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GRAPHICAL ABSTRACT

Interfacial concentration profiles for
constant-flux dead-end filtration,
obtained analytically, with various
observed rejection ratios
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e The intrinsic rejection ratio can be
estimated as a square root of the
observed rejection.
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ARTICLE INFO ABSTRACT
Keywords: In this study, we revisit the fundamentals of constant—flux dead-end filtration, develop an analytical solution of
Dead-end filtration the interfacial concentration ¢,,(z,R,) as a function of dimensionless time 7 and observed rejection R,, and
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Robin boundary condition

compare the solution with previous work developed for constant intrinsic rejection, R;. The excessive concen-
tration, ¢,,(7,R,) — 1, consists of three nonlinear terms of 7 and reaches 4R,7 in an asymptotic limit of 7 > 1/2.
We apply the Robin (mixed) and Dirichlet boundary conditions on the membrane surface and at a far
feed-entrance, respectively. The mathematical difficulties for the inverse Laplace transform are resolved using a
linear combination of the Laplace transform of error and complementary error functions and applying the
convolution theorem. We analytically obtain the unsteady variation of the interfacial concentration after the
pressure release using the global mass balance and numerically calculate the required time to reduce the
interfacial concentration to a specific limit. More importantly, a relationship between observed and intrinsic
rejection ratios is found, such as, R, ~ \/R;, and verified using experimental data from the literature.

1. Introduction crossflow filtration modes. Dead-end filtration involves the feed flow
approaching perpendicularly to the membrane surface in a closed
Membrane separation processes can be conducted in dead-end and container. In contrast, crossflow filtration requires the feed stream to
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flow tangentially through the membrane channel. Each mode has
unique advantages and disadvantages, and careful consideration should
be given to which mode is most appropriate for given purposes. During
desalination, solutes are rejected by the membrane, causing a higher
surface concentration than the background concentration, such as the
feed or initially uniform concentration. The concentration gradient
formation is referred to as the concentration polarization (CP) phe-
nomenon, formed within a thin boundary layer above the membrane
surface. Fundamental analyses of CP formation and its evolution are
essential to ensure the optimal performance of desalination systems
[1-3].

Concentration polarization (CP) reduces the driving force for solvent
transport through the membrane and gradually decreases solvent re-
covery and solute rejection. As a reversible fouling phenomenon, CP
forms at the beginning of filtration, intensifies proportionally to the
produced permeate volume, and disappears when the driving force
stops. If the height of the membrane channel is similar to the thickness of
CP, the fouling caused by CP can be accelerated because thin membrane
channels may increase bulk concentration above the membrane surface
from the feed concentration. The CP often triggers irreversible fouling
on the membrane surface. The phenomenological significance of the CP
resides in various applications and phenomena, such as, but not limited
to, battery charging speed [4], patterned surface occurrence [5], mes-
opores [6], and micro-nanofluidic channels [7]. Given the dynamic ex-
istence of the CP layer, visual CP-layer detection can be challenging:
however, if realistically implemented, it can significantly contribute to a
fundamental understanding of the growth and evolution of the CP
phenomena [8-10].

A primary objective of membrane research is to minimize the CP
phenomena, necessitating comprehensive experimental, theoretical,
and simulational investigations to understand the dynamic character-
istics of the CP phenomena. Due to the complex nature of mass and
momentum transfer during membrane filtration processes, numerical
approaches are often used to solve transport governing equations.
Software packages, available in open-source communities and com-
mercial markets, are used to model the filtration phenomena and pro-
vide physically meaningful solutions. However, the quantitative
numerical results are obtained with input conditions and predetermined
parameters during simulations. Sensitivity analyses of numerical solu-
tions often require a series of simulations with various parameter values.
On the other hand, theoretical approaches build a simplified model
system of target phenomena, employ reasonable assumptions and ap-
proximations, and provide analytical solutions for governing equations.
The reliability of these models depends on the level of theoretical ap-
proximations and, more importantly, the availability of exact analytical
solutions to interpret experimental observations.

The governing equation for the mass transport in membrane filtra-
tion is classified as a parabolic partial differential equation (PDE),
referred to as the convection-diffusion or advection-diffusion equation
[11-13]. The main challenge in solving the governing equation stems
from the mixed boundary condition (BC) on the membrane surface, also
known as the Robin BC [14-16], which balances the convective feed flux
toward the membrane surface and the back-diffusion of accumulated
solutes within the CP layer. Due to incomplete solute rejection, a frac-
tion of solutes still pass through to the membrane material and provides
a non-zero solute concentration in the permeate stream. The Robin
boundary condition limits the solute transport through the membrane,
and therefore, eliminates the steady state during the dead-end filtration.

In applied and engineering mathematics, the 1D unsteady transport
equation often includes diffusion, convection, and reaction. The analytic
solutions were obtained using the Laplace transform, or the separation
of variables followed by the Fourier transform (only), e.g., for the
first-order reaction. The presence of source and sink terms, varying with
coordinates and concentration, makes the solving procedure much more
difficult. A recent mathematical development provides a general method
to obtain 1D steady analytical solutions without the inverse Laplace
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transform [17]; however, this general solution method is limited to
Dirichlet or Neumann BCs by specifying the concentration and its
gradient, respectively.

