave solutions, study their
stability under periodic perturbations with a prescribed period, and, considering
the period as a bifurcation parameter show that at a critical value of the period, a
pitchfork bifurcation occurs and a new branch of nontrivial traveling wave solutions
emerges. Next, we study the linear stability of these new traveling wave solutions
and identify whether the bifurcation is subcritical or supercritical. This stability
issue has important biophysical implications. Namely, a subcritical bifurcation cor-
responds to an abrupt onset of finger-like patterns while a supercritical bifurcation
implies a gradual transition. We show that the type of bifurcation depends on the
mechanical properties of tissue and both subcritical and supercritical pitchforks can
happen. Specifically, varying the contractility parameter we observe that a subcritical
pitchfork corresponds to large or sufficiently small values of the contractility, while in
another range of rather small values of the contractility, there occurs a supercritical
pitchfork.

Many non-equilibrium physics systems, in particular hydrodynamic systems man-
ifest pattern formation phenomenon [12]. An important example of interfacial pat-
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terns in fluids confined in a quasi-two-dimensional geometry, the Hele-Shaw cell, was
first addressed by P. Saffman and G. I. Taylor in the seminal work [22]. The corre-
sponding free boundary model has been attracting a lot of attention in both physical
and mathematical communities, see, e.g., [5], [13], [17]. Moreover, free boundary
problems of this type (with additional scalar field) appear in recent biological models
of tumor growth [10], [11] or cell motility [4], [3], [14], [8], [21]. In [9] A. Friedman
and F. Reitich discovered symmetry-breaking steady states bifurcating from radial
solutions of the tumor growth free boundary problem, thus revealing pattern forma-
tion in this model. Another example of symmetry breaking bifurcation is studied in
work [21] dealing with a cell motility model, where stability issue is also addressed.

The paper is organized as follows. Section 2 is devoted to the description of the
model. In Section 3 we study the linearized operator, in particular, we show that it
has a discrete spectrum. Next, we consider the flat front traveling wave solution and
calculate its spectral representation via the Fourier analysis. The explicit formula
for eigenvalues is given and analyzed in Section 4, while its derivation is presented in
Appendix A. Then we study the case of the critical period such that the kernel of the
linearized operator (around the flat traveling wave) has nonconstant eigenfunction.
We show that a new branch of traveling waves with a finger-like structure bifurcates
and study their stability. The theory of M. Crandall and P. Rabinowitz [6], [7]
is used to study both bifurcation and stability questions. Namely, bifurcation of
nonflat traveling waves is established in Section 5, where we exploit symmetries of
the problem to adjust functional setting for applying Theorem 1.7 from [6] (Theorem
3 below). Addressing stability of traveling waves, we use results of Section 3 and
Theorem 1.16 from [7] (Theorem 5 below) to conclude that stability is determined
by the fact whether the period (bifurcation parameter in the problem) increases
or decreases when departing from the bifurcation point. This makes us construct
several terms in the asymptotic expansion of the traveling wave solutions. Section 6
deals with these constructions, while many technical calculations are transferred to
Appendices B–E. Finally, Section 7 contains some numerical results and conclusions.
There, in particular, we describe how the stability/instability of bifurcating traveling
waves depends on the value of the contractility parameter.

2 Model

Following [2], we employ a continuum active polar fluid model of tissue spreading,
described by a polarity field p(x, y, t) and a velocity field v(x, y, t). A tissue monolayer
spreads by extending its edge towards free space. The phenomenon is mainly caused
by traction forces generated by cells close to the monolayer edge. These cells polarize
perpendicular to the edge, where we prescribe p = n (the unit outward normal).
The field p is assumed to follow purely relaxational dynamics and equilibrate fast
(compared to the spreading dynamics) to the minimum of the energy with density
L2
c |∇p|2+ |p|2, where Lc is the characteristic length describing the decay rate of p in

the bulk. For simplicity, we set Lc = 1 that can always be achieved by an appropriate
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scaling of spatial variables. Thus, p solves

∆p = p in Ω(t), p = n on ∂Ω(t), (1)

where Ω(t) denotes the domain occupied by the tissue and n is the unit outward
normal vector to the boundary.

The force balance equation reads

divσ + f = 0 in Ω(t), (2)

where σ is the stress tensor and f is the stress field given by the following constitutive
equations for a compressible active polar fluid:

σ = µ(∇v + (∇v)T )− ζp⊗ p, f = −ξv + ζip in Ω(t), (3)

where v is the velocity field, µ > 0 is the constant effective viscosity, ζ < 0 is the
constant contractility coefficient, ξ > 0 is the constant friction coefficient, and ζi is
the constant contact active force coefficient. On the free boundary σ satisfies

σ · n = −γκn on ∂Ω(t), (4)

where κ denotes the curvature of the boundary and γ > 0 is the constant surface
tension of the monolayer edge.

While the model in [2] deals with small (linear) perturbations of a rectangular
monolayer of epithelial tissue, in this work we consider half-plane type domains. This
corresponds to modeling of the local behavior near the boundary of sufficiently large
tissue specimens. Mathematically, considering half-plane type domains allows us to
go beyond linear stability analysis and describe the formation of finger patterns via
bifurcation of traveling wave solutions.

The evolution of the boundary ∂Ω(t) is described by equation y = ρ(x, t), assum-
ing that Ω(t) = {(x, y)| y < ρ(x, t)}. Then the normal vector is given by

n =
1

√

1 + ρ′2

(−ρ′

1

)

, (5)

where ρ′ denotes the partial derivative of ρ in x.
Assuming the continuity of velocities up to the boundary we have the following

kinematic boundary condition relating the normal velocity of the boundary and the
normal component of the tissue velocity field:

v · n = Vn =
1

√

1 + ρ′2
∂ρ

∂t
. (6)

Taking (1)–(6) together, we have the equation

∂ρ

∂t
= A(ρ), A(ρ) = (vy − vxρ

′)
∣

∣

y=ρ(x,t)
, (7)
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with v = (vx, vy), p = (px, py) solving

∆p = p for y < ρ(x, t) (8)

µ(∆v +∇divv)− ζdiv(p⊗ p)− ξv + ζip = 0 for y < ρ(x, t) (9)

p = n for y = ρ(x, t) (10)
(

µ(∇v + (∇v)T )− ζp⊗ p
)

n = −γκn for y = ρ(x, t). (11)

We also assume that v and p vanish as y → −∞.

3 Linearized operator and its spectrum

Let ρ(x) be an arbitrary function from the space Ck,δ
# (0,Π) of k (k ∈ {3, 4, . . . }) times

differentiable Π-periodic functions whose k-th derivatives are Hölder continuous with
the exponent 0 < δ < 1. Problem (8)–(11) has a unique Π-periodic in x and vanishing
as y → −∞ solution in the subgraph domain y < ρ(x). Therefore the operator A(ρ)
is well-defined by (7). By applying elliptic estimates from [1] to problem (8)-(11) we
get that the operator A maps ρ ∈ Ck,δ

# (0,Π) to A(ρ) ∈ Ck−1,δ
# (0,Π).

In this section, we consider the linearized operator ∂ρA(ρ) and show that it has
a discrete spectrum and high magnitude eigenvalues are stable (have negative real
parts). The following lemma establishes differentiability of A(ρ) and provides a for-
mula for the first derivative.

Lemma 1. The operator A(ρ) is of the class C∞
(

Ck,δ
# (0,Π), C

(k−1),δ
# (0,Π)

)

, k ∈
{3, 4 . . . }. Its first derivative is given by

∂ρA(ρ)ρ̃ = (w̃y − ρ′w̃x − ρ̃′vx)
∣

∣

y=ρ(x)

where p, v solve (8)-(11), w̃ is the solution to the system

µ (∆w̃x − ∂xdivw̃ − 2ρ̃′′∂yvx −ρ̃′(∂2
yyvy + 4∂2

xyvx)
)

− ξw̃x

+ζiq̃x + ζρ̃′∂yp
2
x = ζ

(

div
(

p⊗ q̃+ q̃⊗ p
))

x
for y < ρ(x), (12)

µ (∆w̃y − ∂ydivw̃− ρ̃′′∂yvy −ρ̃′(∂2
yyvx + 2∂2

xyvy)
)

− ξw̃y

+ζiq̃y + ζρ̃′∂y(pxpy) = ζ
(

div
(

p⊗ q̃+ q̃⊗ p
))

y
for y < ρ(x), (13)

with boundary conditions

−2µρ′∂xw̃x + µ (∂yw̃x + ∂xw̃y)− 2µ
(

ρ̃′∂xvx − ρ′ρ̃′∂yvx
)

− µρ̃′∂yvy

= −ρ̃′(ζ − γκ)− γρ′
(

(

1 + ρ′2
)−3/2

ρ̃′
)′

for y = ρ(x), (14)

−µρ′
(

∂yw̃x + ∂xw̃y

)

+ 2µ∂yw̃y − µρ̃′ (∂yvx − ρ′∂yvy + ∂xvy)

= γ
(

(

1 + ρ′2
)−3/2

ρ̃′
)′

for y = ρ(x), (15)
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and q̃ satisfies

∆q̃− ρ̃′′∂yp− 2ρ̃′∂2
xyp = q̃ for y < ρ(x), (16)

q̃x = − ρ̃′
(

1+(ρ′)2
)3/2 for y = ρ(x), (17)

q̃y = − ρ′ρ̃′
(

1+(ρ′)2
)3/2 for y = ρ(x). (18)

Proof. To find ∂ρA(ρ) consider the perturbation ρ(ε) = ρ + ερ̃ of the domain, where
ε is a small parameter. Let p, p(ε) be the solutions of the following problems in
domains with boundaries y = ρ(x) and y = ρ(x) + ερ̃(x) respectively:

∆p = p for y < ρ(x), p = n for y = ρ(x), (19)

∆p(ε) = p(ε) for y < ρ(x) + ερ̃(x), p(ε) = n for y = ρ(x) + ερ̃(x). (20)

Represent p(ε) in the form

p(ε)(x, y) = p(x, y − ερ̃(x)) + εp̃(ε)(x, y − ερ̃(x)), (21)

substitute in the equation (20) to find (after changing variables) that

∆p̃(ε) − ρ̃′′∂y
(

p+ εp̃(ε)
)

− ρ̃′
(

2∂x − ερ̃′∂y
)

∂y
(

p+ εp̃(ε)
)

= p̃(ε) for y < ρ(x),

p̃(ε)x = ρ′

ε
√

1+(ρ′)2
− ρ′+ερ̃′

ε
√

1+(ρ′+ερ̃′)2
for y = ρ(x),

p̃(ε)y = 1

ε
√

1+(ρ′+ερ̃′)2
− 1

ε
√

1+(ρ′)2
for y = ρ(x)

Passing to the limit as ε → 0 in this problem using elliptic estimates we see that p̃(ε)

converges in Ck,δ(K) on every compact K ⊂ {(x, y)| y ≤ ρ(x)} to the solution p̃ of
(16)–(18).

Similarly one can show that if v(ε) is represented as

v(ε)(x, y) = v(x, y − ερ̃(x)) + εṽ(ε)(x, y − ερ̃(x)), (22)

then ṽ(ε) converges in Ck,δ(K) on every compact K ⊂ {(x, y)| y ≤ ρ(x)} to the
solution ṽ of (12)-(15). Here the limit transition can be justified by using elliptic
estimates from [1].

Reasoning analogously one establishes the existence of higher order derivatives.

