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The analytic solution of interfacial concentration with observed rejection 
ratio during dead-end membrane filtration 
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A B S T R A C T   

In this study, we revisit the fundamentals of constant–flux dead–end filtration, develop an analytical solution of 
the interfacial concentration ϕm(τ, Ro) as a function of dimensionless time τ and observed rejection Ro, and 
compare the solution with previous work developed for constant intrinsic rejection, Ri. The excessive concen
tration, ϕm(τ, Ro) − 1, consists of three nonlinear terms of τ and reaches 4Roτ in an asymptotic limit of τ > 1/2. 
We apply the Robin (mixed) and Dirichlet boundary conditions on the membrane surface and at a far 
feed–entrance, respectively. The mathematical difficulties for the inverse Laplace transform are resolved using a 
linear combination of the Laplace transform of error and complementary error functions and applying the 
convolution theorem. We analytically obtain the unsteady variation of the interfacial concentration after the 
pressure release using the global mass balance and numerically calculate the required time to reduce the 
interfacial concentration to a specific limit. More importantly, a relationship between observed and intrinsic 
rejection ratios is found, such as, Ro ≃

̅̅̅̅̅
Ri

√
, and verified using experimental data from the literature.   

1. Introduction 

Membrane separation processes can be conducted in dead-end and 

crossflow filtration modes. Dead-end filtration involves the feed flow 
approaching perpendicularly to the membrane surface in a closed 
container. In contrast, crossflow filtration requires the feed stream to 
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flow tangentially through the membrane channel. Each mode has 
unique advantages and disadvantages, and careful consideration should 
be given to which mode is most appropriate for given purposes. During 
desalination, solutes are rejected by the membrane, causing a higher 
surface concentration than the background concentration, such as the 
feed or initially uniform concentration. The concentration gradient 
formation is referred to as the concentration polarization (CP) phe
nomenon, formed within a thin boundary layer above the membrane 
surface. Fundamental analyses of CP formation and its evolution are 
essential to ensure the optimal performance of desalination systems 
[1–3]. 

Concentration polarization (CP) reduces the driving force for solvent 
transport through the membrane and gradually decreases solvent re
covery and solute rejection. As a reversible fouling phenomenon, CP 
forms at the beginning of filtration, intensifies proportionally to the 
produced permeate volume, and disappears when the driving force 
stops. If the height of the membrane channel is similar to the thickness of 
CP, the fouling caused by CP can be accelerated because thin membrane 
channels may increase bulk concentration above the membrane surface 
from the feed concentration. The CP often triggers irreversible fouling 
on the membrane surface. The phenomenological significance of the CP 
resides in various applications and phenomena, such as, but not limited 
to, battery charging speed [4], patterned surface occurrence [5], mes
opores [6], and micro-nanofluidic channels [7]. Given the dynamic ex
istence of the CP layer, visual CP-layer detection can be challenging: 
however, if realistically implemented, it can significantly contribute to a 
fundamental understanding of the growth and evolution of the CP 
phenomena [8–10]. 

A primary objective of membrane research is to minimize the CP 
phenomena, necessitating comprehensive experimental, theoretical, 
and simulational investigations to understand the dynamic character
istics of the CP phenomena. Due to the complex nature of mass and 
momentum transfer during membrane filtration processes, numerical 
approaches are often used to solve transport governing equations. 
Software packages, available in open–source communities and com
mercial markets, are used to model the filtration phenomena and pro
vide physically meaningful solutions. However, the quantitative 
numerical results are obtained with input conditions and predetermined 
parameters during simulations. Sensitivity analyses of numerical solu
tions often require a series of simulations with various parameter values. 
On the other hand, theoretical approaches build a simplified model 
system of target phenomena, employ reasonable assumptions and ap
proximations, and provide analytical solutions for governing equations. 
The reliability of these models depends on the level of theoretical ap
proximations and, more importantly, the availability of exact analytical 
solutions to interpret experimental observations. 

The governing equation for the mass transport in membrane filtra
tion is classified as a parabolic partial differential equation (PDE), 
referred to as the convection-diffusion or advection-diffusion equation 
[11–13]. The main challenge in solving the governing equation stems 
from the mixed boundary condition (BC) on the membrane surface, also 
known as the Robin BC [14–16], which balances the convective feed flux 
toward the membrane surface and the back–diffusion of accumulated 
solutes within the CP layer. Due to incomplete solute rejection, a frac
tion of solutes still pass through to the membrane material and provides 
a non-zero solute concentration in the permeate stream. The Robin 
boundary condition limits the solute transport through the membrane, 
and therefore, eliminates the steady state during the dead-end filtration. 

In applied and engineering mathematics, the 1D unsteady transport 
equation often includes diffusion, convection, and reaction. The analytic 
solutions were obtained using the Laplace transform, or the separation 
of variables followed by the Fourier transform (only), e.g., for the 
first–order reaction. The presence of source and sink terms, varying with 
coordinates and concentration, makes the solving procedure much more 
difficult. A recent mathematical development provides a general method 
to obtain 1D steady analytical solutions without the inverse Laplace 

transform [17]; however, this general solution method is limited to 
Dirichlet or Neumann BCs by specifying the concentration and its 
gradient, respectively. 

Obtaining analytical solutions using the Laplace transform is limited 
to cases where their inverse Laplace transform is available by perform
ing the Bromwich integral directly or using prebuilt formulae in math
ematical tables. The existing literature includes analytical solutions for 
heat and diffusion equations only for steady–state convective diffusion 
or unsteady-state diffusion [11,12], subject to Dirichlet or Neumann 
boundary conditions. In the dead-end filtration literature, the constant- 
pressure mode (CPM) has been more actively investigated than the 
constant-flux mode (CFM), especially for perfect or near-perfect rejec
tion cases. In addition, the governing equation of crossflow filtration is a 
2D unsteady parabolic equation, including convection and diffusion in 
the longitudinal and transverse directions. Analytical solutions for 
concentration and permeate flux have been obtained [18], assuming a 
linear shear flow within the CP layer without cake formation. In the 
theoretical work, the separation of variables method has been utilized to 
analytically determine a steady–state concentration as a combination of 
Airy functions [19]. When employing crossflow filtration, the linear 
shear flow has an insignificant influence on the CP formation during the 
early stages of the filtration procedure. Therefore, the initial flux decline 
in cross-flow filtration is comparable to that of dead-end filtration 
[20,21]. 

2. Theory 

Industrial sectors favor CFM operation, as it facilitates a pre- 
scheduled production rate. The hydraulic pressure is automatically 
regulated to restore the declined flux to the predetermined level, and the 
recovered flux continues accumulating solute molecules on the mem
brane surface. 