Obtaining analytical solutions using the Laplace transform is limited
to cases where their inverse Laplace transform is available by perform-
ing the Bromwich integral directly or using prebuilt formulae in math-
ematical tables. The existing literature includes analytical solutions for
heat and diffusion equations only for steady-state convective diffusion
or unsteady-state diffusion [11,12], subject to Dirichlet or Neumann
boundary conditions. In the dead-end filtration literature, the constant-
pressure mode (CPM) has been more actively investigated than the
constant-flux mode (CFM), especially for perfect or near-perfect rejec-
tion cases. In addition, the governing equation of crossflow filtration is a
2D unsteady parabolic equation, including convection and diffusion in
the longitudinal and transverse directions. Analytical solutions for
concentration and permeate flux have been obtained [18], assuming a
linear shear flow within the CP layer without cake formation. In the
theoretical work, the separation of variables method has been utilized to
analytically determine a steady-state concentration as a combination of
Airy functions [19]. When employing crossflow filtration, the linear
shear flow has an insignificant influence on the CP formation during the
early stages of the filtration procedure. Therefore, the initial flux decline
in cross-flow filtration is comparable to that of dead-end filtration
[20,21].

2. Theory

Industrial sectors favor CFM operation, as it facilitates a pre-
scheduled production rate. The hydraulic pressure is automatically
regulated to restore the declined flux to the predetermined level, and the
recovered flux continues accumulating solute molecules on the mem-
brane surface.

2.1. Governing equation

The governing equation of dead-end filtration [22,23] may be writ-
ten as

oc 0 oCc

where C(t,y) is the solute concentration as a function of time t and co-
ordinate y normal to the interface; Dy is the constant solute diffusivity;
and J, is the uniform permeate flux (in magnitude), defined as the
permeated solvent volume per unit time and per unit membrane area.
The filtration performance is often measured using the observed rejec-
tion ratio, defined as

R,=1- S @

G

where Cr and C, are feed and permeate concentrations, respectively; and
in a batch operation, Cs also refers to the initial concentration.

We consider the following scenarios for the theoretical development.
First, the membrane channel is uniformly filled with the feed solution,
Cy, at the beginning of the filtration. Second, the feed-stream of C; en-
ters the membrane channel sufficiently far from the membrane surface.
Third, the convective transport of solutes toward the interface is
counter-balanced with solute back—diffusion, resulting in non-zero C,.
The above-mentioned three conditions are written as

C,t=0)=G (3)

Cy—o0,1) =C; @

DOdC,,, +J4,Cpn = J,C, 5)
dy
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where Cp, = C(t,y = 0) is the unsteady interfacial concentration, and

ac, {dC(y, z)]
y=0

dy

6
PR (6)

is its gradient. Eq. (5) is the Robin boundary condition, also called the
third or mixed boundary condition, and its physical implications can be
found elsewhere [24-26]. The governing Eq. (1) with conditions of Egs.
(3)-(5) is applicable to both CFM and CPM operations with specific
dependence of J,, on Cy,.

The mass transfer phenomena through nanofiltration or reverse
osmosis membranes are often described using the solution-diffusion
model [27,28], such as

J. =A(AP—AIL,) ()
J, = BAC,, (8)

respectively; where A and B are the solvent and solute permeabilities
through the membrane; AP is the applied hydraulic pressure; and AT,
and AC,, are the transmembrane differences of the osmotic pressure and
solute concentration, respectively. In the CPM, AP is fixed, and the
permeate flux J,, decreases with time due to the unsteady growth of
interfacial osmotic pressure All,. In the CFM, the constant flux J,, is
maintained at its initial level throughout the filtration, which requires
the continuous growth of hydraulic pressure.

2.2. Nondimensionalization

2.2.1. Representative scale parameters

We scale the concentration C by its representative value of C to have
a dimensionless concentration ¢. The dimensionless coordinate # and
time ¢ are defined by dividing the coordinate y and time t by repre-
sentative length scale L and time scale T, respectively, to be determined
later. The dimensionless quantities of ¢, #, and 7 have linear relation-
ships to their real physical quantities, such as

C=C¢ 9
y=1Ln (10)
t=T1 an

that provide the dimensionless form of Eq. (1), such as

i _ I o
where
J,L .
Pe=""(=2) (13)

is the Peclet number, and 1 is a controlling parameter used in this study
for additional theoretical analyses. Because the selection of L is arbi-
trary, we assign Pe = 2 in Eq. (13) to have

ZDO
L= 14
7, a4
which automatically determines the time scale parameter, such as
L 4D,
== =-2 15
D~ R (15)

Most inorganic ions have diffusivity in water of an order of 0(10~°)
m?/s: for example, the diffusivity of sodium and chloride are 1.334 x
10~° m?/s and 2.032 x 10~° m?/s, respectively [29]. If we assume that
the membrane permeate flux is of an order of 10 L/m?h [LMH], i.e., 2.7
um/s, scaling parameters are estimated using the sodium diffusivity,
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such as

L 2Do _ 2-(1x107?)
T J, 27x10°¢

m~ 1.0 mm = 0(10°) mm (16)

4-(1x107°
:ler):(xiols: 1220 min = 0(10') min a7)
S (27 x10°9)

respectively, where O(---) represents an order of magnitude of a quantity
of interest. Note that L and T are estimated as fractions of a millimeter
and an hour, respectively.

2.3. Growth of interfacial concentration

2.3.1. Analytic solution
We rewrite the governing equation in a dimensionless form, such as

op op
5_0—'72-#2/1% (18)

with the required conditions of

pz=0,7) =1 19
P(n—o0,7) =1 (20)
a m

e i 4) =0 @

where ¢,,(7) = Cn(t)/Cs and ¢, = C,/C; = 1 — R, are the dimensionless
forms of interfacial and permeate concentrations, respectively, and

%4
n=0

o |on

is the gradient of ¢,, at the interface (4 = 0). As noted above, 1 is a
parameter to specify the physical characteristics of the convection flow
Jy. If 2> 0, the flow direction is toward the membrane surface in —y
direction. If 1 < 0, the flow direction is away from the membrane surface
to the bulk phase, representing the backflushing process, which is out of
our scope in the current research. Especially, 4 = 0 can represent the sole
back-diffusion phenomena when the permeation stops temporarily for
membrane cleaning or pressure adjustment.