Notice that setting

w̃(x, y) = ρ̃(x)∂yv(x, y) +w(x, y), q̃(x, y) = ρ̃(x)∂yp(x, y) + q(x, y), (23)

we can simplify the boundary value problem (12)–(15) as follows. The operator
∂ρA(ρ) can be written as

∂ρA(ρ)ρ̃ = (w · n+ ρ̃∂yv · n)
∣

∣

y=ρ(x)

√

1 + ρ′2 − ρ̃′vx
∣

∣

y=ρ(x)
(24)
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with w,q solving

∆q = q for y < ρ(x), (25)

µ(∆w +∇divw)− ζdiv(p⊗ q+ q⊗ p)− ξw + ζiq = 0 for y < ρ(x), (26)

q = ρ̃′

1+(ρ′)2
t− ρ̃∂yp for y = ρ(x), (27)

µ(∇w + (∇w)T )n = γ
(

(

1 + ρ′2
)−3/2

ρ̃′
)′
n+G for y = ρ(x), (28)

where

Gx = µ√
1+(ρ′)2

(

ρ̃′ (2∂xvx + ρ′ (∂xvy + ∂yvx)− 2∂yvy) + 2ρ′ρ̃∂2
xyvx

− ρ̃
(

∂2
xyvy + ∂2

yyvx
))

,

Gy =
µ√

1+(ρ′)2

(

ρ̃′ (∂yvx + ∂xvy) + ρ′ρ̃
(

∂2
xyvy + ∂2

yyvx
)

− 2ρ̃∂yyvy
)

,

and t is the unit tangent vector, tx = − 1√
1+(ρ′)2

, ty = − ρ′√
1+(ρ′)2

.

For every ρ̃ ∈ H
3/2
# (0,Π) formula (24) defines ∂ρA(ρ)ρ̃ ∈ H

1/2
# (0,Π) since prob-

lem (25)–(28) has a unique solution pair (vanishing as y → −∞) and ‖w‖H1(Ω#,ρ) ≤
C‖ρ̃‖

H
3/2
#

(0,Π)
, where Ω#,ρ = {(x, y) | 0 ≤ x < Π, y < ρ(x)} (the period of the do-

main). Hereafter C denotes a generic finite constant whose value may change from
line to line.

Theorem 2. Assume that ρ ∈ C3,δ
# (0,Π), δ > 0. Then ∂ρA(ρ) is a closed operator

in H
1/2
# (0,Π) and the domain of ∂ρA(ρ) is H

3/2
# (0,Π). Its spectrum comprises at

most countable set of eigenvalues (of finite multiplicities) without finite accumulation
points. Moreover, for every eigenvalue λ it holds that

Re(λ) ≤ C − η∗|λ|, (29)

where η∗ > 0 is independent of λ.

Proof. Notice that by elliptic estimates ∂ρA(ρ)ρ̃ ∈ H
1/2
# (0,Π), ∀ρ̃ ∈ H

3/2
# (0,Π), and

the operator ∂ρA(ρ) annihilates constant functions, therefore it is well defined on

H
3/2
# (0,Π)/R. Consider for Λ > 0 the equation

∂ρA(ρ)ρ̃− Λρ̃ = f in H
1/2
# (0,Π)/R (30)

and show that for sufficiently large Λ > 0 there is a unique solution ρ̃ ∈ H
3/2
# (0,Π)/R

for every f ∈ H
1/2
# (0,Π)/R. To this end, we write down a weak formulation of (30)

multiplying by
(

(

1 + ρ′2
)−3/2

φ′
)′

and integrating over the period,

E(ρ̃, φ) = −
∫ Π

0

f ′φ′(1 + ρ′
2)−3/2

dx ∀φ ∈ H
3/2
# (0,Π), (31)
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where the form E(ρ̃, φ) is given by

E(ρ̃, φ) =
∫ Π

0

(

(

(

1 + ρ′
2)−3/2

φ′
)′
∂ρA(ρ)ρ̃+ Λ

(

1 + ρ′
2)−3/2

ρ̃′φ′
)

dx. (32)

Since ∀φ̃ ∈ H
−1/2
# (0,Π) with zero mean value the equation

(

(

1 + ρ′2
)−3/2

φ′
)′

= φ̃

has a solution φ ∈ H
3/2
# (0,Π), the variational problem (31) and the equation (30)

are equivalent. Next we show that for sufficiently large Λ the form (32) satisfies

conditions of the Lax-Milgram theorem. The continuity of E(ρ̃, φ) on H
3/2
# (0,Π)/R

follows from the boundness of the operator (24), and we proceed with its coercivity.

Consider an arbitrary function ρ̃ ∈ H
3/2
# (0,Π) with zero mean value. Take the dot

product of (26) with w and integrate over Ω#,ρ. Using (26), (28) we obtain via
integration by parts,

∫

Ω#,ρ

(

µ
2

∣

∣∇w +∇wT
∣

∣

2 − ζ
(

∇w +∇wT
)

p · q+ ξ|w|2 − ζiq ·w
)

dxdy

+ ζ

∫ Π

0

(n · qp ·w + n · pq ·w)
∣

∣

y=ρ(x)

√

1 + ρ′2dx

= µ

∫ Π

0

(∇w + (∇w)T )n ·w
∣

∣

y=ρ(x)

√

1 + ρ′2dx,

(33)

Furthermore, by (28) and (24) we have

µ

∫ Π

0

(∇w + (∇w)T )n ·w
∣

∣

y=ρ(x)

√

1 + ρ′2dx = γE(ρ̃, ρ̃)

− γ

2

∫ Π

0

(

(

1 + ρ′
2)3/2

vx

)′
ρ̃′ 2

(1+ρ′2)
3dx− γΛ

∫ Π

0

(

1 + ρ′
2)−3/2

ρ̃′
2
dx

+ γ

∫ Π

0

(

ρ̃∂yv · n
√

1 + ρ′2
)′

ρ̃′dx

(1+ρ′2)
3/2 +

∫ Π

0

G ·w
√

1 + ρ′2dx.

(34)

We combine (33) and (34), then applying the Korn inequality and the Cauchy-
Schwarz inequality we find

E(ρ̃, ρ̃) ≥η1‖w‖2H1(Ω#,ρ)
− C1‖w‖H1(Ω#,ρ)‖q‖L2(Ω#,ρ)

− C2‖ρ̃‖H1(0,Π)‖w(x, ρ(x))‖
H

1/2
#

(0,Π)
+ (η2Λ− C3)‖ρ̃‖2H1(0,Π),

(35)

where η1,2 > 0 are independent of ρ̃ and Λ. Next, we use the inequality for traces
‖w(x, ρ(x))‖

H
1/2
#

(0,Π)
≤ C‖w‖H1(Ω#,ρ) and the following bound

∫

Ω#,ρ

|q|2dxdy ≤ C

∫ Π

0

|ρ̃′|2dx,

which follows from (25), (27). Thus, for sufficiently large Λ > 0 (35) yields the
following bound

E(ρ̃, ρ̃) ≥ η3‖w‖2H1(Ω#,ρ)
+ ‖ρ̃‖2H1(0,Π), (36)
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with η3 > 0. This inequality in turn implies that E(ρ̃, ρ̃) ≥ η4‖ρ̃‖2
H

3/2
#

(0,Π)
for

some η4 > 0. Otherwise, for a sequence ρ̃(n) with ‖ρ̃(n)‖
H

3/2
#

(0,Π)
= 1 it holds

that ‖ρ̃(n)‖H1(0,Π) → 0 and the corresponding solutions w(n) converge to 0 strongly
in H1(Ω#,ρ). Then in view of (26) and (28) we have that (ρ̃(n))′′ → 0 strongly

in H
−1/2
# (0,Π). Therefore, by compactness of the embedding of H

3/2
# (0,Π) into

H
1/2
# (0,Π) the spectrum of ∂ρA(ρ) is discrete.
Assume now that λ is an eigenvalue and ρ̃ is a corresponding eigenfunction. Sub-

tract from ρ̃ its mean value then the resulting function, still denoted by ρ̃, satisfies
∂ρA(ρ)ρ̃ − Λρ̃ = (λ − Λ)ρ̃ up to a constant. Therefore arguing as above (but work-
ing with real and imaginary parts of ρ̃) one can show that if ρ̃ is normalized by
‖ρ̃‖H1(0,Π) = 1 then

Re(λ) ≤ C − η4‖ρ̃‖2H3/2
#

(0,Π)
. (37)

On the other hand

|λ| ≤ C|λ|
∫ Π

0

(

1 + ρ′
2)−3/2|ρ̃′|2dx

≤ C1‖∂ρA(ρ)ρ̃‖
H

1/2
#

(0,Π)

(

‖ρ̃′′‖
H

−1/2
#

(0,Π)
+ ‖ρ̃′‖

H
−1/2
#

(0,Π)

)

≤ C2‖ρ̃‖2H3/2
#

(0,Π)
.

Combining this bound with (37) we obtain (29).

4 Flat front solutions and their stability analysis

We are interested in a particular form of solutions of problem (8)–(11) that evolve
translationally, traveling waves. The system (8)–(11) has, inter alia, a flat front trav-
eling wave solution whose boundary is a straight line moving with constant velocity
V (0) along y-axis. This solution does not depend on the x-variable and is stationary
in the moving frame: v(x, y, t) = V(y − V (0)t), p(x, y, t) = P(y − V (0)t). Moreover,
it is defined up to a translation in the direction of y-axis and we stick to the one with
ρ = 0. Then we have Px = 0, Vx = 0 and

{

∂2
yyPy = Py for y < 0,

Py = 1 for y = 0,
i.e. Py = ey,

{

2µ∂2
yyVy − ξVy − 2ζe2y + ζie

y = 0 for y < 0,

2µ∂yVy = ζ for y = 0.
(38)

The unique (vanishing as y → −∞) solution of (38) is given by

Vy(y) =
ζ

8µ−ξ

(

2e2y −
√
ξ√
2µ
e
√
ξy/

√
2µ
)

+ ζi
2µ−ξ

(√
2µ√
ξ
e
√
ξy/

√
2µ − ey

)

, (39)
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so that it travels with constant velocity

V (0) = Vy

∣

∣

y=0
= ζ

4µ+
√
2µξ

+ ζi√
2µξ+ξ

. (40)

A flat front traveling wave solution can be considered as a periodic one with
an arbitrary period Π. Our interest however is in finding non-flat Π-periodic in x
traveling wave solutions, that is we seek a pair of Π-periodic function ρ(x) and a
constant Cρ (velocity of this wave) such that

A(ρ) = Cρ, (41)

where the operator A(ρ) is given by (7) via Π-periodic in x and vanishing as y → −∞
solution of (8)–(11).

In order to perform the bifurcation analysis of the flat front traveling wave solution
(ρ = 0) consider the linearized operator

Lρ̃ = ∂ρA(0)ρ̃. (42)

By (25)–(28),

Lρ = (∂yVyρ+ vy)
∣

∣

y=0
=

ζ

2µ
ρ+ vy

∣

∣

y=0
, (43)

where the (linearized) velocity v = (vx, vy) and the (linearized) polarity p = (px, py)
fields solve the system























µ(∆v +∇divv)− ζdiv(p⊗P+P⊗ p)− ξv + ζip = 0 for y < 0,

∆p = p for y < 0,

µ(∂xvy + ∂yvx) = −ζρ′, 2µ∂yvy = −2µ∂2
yyVy

∣

∣

y=0
ρ+ γρ′′ for y = 0,

px = −ρ′, py = −∂yPy

∣

∣

y=0
ρ = −ρ for y = 0.