2.1. Governing equation 

The governing equation of dead-end filtration [22,23] may be writ
ten as 

∂C
∂t

=
∂
∂y

(

D0
∂C
∂y

+ JwC
)

(1)  

where C(t, y) is the solute concentration as a function of time t and co
ordinate y normal to the interface; D0 is the constant solute diffusivity; 
and Jw is the uniform permeate flux (in magnitude), defined as the 
permeated solvent volume per unit time and per unit membrane area. 
The filtration performance is often measured using the observed rejec
tion ratio, defined as 

Ro = 1 −
Cp

Cf
(2)  

where Cf and Cp are feed and permeate concentrations, respectively; and 
in a batch operation, Cf also refers to the initial concentration. 

We consider the following scenarios for the theoretical development. 
First, the membrane channel is uniformly filled with the feed solution, 
Cf , at the beginning of the filtration. Second, the feed–stream of Cf en
ters the membrane channel sufficiently far from the membrane surface. 
Third, the convective transport of solutes toward the interface is 
counter-balanced with solute back–diffusion, resulting in non-zero Cp. 
The above-mentioned three conditions are written as 

C(y, t = 0) = Cf (3)  

C(y→∞, t) = Cf (4)  

D0
∂Cm

∂y
+ JwCm = JwCp (5) 
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where Cm = C(t, y = 0) is the unsteady interfacial concentration, and 

∂Cm

∂y
=

[
∂C(y, t)

∂y

]

y=0
(6)  

is its gradient. Eq. (5) is the Robin boundary condition, also called the 
third or mixed boundary condition, and its physical implications can be 
found elsewhere [24–26]. The governing Eq. (1) with conditions of Eqs. 
(3)–(5) is applicable to both CFM and CPM operations with specific 
dependence of Jw on Cm. 

The mass transfer phenomena through nanofiltration or reverse 
osmosis membranes are often described using the solution–diffusion 
model [27,28], such as 

Jw = A(ΔP − ΔΠm) (7)  

Js = BΔCm (8)  

respectively; where A and B are the solvent and solute permeabilities 
through the membrane; ΔP is the applied hydraulic pressure; and ΔΠm 
and ΔCm are the transmembrane differences of the osmotic pressure and 
solute concentration, respectively. In the CPM, ΔP is fixed, and the 
permeate flux Jw decreases with time due to the unsteady growth of 
interfacial osmotic pressure ΔΠm. In the CFM, the constant flux Jw is 
maintained at its initial level throughout the filtration, which requires 
the continuous growth of hydraulic pressure. 

2.2. Nondimensionalization 

2.2.1. Representative scale parameters 
We scale the concentration C by its representative value of Cf to have 

a dimensionless concentration ϕ. The dimensionless coordinate η and 
time τ are defined by dividing the coordinate y and time t by repre
sentative length scale L and time scale T, respectively, to be determined 
later. The dimensionless quantities of ϕ, η, and τ have linear relation
ships to their real physical quantities, such as 

C = Cf ϕ (9)  

y = Lη (10)  

t = Tτ (11)  

that provide the dimensionless form of Eq. (1), such as 

∂ϕ
∂τ =

∂2ϕ
∂η2 + Peλ

∂ϕ
∂η (12)  

where 

Pe =
JwL
D0

( = 2) (13)  

is the Peclet number, and λ is a controlling parameter used in this study 
for additional theoretical analyses. Because the selection of L is arbi
trary, we assign Pe = 2 in Eq. (13) to have 

L =
2D0

Jw
(14)  

which automatically determines the time scale parameter, such as 

T =
L2

D0
=

4D0

J2
w

(15) 

Most inorganic ions have diffusivity in water of an order of O
(
10−9

)

m2/s: for example, the diffusivity of sodium and chloride are 1.334 ×

10−9 m2/s and 2.032 × 10−9 m2/s, respectively [29]. If we assume that 
the membrane permeate flux is of an order of 10 L/m2 h [LMH], i.e., 2.7 
μm/s, scaling parameters are estimated using the sodium diffusivity, 

such as 

L =
2D0

Jw
=

2⋅
(
1 × 10−9

)

2.7 × 10−6 m ≃ 1.0 mm = O
(
100)

mm (16)  

T =
4D0

J2
w

=
4⋅

(
1 × 10−9

)

(
2.7 × 10−6

)2 s = 12.20 min = O
(
101)

min (17)  

respectively, where O(⋯) represents an order of magnitude of a quantity 
of interest. Note that L and T are estimated as fractions of a millimeter 
and an hour, respectively. 

2.3. Growth of interfacial concentration 

2.3.1. Analytic solution 
We rewrite the governing equation in a dimensionless form, such as 

∂ϕ
∂τ =

∂2ϕ
∂η2 + 2λ

∂ϕ
∂η (18)  

with the required conditions of 

ϕ(τ = 0, η) = 1 (19)  

ϕ(η→∞, τ) = 1 (20)  

∂ϕm

∂η + 2λ
(
ϕm − ϕp

)
= 0 (21)  

where ϕm(τ) = Cm(t)/Cf and ϕp = Cp/Cf = 1 − Ro are the dimensionless 
forms of interfacial and permeate concentrations, respectively, and 

∂ϕm

∂η =

[
∂ϕ
∂η

]

η=0  

is the gradient of ϕm at the interface (η = 0). As noted above, λ is a 
parameter to specify the physical characteristics of the convection flow 
Jw. If λ > 0, the flow direction is toward the membrane surface in −y 
direction. If λ < 0, the flow direction is away from the membrane surface 
to the bulk phase, representing the backflushing process, which is out of 
our scope in the current research. Especially, λ = 0 can represent the sole 
back-diffusion phenomena when the permeation stops temporarily for 
membrane cleaning or pressure adjustment. 

The theoretical goal of the current work is to calculate the dimen
sionless, unsteady interfacial concentration ϕm(τ) in the CFM. Because L 
is determined using constant D0 and Jw, the dimensionless governing Eq. 
(18) does not include a specific Peclet number. Therefore, each term in 
the governing equation is properly balanced in magnitude, which is 
advantageous in obtaining reliable numerical solutions later. We restrict 
ourselves to λ = +1 to investigate the transient build-up of the interfa
cial concentration ϕm(τ), which determines the instantaneous pressure 
growth for the constant Jw. 