The theoretical goal of the current work is to calculate the dimen-
sionless, unsteady interfacial concentration ¢,,(7) in the CFM. Because L
is determined using constant Dy and Jy,, the dimensionless governing Eq.
(18) does not include a specific Peclet number. Therefore, each term in
the governing equation is properly balanced in magnitude, which is
advantageous in obtaining reliable numerical solutions later. We restrict
ourselves to 2 = +1 to investigate the transient build-up of the interfa-
cial concentration ¢,,(7), which determines the instantaneous pressure
growth for the constant J,.

The Laplace transform for ¢(z,1) is defined, such as

1p(e.m)] = B(p,n) = / (e, m)de 22)

which gives

p190] _ o _

&z E} =p®—¢p(n,t=0) (23)
,[@) o0

7 _0'1} oy @4
[0*9] oD

Y _W} =7 (25)

where ¢ (5,7 = 0) = 1 is the initial uniform concentration. Substitution
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of Egs. (23)-(25) into Laplace-transformed (18) gives

42— —pD=—1 (26)

of which the general solution is

1
@(p,n) :;eriv(cleﬂm + Cre™™) (27)

where a = /1 +p for p > 0, and C; and C are unknown integration
constants. A derivative of Eq. (27) is calculated, such as

%—f = —(a+1)Ce™ ™ L Cy(a— 1)ele D (28)

Note that the initial condition of Eq. (19) is already applied during
the Laplace transform process. Now, we determine two unknown con-
stants in Eq. (28). First, ® of Eq. (27) should be finite within the spatial
domain of 0 < 7 < o0, so we let C, = 0 and avoid the divergence of ® at
n—oo. Second, we calculate the Laplace transform of the interfacial
condition of Eq. (21), such as

9, +2®, =2 1-R 29)
an P

and substitute Eqs. (27) and (28) into Eq. (29) to determine
2R,
p(WVT+p —1)

The Laplace transform of the far—field boundary condition of Eq. (20)
is straightforward, such as

G (30)

lim® = 1 (31)
n—co p

Finally, we obtain the specific ® that satisfies the three required
conditions, such as

¢:117+2R0.K(p)e*(‘+ ) (32)
where
1
Kp)=—— 33
e ) 2

which includes the transient behavior of the excessive interfacial con-
centration at # = 0. An inverse Laplace transform ® of Eq. (32) provides
the complete analytic solution for the unsteady concentration profile at
time 7 in the full space domain, which requires the Bromwich integral,
such as

d(t,n) =1+ 2R, 27" [K )ef(wmy]

2R, i _(14ViTz
‘%dze"’K(z)e (1452
2mi

(€3]
-1+

where the real parameter p is replaced by a complex variable z. Due to
the term containing v/z + 1, the direct integral of Eq. (34) is challenging,
and moreover, L™![K(z)] is not currently found in mathematical tables.

We focus on the transient interfacial concentration at # = 0, such as

$,(1) = 14+2R, 7' [K(p)] (35)

to calculate the # '[K(p)] by taking the following steps. First, we
multiply 1/p + 1 + 1 by the numerator and denominator of K to rewrite
it, such as

_l+VpFI

=Y

K(p) » =Ki(p) + Kx(p) (36)
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where
1
Ki(p) = 7 (37
1
Ka(p) = —”‘;j (38)

The inverse Laplace transform of K; is straightforward, such as

2K =1 (39)

and that of K, requires some extra steps to apply the convolution the-
orem. We reformulate K as a product of F(p) and G(p), such as

Ka(p) = F(p)G(p) (40)
where
F(p) =+ 1)
p
Gp) =¥t 42)
p

and use the following Laplace transform formulae [30], such as

ol -vF) | = =

erfe(+7)] :%I:I}M% (44)

where erfc is the complementary error function, defined as

. 2 [
erfec) = 1=erf (&) = [y (45)
and the original error function is
- 2 [ gy
erf(z) = 77.[/0 eV dy (46)
For simplicity, we define
k7 {erfc( - ﬁ) ] =L_ 47)
g{erfc@ﬁ)] =L, (48)

and rewrite G(p) such as

—_

1
Vvp+1

Then, we calculate the inverse Laplace transform of G(p), such as

G(p) = 3 (L. —Ly)+ (49)

-1 o o o1 1
I R R e 50)
= erf(V7) +% Gh
and rewrite % 1[Ky(p) ], such as
27K (p)] = 2 [F(p)G(p) | =f e =¢f (52)

where f(r) and g(r) are the inverse Laplace transform of F(p) and G(p),
respectively, such as

f@) =2 [Fp)] =1 (53)

(54)

8(0) = 77[G(p)) = enf (V7) + Nz
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In Eq. (52), operator * indicates the convolution integrals, such as

fg= /0 F(r—x)g(x)dx (55)

§f = / ¢t -0 (x)dx (56)

To take advantage of the constant function f(x) = 1, we choose Eq.
(55), such as

flg= /(:dx-l-<erf(\/)_c) +%> (57)

= (s 3)err () + e (58)

We finally obtain the analytical representation of the unsteady
interfacial concentration in the CFM, such as

$,(1) =1 +2R, {H (H%) erf(ﬁ) + ﬁe} (59)

indicating that the excessive concentration, i.e., ¢,, — 1 is linear to the
observed rejection ratio, R,. Special cases of Eq. (59) include the zero
and perfect rejection cases, such as

Jim ¢,,(7) =1 (60)
and
limg, (v) = (1+27) [1+err(v7) | +2\/§e” (61)

respectively. Note that erf(x) increases monotonously when 7 increases
from O to 1, and afterward reaches a plateau value of 1 gradually, having
a similar shape to the hyperbolic tangent function [31]. See Appendix
A.1 for details.