(44)

Next, we study the spectral properties of the operator L that amounts to finding
solutions v = eiqxv̂(y), p = eiqxp̂(y) (Fourier modes) for ρ(x) = eiqx, so that

Leiqx =
(

ζ
2µ

+ v̂y(0)
)

eiqx. (45)

We have
px = −iqeiqx+

√
q2+1y, py = −eiqx+

√
q2+1y, (46)

while components of v satisfy for y < 0 the equations

µ(∆vx + ∂xdivv)− ξvx = iqζie
iqx+

√
q2+1y

− iqζ(
√

q2 + 1 + 1)eiqx+(
√

q2+1+1)y, (47)

µ(∆vy + ∂ydivv)− ξvy = ζie
iqx+

√
q2+1y

+ q2ζeiqx+(
√

q2+1+1)y − 2ζ(
√

q2 + 1 + 1)eiqx+(
√

q2+1+1)y (48)
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with boundary conditions on the line y = 0,

µ(∂xvy + ∂yvx) = −iqζeiqx, (49)

2µ∂yvy = −ζ
(

ξ
4µ+

√
2µξ

+ 2
)

eiqx + ζi
√
2µ√

ξ+
√
2µ
eiqx − q2γeiqx. (50)

Here we have used the formula

∂2
yyVy

∣

∣

y=0
=

ξζ

2µ
(

4µ+
√
2µξ

) − ζi√
2µξ + 2µ

+
ζ

µ

which follows from (38) and (40).
We represent the solution of (47)–(50) as the sum

v = ζiv
t + ζvc + γvs (51)

of three terms caused by the traction force, the contractile stress and the surface
tension. More precisely, vt solves (47)–(50) with ζi = 1, ζ = γ = 0; for vc we set
ζ = 1, ζi = γ = 0; for vs we set γ = 1, ζ = ζi = 0. Solutions of the corresponding
problems (103), (104), (105) are found explicitly in Appendix A, so that

vty
∣

∣

y=0
= Λt(q, µ, ξ) eiqx, vcy

∣

∣

y=0
= Λc(q, µ, ξ) eiqx, vsy

∣

∣

y=0
= Λs(q, µ, ξ) eiqx, (52)

where

Λt(q, µ, ξ) =
ξ
√

q2 + ξ
2µ

(

2µ
(

1−
√

q2 + 1
)

+
√
2µξ

(

1−
√

1 + 2µq2

ξ

)

)

D(q, µ, ξ)
(

√

q2 + 1 +
√

q2 + ξ
2µ

)

(√
2µξ + 2µ

)

+
ξq2

(

1−
√

q2 + 1
)

√

q2 + ξ
2µ

D(q, µ, ξ)
(√

q2 + ξ
µ
+
√

q2 + ξ
2µ

)(

√

q2 + 1 +
√

q2 + ξ
2µ

)(√

q2 + ξ
µ
+
√

q2 + 1
)

(53)

Λc(q, µ, ξ) =
ξ
√

q2 + ξ
2µ

D(q, µ, ξ)
(

√

q2 + 1 + 1 +
√

q2 + ξ
2µ

)

(

q2 − 2
√

q2 + 1− 2

+
2q4

(
√

q2 + 1 + 1 +
√

q2 + ξ
µ

)(

√

q2 + ξ
2µ

+
√

q2 + ξ
µ

)

)

+
ξ
√

q2 + ξ
2µ

D(q, µ, ξ)

(

ξ
4µ+

√
2µξ

+ 2− q2
√

q2 + ξ
2µ

+
√

q2 + ξ
µ

)

,

(54)

Λs(q, µ, ξ) =
ξ
√

q2 + ξ
2µ

D(q, µ, ξ)
q2, (55)
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D(q, µ, ξ) = 4µ2q2
√

q2 + ξ
2µ

√

q2 + ξ
µ
− (2µq2 + ξ)2, (56)

Thus, according to (45) we have the following formula for the eigenvalue of the
linearized operator corresponding to the mode eiqx:

Λ(q, µ, ζ, ζi, ξ, γ) = ζiΛ
t(q, µ, ξ) + ζ

2µ
(1 + 2µΛc(q, µ, ξ)) + γΛs(q, µ, ξ). (57)

For simplicity hereafter we omit dependence on the parameters µ, ζ, ζi, ξ, γ and write
Λ(q) and Λt,c,s(q). Notice that Λc(q) → − 1

4µ
, Λs(q) = − |q|

µ
+O( 1

|q|) and Λt(q) = O( 1
q2
)

as |q| → ∞, i.e.
Λ(q) = −γ

µ
|q|+ ζ

4µ
+O( 1

|q|) as |q| → ∞. (58)

Expanding Λ in a neighborhood of q = 0 we get

Λ(q) =
(

µζi
ξ(
√
2µξ+2µ)

+ ζ
2µξ

(

3− 2
√
2− 2

√
2µ(

√
ξ+

√
2µ)

(2
√
2µ+

√
ξ)2

)

− γ√
2µξ

)

q2 +O(q4). (59)

Thus in a neighborhood of q = 0, Λ > 0 for large enough ζi while Λ → −∞ when
|q| → ∞. Then there exists a non-zero root q = q0 > 0 of the transcendental equation

Λ(q) = 0. (60)

We show below that this q0 defines a critical period Π0 = 2π/q0 for which a bifurcation
of nontrivial traveling wave solutions occurs.

5 Bifurcation of traveling wave solutions

Let q0 > 0 be a solution of (60). We apply the celebrated theory of bifurcation
from the simple eigenvalue (see Theorem 3) to show that there emerges a family
of nontrivial traveling wave solutions with periods close to the critical period Π0 =
2π/q0.

It is convenient to pass from the prescribed period Π to another bifurcation pa-
rameter θ = Π/Π0 (scaling factor). Introduce new coordinates x = θx̃, y = θỹ and
change the unknowns ρ̃ = 1

θ
ρ(θx̃), ṽ = 1

θ
v(θx̃, θỹ) and p̃ = p(θx̃, θỹ). This allows us

to reduce the analysis to the fixed period Π0, while the parameter θ appears in the
rescaled version of problem (8)-(11) (where we drop ˜ to simplify the notation)

∆p = θ2p for y < ρ(x),

p = n for y = ρ(x),

µ(∆v +∇divv)− ζdiv(p⊗ p)− θ2ξv + θζip = 0 for y < ρ(x),

µ(∇v + (∇v)T )n = (ζ − γ

θ
κ)n for y = ρ(x).

(61)

Then the problem (41) of finding traveling wave solutions is equivalent to

A(ρ, θ) = (vy − vxρ
′)
∣

∣

y=ρ(x)
= Cρ, (62)
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where Cρ is an unknown constant, and v, p solve (61).
Notice that the linearized operator L(θ) has the eigenvalue Λ

(

q0
θ
, µ, ζ, ζi, ξ, γ

)

given by (57) whose corresponding eigenfunction is ρ = eiq0x. This eigenvalue becomes
zero for θ = 1. In this case, however, zero is a multiple eigenvalue since ρ = 1
and ρ = e−iq0x are also eigenfunctions. To get rid of this multiplicity issue observe
that A(ρ + C, θ) = A(ρ, θ), ∀C = const. Therefore we can pass to the quotient
spaces Ck,δ

# (Π0)/R and Ck−1,δ
# (Π0)/R identifying constant functions with zero. This

eliminates the eigenfunction ρ = 1. Furthermore, the multiplicity can be reduced to
one by assuming the natural symmetry ρ(x) = ρ(−x).

In view of above mentioned we can apply the following

Theorem 3 (Crandall-Rabinowitz [6]). Let X, Y be Banach spaces. Let U ⊂ X be
a neighborhood of 0 and let

Φ : U × (1− θ0, 1 + θ0) → Y (63)

have the following properties:

(i) Φ(0, θ) = 0 for all θ ∈ (1− θ0, 1 + θ0),

(ii) Φ ∈ C2(U × (1− θ0, 1 + θ0)),

(iii) dimKer (∂xΦ(0, 1)) = codimRan (∂xΦ(0, 0)) = 1,

(iv) ∂2
θxΦ(0, 1)x0 6∈ Ran (∂xΦ(0, 1)) where Ker (∂xΦ(0, 1)) = Span{x0}.

Then if X̃ is any complement of Span{x0} in X, there exists ε > 0 and continuously
differentiable functions ψ : (−ε, ε) → R and φ : (−ε, ε) → X̃ such that φ(0) = 0,
ψ(0) = 0, and Φ(αx0+αφ(α), 1+ψ(α)) = 0 ∀α ∈ (−ε, ε). Moreover, Φ−1({0}) near
(0, 1) consists precisely of the curves x = 0 and (αx0 + αφ(α), 1+ ψ(α)), α ∈ (−ε, ε)

Using Theorem 3 we establish bifurcation of nontrivial traveling wave solutions
for the problem (8)–(11), (41).

Theorem 4. Assume that equation (60) has a root q0 > 0 and Λ(jq0) 6= 0 for
j = 2, 3, . . . Assume also that ∂qΛ(q0) 6= 0. Then there is a family of nontrivial
(non-flat) traveling wave solutions ρ = ρ(x, α) of (41) with periods Π = 2πθ(α)/q0,
depending on a small parameter α. Moreover, ρ(x, α) and θ(α) smoothly depend on
the parameter α and ρ(x, 0) = 0, θ(0) = 1.

Proof. Recall that problem (41), where the prescribed period Π is considered as a
bifurcation parameter, is reduced via rescaling with the factor θ > 0 to equation (62)
with fixed period Π0 = 2π/q0. Observe that for every even function ρ ∈ Ck,δ

# (0,Π0)
there is a unique Π0-periodic in x and vanishing as y → −∞ solution v, p of the
rescaled problem (61), and the symmetry

vy(−x, y) = vy(x, y), py(−x, y) = py(x, y),

vx(−x, y) = −vx(x, y), px(−x, y) = −px(x, y)
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holds. Thus we can apply Theorem 3 to the family of operators A(ρ, θ) with X and
Y being subspaces of Ck,δ

# (0,Π0)/R and Ck−1,δ
# (0,Π0)/R (0 < δ < 1, k = 2, 3, . . . ) of

even functions.
The flat front traveling wave solution for ρ = 0 constructed in Section 4 satisfies

the condition (i) of Theorem 3. By virtue of Theorem 1, (ii) is also satisfied. Since
the linearized operator L(θ) has the following spectral representation:

L(θ) : cos jq0x 7→ Λ
(

jq0
θ

)

cos jq0x, j = 1, 2, . . . , (64)

the kernel of L = L(1) is one-dimensional and is spanned by {cos q0x}.
We claim that

Ran (L) =
{

ρ ∈ Ck−1,δ
# (0,Π0)/R

∣

∣ ρ is even,

∫

Π0

ρ cos q0xdx = 0

}

. (65)

Indeed, consider the equation L̺ = ρ, where ρ belongs to the space given by the
right-hand side of (65). Then expanding ρ into Fourier series ρ =

∑

j≥2 cj cos jq0x
we have

̺ =
∑

j≥2

cj
Λ(jq0)

cos jq0x = −
∑

j≥2

(

µ

γq0j
+

µζ

4(γq0j)2

)

cjcos jq0x

+
∑

j≥2

(

1

Λ(jq0)
+

µ

γq0j
+

µζ

4(γq0j)2

)

cj cos jq0x.

(66)

Let us show that ̺ ∈ Ck,δ
# (0,Π0). It follows from (58) that the second term in the

right-hand side of (66) belongs to W k+2,2
# (0,Π0) and hence to Ck,δ

# (0,Π0). Using the
Sokhotski-Plemelj formulas another term can be represented as

−µ

γ
Kρ− µζ

4γ2
K2ρ, where Kρ =

1

Π0
p.v.

∫ Π0

0

cot q0(x−z)
2

∫ z

0

ρ(s)dsdz. (67)

Since the Hilbert transform involved in (67) continuously maps Ck,δ
# (0,Π0) to C

k,δ
# (0,Π0),

the first term of right-hand side of (66) also belongs to Ck,δ
# (0,Π0).

And finally, the transversality condition (iv) is satisfied since

∂θL(1) cos q0x = −q0∂qΛ(q0) cos q0x 6∈ Ran (L) . (68)

Thus all of the conditions of Theorem 3 are fulfilled. Also according to Theorem 1.18
from [6], ρ(x, α) and θ(α) are infinitely differentiable in α functions.

Remark 1. Note that traveling wave problem (62) is invariant with respect to shifts
in x-axis, moreover, for any even solution ρ of (62), its shift by the half-period is
still an even solution. Thus we can assume that ∀α ρ(x,−α) = ρ(x − Π0/2, α),
θ(−α) = θ(α).