The Laplace transform for ϕ(τ, η) is defined, such as 

L [ϕ(τ, η) ] = Φ(p, η) =

∫ ∞

0
e−pτϕ(τ, η)dτ (22)  

which gives 

L

[
∂ϕ
∂τ

]

= pΦ − ϕ(η, τ = 0) (23)  

L

[
∂ϕ
∂η

]

=
∂Φ
∂η (24)  

L

[
∂2ϕ
∂η2

]

=
∂2Φ
∂η2 (25)  

where ϕ(η, τ = 0) = 1 is the initial uniform concentration. Substitution 
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of Eqs. (23)–(25) into Laplace-transformed (18) gives 

∂2Φ
∂η2 + 2

∂Φ
∂η − pΦ = − 1 (26)  

of which the general solution is 

Φ(p, η) =
1
p

+ e−η(C1e−αη + C2e+αη) (27)  

where α =
̅̅̅̅̅̅̅̅̅̅̅
1 + p

√
for p > 0, and C1 and C2 are unknown integration 

constants. A derivative of Eq. (27) is calculated, such as 

∂Φ
∂η = − (α + 1)C1e−(α+1)η + C2(α − 1)e(α−1)η (28) 

Note that the initial condition of Eq. (19) is already applied during 
the Laplace transform process. Now, we determine two unknown con
stants in Eq. (28). First, Φ of Eq. (27) should be finite within the spatial 
domain of 0 < η < ∞, so we let C2 = 0 and avoid the divergence of Φ at 
η→∞. Second, we calculate the Laplace transform of the interfacial 
condition of Eq. (21), such as 

∂Φm

∂η + 2Φm = 2
1 − Ro

p
(29)  

and substitute Eqs. (27) and (28) into Eq. (29) to determine 

C1 =
2Ro

p(
̅̅̅̅̅̅̅̅̅̅̅
1 + p

√
− 1)

(30) 

The Laplace transform of the far–field boundary condition of Eq. (20) 
is straightforward, such as 

lim
η→∞

Φ =
1
p

(31) 

Finally, we obtain the specific Φ that satisfies the three required 
conditions, such as 

Φ =
1
p

+ 2Ro⋅K(p)e−

(
1+

̅̅̅̅̅̅
1+p

√ )
η (32)  

where 

K(p) =
1

p(
̅̅̅̅̅̅̅̅̅̅̅
1 + p

√
− 1)

(33)  

which includes the transient behavior of the excessive interfacial con
centration at η = 0. An inverse Laplace transform Φ of Eq. (32) provides 
the complete analytic solution for the unsteady concentration profile at 
time τ in the full space domain, which requires the Bromwich integral, 
such as 

ϕ(τ, η) = 1 + 2RoL −1
[
K(p)e−(1+

̅̅̅̅̅̅
1+z

√
)η

]

= 1 +
2Ro

2πi

∮

dzezτK(z)e−(1+
̅̅̅̅̅̅
1+z

√
)η

(34)  

where the real parameter p is replaced by a complex variable z. Due to 
the term containing 

̅̅̅̅̅̅̅̅̅̅̅
z + 1

√
, the direct integral of Eq. (34) is challenging, 

and moreover, L−1[K(z) ] is not currently found in mathematical tables. 
We focus on the transient interfacial concentration at η = 0, such as 

ϕm(τ) = 1 + 2Ro L −1[K(p) ] (35)  

to calculate the L −1[K(p) ] by taking the following steps. First, we 
multiply 

̅̅̅̅̅̅̅̅̅̅̅
p + 1

√
+ 1 by the numerator and denominator of K to rewrite 

it, such as 

K(p) =
1 +

̅̅̅̅̅̅̅̅̅̅̅
p + 1

√

p2 = K1(p) + K2(p) (36)  

where 

K1(p) =
1
p2 (37)  

K2(p) =

̅̅̅̅̅̅̅̅̅̅̅
p + 1

√

p2 (38) 

The inverse Laplace transform of K1 is straightforward, such as 

L −1[K1] = τ (39)  

and that of K2 requires some extra steps to apply the convolution the
orem. We reformulate K2 as a product of F(p) and G(p), such as 

K2(p) = F(p)G(p) (40)  

where 

F(p) =
1
p

(41)  

G(p) =

̅̅̅̅̅̅̅̅̅̅̅
p + 1

√

p
(42)  

and use the following Laplace transform formulae [30], such as 

L

[
erfc

(
−

̅̅̅
τ

√ ) ]
=

̅̅̅̅̅̅̅̅̅̅̅
p + 1

√
+ 1

p
̅̅̅̅̅̅̅̅̅̅̅
p + 1

√ =
1
p

+
1

p
̅̅̅̅̅̅̅̅̅̅̅
p + 1

√ (43)  

L

[
erfc

(
+

̅̅̅
τ

√ ) ]
=

̅̅̅̅̅̅̅̅̅̅̅
p + 1

√
− 1

p
̅̅̅̅̅̅̅̅̅̅̅
p + 1

√ =
1
p

−
1

p
̅̅̅̅̅̅̅̅̅̅̅
p + 1

√ (44)  

where erfc is the complementary error function, defined as 

erfc(z) = 1 − erf (z) =
2̅

̅̅
π

√

∫ ∞

z
e−y2 dy (45)  

and the original error function is 

erf (z) =
2̅

̅̅
π

√

∫ z

0
e−y2 dy (46) 

For simplicity, we define 

L

[
erfc

(
−

̅̅̅
τ

√ ) ]
= L− (47)  

L

[
erfc

(
+

̅̅̅
τ

√ ) ]
= L+ (48)  

and rewrite G(p) such as 

G(p) =
1
2

(L− − L+) +
1

̅̅̅̅̅̅̅̅̅̅̅
p + 1

√ (49) 

Then, we calculate the inverse Laplace transform of G(p), such as 

L −1[G(p) ] =
1
2

L −1[(L− − L+)] + L −1
[

1
̅̅̅̅̅̅̅̅̅̅̅
p + 1

√

]

(50)  

= erf
( ̅̅̅

τ
√ )

+
e−τ

̅̅̅̅̅
πτ

√ (51)  

and rewrite L −1[K2(p) ], such as 

L −1[K2(p) ] = L −1[F(p)G(p) ] = f *g = g*f (52)  

where f(τ) and g(τ) are the inverse Laplace transform of F(p) and G(p), 
respectively, such as 

f (τ) = L −1[F(p) ] = 1 (53)  

g(τ) = L −1[G(p) ] = erf
( ̅̅̅

τ
√ )

+
e−τ

̅̅̅̅̅
πτ

√ (54) 
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In Eq. (52), operator * indicates the convolution integrals, such as 

f *g =

∫ τ

0
f (τ − x)g(x)dx (55)  

g*f =

∫ τ

0
g(τ − x) f (x)dx (56) 

To take advantage of the constant function f(x) = 1, we choose Eq. 
(55), such as 

f *g =

∫ τ

0
dx⋅1⋅

(

erf
( ̅̅̅

x
√ )

+
e−x

̅̅̅̅̅
πx

√

)

(57)  

=

(

τ +
1
2

)

erf
( ̅̅̅

τ
√ )

+

̅̅̅
τ
π

√

e−τ (58) 

We finally obtain the analytical representation of the unsteady 
interfacial concentration in the CFM, such as 

ϕm(τ) = 1 + 2Ro

[

τ +

(

τ +
1
2

)

erf
( ̅̅̅

τ
√ )

+

̅̅̅
τ
π

√

e−τ
]

(59)  

indicating that the excessive concentration, i.e., ϕm − 1 is linear to the 
observed rejection ratio, Ro. Special cases of Eq. (59) include the zero 
and perfect rejection cases, such as 

lim
Ro→0

ϕm(τ) = 1 (60)  

and 

lim
Ro→1

ϕm(τ) = (1 + 2τ)
[
1 + erf

( ̅̅̅
τ

√ ) ]
+ 2

̅̅̅
τ
π

√

e−τ (61)  

respectively. Note that erf(x) increases monotonously when τ increases 
from 0 to 1, and afterward reaches a plateau value of 1 gradually, having 
a similar shape to the hyperbolic tangent function [31]. See Appendix 
A.1 for details. 