2.3.2. Numerical solutions

Numerical solutions are often obtained to understand complex phe-
nomena when analytical solutions are challenging. On the other hand,
numerical solutions can be used to cross-validate theory—oriented
analytical solutions. Among multiple numerical schemes available to
solve the PDE, we employ the forward, explicit scheme to monitor nu-
merical errors sensitive to intervals.

The dimensionless concentration ¢(z,7) is discretized, such as ¢; ; for
7-indexj = 1 — M and #-index k = 1 — N. The time and length intervals
of 57 and n are determined, such as

”max
d on=-—7r- 62
and  on == (62)
respectively, where 7., and 7, are the time and spatial maxima,
respectively. Because the interfacial condition of Eq. (21) includes
0¢/0n, the interfacial concentration, ¢,,(r) = ¢;;, should be calculated

using its neighbors in the computational grid. In this study, we test the
differentiation schemes using 2, 3, and 5 points, such as

P $p — A,0n
P = (1 — A61) 63)
Ay — s — 24,01
I € - o (64)
48¢., — 364, 16¢., — 3,5 — 12A¢p 01
¢][sl] _ ¢/2 ¢/3 + ¢j4 ¢/5 ¢,; Ul (65)

(25 — 12457)

and discuss their sensitivity analyses in the next section. Detailed pro-
cedures for the numerical solutions are in Appendix A.2.
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2.4. Decline of interfacial concentration after pressure release

The dead-end filtration at the CFM is designed to periodically stop
whenever the hydraulic pressure exceeds a predetermined limit. The
unsteady declining behavior of the interfacial concentration after the
pressure release can be modeled by solving the governing Eq. (12) with
A = 0, such as
op 3
Ezd_nz for 7>1, (66)
where 7; is the specific time when the hydraulic pressure is released. In
this specific case, the far-field boundary condition is kept valid,
regardless of A, such as

p—>o0, 72 7,) =1 (67)

but the interfacial condition is changed to the Neumann boundary
condition, such as

{%} =0 (68)
2

When the permeation stops at ¢ = 7, the spatial variation of ¢(1, ;)
becomes an initial condition for the subsequent back-diffusion phe-
nomena, denoted as

& (zs,1) = p(n) (69)

which is analytically unknown due to the lack of a full solution for Eq.
(34). We take the asymptotic limit of u(s) to assume

#(1) = 1+ (P — e (70

where ¢... = ¢ (7s) is the interfacial concentration at 7 = 7, and fisa
constant to be determined. The global mass balance is written, such as

00 1y
/ [C(yytx)fcf]dy:/ J CR,dt (71)
0 0

where t; = Tr; is the real-time when the filtration stops. The left-hand
side of Eq. (71) represents the excessive solute mass retained per unit
membrane area at t;, and its right-hand side indicates the total solute
mass retained until 7 = 7;. We substitute Eq. (70) into Eq. (71) to have

/ (o — Ve ]dy = 2R, 72)
0

which gives

_ (@ —1)
p= 2R,T 73)

To obtain constant f, we take its asymptotic limit at =>1/2 by using
the limiting values of erf (\/%) —1,e"-0, and ¢,,,, — 1 ~ 4R,7 to obtain

lim B = lim P =1 _, 74)

12«1 12«r 2R,T

The symbol f is kept during subsequent derivations (instead of using
its value 2) to investigate its impact on the concentration profile.

The Laplace transform of the governing Eq. (66) provides

d*®
= —

G P = ) 75)
whose general solution is

1 -1
O =—+ C3€7q,1 + C4€+q" + %7267/}” (76)
p Py

where ¢ = ,/p, and C3 and C4 are unknown constants to be determined.
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The far-field boundary condition should prevent ® diverging at 5— oo, so
we set C4 = 0. The interfacial Dirichlet condition of Eq. (68) gives
ax — 1
Y o
¢ =p a
Then, the interfacial ® at n = 0 after the pressure release is denoted
as @, and obtained, such as
(b — 1)

1
@, (p) =+ Lmax — ) 78
2 p+ q(q+p) 78)

and its inverse Laplace transform gives the interfacial concentration
after the pressure is released, such as

$,(v) = p(Ar)H(AT) 79
where A7 = 7 — 7; is the time elapsed after the stopping time 7; and

D(8T) = 1+ (¢ — D" enfe(pV/Br ) (80)

for Atz > 0 and

1 for A7>0

H(ar) = (0 for A7<0 (81)

is the Heaviside step function. In Eq. (80), the erfc(x) function, defined in
Eq. (45), decreases much faster than e , where x = v/Ar.

If a specific value of ¢(Ar) after 75, denoted as ¢y, is given between
Pmax and 1, Eq. (80) can be solved for Az, i.e., the dimensionless duration
for the interfacial concentration decreases from ¢,,,, to ¢;,,. To estimate
the decreasing rate of ¢ at At = 0, we calculate

Jdo i | 2 o N

where x is a dummy variable for the differentiation. Eq. (82) provides
the initial rate of the interfacial concentration at the beginning of the
pressure release. The negative sign indicates ¢(Ar) rapidly decreases
with time Az()0), but the infinite magnitude is physically questionable.
The presence of § indicates that the mathematical singularity may
originate from our assumption of the exponential concentration profile
with n within the CP layer. On the other hand, it is worth noting that ¢ is
a sole function of the difference Az, being independent of z;.

