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ABSTRACT: Analytical and semianalytical expressions for the
surface tension of dielectric−air interfaces are presented after
considering local and nonlocal dielectric effects near interfaces. It is
shown that the nonlocal effects of dielectrics are significant for
highly polar dielectric fluids such as water. Far from the interface,
nonlocal dielectric effects are shown to cause not only the
oscillatory potential of the mean force but also a reversal of sign at
intermediate distances.

■ INTRODUCTION
Understanding the effects of electrostatics near surfaces is of
fundamental and technological interest.1,2 In this regard, the
effects of molecular interactions (including electrostatics) on
the surface tension of fluids have been studied extensively.
These studies include fluid−air and fluid−fluid interfaces
involving polar/nonpolar liquids1,3 and electrolytes4−18 start-
ing from the works by van der Waals1 and Onsager−Samaras,4

respectively. Extensions of these studies to macromolecular
systems involving polymers have been poineered by Helfand−
Tagami−Sapse19−22 and later on, extended to polymer−
polymer−solvent23−28 systems. In the most of these studies,
excess contribution to the surface tension (e.g., resulting from
added electrolytes to a fluid) is either computed or studied
experimentally, circumventing complications from the estima-
tions of the surface tension of the underlying liquid−liquid or
liquid−air interfaces.
Due to primary focus on the excess contribution to the

surface tension, our fundamental understanding about the
structure of pure fluid interfaces remain incomplete. For
example, the experimentally measured value of the surface
tension of the water−air interface29 is 72 mN/m at 25 °C.
However, there is no existing theoretical expression, which can
be used to justify the experimentally measured value. The
situation is the same for other polar liquid−air interfaces. The
best estimate for the surface tension of the water−air interface
can be obtained using an expression derived by Mahanty and
Ninham,29 which is a rigorous extension and improvement
over previous estimates based on assumption of a pairwise
summation of dispersion forces.2 The expression was derived
using Lifshitz’s theory of van der Waals forces30 and requires
knowledge of a length scale, which was introduced to get
convergent results for the surface tension. By choosing the

length scale to be the mean interaction spacing in water, the
surface tension of the water−air interface was estimated29 to be
20 mN/m. A similar approach using the Lifshitz’s theory of van
der Waals forces and relating surface tension to work done in
creating surfaces was taken by Holmes.31 Using an ad hoc
method for estimating the surface tension, the final expression
for the surface tension was found to be divergent and required
knowledge about the closest distance between two plane
surfaces which form an interface between two fluids. Papazian
had used this approach to relate the surface tension of the
organic liquid−air interfaces to dielectric constant of the
liquids32,33 with limited success. Taking another approach
based on the assumption of infinitely sharp interfaces between
two dielectrics (e.g., water and air), the surface tension was
estimated using analytical expressions for the Green’s functions
of the underlying electrostatic boundary value problems.34−36

However, even in this case, the expression for the surface
tension remains divergent34,35 requiring empirical inputs for
estimations.
In this work, we present results for infinitely sharp

dielectric−air interfaces. In contrast to previous studies, we
get convergent results for the surface tension by introducing a
molecular size-related length scale (a) in the underlying
electrostatic boundary value problem. Introduction of the
length scale brings chemical specificity in the final expression
for the surface tension of dielectric interfaces and nonlocal
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dielectric effects appear naturally in these calculations. Similar
approaches to include a molecular size-related length scale in
the electrostatics of polar fluids have been taken by
Kornyshev,36,37 Markovich et al.,18 and Netz and co-work-
ers.38,39 In particular, the effects of nonlocal and nonlinear
dielectric functions near interfaces have been described by
Kornyshev and co-workers.36,37 However, the dielectric
functions were not derived in a self-consistent manner and
were assumed to be known either from a molecular model or
extracted from simulations. In extracting the dielectric
functions from atomistic simulations, works by Netz and co-
workers38,39 are noteworthy, which highlight anisotropic/

tensorial and nonlinear aspects of the dielectric function for
interfacial water. These dielectric functions were used in the
Poisson−Boltzmann equation to compute the electrostatic
potential and capacitance of surfaces.38 In addition to these
developments related to nonlocal dielectric function of
interfacial water, there have been attempts to study the effects
of chemical (ionic) specificity near dielectric−air interfaces.
These attempts are based on a field theory approach and
introduce chemical specificity of ions by introducing ion-
specific interactions with the surfaces.18 Although amenable to
generalization,40,41 such a field theory approach has been used
for known local dielectric functions. Our approach to study