2.3.2. Numerical solutions 
Numerical solutions are often obtained to understand complex phe

nomena when analytical solutions are challenging. On the other hand, 
numerical solutions can be used to cross–validate theory–oriented 
analytical solutions. Among multiple numerical schemes available to 
solve the PDE, we employ the forward, explicit scheme to monitor nu
merical errors sensitive to intervals. 

The dimensionless concentration ϕ(τ, η) is discretized, such as ϕj,k for 
τ–index j = 1 − M and η–index k = 1 − N. The time and length intervals 
of δτ and δη are determined, such as 

δτ =
τmax

M
and δη =

ηmax

M
(62)  

respectively, where τmax and ηmax are the time and spatial maxima, 
respectively. Because the interfacial condition of Eq. (21) includes 
∂ϕ/∂η, the interfacial concentration, ϕm(τ) = ϕj1, should be calculated 
using its neighbors in the computational grid. In this study, we test the 
differentiation schemes using 2, 3, and 5 points, such as 

ϕ[2]

j1 =
ϕj2 − λϕpδη
(1 − λδη)

(63)  

ϕ[3]

j,1 =
4ϕj2 − ϕj3 − 2λϕpδη

(3 − 2λδη)
(64)  

ϕ[5]

j,1 =
48ϕj2 − 36ϕj3 + 16ϕj4 − 3ϕj5 − 12λϕpδη

(25 − 12λδη)
(65)  

and discuss their sensitivity analyses in the next section. Detailed pro
cedures for the numerical solutions are in Appendix A.2. 

2.4. Decline of interfacial concentration after pressure release 

The dead–end filtration at the CFM is designed to periodically stop 
whenever the hydraulic pressure exceeds a predetermined limit. The 
unsteady declining behavior of the interfacial concentration after the 
pressure release can be modeled by solving the governing Eq. (12) with 
λ = 0, such as 

∂ϕ
∂τ =

∂2ϕ
∂η2 for τ ≥ τs (66)  

where τs is the specific time when the hydraulic pressure is released. In 
this specific case, the far–field boundary condition is kept valid, 
regardless of λ, such as 

ϕ(η→∞, τ ≥ τs) = 1 (67)  

but the interfacial condition is changed to the Neumann boundary 
condition, such as 
[

∂ϕm

∂η

]

η=0
= 0 (68) 

When the permeation stops at τ = τs, the spatial variation of ϕ(η, τs)

becomes an initial condition for the subsequent back-diffusion phe
nomena, denoted as 

ϕ(τs, η) = μ(η) (69)  

which is analytically unknown due to the lack of a full solution for Eq. 
(34). We take the asymptotic limit of μ(η) to assume 

μ(η) = 1 + (ϕmax − 1)e−βη (70)  

where ϕmax = ϕm(τs) is the interfacial concentration at τ = τs, and β is a 
constant to be determined. The global mass balance is written, such as 
∫ ∞

0

[
C(y, ts) − Cf

]
dy =

∫ ts

0
JwCf Ro dt (71)  

where ts = Tτs is the real-time when the filtration stops. The left–hand 
side of Eq. (71) represents the excessive solute mass retained per unit 
membrane area at ts, and its right–hand side indicates the total solute 
mass retained until τ = τs. We substitute Eq. (70) into Eq. (71) to have 
∫ ∞

0

[
(ϕmax − 1)e−βη ]

dη = 2Roτ (72)  

which gives 

β =
(ϕmax − 1)

2Roτ (73) 

To obtain constant β, we take its asymptotic limit at τ≫1/2 by using 

the limiting values of erf
( ̅̅̅

τ
√ )

→1, e−τ→0, and ϕmax − 1 ≃ 4Roτ to obtain 

lim
1/2≪τ

β = lim
1/2≪τ

ϕmax − 1
2Roτ →2 (74) 

The symbol β is kept during subsequent derivations (instead of using 
its value 2) to investigate its impact on the concentration profile. 

The Laplace transform of the governing Eq. (66) provides 

d2Φ
dη2 − pΦ = − μ(η) (75)  

whose general solution is 

Φ =
1
p

+ C3e−qη + C4e+qη +
ϕmax − 1
q2 − β2 e−βη (76)  

where q =
̅̅̅p√ , and C3 and C4 are unknown constants to be determined. 
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The far-field boundary condition should prevent Φ diverging at η→∞, so 
we set C4 = 0. The interfacial Dirichlet condition of Eq. (68) gives 

C1 = −
(ϕmax − 1)

q2 − β2
β
q

(77) 

Then, the interfacial Φ at η = 0 after the pressure release is denoted 
as Φs and obtained, such as 

Φs(p) =
1
p

+
(ϕmax − 1)

q(q + β)
(78)  

and its inverse Laplace transform gives the interfacial concentration 
after the pressure is released, such as 

ϕs(τ) = φ(Δτ)H(Δτ) (79)  

where Δτ = τ − τs is the time elapsed after the stopping time τs and 

φ(Δτ) = 1 + (ϕmax − 1)eβ2Δτ erfc
(

β
̅̅̅̅̅̅
Δτ

√ )
(80)  

for Δτ > 0 and 

H(Δτ) =

(
1 for Δτ > 0
0 for Δτ ≤ 0 (81)  

is the Heaviside step function. In Eq. (80), the erfc(x) function, defined in 
Eq. (45), decreases much faster than ex2 , where x = β

̅̅̅̅̅̅
Δτ

√
. 

If a specific value of φ(Δτ) after τs, denoted as ϕlim, is given between 
ϕmax and 1, Eq. (80) can be solved for Δτ, i.e., the dimensionless duration 
for the interfacial concentration decreases from ϕmax to ϕlim. To estimate 
the decreasing rate of φ at Δτ = 0, we calculate 
[

∂φ
∂Δτ

]

Δτ=0
= lim

x′→0

[

β2 erfc
(
β

̅̅̅
x′

√ )
eβ2 x −

β
̅̅̅̅̅̅
πx′

√

]

= − ∞ (82)  

where x′ is a dummy variable for the differentiation. Eq. (82) provides 
the initial rate of the interfacial concentration at the beginning of the 
pressure release. The negative sign indicates φ(Δτ) rapidly decreases 
with time Δτ (〉0), but the infinite magnitude is physically questionable. 
The presence of β indicates that the mathematical singularity may 
originate from our assumption of the exponential concentration profile 
with η within the CP layer. On the other hand, it is worth noting that φ̇ is 
a sole function of the difference Δτ, being independent of τs. 