2.5. Comparison to the previous analytical work

Dresner [22] uses the constant permeate flux, denoted as vy, to
propose dimensionless quantities, including excessive concentration
I'(",n) =C(z",n)/Cs — 1, coordinate n” =voy/Do ( = 2n), and time " =
v3t/Dy ( = 41), where C; is the initial concentration within a batch
experimental cell. The Green function is used to solve for the interfacial
concentration with respect to {",7"} only for the perfect rejection, i.e.,
Cp, =0, such as

v,.(7) = (1421) [1 +erf<\/5> ] +2\/§e” (83)

where t = 7" /4. Eq. (83) requires subsequent transforms of functions
including /p + 1 where 1 = 1/2. Dresner's {5", 7"} and our {5, 7} sets can
be generally written using 4 = 1/2 and A = 1 in Eq. (12), respectively. It
is more intuitive to understand physical phenomena using {1, 7"}, but
the {5, 7} set generates a convenient mathematical representation in the
term of \/p + 1.

The subsequent dead-end filtration theories for the CFM [23] and the
CPM [32-34] employ the intrinsic rejection coefficient, defined as
R =1- &

m

(84)
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which is assumed to be constant during the dead-end filtration. In the
previous work, the interfacial excessive concentration has been denoted
asIm(t") = Cm(r")/Cs — 1, and we further show its relationship with R,
and R;, such as

R, — R,
r,=—2>2 85
"R (85)
where Ry < R; < 1 in principle, and therefore
Cm 1 - Ro
= =" 1 86
G =W, ¢ IR (86)

For simplicity, we denote the dimensionless interfacial concentration
of the CPM as y,, = I',(7") + 1 and represent it as a function of 7 (instead
of t°). For example, if R; is a midpoint value between R, and 1, i.e., R; =
(1+R,)/2, then I';; = 1, indicating the interfacial concentration is a
double the background concentration, i.e., y,, = 2. Raridon et al. [23]
extend Dresner's work to calculate y, (r) of an imperfect intrinsic
rejection, such as

1

Vo) =g 1+%(172Rl-)e*4m,(1—k,>e'fc[(l72R,~)\/{—],%e,fc(\/;)]
(87)
for 0 < R; < 1/2 and
Y (0) = 7 (1~ @R = 1)e~HRi1-R) |
+ﬁ (R = e ™R erfe [ 2R, = 1)V | — ere(V7) |
(88)

for 1/2 < R; < 1. Eq. (88) is not intuitively understood for the perfect
intrinsic rejection limit of R;—1. Therefore, we additionally calculate the
limiting expressions of Egs. (87) and (88), such as, for R;—0"

Voo (T, Ri=0") > 1+2R; {\/ge” —(1+427) erfc[ﬁ] } (89)
and for R;—1~
Vi (#.R=17) = (142827) [1 -+ erf (V) | *2\/;4 (90)

respectively. Eq. (89) indicates that the excessive concentration y,, is
linear to R; for R; ~ R,—0. Eq. (90) confirms the theoretical convergence
of y,,; to Dresner's original work of Eq. (83), as well as our analytic
solution of Eq. (59) for the perfect rejection of the CFM, i.e., R,—R;—1.
Now, we calculate the difference between ¢, and y,,; for high
rejection, which should converge to zero for large 7()1), such as

=W, = 4R, — R})7—0 91)

because ¢,, and y,, are indicated identically in Eq. (86). Eq. (91) esti-
mates the intrinsic rejection in terms of the observed rejection, such as

R; ~ vV R, (92)
and the interfacial concentration, such as
_ Cp - Ro

1-VR, - VR,

Eq. (93) demonstrates that the interfacial concentration C,, reaches
2Cy for a high observed rejection (i.e., R,—1), proven as follows, using
L'Hopital's rule [19], such as

Cn (93)

1
=C
f1

lim C,y = lim G~ N e

1
Ry—1 Ry—1 VR, Ro—l 2 2G (94)

1p—1
—1R,
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which is generally unacceptable for NF and RO processes. This theo-
retical restriction must originate from the basic definition of R; in Eq.
(84) that compels the linear relationship of C, with transient Cy,, even if
both change with time. Bouranene et al. [35] report an experimental
study on removing cobalt and lead ions from wastewater using poly-
amide NF membranes. The observed rejection R, is compared with R;
estimated using the standard film theory. Their experimental observa-
tions include R, ~ 0.64 and R; ~ 0.82 for two cases of removing glucose
solution of 2 g/L and cobalt solution of 0.1 g/L. (See Figs. 3 and 5 of
Ref. [35].) Their rejection values support the theoretical approximation
of Eq. (92) well, such as R;/\/R, = 0.82/1/0.64 ~ 1.025, close to 1.
Direct and instantaneous measurements of the interfacial concentration
Cn are still challenging, but essential because novel quantitative
methods may quantify the intrinsic rejection without employing specific
transport models [8].

2.6. Components of interfacial concentration

To investigate the unsteady behavior, we divide the full analytic
solution ¢,,(7) of Eq. (59) into four component functions, such as

Do = 1 (95)