Now we address the issue of stability of traveling wave solutions. To this end we
apply the following result obtained in [7].

14



Theorem 5. Assume that conditions of Theorem 3 are fulfilled and X ⊆ Y with con-
tinuous embedding. Then for sufficiently small α there exists the smallest in absolute
value simple eigenvalue λ(α) of the linearized operator ∂xΦ(αx0 + αφ(α), 1 + ψ(α))
and

λ(α) = −αλ̃′(1)θ′(α)(1 + O(α)) as α → 0, (69)

where λ̃(θ) is the smallest in absolute value eigenvalue of ∂xΦ(0, θ).

Consider traveling wave solution and linearized operator ∂ρA(ρ, θ(α)) near the
bifurcation point, i.e. when |α| is small. Its spectrum has the following structure.
There is a zero eigenvalue of multiplicity two corresponding to infinitesimal shifts
with eigenfunctions equal 1 (vertical shifts) and ρ′ (horizontal shifts) respectively.
By Theorem 5 the smallest in absolute value nonzero eigenvalue of ∂ρA(ρ, θ(α)) is
given by the asymptotic formula

λ(α) = q0∂qΛ(q0)αθ
′(α)(1 +O(α)) as α → 0, (70)

so the sign of λ(α) is determined by that of αθ′(α). Other eigenvalues either remain
bounded and converge as α → 0 to those of ∂ρA(0, 1), or have a negative sufficiently
large in absolute value imaginary part (and therefore do not affect stability).

6 Asymptotic expansions of traveling wave solu-

tions near the bifurcation point

Let q0 > 0 be a solution of (60), and assume that other conditions of Theorem 4
are satisfied. Then we have a family of Π0-periodic (Π0 = 2π/q0) traveling wave
solutions ρ(x, α) of problem (62). The corresponding polarisation and velocity fields,
p(x, y, α), v(x, y, α) are unique solutions of (61).

For α = 0 we have flat front solution ρ(x, 0) = 0, θ(0) = 1, and p(x, y, 0) = P(y),
v(x, y, 0) = V(y), where P(y) = (0, ey) and V(y) = (0, Vy(y)) with Vy(y) given by
(39). Now, for small α we consider asymptotic expansions

θ(α) = 1 + bα2 +O(α4) (71)

Cρ = V (0) + α2V (2) +O(α4), (72)

ρ(x, α) = αρ(1)(x) + α2ρ(2)(x) + α3ρ(3)(x) +O(α4), (73)

p(x, y, α) = P(y) + αp(1)(x, y) + α2p(2)(x, y) + α3p(3)(x, y) +O(α4), (74)

v(x, y, α) = V(y) + αv(1)(x, y) + α2v(2)(x, y) + α3v(3)(x, y) +O(α4), (75)

where V (0) is given by (40), ρ(k)(x) are even functions with zero mean value, and
in view of Remark 1, the expansions (71)–(72) contain only even powers of α. Our
main objective here is to identify the sign of the parameter b that is decisive for the
stability of the traveling wave solution.
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We substitute the expansions above into (61)–(62) and equate the terms corre-
sponding to the same powers of α. At the order α we arrive at the linearized problem
(44) for p = p(1) and v = v(1) coupled with the equation Lρ(1) = 0 for Π0-periodic
even fuction ρ(1). According to spectral analysis of the operator L (Section 3) we
have, up to a multiplicative constant,

ρ(1) = cos q0x, (76)

and

p(1)x = q0e
y
√

q20+1 sin q0x, p(1)y = −ey
√

q20+1 cos q0x, (77)

while v(1) is the real part of v = ζiv
t + ζvc + γvs explicitely found in Appendix A.

Next, equating terms of the order α2 in (61) we find the following system

∆p(2) = p(2) + 2bP for y < 0, (78)

p(2)x = −∂yp
(1)
x ρ(1) − [ρ(2)]′ for y = 0, (79)

p(2)y = −∂yPyρ
(2) − 1

2
∂2
yyPy[ρ

(1)]2 − ∂yp
(1)
y ρ(1) − 1

2
[ρ(1)]′

2
for y = 0, (80)

µ(∆v(2) +∇divv(2))− ζdiv
(

p(2) ⊗P+P⊗ p(2)
)

− ζdiv
(

p(1) ⊗ p(1)
)

− ξv(2) − 2ξbV + ζip
(2) + ζibP = 0 for y < 0, (81)

µ
(

∂xv
(2)
y + ∂yv

(2)
x

)

= 2µ∂xv
(1)
x [ρ(1)]′ − µ

(

∂2
xyv

(1)
y + ∂2

yyv
(1)
x

)

ρ(1)

− ζ [ρ(2)]′ − γ[ρ(1)]′[ρ(1)]′′ for y = 0, (82)

2µ∂yv
(2)
y = µ

(

∂xv
(1)
y + ∂yv

(1)
x

)

[ρ(1)]′ − 2µ∂2
yyVyρ

(2) − µ∂3
yyyVy[ρ

(1)]2

− 2µ∂2
yyv

(1)
y ρ(1) + γ[ρ(2)]′′ for y = 0, (83)

and from (62) we get

v(2)y + ∂yVyρ
(2) = −1

2
∂2
yyVy[ρ

(1)]2 + v
(1)
x [ρ(1)]′ − ∂yv

(1)
y ρ(1) + V (2) for y = 0. (84)

Observe that p(2) can be represented as

p(2) = p(21) + p(22), (85)

where

p(21)x = − q0
√

q20+1

2
ey
√

4q20+1 sin 2q0x, (86)

p(21)y =
q20+2

√
q20+1−1

4
ey
√

4q20+1 cos 2q0x+
(

by +
2
√

q20+1−q20−1

4

)

ey, (87)

and p(22) solves the problem
{

∆p(22) = p(22) for y < 0,

p
(22)
x = −[ρ(2)]′, p

(22)
y = −ρ(2) for y = 0.

(88)

16



Bearing in mind (85) we represent the vector v(2) as

v(2) = v(21) + v(22), (89)

with v(21) found explicitly in Appendix B and v(22) satisfying


















µ(∆v(22) +∇divv(22))− ξv(22)

−ζdiv
(

p(22) ⊗P+P⊗ p(22)
)

+ ζip
(22) = 0 for y < 0,

µ
(

∂xv
(22)
y + ∂yv

(22)
x

)

= −ζ [ρ(2)]′, for y = 0,

2µ∂yv
(22)
y = −2µ∂2

yyVyρ
(2) + γ[ρ(2)]′′ for y = 0.

(90)

Then from (88), (90) we have

v(22)y = − ζ

2µ
ρ(2) + Lρ(2). (91)

Substituting expressions ρ(1), v(1), v
(21)
y into (84) and taking into account (91) we

conclude that Lρ(2) ∈ Span{1, cos 2q0x}. This in turn implies that ρ(2) = β cos 2q0x
and we find that constants β and V (2) are given by formulas (130) and (131), see
Appendix B. Having established ρ(2) we get the following explicit form of p(22):

p(22)x = 2βq0e
y
√

4q20+1 sin 2q0x, p(22)y = −βey
√

4q20+1 cos 2q0x. (92)

Now considering term of the order α3 in (61) we get

∆p(3) = p(3) + 2bp(1), for y < 0, (93)

p(3)x = −∂yp
(1)
x ρ(2) − ∂yp

(2)
x ρ(1) − 1

2
∂2
yyp

(1)
x [ρ(1)]2 − [ρ(3)]′ + 1

2
[ρ(1)]′

3
,

p(3)y = −∂yp
(1)
y ρ(2) − ∂yp

(2)
y ρ(1) − 1

2
∂2
yyp

(1)
y [ρ(1)]2 − ∂yPy ρ

(3) − ∂2
yyPy ρ

(1)ρ(2)

− 1
6
∂3
yyyPy [ρ

(1)]3 − [ρ(1)]′[ρ(2)]′, for y = 0; (94)

µ(∆v(3) +∇divv(3))− ζdiv
(

p(3) ⊗P+P⊗ p(3) + p(1) ⊗ p(2) + p(2) ⊗ p(1)
)

,

− ξv(3) − 2ξbv(1) + ζip
(3) + ζibp

(1) = 0 for y < 0, (95)

and for y = 0 we have

µ
(

∂xv
(3)
y + ∂yv

(3)
x

)

= 2µ∂2
xyv

(1)
x ρ(1)[ρ(1)]′ + 2µ∂xv

(1)
x [ρ(2)]′ + 2µ∂xv

(2)
x [ρ(1)]′

− µ
(

∂2
xyv

(1)
y + ∂2

yyv
(1)
x

)

ρ(2) − µ
2

(

∂3
xyyv

(1)
y + ∂3

yyyv
(1)
x

)

[ρ(1)]2

− µ
(

∂2
xyv

(2)
y + ∂2

yyv
(2)
x

)

ρ(1) − ζ [ρ(3)]′ − γ[ρ(1)]′′[ρ(2)]′ − γ[ρ(2)]′′[ρ(1)]′, (96)

2µ∂yv
(3)
y = µ

(

∂xv
(1)
y + ∂yv

(1)
x

)

[ρ(2)]′ + µ
(

∂2
xyv

(1)
y + ∂2

yyv
(1)
x

)

ρ(1)[ρ(1)]′

+ µ
(

∂xv
(2)
y + ∂yv

(2)
x

)

[ρ(1)]′ − 2µ∂2
yyVyρ

(3) − 2µ∂3
yyyVyρ

(1)ρ(2)

− µ
3
∂4
yyyyVy[ρ

(1)]3 − 2µ∂2
yyv

(1)
y ρ(2) − µ∂3

yyyv
(1)
y [ρ(1)]2 − 2µ∂2

yyv
(2)
y ρ(1)

+ γ[ρ(3)]′′ − γb[ρ(1)]′′ − 3
2
γ[ρ(1)]′

2
[ρ(1)]′′, (97)
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Finally, collecting terms of the order α3 in (62) we derive that for y = 0

v(3)y + ∂yVyρ
(3) + ∂2

yyVyρ
(1)ρ(2) + 1

6
∂3
yyyVy[ρ

(1)]3 + ∂yv
(1)
y ρ(2) + 1

2
∂2
yyv

(1)
y [ρ(1)]2

+ ∂yv
(2)
y ρ(1) − ∂yv

(1)
x ρ(1)[ρ(1)]′ − v(2)x [ρ(1)]′ − v(1)x [ρ(2)]′ = 0. (98)

Similarly to the previous two steps the solution of (93)–(97) can be found in an
explicit form. However, this task is rather cumbersome. Instead, we only identify
the parameter b appearing in the expansion (71) of θ, whose sign determines the
bifurcation type, b > 0 (b < 0) corresponds to the supercritical (subcritical) bifur-
cation (see (70) and Figure 2). We notice that calculations of the Fourier coefficient
corresponding to cos q0x in (98) give a linear function of b, k1b+ k2, moreover

k1 cos q0x = ∂θL(1) cos q0x = ∂θΛ(q0/θ)
∣

∣

∣

θ=1
cos q0x = −q0∂qΛ(q0) cos q0x. (99)

To find k2 first we represent p(3), v(3) as

p(3) = p(31) + p(32), v(3) = v(31) + v(32), (100)

where p(32) and v(32) are solutions of problem (44) with ρ = ρ(3). Observe that
(

v
(32)
y + ∂yVyρ

(3)
)
∣

∣

y=0
is orthogonal to cos q0x in L2(0,Π0). Next we write p(31) and

v(31) in the form

p(31) = p(311) + p(312), v(31) = v(311) + v(312), (101)

where
v(311)x = v̂(311)x (y) sin q0x, v(311)y = v̂(311)y (y) cos q0x,

while p
(312)
x and v

(312)
x (p

(312)
y and v

(312)
y ) absorbs all the terms that contain the factor

sin 3q0x (cos 3q0x) or/and b. An explicit form (147)–(148) of the vector function v(311)

is found in Appendixes C, D. Then considering the Fourier coefficients of functions
in (98) we find (see Appendix E) that for y = 0

v(311)y +
(

βD1 +
D2

8µ

√

4q20+
ξ
2µ

+ 1
4µ

(

− ζ
2
+ ζ

√

q20 + 1− ζi
8
+ ζξ

16µ
− 5ζq20

8
− βγq20

)

+3β
4

(

ξζ
2µ(4µ+

√
2µξ)

− ζi√
2µξ+2µ

+ ζ
µ

)

− bq0∂qΛ(q0)
)

cos q0x = 0, (102)

where D1 and D2 are defined by (122) and (138). Substituting (148) into (102) we
get equation (170) for finding b.