2.5. Comparison to the previous analytical work 

Dresner [22] uses the constant permeate flux, denoted as v0, to 
propose dimensionless quantities, including excessive concentration 
Γ(τ*, η) = C(τ*, η)/Cf − 1, coordinate η* = v0y/D0 ( = 2η), and time τ* =

v2
0t/D0 ( = 4τ), where Cf is the initial concentration within a batch 

experimental cell. The Green function is used to solve for the interfacial 
concentration with respect to {η*, τ*} only for the perfect rejection, i.e., 
Cp = 0, such as 

ψm(τ) = (1 + 2τ)
[
1 + erf

( ̅̅̅
τ

√ ) ]
+ 2

̅̅̅
τ
π

√

e−τ (83)  

where τ = τ*/4. Eq. (83) requires subsequent transforms of functions 
including 

̅̅̅̅̅̅̅̅̅̅̅
p + λ

√
where λ = 1/2. Dresner's {η*, τ*} and our {η, τ} sets can 

be generally written using λ = 1/2 and λ = 1 in Eq. (12), respectively. It 
is more intuitive to understand physical phenomena using {η*, τ*}, but 
the {η, τ} set generates a convenient mathematical representation in the 
term of 

̅̅̅̅̅̅̅̅̅̅̅
p + 1

√
. 

The subsequent dead-end filtration theories for the CFM [23] and the 
CPM [32–34] employ the intrinsic rejection coefficient, defined as 

Ri = 1 −
Cp

Cm
(84)  

which is assumed to be constant during the dead-end filtration. In the 
previous work, the interfacial excessive concentration has been denoted 
as Γm(τ*) = Cm(τ*)/Cf − 1, and we further show its relationship with Ro 

and Ri, such as 

Γm =
Ri − Ro

1 − Ri
(85)  

where R0 < Ri < 1 in principle, and therefore 

ϕm = ψm =
Cm

Cf
=

1 − Ro

1 − Ri
> 1 (86) 

For simplicity, we denote the dimensionless interfacial concentration 
of the CPM as ψm = Γm(τ*) + 1 and represent it as a function of τ (instead 
of τ*). For example, if Ri is a midpoint value between Ro and 1, i.e., Ri =

(1 + Ro)/2, then Γm = 1, indicating the interfacial concentration is a 
double the background concentration, i.e., ψm = 2. Raridon et al. [23] 
extend Dresner's work to calculate ψm(τ) of an imperfect intrinsic 
rejection, such as 

ψm0(τ) =
1

(1 − Ri)

[

1+
1
2

(1−2Ri)e−4τRi(1−Ri)erfc
[
(1−2Ri)

̅̅̅
τ

√ ]
−

1
2
erfc

( ̅̅̅
τ

√ ) ]

(87)  

for 0 < Ri < 1/2 and 

ψm1(τ) =
1

1 − Ri

[
1 − (2Ri − 1)e−4τRi(1−Ri)

]

+
1

2(1 − Ri)

[
(2Ri − 1)e−4τRi(1−Ri)erfc

[
(2Ri − 1)

̅̅̅
τ

√ ]
− erfc

( ̅̅̅
τ

√ ) ]

(88)  

for 1/2 < Ri ≤ 1. Eq. (88) is not intuitively understood for the perfect 
intrinsic rejection limit of Ri→1. Therefore, we additionally calculate the 
limiting expressions of Eqs. (87) and (88), such as, for Ri→0+

ψm0(τ, Ri→0+) ≃ 1 + 2Ri

[ ̅̅̅
τ
π

√

e−τ − (1 + 2τ)erfc
[ ̅̅̅

τ
√ ] ]

(89)  

and for Ri→1−

ψm1(τ, Ri→1−) =
(
1 + 2R2

i τ
)[

1 + erf
( ̅̅̅

τ
√ ) ]

+ 2
̅̅̅
τ
π

√

e−τ (90)  

respectively. Eq. (89) indicates that the excessive concentration ψm is 
linear to Ri for Ri ≃ Ro→0. Eq. (90) confirms the theoretical convergence 
of ψm1 to Dresner's original work of Eq. (83), as well as our analytic 
solution of Eq. (59) for the perfect rejection of the CFM, i.e., Ro→Ri→1. 

Now, we calculate the difference between ϕm and ψm1 for high 
rejection, which should converge to zero for large τ(〉1), such as 

ϕm − ψm ≃ 4
(
Ro − R2

i

)
τ→0 (91)  

because ϕm and ψm are indicated identically in Eq. (86). Eq. (91) esti
mates the intrinsic rejection in terms of the observed rejection, such as 

Ri ≃
̅̅̅̅̅
Ro

√
(92)  

and the interfacial concentration, such as 

Cm =
Cp

1 −
̅̅̅̅̅
Ro

√ = Cf
1 − Ro

1 −
̅̅̅̅̅
Ro

√ (93) 

Eq. (93) demonstrates that the interfacial concentration Cm reaches 
2Cf for a high observed rejection (i.e., Ro→1), proven as follows, using 
L'Hôpital's rule [19], such as 

lim
Ro→1

Cm = lim
Ro→1

Cf
1 − Ro

1 −
̅̅̅̅̅
Ro

√ = lim
Ro→1

Cf
−1

−1
2R

−1/2
o

= 2Cf (94) 
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which is generally unacceptable for NF and RO processes. This theo
retical restriction must originate from the basic definition of Ri in Eq. 
(84) that compels the linear relationship of Cp with transient Cm, even if 
both change with time. Bouranene et al. [35] report an experimental 
study on removing cobalt and lead ions from wastewater using poly
amide NF membranes. The observed rejection Ro is compared with Ri 
estimated using the standard film theory. Their experimental observa
tions include Ro ≃ 0.64 and Ri ≃ 0.82 for two cases of removing glucose 
solution of 2 g/L and cobalt solution of 0.1 g/L. (See Figs. 3 and 5 of 
Ref. [35].) Their rejection values support the theoretical approximation 
of Eq. (92) well, such as Ri/

̅̅̅̅̅̅
Ro

√
= 0.82/

̅̅̅̅̅̅̅̅̅̅
0.64

√
≃ 1.025, close to 1. 

Direct and instantaneous measurements of the interfacial concentration 
Cm are still challenging, but essential because novel quantitative 
methods may quantify the intrinsic rejection without employing specific 
transport models [8]. 