4)ml =2R,7 (96)
1

by = 2R, (”5) erf (ﬁ) 97

bz = 2Ra'\/ze” (98)
T

as shown in Fig. 1, where ¢,,(7) = ¢o + 1 + Pz + G-

Basically, ¢,,0 =1 is the constant feed concentration C; as the
background or reference concentration at arbitrary time 7 and coordi-
nate 7, and therefore, ¢,,, is the only term independent of the rejection
ratio R,. The trivial case is the zero-rejection of R, = 0, which gives
¢m = dmo = 1, referring to the absence or failure of the membrane. The
first non-trivial function, ¢,; = 2R,7, is linear with 7, obtained from
27 YK1(p)]. ¢py indicates the solute accumulation at the interface is
linearly proportional to the accumulated filtered volume. The next
component functions are ¢,,, and ¢, originating from # 1 [Kz(p) |. The
stiff increase of ¢,,, for small 7 is ascribed to the nonlinear dependence of

the error function: in comparison to erf(r), erf <ﬁ> increases with ¢

12
11

=
o

LIS B B I L N L L L L L B R N B

O R NWMROUUIONO®CO®O

1
=

Fig. 1. The interfacial concentration (a) ¢,,(7) and its three components: ¢,
P> Pmo» and ¢35 and (b) the curvature of ¢,,5(7) at the peak value of ¢,,3(7 =
0.5) = 0.4839 for R, = 1.
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faster and converges to the plateau value of 1 more slowly. rerf (ﬁ) in

¢mo 1s ascribed to the initial rapid onset, followed by a linear increase of
the interfacial concentration. For 7 > 1, indicating that the real-time t is
longer than the representative time scale T( = 4Do/J2), the effect of the

error function, erf (\/E) , becomes insignificant as it converges to

erf (ﬁ > 1) —1. Similarly, ¢,,; initially increases with /7 until the
exponential term e~? becomes significant enough to hinder the gradually
increasing trend of /7. Because ¢,,5 is a product of /7 and e”7, it has a
peak, found at 7 =1, as shown in the insert of Fig. 1, and the peak value
is

1
b <r = E) = [2R,],,0.2420-0.4839 (99)

For a large 7, the asymptotic form of ¢,, is obtained as

3
¢ = limgp, = lim Y ¢, =1+R,(1+47) (100)

k=0
which seems to be valid for 7 > 0.5, as visually investigated in Fig. 1. At

7 = 0.25, the ratio of the asymptotic form, (ﬁ,';,, to the exact form, ¢,,, is
calculated as

¢ (r=025) 3.000
¢, (t=025)" 2.672

=1.123 (101)

indicating a 12.3 % error, which will be reduced for a larger 7.

2.7. Evaluation of the interface concentration

Because the unsteady convection-diffusion equation is a parabolic
PDE, time and spatial intervals should meet the specific criteria of the
numerical schemes used. The time step should be short enough to avoid
numerical instability but long enough to calculate the solution within
reasonable computing time. The space step should be small enough not
to accumulate errors created by calculating gradients.

Using the standard numerical scheme discussed above, we numeri-
cally calculate the interfacial concentration ¢,,(r) using 2-, 3-, and
5-point differential schemes, denoted as ¢[m2], ¢,[ﬁ], and ¢,[§] in Egs. (A.7)-
(A.9) and calculate their error ratios to the exact ¢,,(7), defined as

()

f[k] = 1

102
4@ (102)

where k is 2, 3, and 5. Fig. 2 shows the percentage errors the three

04T

03f

o [

S 02}

S [
. [ —— 2-point diff.
2 oaf — — 3-point diff.
w [ = = = 5-point diff.
0 :_ Lo e 3 el el
_01'|....|....|....|....|
0 0.5 1 15 2

T

Fig. 2. Percent errors of the 2, 3, and 5-point differential schemes of Egs. (63),
(64), and (65), respectively.
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numerical schemes create. In the entire time domain of the current
study, i.e., 0 < 7 < 2, the 5-point differential scheme provides almost
identical results to those the analytic solution obtains. The 3-point
scheme shows a seemingly linear increase in the error ratio, but the
magnitude of errors within the time domain is insignificant. On the other
hand, the 2-point scheme shows unacceptable error ranges even in the
initial period of 7 < 0.2, at which the errors exceed 10 %.

2.8. Rate of the interfacial concentration

Besides the transient behavior of ¢,,(7), its initial increase rate is of
great interest for evaluating the initial pressure growth. We define the
rate of ¢,,, such as

b = d"sé”f(r) (103)
calculate the rate for each component function, such as

$uo =0 (104
b = 2R,°1 (105)
bpp = 2R, {erf(ﬁ) + (%H) \e/;_f} (106)
D3 = 2R, KL r) ie*’} (107)

2 ) e
and obtain their sum, such as
b :2RD<1+erf(ﬁ) +fﬁ) (108)

as shown in Fig. 3 for an exemplary case of the perfect rejection R, = 1.
The second term in the parenthesis on the right-hand side of Eq. (108) is
from ¢,,,5(7), and the third term is from both ¢,,,(7) and ¢,,5(7). The

unction e; 7) has the converging characteristics of e; -0 an
functi has th i h istics of erf(0)—0 and

erf(c0)—1, and so the second term, including erf (ﬁ) , in Eq. (108)
contributes to the initial monotonous increase in ¢,,. (See Appendix A.1
for the mathematical details of the error function and its alternative for
numerical evaluation.) Note that ¢,, diverges at 7 = 0, at which we
apply the initial condition, but the real phenomena start at 7 = 0*.
Besides, ¢,, rapidly decreases until 7~ 0.2 and begins to reach its
plateau value 4R, around 7z = 0.5, at which ¢, reaches its maximum.
Mathematical representations of the short— and long-term behavior of
¢ (7) can be summarized, such as

100
80
60
40

20

10

6¢77L
or 4

Fig. 3. Rate of ¢,,(7), i.e., ¢, (r) with respect to 7 for R, = 1..
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Limdb,, = limdh,; = oo (109)
limg, = lim (rb,,,l + a'ﬁmz) = 4R, (110)

respectively. The convergence of ¢,, for a large 7, i.e., specifically 7 > 2
and conceptually 7—o0, implies the hydraulic pressure AP needs to in-
crease proportionally with time, i.e., APx¢,,(7)xr, to maintain the
constant flux J,,.