Figure 1. (a) Bulk free energy density of dielectric based on local (eq 2) and nonlocal (eq 8) dielectric effects. (b) Self-energy of a dipole in the
bulk (i.e., z → ∞) based on local (eq 4) and nonlocal (eq 7) dielectric effects. (c) Width of the dielectric−air interface using local dielectric effects
(eq 6). (d) Density profile of dipoles near dielectric−air interfaces (eq 5). (e) Potential of mean force in bulk of a dielectric of permittivity 2 based
on numerical (eq 9), second order (eq 10), and fourth order (eq 11) expansion of the exponential in the nonlocal dielectric function and the
Coulomb’s law (∼1/ϵl|r|). (f) Potential of mean force in bulk of a dielectric of permittivity 80 using the same approximations as in panel (e).
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sharp dielctric−air interfaces is based on a field theory
approach (see the Supporting Information, SI, for details), in
which a molecular size-related length scale is introduced in the
particle description of the Hamiltonian. A sharp dielectric−air
interface allows analytical and convergent results for the
surface tension. However, as a first step with our approach, the
calculations are done with linear and isotropic but nonlocal
dielectric function. As demonstrated by the works of
Kornyshev,36,37 Markovich et al.,18 and Netz and collabo-
rators,38,39 the tensorial and nonlinear aspects of the dielectric
function can be important. In the present paper, our focus is to
develop a divergence-free field theory for nonlocal dielectric
functions, in the simplest situation of sharp interfaces for the
linear and isotropic dielectric function, which enables analytical
tractability. Generalizations of the theoretical formalism
presented here to study nonlinear and tensorial dielectric
functions will be attempted in future works.

■ RESULTS AND DISCUSSION
We first estimate the surface tension of dielectric−air interfaces
solely on the basis of electrostatics involving the local dielectric
function. Free energy (F) of a dielectric (having a local
dielectric constant, ϵl) with volume V and an infinitely sharp
dielectric−air interface with area A can be written as (see the
SI for the derivation) follows:

σ= +F
k T

f V
k T

A
k TB

b

B B (1)

= [ϵ ]
f

k T a
1

16
ln l

b
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3 (2)

σ π= − − ϵ −
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ÅÅÅÅÅÅÅÅÅÅÅÅ
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1
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l

lB
2

2

(3)

Equation 1 is obtained using the Langevin-Debye relation
for dielectric, ϵl, relating it to the dipole moment (p) of
molecules constituting the dielectric with the number density
of dipoles ρb at temperature T. Explicitly, ϵl = 1 + 4πlBop2ρb/3,
where lBo = e2/4πϵokBT is the Bjerrum length in the vacuum
characterized by its permittivity ϵo, electronic charge, e, and the
Boltzmann constant, kB. In eq 1, the term proportional to the
volume V is related to self-energy of dipoles and interactions
among the dipoles.42,43 In particular, f ree energy density, f b
becomes directly proportional to the self-energy of dipoles in
the limit when the number density of dipoles (ρb) vanishes i.e.,
ρb → 0 e.g., for a dipolar gas. The logarithmic term appearing
in the expression for f b results from multibody interactions
among the dipoles and is plotted in Figure 1(a). Here, a is the
size of the charge density distribution characterizing a dipole
and a = 0 represents a point-dipole. Furthermore, the term
proportional to the area A in eq 1 can be readily identified as
the interfacial contribution to the free energy and is the surface
tension (per unit area) of the dielectric−air interface (σ).
Equation 3 reveals that the surface tension of dielectric−air
interfaces increases with an increase in dielectric constant of
the dielectric (cf. Figure 2), which is in qualitative agreement
with the estimates based on other theoretical29,31,44 and
experimental works.32,33 Using typical values for water at room
temperature i.e., ϵl = 80 at T = 298 K, eq 3 gives σ ≡ σwater =
2.437 × 10−3/awater2 J/m2, where we have used 1 kBT = 4.11 ×
10−21 J and a ≡ awater is in units of nm. For the experimental

value of σwater = 72 × 10−3 J/m2, this will imply that awater =
0.18 nm, which is less than an estimated effective diameter of a
water molecule45 (= 0.27 nm). We have found that inclusion of
nonlocal dielectric effects rectifies this issue related to
unphysical values of molecular length scale a required to
reproduce experimental values for surface tension of polar
liquids with ϵl > 10.
Although eq 1 corresponds to an infinitely sharp interface

between the dielectric and air, one can estimate the width of
the interface by a posteriori analysis using space-dependent
self-energy of dipoles. Taking the z-axis along normal to the
interface pointing toward the dielectric medium, the self-
energy (Eself) of a dipole of moment p, can be written as (see
the SI) follows:

π= ϵ + ϵ −
ϵ +
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2
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3 3
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where z = 0 plane separates the dielectric from the air.
Equation 4 (plotted in Figure 1(b)) reveals that density profile
of the dipoles should be as follows:

ρ ρ λ= −
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where ρb should be considered as the number density of
dipoles far from the dielectric−air interface. For water at room
temperature, choosing pe = 4.81 D so that ϵl = 1 + 4πlB0p2ρb/3
≡ 80 at T = 298 K, ρb = 33.46 nm−3 ≡ 1 g/cm3, width of the
water−air interface can be estimated to be of the order λ0water =
0.19 nm, which is of almost the same magnitude as the
molecular length scale awater estimated using the surface
tension. In other words, electrostatic considerations based on
the local dielectric reveal that the interfacial width charac-
terized by λ0 (Figure 1(c)) is on the order of the molecular
size, and the density profiles of the dipoles are monotonically
changing (cf. eq 5 and plotted in Figure 1(d)) with distance
from the dielectric−air interface. Equation 5 is in agreement

Figure 2. Surface tension of planar dielectric−air interfaces based on
local (eq 3) dielectric effects, and different approximations for the
nonlocal dielectric effects (eqs 14 and 16 labeled as second order and
fourth order, respectively).
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with the work of Buff and Goel46 relevant for estimating
surface tensions of zwitterions.
So far, we have neglected nonlocal effects of the dielectric

and these have been shown to be very important near surfaces
such as water−air interfaces47 and in the bulk of dipolar
fluids.37,48 For example, nonlocal dielectric effects are
considered to be responsible for the oscillatory force−distance
relations observed experimentally.47 In the following, we show
that consideration of nonlocal dielectric effects resulting from
the finite size of the dipoles can lead to significant deviations
from the predictions for the dielectric−air interfaces based on
local dielectrics. Even in the bulk, i.e., far from the interface,
the self-energy of the dipoles gets affected by the nonlocal
dielectric effects. Specifically, writing the Fourier transform of
the spatially variant dielectric function ϵ(r) as ϵq = 1 + (ϵl − 1)

e−q
2a2/π, we get (see the SI for details) the following:

π→ ∞ = − {− ϵ − }
ϵ −
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where Lin(x) = ∑k = 1
∞ xk/kn is the polylogarithmic function.

Comparing eq 7 with eq 4 (also see Figure 1(b)), it is
established that the self-energy of dipoles estimated in the bulk
on the basis of local dielectrics can differ significantly from the
estimates based on nonlocal effects, especially for ϵl > 1.
Furthermore, bulk contribution to the free energy can be
calculated using the following:

= − {− ϵ − }
f

k T a
1

16
Li ( 1)l

b

B
3 5/2

(8)

Similar to the self-energy, comparing eqs 8 and 2 (Figure
1(a)), nonlocal dielectric effects are found to be significant for
ϵl ≫ 1. In order to understand the effects of the nonlocal
dielectric in the bulk, we have computed the potential of mean
force (E1,>

−1(|r|)) by numerically evaluating (Figure 1(e)-(f))

∫π
π

| | =
ϵ>

−
·

E l
d e

q
r

q
( ) 4

(2 )Bo

i

q

q r

1,
1

3

3 2
(9)

Integral over q in eq 9 can be evaluated analytically using

either ϵq = 1 + (ϵl − 1)e−q
2a2/π ≃ 1 + (ϵl − 1)/(1 + q2a2/π) or

ϵq ≃ 1 + (ϵl − 1)/(1 + q2a2/π + q4a4/2π2). These
approximations are valid for a → 0 and capture effects of
second as well as fourth order gradients in the underlying
electrostatic boundary value problem. Using the second order
expansion of the exponential in ϵq, approximation to eq 9
becomes
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instead of the lBo/(ϵl|r|), i.e., the Coulomb potential. Equation
10 reveals that the spatial dependence of Ẽ1,>

−1(|r|) changes from
lBo/|r| to lBo/ϵl|r| in the limits of |r|≪ a and |r|≫ a, respectively.
In other words, the dielectric effects appear at distances |r|≫ a
in the form of 1/ϵl, affecting the Coulomb potential.
The fourth order expansion leads to another approximation

for E1,>
−1(|r|), written as follows:
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where we have defined, = [ ϵ + ]t ( 2 1)/2l1
1/2 and