2.6. Components of interfacial concentration 

To investigate the unsteady behavior, we divide the full analytic 
solution ϕm(τ) of Eq. (59) into four component functions, such as 

ϕm0 = 1 (95)  

ϕm1 = 2Ro⋅τ (96)  

ϕm2 = 2Ro⋅
(

τ +
1
2

)

erf
( ̅̅̅

τ
√ )

(97)  

ϕm3 = 2Ro⋅
̅̅̅
τ
π

√

e−τ (98)  

as shown in Fig. 1, where ϕm(τ) = ϕm0 + ϕm1 + ϕm2 + ϕm3. 
Basically, ϕm0 = 1 is the constant feed concentration Cf as the 

background or reference concentration at arbitrary time τ and coordi
nate η, and therefore, ϕm0 is the only term independent of the rejection 
ratio Ro. The trivial case is the zero-rejection of Ro = 0, which gives 
ϕm = ϕm0 = 1, referring to the absence or failure of the membrane. The 
first non–trivial function, ϕm1 = 2Ro τ, is linear with τ, obtained from 
L −1[K1(p) ]. ϕm1 indicates the solute accumulation at the interface is 
linearly proportional to the accumulated filtered volume. The next 
component functions are ϕm2 and ϕm3, originating from L −1[K2(p) ]. The 
stiff increase of ϕm2 for small τ is ascribed to the nonlinear dependence of 

the error function: in comparison to erf(τ), erf
( ̅̅̅

τ
√ )

increases with τ 

faster and converges to the plateau value of 1 more slowly. τerf
( ̅̅̅

τ
√ )

in 

ϕm2 is ascribed to the initial rapid onset, followed by a linear increase of 
the interfacial concentration. For τ > 1, indicating that the real-time t is 
longer than the representative time scale T

(
= 4D0/J2

w
)
, the effect of the 

error function, erf
( ̅̅̅

τ
√ )

, becomes insignificant as it converges to 

erf
( ̅̅̅

τ
√

> 1
)

→1. Similarly, ϕm3 initially increases with 
̅̅̅
τ

√
until the 

exponential term e−τ becomes significant enough to hinder the gradually 
increasing trend of 

̅̅̅
τ

√
. Because ϕm3 is a product of 

̅̅̅
τ

√
and e−τ, it has a 

peak, found at τ = 1
2, as shown in the insert of Fig. 1, and the peak value 

is 

ϕm3

(

τ =
1
2

)

= [2Ro]Ro=1⋅0.2420→0.4839 (99) 

For a large τ, the asymptotic form of ϕm is obtained as 

ϕ* = lim
τ→∞

ϕm = lim
τ→∞

∑3

k=0
ϕmk = 1 + Ro(1 + 4τ) (100)  

which seems to be valid for τ > 0.5, as visually investigated in Fig. 1. At 
τ = 0.25, the ratio of the asymptotic form, ϕ*

m, to the exact form, ϕm, is 
calculated as 

ϕ*(τ = 0.25)

ϕm(τ = 0.25)
=

3.000
2.672

= 1.123 (101)  

indicating a 12.3 % error, which will be reduced for a larger τ. 

2.7. Evaluation of the interface concentration 

Because the unsteady convection-diffusion equation is a parabolic 
PDE, time and spatial intervals should meet the specific criteria of the 
numerical schemes used. The time step should be short enough to avoid 
numerical instability but long enough to calculate the solution within 
reasonable computing time. The space step should be small enough not 
to accumulate errors created by calculating gradients. 

Using the standard numerical scheme discussed above, we numeri
cally calculate the interfacial concentration ϕm(τ) using 2–, 3–, and 
5–point differential schemes, denoted as ϕ[2]

m , ϕ[3]
m , and ϕ[5]

m in Eqs. (A.7)– 
(A.9) and calculate their error ratios to the exact ϕm(τ), defined as 

f [k]
m =

ϕ[k]
m

ϕm(τ)
− 1 (102)  

where k is 2, 3, and 5. Fig. 2 shows the percentage errors the three 

Fig. 1. The interfacial concentration (a) ϕm(τ) and its three components: ϕm0, 
ϕm1, ϕm2, and ϕm3; and (b) the curvature of ϕm3(τ) at the peak value of ϕm3(τ =

0.5) = 0.4839 for Ro = 1. 
Fig. 2. Percent errors of the 2, 3, and 5–point differential schemes of Eqs. (63), 
(64), and (65), respectively. 
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numerical schemes create. In the entire time domain of the current 
study, i.e., 0 < τ < 2, the 5-point differential scheme provides almost 
identical results to those the analytic solution obtains. The 3-point 
scheme shows a seemingly linear increase in the error ratio, but the 
magnitude of errors within the time domain is insignificant. On the other 
hand, the 2-point scheme shows unacceptable error ranges even in the 
initial period of τ ≤ 0.2, at which the errors exceed 10 %. 

2.8. Rate of the interfacial concentration 

Besides the transient behavior of ϕm(τ), its initial increase rate is of 
great interest for evaluating the initial pressure growth. We define the 
rate of ϕm, such as 

ϕ̇m =
dϕm(τ)

dτ (103)  

calculate the rate for each component function, such as 

ϕ̇m0 = 0 (104)  

ϕ̇m1 = 2Ro⋅1 (105)  

ϕ̇m2 = 2Ro⋅
[

erf
( ̅̅̅

τ
√ )

+

(
1
2

+ τ
)

e−τ
̅̅̅̅̅
πτ

√

]

(106)  

ϕ̇m3 = 2Ro⋅
[(

1
2

− τ
)

1̅̅
̅̅̅

πτ
√ e−τ

]

(107)  

and obtain their sum, such as 

ϕ̇m = 2Ro

(

1 + erf
( ̅̅̅

τ
√ )

+
e−τ

̅̅̅̅̅
πτ

√

)

(108)  

as shown in Fig. 3 for an exemplary case of the perfect rejection Ro = 1. 
The second term in the parenthesis on the right–hand side of Eq. (108) is 
from ϕm2(τ), and the third term is from both ϕm2(τ) and ϕm3(τ). The 

function erf
( ̅̅̅

τ
√ )

has the converging characteristics of erf(0)→0 and 

erf(∞)→1, and so the second term, including erf
( ̅̅̅

τ
√ )

, in Eq. (108) 

contributes to the initial monotonous increase in ϕm. (See Appendix A.1 
for the mathematical details of the error function and its alternative for 
numerical evaluation.) Note that ϕ̇m diverges at τ = 0, at which we 
apply the initial condition, but the real phenomena start at τ = 0+. 
Besides, ϕ̇m rapidly decreases until τ ≃ 0.2 and begins to reach its 
plateau value 4R0 around τ = 0.5, at which ϕm3 reaches its maximum. 
Mathematical representations of the short– and long–term behavior of 
ϕ̇m(τ) can be summarized, such as 

lim
τ→0

ϕ̇m ≃ lim
τ→0

ϕ̇m3 = ∞ (109)  

lim
τ→∞

ϕ̇m ≃ lim
τ→0

(

ϕ̇m1 + ϕ̇m2

)

= 4Ro (110)  

respectively. The convergence of ϕ̇m for a large τ, i.e., specifically τ > 2 
and conceptually τ→∞, implies the hydraulic pressure ΔP needs to in
crease proportionally with time, i.e., ΔP∝ϕm(τ)∝τ, to maintain the 
constant flux Jw. 