2.9. Effects of rejection ratio

Fig. 4 shows the variation of ¢,,(z, R,) with respect to dimensionless
time 7 for various rejection ratio values from 0.2 to 1.0. The nonlinear
dependence of ¢,, on 7 starts disappearing as 7 passes 0.5 for the perfect
rejection (R, = 1). At lower rejection values, the convergence of the
exact ¢,,(7) to the asymptotic limit occurs at an earlier 7 than that for
R, =1.Visual investigation of Fig. 4 indicates thatatz > 1,i.e.,t > T =
0(10) min, Eq. (100) is an excellent approximation.

Fig. 5 shows the difference between the asymptotic limit ¢ (z) and
the exact solution of ¢,,(7) for the wide range of 7, i.e., ¢" (7) — ¢ (7), ina
logarithm scale. The non-linearity of ¢,,(7) starts disappearing at 7 =
0.5, as previously indicated in Fig. 4, and the difference becomes
negligible before 7 reaches 1.0, where the maximum difference falls
below 10 %. On the other hand, one can interpret ¢,,(7) — ¢ (1) as extra
hydraulic pressure reduction from that required at the asymptotic limit.
The CP layer fully develops toward its asymptotic limit after 7 exceeds 1/
2, especially for higher rejections.

2.10. Effects of pressure release

Fig. 6 shows the initial growth of the ¢,,(z) of Eq. (59) from 7 = 0 to
the permeation-stopping time at (a) z; = 2 and (b) z; = 4 for several R,
values. In both 7, cases, ¢,, trends are similar before and after z;. The
dash-dot line in Fig. 1 is identical to ¢,,(0 < 7 < 2,R, = 1) in Fig. 6(a)
and (b). During the initial period of 7 < 1/2, nonlinear behaviors are
established, which trigger linear asymptotic behaviors until the pressure
is released at 7 = 7;. During the permeation period (0 < 7 < 7;), solutes
are continuously brought down toward the membrane surface through
fixed permeation, and the interfacial concentration increases steadily
after 7()1/2). The movement of molecules toward the membrane surface
is influenced by the constant permeation flux forming the CP layer and
the back diffusion caused by the CP phenomenon. The time scale of the

12
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Fig. 4. The interfacial concentrations of ¢,,(z,R) with time 7 for rejection ratio
R, from 0.2 to 1.0 (semi-transparent solid lines) and their asymptotic limits
(dashed lines).
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Fig. 5. Differences between the asymptotic and exact functional forms of ¢,,(7)
with time 7 for rejection ratio R, from 0.2 to 1.0. For the perfect rejection R, =
1, errors between ¢ and ¢,, are 15.3 % at 7 = 0.5 and 5.68 % at r = 1.
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Fig. 6. The growth of interfacial concentration ¢,,(7) with time 7 for 7 < 7; and
decline for 7 > 7, with various observed rejection values: (a) 7, = 2 and (b) 7, =
4.

dead-end filtration process is much longer (e.g., of an order of 10 min)
than the molecular relaxation time. Therefore, the filtration system can
be considered in equilibrium at the molecular level. At a given time 7,
while solutes are rejected on the membrane surface, the concentration
decreases exponentially with respect to the distance from the membrane
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surface 7, as implied in Eq. (70). The net mass transport rate per mem-
brane surface area at any given time 7 equals the feed input rate of CrJ,,
determined far from the membrane surface. For a high rejection ratio, i.
e., R,—1, the accumulation rate can be close to the feed input rate.

Once the transmembrane pressure is released at 7 = 75, ¢,(7), the
value of ¢,,(7) decreases from its peak value described in Eq. (79) to the
ultimate value of 1, which reduces the degree of the CP. However, in the
absence of permeation, the sole back-diffusion does not bring the con-
centration profile back to its initial stage of ¢(,7) =1, and even after a
long time, ¢,(r) remains at 1. The initial concentration declines
immediately after the stopping times in Fig. 6(a) and (b) are visually
estimated, such as from ¢,(A7=0,R,=1)~10 to ¢,(Ar=
1,R,=1)~34 for 7,=2 and from ¢,(Ar=0,R,=1)~18 to
¢m(Ar =1,R, = 1) ~ 5.2 for 7; = 4, respectively. A rough estimation of
the concentration decrease rates gives A¢,, /A7~ 6.6 for 7, =2 and
A¢,, /At~ 12.8 for 7, = 4. A longer filtration time provides a higher
interfacial concentration and a faster diffusion rate but requires a longer
time to reach a desired concentration to restart the dead-end filtration.
As a result, the concentration gradient will persist as long as the
decreasing interfacial concentration reduces the back diffusion as a
driving force.

A permeation restarting time can be determined when the interfacial
concentration reaches a limit, denoted as ¢y;,, that is approaching to 1
from ¢,,,.. We define a new time scale, denoted as Az, i.e., the time
required for ¢,, to decrease from ¢, at 7 to a specific ¢, at 7; + Az;
and calculate Az as a function of ¢,,,, and ¢y, using

Plim — 1

e“ erfe(x) = b 1

(111)
derived from Eq. (80), where x = v/Ar and § = 2. Fig. 7 shows how At
varies with specified ¢;;,, with respect to ¢,,,.. In the asymptotic limit of