= [ ϵ − ]t ( 2 1)/2l2
1/2. Equation11 reveals that the nonlocal

effects can lead not only to an oscillatory behavior of the
intermolecular potential but also can reverse the sign of the
potential. Equations 10 and 11 are plotted in Figure 1(e, f).
Comparisons with numerical evaluations of eq 9 reveal that the
second order expansion is more appropriate for ϵl ≤ 2 while it
fails for higher values ϵl in terms of capturing sign reversal of
the potential of mean force. The fourth order expansion
qualitatively captures the reversal of sign for higher values of ϵl
as shown in Figure 1(f) and is a better approximation for polar
fluids such as water. The reversal of sign for the potential of
mean force at intermediate distances is in qualitative
agreement with other related works dealing with nonlocal
dielectric effects.36,38

Solving the underlying electrostatic boundary value problem
by including second order derivatives resulting from the
nonlocal dielectric, the space-dependent self-energy and the
surface tension can be computed readily. In particular, the
space-dependent self-energy of the dipoles can be written as
ΔẼself(z) = Ẽself(z) − Ẽself(∞), where

∫π

π

Δ ̃
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For ϵl/(ϵl − 1)) → 1, this becomes (see Figure S1 in the SI
for accuracy of this approximation) the following:

πΔ ̃
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where ̅ =
π ϵ −z z

a
2 ( 1)l . Equations 12 and 13 need to be

compared with eq 4 and are plotted in Figure S2 in the SI.
These plots show that the interfacial width of the dielectric−air
interfaces get affected by the nonlocal dielectric effects.
Furthermore, the free energy for the nonlocal dielectric of
volume V with an interfacial area A for the dielectric−air
interface can be written in the same form as eq 1 but with the
surface tension written as follows:

σ = − [ − ϵ + ϵ − ϵ

+ ϵ −

+ ϵ + ϵ −
ϵ +

ϵ + ϵ ]

k T a
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For the water−air interface so that ϵl = 80 at T = 298 K, this
implies σwater = 588.65 × 10−3/awater2 J/m2, which suggests awater
= 2.86 nm for water−air surface tension to be 72 × 10−3 J/m2.
Equation 14 is plotted in Figure 2 and shows that the
approximation used here leads to an overestimation of the
surface tension of fluids with ϵl > 10. The underlying origin of
this lies in the effects of the nonlocal dielectric on the space-
dependent self-energy of dipoles shown in Figure S2 in the SI.
In an attempt to get a better estimate for the surface tension

of dielectric−air interfaces with ϵl > 10, we have computed the
space-dependent self-energy (ΔÊself(z) = Êself(z) − Êself(∞))
and the surface tension using fourth order derivatives in the
electrostatic boundary value problem. Explicitly,

∫π
π

δΔ ̂
= − ̂E z

k T
l p

d
D q z z

q( )
4

(2 )
( , , )self

B
Bo

2
2

2 1
(15)

where δD̂1 is presented in the SI, and eq 15 was evaluated
numerically. Results of such numerical evaluations are
presented in Figure S2 in the SI. Also, the surface tension
for a dielectric−air interface can be readily identified as
follows:

∫ ∫ ∫σ π ρ
λ λ

π
δ= − ″ ϵ −
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∞

k T
l p

z
d

D q z z

q4
6

d d ( 1)
(2 )

( , , )

b
l

B

Bo
2

0 0

1
2

2

(16)

Integrals over z″ were calculated analytically and the
integrals over λ and q∥ were evaluated numerically. Equation
16 is plotted in Figure 2. The surface tension value computed
using eq 16 lies intermediate between the estimates based on
local dielectric effects and the second order approximation for
ϵl > 10, providing physically reasonable values for polar liquids
such as water.

■ CONCLUSIONS
In summary, we have shown that nonlocal dielectric effects
near the dielectric−air interfaces can affect their surface
tension in a significant manner even for the limit of isotropic
and linear dielectrics. Using a particle-based Hamiltonian, we
have derived divergence-free expressions for the surface
tension and density profile of the dielectric from the interface.
The nonlocal dielectric effects not only lead to an oscillatory
intermolecular potential far from the interfaces but also invert
the sign of the potential at intermediate distances. We
anticipate the nonlocal dielectric effects to be significant in
many other polar fluids including polyelectrolytes, polyzwitte-
rions, and polypeptoids. Furthermore, inclusions of the
nonlinear and anisotropic nature of the dielectric function in
the theoretical formalism presented here should be considered
for more accurate estimates of surface tension, which is
relegated to future work.
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