2.9. Effects of rejection ratio 

Fig. 4 shows the variation of ϕm(τ, Ro) with respect to dimensionless 
time τ for various rejection ratio values from 0.2 to 1.0. The nonlinear 
dependence of ϕm on τ starts disappearing as τ passes 0.5 for the perfect 
rejection (Ro = 1). At lower rejection values, the convergence of the 
exact ϕm(τ) to the asymptotic limit occurs at an earlier τ than that for 
Ro = 1. Visual investigation of Fig. 4 indicates that at τ ≥ 1, i.e., t ≥ T =

O(10) min, Eq. (100) is an excellent approximation. 
Fig. 5 shows the difference between the asymptotic limit ϕ*(τ) and 

the exact solution of ϕm(τ) for the wide range of τ, i.e., ϕ*(τ) − ϕm(τ), in a 
logarithm scale. The non–linearity of ϕm(τ) starts disappearing at τ =

0.5, as previously indicated in Fig. 4, and the difference becomes 
negligible before τ reaches 1.0, where the maximum difference falls 
below 10 %. On the other hand, one can interpret ϕm(τ) − ϕ*(τ) as extra 
hydraulic pressure reduction from that required at the asymptotic limit. 
The CP layer fully develops toward its asymptotic limit after τ exceeds 1/ 
2, especially for higher rejections. 

2.10. Effects of pressure release 

Fig. 6 shows the initial growth of the ϕm(τ) of Eq. (59) from τ = 0 to 
the permeation–stopping time at (a) τs = 2 and (b) τs = 4 for several Ro 
values. In both τs cases, ϕm trends are similar before and after τs. The 
dash-dot line in Fig. 1 is identical to ϕm(0 < τ < 2, Ro = 1) in Fig. 6(a) 
and (b). During the initial period of τ < 1/2, nonlinear behaviors are 
established, which trigger linear asymptotic behaviors until the pressure 
is released at τ = τs. During the permeation period (0 < τ < τs), solutes 
are continuously brought down toward the membrane surface through 
fixed permeation, and the interfacial concentration increases steadily 
after τ(〉1/2). The movement of molecules toward the membrane surface 
is influenced by the constant permeation flux forming the CP layer and 
the back diffusion caused by the CP phenomenon. The time scale of the 

Fig. 3. Rate of ϕm(τ), i.e., ϕ̇m(τ) with respect to τ for Ro = 1..  

Fig. 4. The interfacial concentrations of ϕm(τ, R) with time τ for rejection ratio 
Ro from 0.2 to 1.0 (semi-transparent solid lines) and their asymptotic limits 
(dashed lines). 
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dead-end filtration process is much longer (e.g., of an order of 10 min) 
than the molecular relaxation time. Therefore, the filtration system can 
be considered in equilibrium at the molecular level. At a given time τ, 
while solutes are rejected on the membrane surface, the concentration 
decreases exponentially with respect to the distance from the membrane 

surface η, as implied in Eq. (70). The net mass transport rate per mem
brane surface area at any given time τ equals the feed input rate of Cf Jw, 
determined far from the membrane surface. For a high rejection ratio, i. 
e., Ro→1, the accumulation rate can be close to the feed input rate. 

Once the transmembrane pressure is released at τ = τs, ϕm(τ), the 
value of ϕm(τ) decreases from its peak value described in Eq. (79) to the 
ultimate value of 1, which reduces the degree of the CP. However, in the 
absence of permeation, the sole back-diffusion does not bring the con
centration profile back to its initial stage of ϕ(η, τ) = 1, and even after a 
long time, ϕm(τ) remains at 1. The initial concentration declines 
immediately after the stopping times in Fig. 6(a) and (b) are visually 
estimated, such as from ϕm(Δτ = 0, Ro = 1) ≃ 10 to ϕm(Δτ =

1, Ro = 1) ≃ 3.4 for τs = 2 and from ϕm(Δτ = 0, Ro = 1) ≃ 18 to 
ϕm(Δτ = 1, Ro = 1) ≃ 5.2 for τs = 4, respectively. A rough estimation of 
the concentration decrease rates gives Δϕm/Δτ ≃ 6.6 for τs = 2 and 
Δϕm/Δτ ≃ 12.8 for τs = 4. A longer filtration time provides a higher 
interfacial concentration and a faster diffusion rate but requires a longer 
time to reach a desired concentration to restart the dead–end filtration. 
As a result, the concentration gradient will persist as long as the 
decreasing interfacial concentration reduces the back diffusion as a 
driving force. 

A permeation restarting time can be determined when the interfacial 
concentration reaches a limit, denoted as ϕlim, that is approaching to 1 
from ϕmax. We define a new time scale, denoted as Δτ, i.e., the time 
required for ϕm to decrease from ϕmax at τs to a specific ϕlim at τs + Δτ; 
and calculate Δτ as a function of ϕmax and ϕlim, using 

ex2
erfc(x) =

φlim − 1
ϕmax − 1

(111)  

derived from Eq. (80), where x = β
̅̅̅̅̅̅
Δτ

√
and β = 2. Fig. 7 shows how Δτ 

varies with specified ϕlim with respect to ϕmax. In the asymptotic limit of 
τ > 1/2, one can calculate ϕ*

m at τ = τs as ϕmax using Eq. (100), such as 

ϕmax ≃ 1 + Ro(1 + 4τs) (112)  

and estimate an approximate elapsed time Δτ to reach ϕlim by visually 
investigating Fig. 7. As expected, a high value of ϕlim = 2.0 takes the 
shortest time to reach, followed by 1.75 and other smaller values. The 
lowest values of ϕlim = 1.25 in Fig. 7 require Δτ at least one order
–of–magnitude higher than τs, especially when ϕmax > 4. The present 
analysis of Δτ quantitatively confirms that the periodic pressure release 
does not return the filtration system to the initial stage having the 
constant, lowest uniform concentration of Cf . The complete removal of 
the concentration polarization requires other external processes such as 
backflushing (depending on solute and membrane types), sweeping, or 

Fig. 5. Differences between the asymptotic and exact functional forms of ϕm(τ)

with time τ for rejection ratio Ro from 0.2 to 1.0. For the perfect rejection Ro =

1, errors between ϕ* and ϕm are 15.3 % at τ = 0.5 and 5.68 % at τ = 1. 

Fig. 6. The growth of interfacial concentration ϕm(τ) with time τ for τ ≤ τs and 
decline for τ > τs with various observed rejection values: (a) τs = 2 and (b) τs =

4. 