7 Conclusions

In this section, we present and discuss several numerical results relevant to the bifur-
cation of nonflat traveling waves. Computations are done for the typical value of the
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characteristic length Lc = 25µm [2] by adjusting to the case of the unit length via a
spatial rescaling.

The finger-like pattern in the shape of the traveling wave solution is shown in
Figure 1, where the approximate shape corresponding to the two-term expansion
ρ = αρ(1) + α2ρ(2) (α = 0.5) is depicted. The shape is computed by using explicit
formulas (111) for ρ(1) and (135) for ρ(2), taking some typical values of parameters
[2].

-2 0 2 4 6 8 x
-0.4

-0.2

0

0.2

0.4

0.6
y
=

(x
)

Figure 1: Approximate shape of the traveling wave.

Figure 2 depicts graphs of the eigenvalue Λ(q) (growth rate, computed by the
formula (57)) for different values of the intercellular contractility −ζ .

0 5 10 15 20 25 30

q( m
-1

)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
10

-4

-  

Figure 2: Growth rate Λ(q) as a function of wave number q for different contractilities
−ζ . For this plot −ζ = 0, 6, 12, 18, 24, 30 (kPa). Other parameters are ζi =
0.1 kPa/µm, ξ = 100Pa · s/µm2, γ = 0.2mN/m, µ = 25MPa · s.

Next, we study the dependence of the critical period Π0 =
2π
q0

on the contractility.

It amounts to numerical solving of the equation Λ(q0) = 0. The results are depicted
in the Figure 3. Note that for contractility −ζ ∼ 20 kPa the value of the period is
close to one hundred micrometers which is in agreement with the measured finger
spacing [24].
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Figure 3: Dependence of the critical period on the contractility coefficient −ζ . Com-
putations carried out for ζi = 0.1 kPa/µm, ξ = 100Pa · s/µm2, γ = 0.2mN/m,
µ = 25MPa · s

Finally Figures 4 and 5 present results of computations of the coefficient b. Recall
that b is the coefficient in the asymptotic expansion (71) of θ(α) = Π/Π0. It follows
from (70) that the sign of the smallest in absolute value eigenvalue of the operator
linearized around the traveling wave solution coincides (for sufficiently small α) with
the sign of the product b∂qΛ(q0), while other nonzero eigenvalues have a negative
real part. Since ∂qΛ(q0) < 0 (see Figure 2), b > 0 correspond to stable case, while
b < 0 correspond to unstable case. In other words, for b > 0 we have a supercritical
bifurcation, while for b < 0 we have a subcritical one. Notice that b < 0 for large
values of the contractility as seen from Figure 4.
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-4.5

-4

-3.5

-3

-2.5
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-0.5

0

b

Figure 4: Coefficient b for contractility −ζ from 1 kPa to 30 kPa. Other parameters
are ζi = 0.1 kPa/µm, ξ = 100Pa · s/µm2, γ = 0.2mN/m, µ = 25MPa · s.
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Figure 5: Coefficient b for contractility −ζ from 0 to 2 kPa. Other parameters are
ζi = 0.1 kPa/µm, ξ = 100Pa · s/µm2, γ = 0.2mN/m, µ = 25MPa · s.

It is interesting to observe in Figure 5 that for smaller −ζ both cases b > 0 and b < 0
occur. Thus the model exhibits both subcritical and supercritical bifurcation.
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Appendix A Fourier analysis of the linearized op-

erator

The solution of (47)-(50) can be represented as v = ζiv
t + ζvc+ γvs with vt, vc and

vs solving






















µ(∆vtx + ∂xdivv
t)− ξvtx = iqeiqx+

√
q2+1y for y < 0,

µ(∆vty + ∂ydivv
t)− ξvty = eiqx+

√
q2+1y for y < 0,

µ(∂xv
t
y + ∂yv

t
x) = 0 for y = 0,

2µ∂yv
t
y =

√
2µ√

ξ+
√
2µ
eiqx for y = 0,

(103)
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





































µ(∆vcx + ∂xdivv
c)− ξvcx = −iq(

√

q2 + 1 + 1)eiqx+y+y
√

q2+1 for y < 0,

µ(∆vcy + ∂ydivv
c)− ξvcy

= q2eiqx+y+y
√

q2+1 − 2(
√

q2 + 1 + 1)eiqx+y+y
√

q2+1 for y < 0,

µ(∂xv
c
y + ∂yv

c
x) = −iqeiqx for y = 0,

2µ∂yv
c
y = −

(

ξ
4µ+

√
2µξ

+ 2

)

eiqx for y = 0,

(104)











µ(∆vs +∇divvs)− ξvs = 0 for y < 0,

µ(∂xv
s
y + ∂yv

s
x) = 0 for y = 0,

2µ∂yv
s
y = −q2eiqx for y = 0.

(105)

We find explicit solutions to these problems, starting with problem (103). Represent
the equations in (103) as

µ(∆vt +∇divvt)− ξvt

=
(

√

q2 + 1− q2
)

∇eiqx+
√

q2+1y + iq
(

1−
√

q2 + 1
)

∇⊥eiqx+
√

q2+1y, (106)

where ∇⊥ = (−∂y, ∂x). Then

vt =
−q2+

√
q2+1

2µ−ξ
∇eiqx+

√
q2+1y + iq

1−
√

q2+1

µ−ξ
∇⊥eiqx+

√
q2+1y

+ A1ṽ
(1) + A2ṽ

(2), (107)

where
ṽ(1) = ∇⊥eiqx+y

√
q2+ξ/µ, ṽ(2) = ∇eiqx+y

√
q2+ξ/(2µ)

are linearly independent solutions of the corresponding homogenous equations, van-
ishing as y → −∞. Substituting (107) into boundary conditions of (103) we get a
linear system for constants A1, A2, resolving which we obtain

vt =

√
q2+1−q2

2µ−ξ

(

∇eiqx+y
√

q2+1 + A111ṽ
(1) + A112ṽ

(2)
)

+ iq

√
q2+1−1

µ−ξ

(

∇⊥eiqx+y
√

q2+1 + A121ṽ
(1) + A122ṽ

(2)
)

+ A131ṽ
(1) + A132ṽ

(2) (108)

with

A111 = −2µiq
√

q2+1

D(q,µ,ξ)

(

2µq2 + ξ − 2µ
√

q2 + ξ/(2µ)
√

q2 + 1
)

,

A112 =
2µ
√

q2+1

D(q,µ,ξ)

(

(2µq2 + ξ)
√

q2 + 1− 2µq2
√

q2 + ξ/µ
)

,

A121 =
2µ2

D(q,µ,ξ)

√

q2 + ξ/(2µ)
(

(2q2 + 1)
√

q2 + ξ/(2µ)− 2q2
√

q2 + 1
)

,

A122 = − iqµ
D(q,µ,ξ)

(

2µ(2q2 + 1)
√

q2 + ξ/µ− 2(2µq2 + ξ)
√

q2 + 1
)

,
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A131 =
−2µiq

√
q2+ξ/(2µ)

D(q,µ,ξ)

√
2µ√

ξ+
√
2µ
, A132 =

−(2µq2+ξ)
D(q,µ,ξ)

√
2µ√

ξ+
√
2µ

and D(q, µ, ξ) given by (56). Analogously we find solutions vc, vs to problems (104)
and (105). We have

vc =
q2−

√
q2+1−1

4µ(
√

q2+1+1)−ξ

(

∇eiqx+y+y
√

q2+1 + A211ṽ
(1) + A212ṽ

(2)
)

+ q3

(ξ−2µ(
√

q2+1+1))(
√

q2+1+1)

(

∇⊥eiqx+y+y
√

q2+1 + A221ṽ
(1) + A222ṽ

(2)
)

+ A231ṽ
(1) + A232ṽ

(2), (109)

where

A211 = −2µiq(
√

q2+1+1)

D(q,µ,ξ)

(

2µq2 + ξ − 2µ
√

q2 + ξ/(2µ)
(

√

q2 + 1 + 1
)

)

,

A212 =
2µ(

√
q2+1+1)

D(q,µ,ξ)

(

(2µq2 + ξ)
(

√

q2 + 1 + 1
)

− 2µq2
√

q2 + ξ/µ
)

,

A221 =
4µ2

√
q2+ξ/(2µ)

D(q,µ,ξ)

(

√

q2 + ξ/(2µ)
(

q2 +
√

q2 + 1 + 1
)

− q2
(

√

q2 + 1 + 1
)

)

,

A222 = − 2µiq
D(q,µ,ξ)

(

2µ
√

q2 + ξ/µ
(

q2 +
√

q2 + 1 + 1
)

− (2µq2 + ξ)
(

√

q2 + 1 + 1
)

)

,

A231 =
2µiq

D(q,µ,ξ)

√

q2 + ξ/(2µ)
(

ξ
4µ+

√
2µξ

−
√

q2 + ξ/(2µ) + 2
)

,

A232 =
1

D(q,µ,ξ)

(

(2µq2 + ξ)
(

ξ
4µ+

√
2µξ

+ 2
)

− 2µq2
√

q2 + ξ/µ
)

,

and

vs =
2µiq3

√
q2+ξ/(2µ)

D(q,µ,ξ)
ṽ(1) + q2(2µq2+ξ)

D(q,µ,ξ)
ṽ(2). (110)

Notice that v(1) appearing in the first order term of the expansion (75) can be

obtain by taking the real part of v = ζiv
t + ζvc + γvs. This yields v

(1)
y |y=0 =

(

ζiΛ
t(q0, µ, ξ)+ζΛc(q0, µ, ξ)+γΛs(q0, µ, ξ)

)

cos q0x (with Λt,c,s(q0, µ, ξ) given by (53)–

(55)). For q0 satisfying (60) this formula is simplified to

v(1)y |y=0 = − ζ

2µ
cos q0x. (111)

To find higher order terms in the expansions (71)-(75) we will also need to compute

v
(1)
x |y=0. Although an explicit formula for v

(1)
x is available via (108)–(110), we can

derive a more compact expression in the case q = q0. Recall that v
(1) solves equations

µ
(

∆v(1)x + ∂xdivv
(1)
)

− ξv(1)x = −q0ζie
y
√

q20+1 sin q0x

+ q0ζ
(

√

q20 + 1 + 1
)

ey+y
√

q20+1 sin q0x, (112)
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µ
(

∆v(1)y + ∂ydivv
(1)
)

− ξv(1)y = ζie
y
√

q20+1 cos q0x+ q20ζe
y+y

√
q20+1 cos q0x

− 2ζ
(

√

q20 + 1 + 1
)

ey+y
√

q20+1 cos q0x (113)

with boundary conditions for y = 0

µ(∂xv
(1)
y + ∂yv

(1)
x ) = ζq0 sin q0x (114)

2µ∂yv
(1)
y =

(

−ζ
(

ξ
4µ+

√
2µξ

+ 2
)

+ ζi
√
2µ√

ξ+
√
2µ

− γq2
)

cos q0x. (115)