7> 1/2, one can calculate ¢,, at 7 = 75 as ¢, using Eq. (100), such as

B ~ 1+ R, (1 +41,) (112)

and estimate an approximate elapsed time A7 to reach ¢, by visually
investigating Fig. 7. As expected, a high value of ¢;;,, = 2.0 takes the
shortest time to reach, followed by 1.75 and other smaller values. The
lowest values of ¢y, = 1.25 in Fig. 7 require Ar at least one order-
—of-magnitude higher than 7,, especially when ¢, > 4. The present
analysis of A7 quantitatively confirms that the periodic pressure release
does not return the filtration system to the initial stage having the
constant, lowest uniform concentration of C;. The complete removal of
the concentration polarization requires other external processes such as
backflushing (depending on solute and membrane types), sweeping, or
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Fig. 7. The dimensionless duration A7 to reach the limiting concentration ¢y,
form the maximum concentration ¢,,,, reached when the filtration stops.
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stirring, in principle. by numerical solutions, obtained by the most error-vulnerable forward

Fig. 7 shows how At varies with specified ¢;;,, with respect to ¢,,,,. In scheme. Because implementing the boundary condition on the mem-
the asymptotic limit of 7 > 1/2, one can calculate ¢, at 7 = 7 as ¢, brane surface requires an accurate estimation of the concentration
using Eq. (100), such as gradient, the stiff slope of the spatial concentration profile mandates

using multiple—point differentiation. The elapsed time to reach a specific
limiting concentration ¢;;,, below 2 is calculated using the analytical
solution developed in this study, as a function of ¢;;,, and the permeation
stopping time 7;. The present theoretical analysis using the derived
analytical solution provides clear insight into the constant-flux dead-
end filtration, an in-depth understanding of the interfacial concentra-
tion as an essential component to estimate the spatial concentration
polarization, and a solid foundation to pursue the full spatiotemporal
profile of concentration within the polarization layer. The mathematical
method based on the Laplace transform and convolution theorem can
contribute to solving challenging problems of membrane separation
with or without stirring in both continuous and syringe-type feeding for
constant-flux and constant-pressure operations.

Drax = 1+ R, (1 +41,) (113)

and estimate an approximate elapsed time Az to reach a specific value of
¢im by visually investigating Fig. 7. As expected, a high value of ¢;, =
2.0 takes the shortest time to reach from a given ¢,,,,, followed by 1.75
and other smaller values. The lowest values of ¢, = 1.25 in Fig. 7
require A7 at least one order-of-magnitude higher than z;, especially
when ¢,,,, > 4. The present analysis of Ar quantitatively confirms that
the periodic pressure release does not return the filtration system to the
initial stage of the constant, lowest uniform concentration of Cy. The
complete removal of the concentration polarization requires other
external processes such as backflushing (depending on solute and
membrane types), sweeping, or stirring, in principle.
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Appendix A
A.1. Approximation of error function

In principle, evaluation of the error function requires numerical integration, although most modern programming languages have the error
function embedded for users to call on. However, a good approximation of the error function is given as

erf(x) ~ tanh (ax + bx3) (A1)

where a = 167/148 and b = 11/109 with the absolute difference of an order of 0(10~*) [31]. An alternative value of a = 123/109 is suggested to
have the same denominator with b with the same error range.

A.2. Non-iterative numerical procedure

The dimensionless concentration ¢(z,7) is discretized using the standard scheme as ¢; for 7-index j = 1 — M and n-index k = 1 — N, such as

Pivix — PDix _ Prarr = 2055 + Pjxc 12 Pixi1 — P (A.2)
&t (6n)? 26n
resulting in the ¢(y = kéy) at the next time step j+ 1, such as
ot ot
Qirj = bjpt (¢j.k> | =20+ ¢j.k-1) w+ﬂ(¢j,k\ 1= ¢/.k—|) 577 (A.3)

The initial and far-field boundary conditions of Egs. (19) and (20) are applied, such as

10
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¢(0,7)—¢,, =1 forallk (A.4)

¢(r,00)=¢;y =1 forallj (A.5)

respectively, and the interfacial condition (at # = 0) is given as

0] :

_%_ k=1 =/ ((/)“ B 4)/7) (A.6)
We discretized the interfacial gradient of ¢ using 2, 3, and 5 point-schemes, such as

[08)" _dn— (A7)

_0’7 1 n=0 5’7

% B3] _ =3¢ +4¢, — P (A8)

Lon],— 260

[0p]™ —25¢;, +48¢, — 3665 + 164, — 35 (A.9)

Lonl, o 1264 ’

where the numbers in the squared brackets of the superscripts indicate the number of points used for differentiation. For numerical stability, we
restrict simulations for
ot ot

<1 d —<1 A.10
T (410

where the first condition will automatically satisfy the second condition because both &z and &y are less than 1, which is re-written as

or Tmax N2 T N?

= — = All
@n)? M M M M (1D
The following conditions are used to unconditionally satisfy the numerical convergence, such as: M = N? and
Tnax _ (A12)
ﬂmax

We find that N = 102 is a reasonable value and use 7,,,x = 2 and 7,,,, = 4 to confirm 7, /11ﬁlax =2/4%> =1/8 =0.125 < 1. For other cases of 7,,,,
Nmax 1S Proportionally determined. The sequential steps of the finite difference method simulation are as follows.

. Using the parameters of 7pax, . M, and N, calculate the spatial and temporal intervals, éx and &7, respectively.
. Let ¢ =1forallj=1-Mandk =1 N, which automatically assign the initial and far-field boundary conditions, i.e., ¢, = 1 and ¢;y =1,
respectively.
3. Using ¢;, known for the current time step j,
(a) calculate ¢;. for k from N —1 to 2, and
(b) calculate the interfacial concentration ¢;,, ; using one of the differentiation schemes.
4. Go to the next time step until j reaches the maximum time index M.

N =

The dimensionless maximum 7,,,x should be long enough to observe asymptotic behavior of the interfacial concentration for a long term, and the
dimensionless maximum length 7, should be long enough to apply the far—field boundary condition of Eq. (20) in either Dirichlet or Neumann form.
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