Fig. 7. The dimensionless duration Δτ to reach the limiting concentration ϕlim 
form the maximum concentration ϕmax reached when the filtration stops. 
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stirring, in principle. 
Fig. 7 shows how Δτ varies with specified ϕlim with respect to ϕmax. In 

the asymptotic limit of τ > 1/2, one can calculate ϕ*
m at τ = τs as ϕmax 

using Eq. (100), such as 

ϕmax ≃ 1 + Ro(1 + 4τs) (113)  

and estimate an approximate elapsed time Δτ to reach a specific value of 
ϕlim by visually investigating Fig. 7. As expected, a high value of ϕlim =

2.0 takes the shortest time to reach from a given ϕmax, followed by 1.75 
and other smaller values. The lowest values of ϕlim = 1.25 in Fig. 7 
require Δτ at least one order–of–magnitude higher than τs, especially 
when ϕmax > 4. The present analysis of Δτ quantitatively confirms that 
the periodic pressure release does not return the filtration system to the 
initial stage of the constant, lowest uniform concentration of Cf . The 
complete removal of the concentration polarization requires other 
external processes such as backflushing (depending on solute and 
membrane types), sweeping, or stirring, in principle. 

3. Concluding remarks 

This study revisits the fundamental dead-end filtration theory for 
constant–flux operation and develops a complete analytic solution of Eq. 
(59) for the interface concentration as a function of filtration time τ and 
observed rejection ratio Ro. The current theory does not employ physical 
assumptions, mathematical approximations, or empirical parameters. 
The presence of a convection term creates formidable complexity in 
developing analytic solutions for the spatiotemporal profile of a solute 
concentration, due to a lack of the inverse Laplace transform formulae 
for functions containing the 

̅̅̅̅̅̅̅̅̅̅̅
p + 1

√
term. To analytically solve for the 

interfacial concentration ϕm(τ), we use several tabulated formulae of the 
Laplace transform, containing the error function (erf) and complemen
tary error function (erfc), combine the necessary inverse Laplace 
transforms, and use the convolution theorem to finish the inverse Lap
lace transform. 

The asymptotic limit of the analytic solution indicates that the 
interfacial concentration rate ϕ̇m reaches 4Ro, implying that the hy
draulic pressure requirement is also proportional to a product of τ and 
Ro, i.e., ϕm∝4Roτ. The analytic solution for ϕm(τ) is reversely validated 

by numerical solutions, obtained by the most error–vulnerable forward 
scheme. Because implementing the boundary condition on the mem
brane surface requires an accurate estimation of the concentration 
gradient, the stiff slope of the spatial concentration profile mandates 
using multiple–point differentiation. The elapsed time to reach a specific 
limiting concentration ϕlim below 2 is calculated using the analytical 
solution developed in this study, as a function of ϕlim and the permeation 
stopping time τs. The present theoretical analysis using the derived 
analytical solution provides clear insight into the constant–flux dead- 
end filtration, an in-depth understanding of the interfacial concentra
tion as an essential component to estimate the spatial concentration 
polarization, and a solid foundation to pursue the full spatiotemporal 
profile of concentration within the polarization layer. The mathematical 
method based on the Laplace transform and convolution theorem can 
contribute to solving challenging problems of membrane separation 
with or without stirring in both continuous and syringe-type feeding for 
constant-flux and constant-pressure operations. 
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Appendix A 

A.1. Approximation of error function 

In principle, evaluation of the error function requires numerical integration, although most modern programming languages have the error 
function embedded for users to call on. However, a good approximation of the error function is given as 

erf (x) ≃ tanh
(
ax + bx3)

(A.1)  

where a = 167/148 and b = 11/109 with the absolute difference of an order of O
(
10−4)

[31]. An alternative value of a = 123/109 is suggested to 
have the same denominator with b with the same error range. 

A.2. Non–iterative numerical procedure 

The dimensionless concentration ϕ(τ, η) is discretized using the standard scheme as ϕj,k for τ–index j = 1 − M and η–index k = 1 − N, such as 

ϕj+1,k − ϕj,k

δτ =
ϕj,k+1 − 2ϕj,k + ϕj,k−1

(δη)2 + 2λ
ϕj,k+1 − ϕj,k−1

2δη (A.2)  

resulting in the ϕ(η = kδη) at the next time step j + 1, such as 

ϕj+1,k = ϕj,k +
(
ϕj,k+1 − 2ϕj,k + ϕj,k−1

) δτ
(δη)2 + λ

(
ϕj,k+1 − ϕj,k−1

) δτ
δη (A.3) 

The initial and far–field boundary conditions of Eqs. (19) and (20) are applied, such as 
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ϕ(0, η)→ϕ1,k = 1 forallk (A.4)  

ϕ(τ, ∞)→ϕj,N = 1 for all j (A.5)  

respectively, and the interfacial condition (at η = 0) is given as 
[

∂ϕ
∂η

]

k=1
= − f

(
ϕj,1 − ϕp

)
(A.6) 

We discretized the interfacial gradient of ϕ using 2, 3, and 5 point–schemes, such as 
[

∂ϕ
∂η

][2]

η=0
=

ϕj2 − ϕj1

δη (A.7)  

[
∂ϕ
∂η

][3]

η=0
=

−3ϕj1 + 4ϕj2 − ϕj3

2δη (A.8)  

[
∂ϕ
∂η

][5]

η=0
=

−25ϕj1 + 48ϕj2 − 36ϕj3 + 16ϕj4 − 3ϕj5

12δη (A.9)  

where the numbers in the squared brackets of the superscripts indicate the number of points used for differentiation. For numerical stability, we 
restrict simulations for 

δτ
(δη)2 ≤ 1 and

δτ
δη ≤ 1 (A.10)  

where the first condition will automatically satisfy the second condition because both δτ and δη are less than 1, which is re–written as 

δτ
(δη)2 =

τmax

M
N2

η2
max

=
τ

η2
max

N2

M
(A.11) 

The following conditions are used to unconditionally satisfy the numerical convergence, such as: M = N2 and 
τmax

η2
max

< 1 (A.12) 

We find that N = 103 is a reasonable value and use τmax = 2 and ηmax = 4 to confirm τmax/η2
max = 2/42 = 1/8 = 0.125 < 1. For other cases of τmax, 

ηmax is proportionally determined. The sequential steps of the finite difference method simulation are as follows.  

1. Using the parameters of τmax, ηmax, M, and N, calculate the spatial and temporal intervals, δη and δτ, respectively.  
2. Let ϕj,k = 1 for all j = 1 − M and k = 1 − N, which automatically assign the initial and far–field boundary conditions, i.e., ϕ1,k = 1 and ϕj,N = 1, 

respectively.  
3. Using ϕj,k known for the current time step j,  

(a) calculate ϕj+1,k for k from N − 1 to 2, and  
(b) calculate the interfacial concentration ϕj+1,1 using one of the differentiation schemes.  

4. Go to the next time step until j reaches the maximum time index M. 

The dimensionless maximum τmax should be long enough to observe asymptotic behavior of the interfacial concentration for a long term, and the 
dimensionless maximum length ηmax should be long enough to apply the far–field boundary condition of Eq. (20) in either Dirichlet or Neumann form. 
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