It follows from (113) that for y = 0

2µ∂2
yyv

(1)
y =

(

µq20 + ξ
)

v(1)y − µ∂2
xyv

(1)
x +

(

ζi + q20ζ − 2ζ
(
√

q20 + 1 + 1
)

)

cos q0x. (116)

On the other hand differentiating (114) in x we get µ∂2
xyv

(1)
x = µq20v

(1)
y + q20ζ cos q0x

for y = 0, and substituting (111) we obtain

µ∂2
xyv

(1)
x

∣

∣

∣

y=0
=

q20ζ

2
cos q0x. (117)

Therefore (116) yields

2µ∂2
yyv

(1)
y

∣

∣

∣

y=0
=

(

ζi − 2ζ
(

√

q20 + 1 + 1 + ξ
4µ

))

cos q0x. (118)

Now we find divv(1). From (112)–(113)

2µ∆divv(1) − ξdivv(1) = ζi

(

√

q20 + 1− q20

)

cos q0x e
y
√

q20+1

+ 2ζ
(

q20
√

q20 + 1− 2
√

q20 + 1− 2
)

cos q0x e
y+y

√
q20+1, (119)

also by (117)–(118) we have for y = 0

µ∂ydivv
(1) =

(

ζi
2
− ζ

(

√

q20 + 1 + 1 + ξ
4µ

− q20
2

))

cos q0x. (120)

One can find an explicit solution to the problem (119)–(120), in particular

divv(1)
∣

∣

y=0
= D1 cos q0x, (121)

where

D1 =
ζi

(
√

q20+
ξ
2µ

+q20

)

2µ

√

q20+
ξ
2µ

(
√

q20+
ξ
2µ

+
√

q20+1

)

− ζ

µ

√

q20+
ξ
2µ

(

√

q20 + 1 + 1 + ξ
4µ

− q20
2
+

q20

√
q20+1−2

√
q20+1−2

√
q20+1+1+

√

q20+
ξ
2µ

)

.

(122)

Then taking into account (115)

∂xv
(1)
x =

(

D1 +
ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

cos q0x, (123)

and

v(1)x = 1
q0

(

D1 +
ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

sin q0x. (124)
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Appendix B Calculations of v(2) and ρ(2)

From (81) and taking into account explicit formulas (86)–(87) for p(21) we have that
v(21) satisfies the equations

µ(∆v(21)x + ∂xdivv
(21))− ξv(21)x (125)

= −ζip
(21)
x − ζ

q0
√

q20+1(1+
√

4q20+1)

2
ey+y

√
4q20+1 sin 2q0x

+ ζq0
(

q20 −
√

q20 + 1
)

e2y
√

q20+1 sin 2q0x,

µ(∆v(21)y + ∂ydivv
(21))− ξv(21)y (126)

= 2bξVy − bζiPy − ζip
(21)
y + ζ

(
√

q20 + 1− q20
)

e2y
√

q20+1 cos 2q0x

+ ζ

(

(q20+2
√

q20+1−1)(1+
√

4q20+1)

2
− q20

√

q20 + 1

)

ey+y
√

4q20+1 cos 2q0x

+ ζ
√

q20 + 1e2y
√

q20+1 + ζ
(

2b+ 4by + 2
√

q20 + 1− q20 − 1
)

e2y.

Moreover, from (82)–(83) using (38), (112), (114), (118), (123) we find the boundary
conditions for v(21) as y = 0:

µ(∂xv
(21)
y + ∂yv

(21)
x ) = Tx sin 2q0x

2µ∂yv
(21)
y = T (1)

y + T (2)
y cos 2q0x,

where

Tx = q0
2

(

ζi − ζ
√

q20 + 1− ζ
)

− γq30
2

− 1
2q0

(4µq20 + ξ)
(

D1 +
ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

,

T (1)
y = ζ

(

√

q20 + 1− q20
2
+ ξ

8µ

)

− 1
4
ζi, T

(2)
y = ζ

(

√

q20 + 1 +
q20
2
+ ξ

8µ

)

− 1
4
ζi.

We represent v(21) in the following way

v(21)x =
(

B(1)
x ey

√
4q20+1 +B(2)

x ey+y
√

4q20+1 +B(3)
x e2y

√
q20+1

)

sin 2q0x

−
(

2Eq0e
y
√

4q20+ξ/(2µ) + F
√

4q20 + ξ/µey
√

4q20+ξ/µ
)

sin 2q0x, (127)

v(21)y =
(

B(1)
y ey

√
4q20+1 +B(2)

y ey+y
√

4q20+1 +B(3)
y e2y

√
q20+1

)

cos 2q0x

+
(

E
√

4q20 + ξ/(2µ)ey
√

4q20+ξ/(2µ) + 2q0Fey
√

4q20+ξ/µ
)

cos 2q0x

+B(4)
y ey +B(5)

y yey +B(6)
y e2y +B(7)

y ye2y +B(8)
y e2y

√
q20+1

+B(9)
y yey

√
ξ/

√
2µ +Gey

√
ξ/

√
2µ (128)
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where

B(1)
x = ζi

4µ2−6µξ+2ξ2

(

(

µ(4q20 + 2)− ξ
)

q0
√

q20 + 1− µq0
√

4q20 + 1
(

q20 + 2
√

q20 + 1− 1
)

)

,

B(2)
x = −ζq0

√

q20 + 1
(

1 +
√

4q20 + 1
)(

4µ(q20 +
√

4q20 + 1 + 1)− ξ
)

64µ2q20 + 4(8µ2 − 3µξ)(1 +
√

4q20 + 1) + 2ξ2

+
ζq0µ(1 +

√

4q20 + 1)
(

(q20 + 2
√

q20 + 1− 1)(1 +
√

4q20 + 1)− 2q20
√

q20 + 1
)

32µ2q20 + 2(8µ2 − 3µξ)(1 +
√

4q20 + 1) + ξ2
,

B(3)
x =

ζ
(

q20−
√

q20+1
)

32µ2−12µξ+ξ2

(

4µq30 + (8µ− ξ)q0 − 4µq0
√

q20 + 1
)

,

B(1)
y = ζi

2µ2−3µξ+ξ2

(

−µq20
√

4q20 + 1
√

q20 + 1− 1
4

(

µ(1− 4q20)− ξ
)(

q20 + 2
√

q20 + 1− 1
)

)

,

B(2)
y =

ζq20µ
√

q20 + 1
(

4q20 + 2
√

4q20 + 1 + 2
)

32µ2q20 + 2(8µ2 − 3µξ)(1 +
√

4q20 + 1) + ξ2

+
ζ
(

µ(−4q20 + 2
√

4q20 + 1 + 2)− ξ
)(

(q20 + 2
√

q20 + 1− 1)(1 +
√

4q20 + 1)− 2q20
√

q20 + 1
)

64µ2q20 + 4(8µ2 − 3µξ)(1 +
√

4q20 + 1) + 2ξ2
,

B(3)
y =

ζ
(

q20−
√

q20+1
)

32µ2−12µξ+ξ2

(

−4µq20
√

q20 + 1 + 4µq20 − 4µ+ ξ
)

,

B(4)
y = − ζi

2µ−ξ

(

2
√

q20+1−q20−1

4
− b

)

, B
(5)
y = − ζib

2µ−ξ
,

B(6)
y = ζ

8µ−ξ

(

2
√

q20 + 1− q20 − 1− 2b
)

, B
(7)
y = 4ζb

8µ−ξ
,

B(8)
y =

ζ
√

q20+1

8µ(q20+1)−ξ
, B

(9)
y = ζib

2µ−ξ
− ζbξ

2µ(8µ−ξ)
,

E =− 1
D(2q0)

(

4µq0
√

4q20 + ξ/µ
(

−µ
(

B
(1)
x

√

4q20 + 1 +B
(2)
x

(

1 +
√

4q20 + 1
)

+ 2B
(3)
x

√

q20 + 1
)

+2µq0
(

B(1)
y +B(2)

y +B(3)
y

)

+ Tx

)

+(8µq20 + ξ)
(

−2µ
(

B(1)
y

√

4q20 + 1 +B
(2)
y

(

1 +
√

4q20 + 1
)

+ 2B
(3)
y

√

q20 + 1
)

+ T
(2)
y

)

)

,
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F = 1
D(2q0)

(

(8µq20 + ξ)
(

−µ
(

B
(1)
x

√

4q20 + 1 +B
(2)
x

(

1 +
√

4q20 + 1
)

+ 2B
(3)
x

√

q20 + 1
)

+2µq0
(

B(1)
y +B(2)

y +B(3)
y

)

+ Tx

)

+4µq0
√

4q20 + ξ/(2µ)
(

−2µ
(

B
(1)
y

√

4q20 + 1 +B
(2)
y

(

1 +
√

4q20 + 1
)

+ 2B
(3)
y

√

q20 + 1
)

+ T
(2)
y

)

)

,

G = 1√
2µξ

T
(1)
y −

√

2µ
ξ

(

B
(4)
y +B

(5)
y + 2B

(6)
y +B

(7)
y + 2B

(8)
y

√

q20 + 1 +B
(9)
y

)

.

From (84) we get

v(22)y + ζ
2µ
ρ(2) (129)

= −v(21)y + 1
2

(

∂2
yyVy +

γq20
µ

)

cos2 q0x− q0v
(1)
x sin q0x+ V (2) for y = 0.

Observe that the right-hand side of (129) is a linear combination of a constant func-
tion and cos 2q0x. Then it follows from the spectral representation (64) (for L = L(1))
that ρ(2) = β cos 2q0x. Moreover, using (38), (115), (123), (127)–(128) we obtain

β = − 1
Λ(2q0)

(

B
(1)
y +B

(2)
y +B

(3)
y + E

√

4q20 + ξ/(2µ) + 2q0F
)

+ 1
2Λ(2q0)

(

D1 +
γq20
µ

)

+ 3
4Λ(2q0)

(

ζξ

2µ
(

4µ+
√
2µξ

) − ζi√
2µξ+2µ

+ ζ
µ

)

, (130)

and

V (2) = B(4)
y +B(6)

y +B(8)
y +G + 1

2
D1 +

1
4

(

ζξ

2µ
(

4µ+
√
2µξ

) − ζi√
2µξ+2µ

+ ζ
µ

)

= −bV (0) +
(

2
√

q20 + 1− q20 − 1
)(

ζi

4
(√

2µξ+ξ
) − ζ

2
√
2µξ+ξ

)

− ζ
√

q20+1

2
√
2µξ

√
q20+1+ξ

+ 1√
2µξ

T
(1)
y + 1

2
D1 +

1
4

(

ζξ

2µ
(

4µ+
√
2µξ

) − ζi√
2µξ+2µ

+ ζ
µ

)

=: V (21) − bV (0). (131)

Next, we establish the boundary values of components of v(2) and some of their
derivatives on the line y = 0, that will be used in (98) and in the calculations of the
stress vector for v(3). To this end substitute the expressions for components of V,
p(1) and p(2) in (81) (see (39), (77), (85)–(87), (92)):

µ(∆v(2)x + ∂xdivv
(2))− ξv(2)x = ζiq0

(

√
q20+1

2
− 2β

)

ey
√

4q20+1 sin 2q0x

− ζq0
(

1 +
√

4q20 + 1
)

(

√
q20+1

2
− 2β

)

ey+y
√

4q20+1 sin 2q0x

+ ζq0
(

q20 −
√

q20 + 1
)

e2y
√

q20+1 sin 2q0x, (132)
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µ(∆v(2)y + ∂ydivv
(2))− ξv(2)y = ζi

(

β − q20+2
√

q20+1−1

4

)

ey
√

4q20+1 cos 2q0x

− ζi

(

2bξ
2µ−ξ

+ b+ by +
2
√

q20+1−q20−1

4

)

ey + 2bξ
(

ζi
2µ−ξ

√
2µ√
ξ
− ζ

8µ−ξ

√
ξ√
2µ

)

e
√
ξy/

√
2µ

+ ζ
(

4bξ
8µ−ξ

+ 2b+ 4by + 2
√

q20 + 1− q20 − 1
)

e2y (133)

+ ζ
(

√

q20 + 1− q20

)

e2y
√

q20 + 1 cos 2q0x+ ζ
√

q20 + 1e2y
√

q20+1

+ ζ
(

(q20+2
√

q20+1−1−4β)(1+
√

4q20+1)

2
− q20

√

q20 + 1 + 4βq20

)

ey+y
√

4q20+1 cos 2q0x.

Let w(2)(x, y) denote the vector function obtained by subtracting from v(2)(x, y) its
average in x over the period. Find the divergence of w(2)(x, y) for y = 0. Taking
derivative of (82) in x and using (123), (112) we obtain that

µ
(

∂2
xxw

(2)
y + ∂2

xyw
(2)
x

)

=
(

ζiq
2
0 − ζq20

(
√

q20 + 1 + 1
))

cos 2q0x+ (4ζq20β − γq40) cos 2q0x (134)

− (4µq20 + ξ)
(

D1 +
ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

cos 2q0x,

for y = 0, also thanks to (129) we have

v(2)y = − ζβ
2µ

cos 2q0x+ 1
2

(

D1 +
3ζξ

4µ(4µ+
√
2µξ)

− 3ζi
2
√
2µξ+4µ

+
6ζ+4γq20

4µ

)

cos 2q0x

− 1
2
D1 +

1
4

(

ζi√
2µξ+2µ

− ζξ

2µ(4µ+
√
2µξ)

− ζ
µ

)

+ V (2). (135)

Since

µ(∆w(2)
y + ∂ydivw

(2))− ξw(2)
y = 2µ∂ydivw

(2) −µ
(

∂2
xxw

(2)
y + ∂2

xyw
(2)
x

)

−
(

8µq20 + ξ
)

w(2)
y ,

from (133)–(135) we get the following boundary condition for y = 0:

2µ∂ydivw
(2) =

(

2µq20 − ξ
4

)

(

ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+ ζ
µ

)

cos 2q0x

+
(

− ξ
2
D1 + γq40 + ζiq

2
0 + 2ζq20

(

4β −
√

q20 + 1− 1
)

+ ζ
√

q20 + 1
)

cos 2q0x (136)

+
(

ζ
1+
√

4q20+1

2
− ζi

4

)(

q20 + 2
√

q20 + 1− 1− 4β
)

cos 2q0x.

Then using (132)–(133) we obtain that divw(2) satisfies the equation

2µ∆divw(2) − ξdivw(2) = 2ζ
(

q20 −
√

q20 + 1
)2

e2y
√

q20+1 cos 2q0x

+ ζi

(

q20
(
√

q20 + 1− 4β
)

+ 1
4

√

4q20 + 1
(

4β − q20 − 2
√

q20 + 1 + 1
)

)

ey
√

4q20+1 cos 2q0x

+ ζ
2

(

1 +
√

4q20 + 1
)

(

(

q20 + 2
√

q20 + 1− 1− 4β
)

(1 +
√

4q20 + 1)

−2q20
√

q20 + 1 + 8βq20

)

ey+y
√

4q20+1 cos 2q0x,
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solving which with boundary condition (136) we derive

divw(2)
∣

∣

y=0
= D2

2µ

√

4q20+
ξ
2µ

cos 2q0x, (137)

where

D2 = − ξ
2
D1 + γq40 + ζiq

2
0 + 2ζq20

(

4β −
√

q20 + 1− 1
)

+ ζ
√

q20 + 1

+ (2µq20 − ξ/4)
(

ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+ ζ
µ

)

+ 1
4

(

2ζ + 2ζ
√

4q20 + 1− ζi
)(

q20 + 2
√

q20 + 1− 1− 4β
)

+ ζi
(

√

4q20+
ξ
2µ

+
√

4q20+1
)

(

4βq20 − q20
√

q20 + 1 + 1
4

√

4q20 + 1
(

q20 + 2
√

q20 + 1− 1− 4β
)

)

− 2ζ
(

√

4q20+
ξ
2µ

+2
√

q20+1
)

(

q20 −
√

q20 + 1
)2

− ζ
(

1+
√

4q20+1
)

(

√

4q20+
ξ
2µ

+1+
√

4q20+1
)

(

4βq20 − q20
√

q20 + 1

+1
2

(

q20 + 2
√

q20 + 1− 1− 4β
)(

1 +
√

4q20 + 1
)

)

. (138)

Now using (83) we get

∂yv
(2)
y = 1

2µ

(

−3
4
ζq20 − ζi

4
+ ζ

√

q20 + 1 + ζξ
8µ

)

+ 1
2µ

(

3ζ
4
q20 +

ζξ
8µ

+ ζ
√

q20 + 1

− 2µβ
(

ξζ

2µ
(

4µ+
√
2µξ

) − ζi√
2µξ+2µ

+ ζ
µ

)

− 4γq20β − ζi
4

)

cos 2q0x, (139)

therefore

v(2)x = sin 2q0x
4q0µ

(

D2
√

4q20+
ξ
2µ

− ζ
4

(

3q20 +
ξ
2µ

+ 4
√

q20 + 1− 4β
(

ξ
4µ+

√
2µξ

+ 2
)

)

+ 4γq20β − ζi

(

β
√
2µ√

ξ+
√
2µ

− 1
4

))

. (140)

Appendix C Representations of p(3) and v(3)

The vector functions p(3),v(3) appearing at the order α3 in the expansions (74), (75)
are represented as

p(3) = p(311) + p(312) + p(32), v(3) = v(311) + v(312) + v(32), (141)

and to find the coefficient b in (71) we need to calculate only p(311) and v(311), whose x-
component (y-component) contains all terms with the factor sin q0x (cos q0x), except
for those additionally having the multiplier b. It follows from (94) that on the line
y = 0

p(311)x =
(

βq0

√
q20+1

2
+
√

4q20 + 1
(

q0
4

√

q20 + 1− βq0
)

− q30
2
− q0

8

)

sin q0x (142)
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p(311)y =
(

β
2

(
√

q20 + 1− 2q20 − 1
)

−
√

q20+1

2
+ 5

8
q20 +

1
2

−
√

4q20 + 1
(

√
q20+1

4
+

q20
8
− 1

8
− β

2

))

cos q0x. (143)

Then since ∆p(311) = p(311) we have p(311)(x, y) = p(311)(x, 0)ey
√

q20+1. We substitute
this expression for p(311) in place of p(3) in (95) and use (77) and (85)–(87) with (88)
to conclude that components of v(311) satisfy the following equations for y < 0

µ(∆v(311)x + ∂xdivv
(311))− ξv(311)x

=
(

−ζiH
(1)
x + ζH(2)

x ey + ζH(3)
x ey

√
4q20+1

)

ey
√

q20+1 sin q0x,

µ(∆v(311)y + ∂xdivv
(311))− ξv(311)y

=
(

−ζiH
(1)
y + ζH(2)

y ey + ζH(3)
y ey

√
4q20+1

)

ey
√

q20+1 cos q0x,

where

H(1)
x = βq0

√
q20+1

2
+
√

4q20 + 1
(

q0
4

√

q20 + 1− βq0

)

− q30
2
− q0

8
,

H(1)
y = β

2

(
√

q20 + 1− 2q20 − 1
)

−
√

q20+1

2
+ 5

8
q20 +

1
2

(144)

−
√

4q20 + 1
(

√
q20+1

4
+

q20
8
− 1

8
− β

2

)

,

H(2)
x = q0

(

1 +
√

q20 + 1
)

(

√
q20+1

2
− q20

4
− 1

4

)

+
(

1 +
√

q20 + 1
)

(

βq0

√
q20+1

2
+
√

4q20 + 1
(

q0
4

√

q20 + 1− βq0

)

− q30
2
− q0

8

)

,

H(2)
y =

(

√
q20+1

2
− q20

4
− 1

4

)

(

q20 − 2
(

1 +
√

q20 + 1
)

)

+ q0

(

βq0

√
q20+1

2
+
√

4q20 + 1
(

q0
4

√

q20 + 1− βq0

)

− q30
2
− q0

8

)

+ 2
(

1 +
√

q20 + 1
)

(

β
2

(
√

q20 + 1− 2q20 − 1
)

−
√

q20+1

2
+ 5

8
q20 +

1
2

−
√

4q20 + 1
(

√
q20+1

4
+

q20
8
− 1

8
− β

2

))

,

H(3)
x =

q30
2

√

q20 + 1− 2βq30 +
(
√

q20 + 1 +
√

4q20 + 1
)

(

q0
8
− q30

8
− βq0

2

)

,

H(3)
y =

q20
8
− q40

8
− βq20

2
−

(
√

q20 + 1 +
√

4q20 + 1
)

(

q20
4
+

√
q20+1

2
− 1

4
− β

)

.
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We also have boundary conditions for y = 0:

µ(∂xv
(311)
y + ∂yv

(311)
x ) = Q sin q0x, (145)

2µ∂yv
(311)
y = R cos q0x, (146)

where constants Q,R are obtained from (96)–(97) (see computations in Appendix
D). The solution v311 is represented as follows:

v(311)x =
(

I(1)x ey + I(2)x + I(3)x ey
√

4q20+1
)

ey
√

q20+1 sin q0x

−
(

q0Mey
√

q20+ξ/(2µ) +
√

q20 +
ξ
µ
Ney

√
q20+ξ/µ

)

sin q0x, (147)

v(311)y =
(

I(1)y ey + I(2)y + I(3)y ey
√

4q20+1
)

ey
√

q20+1 cos q0x

+
(√

q20 +
ξ
2µ
Mey

√
q20+ξ/(2µ) + q0Ney

√
q20+ξ/µ

)

cos q0x, (148)

where

I(1)x = ζ
d1

(

H
(2)
x

(

µ
(

q20 + 4
√

q20 + 1 + 4
)

− ξ
)

+H
(2)
y µq0

(

1 +
√

q20 + 1
)

)

,

I(1)y = ζ
d1

(

H
(2)
y

(

µ
(

2
√

q20 + 1 + 2− q20
)

− ξ
)

−H
(2)
x µq0

(

1 +
√

q20 + 1
)

)

,

d1 = 8µ2q20 + (16µ2 − 6µξ)
(

1 +
√

q20 + 1
)

+ ξ2,

I(2)x = − ζi
2µ2−3µξ+ξ2

(

H
(1)
x (µq20 + 2µ− ξ) +H

(1)
y µq0

√

q20 + 1
)

,

I(2)y = − ζi
2µ2−3µξ+ξ2

(

H
(1)
y (µ− µq20 − ξ)−H

(1)
x µq0

√

q20 + 1
)

,

I(3)x = ζ
d2

(

(

9µq20 + 4µ+ 4µ
√

4q40 + 5q20 + 1− ξ
)

H
(3)
x

+µq0
(
√

q20 + 1 +
√

4q20 + 1
)

H
(3)
y

)

,

I(3)y = ζ
d2

(

(

3µq20 + 2µ+ 2µ
√

4q40 + 5q20 + 1− ξ
)

H
(3)
y

−µq0
(
√

q20 + 1 +
√

4q20 + 1
)

H
(3)
x

)

,

d2 = 4µq20
(

16µq20 + 18µ− 3ξ
)

+ 2µ
(

16µq20 + 8µ− 3ξ
)
√

4q40 + 5q20 + 1 + 16µ2 − 6µξ + ξ2. (149)

The last two terms in (147) and (148) represent the linear combination

M∇(ey
√

q20+ξ/(2µ) cos q0x) +N∇⊥(ey
√

q20+ξ/µ sin q0x)
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of vector functions satisfying the homogeneous equation µ(∆ · +∇div · ) − ξ · = 0,
and coefficients M and N are found from the boundary conditions (145)–(146),

M = − 1
D(q0,µ,ξ)

(

2µq0

√

q20 +
ξ
µ
Q̃+ (2µq20 + ξ) R̃

)

, (150)

N = 1
D(q0,µ,ξ)

(

(2µq20 + ξ) Q̃+ 2µq0

√

q20 +
ξ
2µ

R̃
)

, (151)

where

Q̃ = Q + µq0
(

I(1)y + I(2)y + I(3)y

)

(152)

− µ
(

I(1)x +
√

q20 + 1
(

I
(1)
x + I

(2)
x + I

(3)
x

)

+
√

4q20 + 1I
(3)
x

)

,

R̃ = R− 2µ
(

I(1)y +
√

q20 + 1
(

I
(1)
y + I

(2)
y + I

(3)
y

)

+
√

4q20 + 1I
(3)
y

)

,

and Q, R are obtained below.

Appendix D Boundary conditions for v(311)

In order to establish the coefficient Q in (145) we consider each term in the right-hand
side of the first boundary condition of (96) and collect coefficients in front of sin q0x.

Equation (117) yields

2µ∂2
xyv

(1)
x ρ(1)[ρ(1)]′ = − ζq30

4
sin q0x+ C sin 3q0x. (153)

Hereafter C denotes a generic constant whose value may possibly change from line
to line. Next, by (123) we have

2µ∂xv
(1)
x [ρ(2)]′ (154)

= −2µβq0

(

D1 +
ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

sin q0x+ C sin 3q0x,

and (140) entails

2µ∂xv
(2)
x [ρ(1)]′ = q0

2

(

D2
√

4q20+
ξ
2µ

− ζ
4

(

3q20 +
ξ
2µ

+ 4
√

q20 + 1− 4β
(

ξ
4µ+

√
2µξ

+ 2
)

)

+ 4γq20β − ζi

(

β
√
2µ√

ξ+
√
2µ

− 1
4

))

sin q0x+ C sin 3q0x. (155)

Then considering (112) for y = 0 and using (123) we get

µ
(

∂2
xyv

(1)
y + ∂2

yyv
(1)
x

)

ρ(2) = −β
2
sin q0x

(

q0ζ
(

1 +
√

q20 + 1
)

− q0ζi

+ 2µq0

(

D1 +
ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

(156)

+ ξ
q0

(

D1 +
ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

)

+ C sin 3q0x.
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Differentiating (112) in y and substituting (118) we obtain, for y = 0

−µ
2

(

∂3
xyyv

(1)
y + ∂3

yyyv
(1)
x

)

[ρ(1)]2 (157)

= q0
8
sin q0x

(

ζi
√

q20 + 1− ζξ
2µ

− 2ζ
(

q20 +
√

q20 + 1 + 1
)

)

+ C sin 3q0x.

Similarly to (156) using equation (132) and (140) we get

−µ
(

∂2
xyv

(2)
y + ∂2

yyv
(2)
x

)

ρ(1) = − ζq0
2

(

q20 −
√

q20 + 1
)

sin q0x

+ ζq0
4

(
√

q20 + 1− 4β
)(

1 +
√

4q20 + 1
)

sin q0x− ζiq0
4

(
√

q20 + 1− 4β
)

sin q0x

+
−8µq20−ξ

8µq0

(

D2
√

4q20+
ξ
2µ

− ζ
4

(

3q20 +
ξ
2µ

+ 4
√

q20 + 1− 4β
(

ξ
4µ+

√
2µξ

+ 2
))

+ 4γq20β − ζi

(

β
√
2µ√

ξ+
√
2µ

− 1
4

))

sin q0x+ C sin 3q0x. (158)

Finally,

−γ[ρ(1)]′′[ρ(2)]′ − γ[ρ(2)]′′[ρ(1)]′ = βγq30 sin q0x+ C sin 3q0x. (159)

Thus combining (153)–(159) we have

Q =(βγ − ζ)q30 +
ζq0
4

(
√

q20 + 1− 4β
)(

1 +
√

4q20 + 1
)

+ ζq0
4

√

q20 + 1

− β
(

µq0 − ξ
2q0

)

(

D1 +
ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

+ β
2

(

q0ζ
(

1 +
√

q20 + 1
)

+ q0ζi

)

− q0
8

(

ζi
√

q20 + 1 + ζξ
2µ

+ 2ζ
)

−4µq20+ξ

8µq0

(

D2
√

4q20+
ξ
2µ

+ 4γq20β − ζi

(

β
√
2µ√

ξ+
√
2µ

− 1
4

)

− ζ
4

(

3q20 +
ξ
2µ

+ 4
√

q20 + 1− 4β
(

ξ
4µ+

√
2µξ

+ 2
))

)

. (160)

Next we consider (97) and establish that

2µ∂yv
(3)
y = b

(

γq20 − 2ζ + ζi − ξV (0)
)

cos q0x+R cos q0x+ C cos 3q0x, (161)

where

R = −2βζq20 − ζiβ
2

− ζi
4
+
(

ξ
8
− 3µq20

4

)

D1 − 3µq20
4

(

ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

)

+ βζ
(
√

q20 + 1 +
√

4q20 + 1
)

+ 3ζ
2
− 2ζ

√

q20 + 1− ξ
(

V (21) − ζβ
4µ

)

− ξγq20
8µ

− ζ
4

(

q20 + 2
√

q20 + 1− 1
)(

1 +
√

4q20 + 1
)

+ 3ζi
8

√

q20 + 1− 1
4
γq40 + ζq20. (162)

For the first term in the right hand side of (97) we have, by (114),

µ
(

∂xv
(1)
y + ∂yv

(1)
x

)

[ρ(2)]′ = −βζq20 cos q0x+ C cos 3q0x. (163)
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Next two terms are transformed as follows

µ
(

∂xv
(2)
y + ∂yv

(2)
x

)

[ρ(1)]′ + µ
(

∂2
xyv

(1)
y + ∂2

yyv
(1)
x

)

ρ(1)[ρ(1)]′ = 2µ∂xv
(1)
x [ρ(1)]′

2

− ζ [ρ(2)]′[ρ(1)]′ − γ[ρ(1)]′
2
[ρ(1)]′′ =

(γq40
4

− ζβq20
)

cos q0x

+
µq20
2

(

D1 +
ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

cos q0x+ C cos 3q0x, (164)

where we have used (82) and (123). With the help of (38) we find, for y = 0

− 2µ∂3
yyyVyρ

(1)ρ(2) − µ
3
∂4
yyyyVy[ρ

(1)]3 = cos q0x
(

βζi
2

− 2βζ − ζ + ζi
8

−βζξ
4µ

− ζξ
8µ

− ζξ2

16µ(4µ+
√
2µξ)

+ ζiξ
8(
√
2µξ+2µ)

)

+ C cos 3q0x. (165)

It follows from (118) that

−2µ∂2
yyv

(1)
y ρ(2) = cos q0x

(

βζ
(

1 +
√

q20 + 1 + ξ
4µ

)

− βζi
2

)

+ C cos 3q0x. (166)

Differentiating (112) in x and subtracting the derivative of (113) in y, setting y = 0,
and using (115), (123) we get

−µ∂3
yyyv

(1)
y [ρ(1)]2 = −3

8
cos q0x

(

ζi
(

q20 +
√

q20 + 1
)

− (2µq20 + ξ)D1

− 2(µq20 + ξ)
(

ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

− 2ζ
(

1 +
√

q20 + 1
)2
)

+ C cos 3q0x. (167)

Since 2µ∂2
yyv

(2)
y = µ(∆v

(2)
y + ∂ydivv

(2))− µ∂x(∂xv
(2)
y + ∂yv

(2)
x ) we derive with the help

of (133)–(135) that

2µ∂2
yyv

(2)
y ρ(1) =

(

(

2µq20 +
ξ
4

)

D1 + ξ
(

V (2) + 2bV (0) − ζβ
4µ

+ 5ζ
8µ

)

+
(

2µq20 +
5ξ
8

)

(

ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

)

+
(

3µq20 + ξ
)γq20

2µ
+ ζi

(

β
2
− b

)

+ ζ
4

(

(

q20 + 2
√

q20 + 1− 1− 4β
)(

1 +
√

4q20 + 1
)

− 14
√

q20 + 1− 4q20

)

+ ζ(2b− 1)− 3ζi
8

(

q20 + 2
√

q20 + 1− 1
)

)

cos q0x+ C cos 3q0x. (168)

Finally, we have

−γb[ρ(1)]′′ − 3
2
γ[ρ(1)]′

2
[ρ(1)]′′ = cos q0x

(

bγq20 +
3
8
γq40

)

+ C cos 3q0x. (169)

Combining (163)–(169) (and taking into account (131)) we obtain (161) with R given
by (162) .
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Appendix E The equation for the coefficient b

Now we consider the boundary condition (98) and find the coefficient b which deter-

mines the bifurcation type. Since 2µ∂yv
(1)
y = −2µ∂2

yyVyρ
(1) + γ[ρ(1)]′′ for y = 0, we

have
∂2
yyVyρ

(1)ρ(2) + ∂yv
(1)
y ρ(2) = −βγq20

4µ
cos q0x+ C cos 3q0x.

By (118), (139)–(140) and (124) we get, correspondingly,

1
2
∂2
yyv

(1)
y [ρ(1)]2 = 3

16µ

(

ζi − 2ζ
(
√

q20 + 1 + 1 + ξ
4µ

)

)

cos q0x+ C cos 3q0x,

∂yv
(2)
y ρ(1) − v(2)x ρ(1)

′
= 1

2µ

(

−3
4
ζq20 − ζi

4
+ ζ

√

q20 + 1 + ζξ
8µ

)

cos q0x

+ 1
8µ

(

D2
√

4q20+
ξ
2µ

+ 3ζ
4
q20 +

ζξ
8µ

+ ζ
√

q20 + 1− 4γq20β − ζi
4

−2µβ
(

ξζ
2µ(4µ+

√
2µξ)

− ζi√
2µξ+2µ

+ ζ
µ

))

cos q0x+ C cos 3q0x,

and

−v(1)x [ρ(2)]′ = β
(

D1 +
ζξ

2µ(4µ+
√
2µξ)

− ζi√
2µξ+2µ

+
2ζ+γq20

2µ

)

cos q0x+ C cos 3q0x.

Using (38) we obtain

1
6
∂3
yyyVy[ρ

(1)]3 = 1
16µ

(

ζξ
2µ

+ 4ζ − ζi

)

cos q0x+ C cos 3q0x,

and from (117) we have

−∂yv
(1)
x ρ(1)[ρ(1)]′ =

ζq20
8µ

cos q0x+ C cos 3q0x.

Substituting the expressions obtained above into (98), combining all the terms with
cos q0x, and taking into account (99) we get the relation (102). Finally, using (147)–
(148) we obtain

− bq0∂qΛ(q0) =
D(q0)+2µξq20+ξ2

2µq0D(q0)
Q+

ξ

√

q20+
ξ
2µ

D(q0)
R− I

(123)
y

+
D(q0)+2µξq20+ξ2

2q0D(q0)

(

q0I
(123)
y − I

(1)
x −

√

q20 + 1I
(123)
x −

√

4q20 + 1I
(3)
x

)

− 1
4µ

(

ζ
√

q20 + 1− ζ
2
− ζi

8
+ ζξ

16µ
− 5ζq20

8
− βγq20

)

(170)

−
2µξ

√

q20+
ξ
2µ

D(q0)

(

I
(1)
y +

√

q20 + 1I
(123)
y +

√

4q20 + 1I
(3)
y

)

− βD1 − D2

8µ

√

4q20+
ξ
2µ

− 3β
4

(

ξζ
2µ(4µ+

√
2µξ)

− ζi√
2µξ+2µ

+ ζ
µ

)

,

where I
(123)
x = I

(1)
x + I

(2)
x + I

(3)
x and I

(123)
y = I

(1)
y + I

(2)
y + I

(3)
y .
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