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A B S T R A C T   

Understanding spatial and temporal heterogeneity in ecosystems is essential to forecasting the effects of envi-
ronmental changes. Freshwater microbes, including cyanobacteria, play a crucial role in food-web structures and 
biochemical processes, yet can exhibit substantial heterogeneity through space and time. They also act as 
powerful indicators of natural and human-induced stress due to their high metabolic and rapid response to 
environmental change. The formation of cyanobacteria blooms can be particularly important due to the potential 
production of toxins that are harmful to humans and wildlife. While high water temperatures and high nutrients 
are largely recognized as triggers of cyanobacterial bloom formation, there is growing evidence of the role of its 
associated microbiome in bloom formation. The inability to accurately forecast cyanobacteria blooms is chal-
lenged by uncertainty in the degree to which microbial diversity, and bloom forming taxa in particular, exhibit 
spatial heterogeneity and how spatial heterogeneity varies seasonally or between lakes spanning the trophic 
gradient. Here, we used long-read sequencing of the 16S rRNA gene to quantify variations in microbial spatio-
temporal dynamics over the course of an ice-free season between two lakes that varied substantially in trophic 
status. Our results showed that the microbial community composition of eutrophic Chautauqua Lake was 
seasonally and spatially structured; however, during bloom events we observed lower diversity and a homoge-
neous community dominated by Microcystis and enriched with Gammaproteobacteria. In oligotrophic Lake 
George, seasonality rather than the basin of origin played a major role in structuring the microbial community; 
however, there was a signi昀椀cant difference between basins when controlling for the temporal effect and was 
linked to a South-to-North anthropogenic gradient. This study provides a solid foundation for exploiting long- 
read sequencing of prokaryotes and couples sequencing with traditional water quality monitoring to assess 
microbial dynamics (e.g., cyanobacteria bloom microbiome) and the effect of local and global stressors.   

1. Introduction 

Freshwater microbes play vital roles in lake ecology and are uniquely 
positioned as powerful indicators of natural and human-induced stress 
due to their rapid response to environmental changes (Caruso et al., 
2016). Furthermore, changes in its community structure provide a more 
holistic representation of ecosystem variations compared to traditional 
physical and chemical monitoring programs (Cordier et al., 2021). 
Environmental DNA-based methods (e.g. amplicon sequencing) can 
offer insights into the trajectories of these microbes as sentinels of water 

quality (Sagova-Mareckova et al., 2021). While past constraints such as 
costly and lengthy protocols have hindered such approaches, recent 
advancements, including a relatively new molecular approach involving 
long-read sequencing (MinIONTM), make these methods more viable to 
couple to chemical and hydrological lake monitoring (Baird and Haji-
babaei, 2012; Werner et al., 2022). This platform has been extensively 
used to identify microbes in mock communities and in clinical studies 
(Burton et al., 2020; Matsuo et al., 2021; Meslier et al., 2022; Rozas 
et al., 2022), but non-epidemiological studies in environmental research 
are still scarce (but see Koeppel et al., 2022). 

* Corresponding authors at: Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States. 
E-mail addresses: castrm2@rpi.edu (M. Castro Berman), dordick@rpi.edu (J.S. Dordick).  

Contents lists available at ScienceDirect 

Ecological Indicators 
journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2024.111738 
Received 9 November 2023; Received in revised form 7 February 2024; Accepted 9 February 2024   

mailto:castrm2@rpi.edu
mailto:dordick@rpi.edu
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2024.111738
https://doi.org/10.1016/j.ecolind.2024.111738


Ecological Indicators 159 (2024) 111738

2

Changes in the microbial community, such as cyanobacterial blooms, 
can cause regime shifts from clear-water to turbid-water dominated by 
algae that can impose a substantial cost to local economies (Smith et al., 
2019), disrupt ecosystems (Scheffer et al., 1993) and become toxic 
(Carmichael, 2001). Most cyanobacteria genera like Dolichospermum sp. 
and Microcystis sp. are capable of producing various kinds of toxins 
including cyclic peptides (e.g., microcystin) and alkaloids (e.g., ana-
toxin, saxitoxin, and cylindrospermopsin). They are also the most 
common producers of the taste- and odor-forming compounds geosmin 
and 2-methylisoborneol (MIB) found in surface waters (Jüttner and 
Watson, 2007). Despite the need for accurate identi昀椀cation and quan-
ti昀椀cation of cyanotoxins, bioassays and chemo-analytical methods have 
a number of methodological pitfalls (e.g. the need of specialized training 
and expensive equipment) that pose serious constraints on routine 昀椀eld 
assessments. Furthermore, they are only applicable once the toxins are 
above a certain threshold. In contrast, molecular techniques have the 
capability to identify toxigenic cyanobacteria prior to the production 
and release of toxins into a water body (Al-Tebrineh et al., 2012). While 
not yet functioning as a standalone early warning system, these molec-
ular analyses offer fundamental insights into bloom dynamics and po-
tential toxicity. When combined with other monitoring methods, this 
data can play a vital role in re昀椀ning predictive models and strengthening 
our overall preparedness for managing bloom events. 

High nutrient loads and warm conditions are major drivers in cya-
nobacterial bloom development (Bogard et al., 2020; O’Neil et al., 2012; 
Tanvir et al., 2021). However, there is growing need to include the in-
teractions between cyanobacteria and their associated microbiomes in 
cyanobacterial blooms studies (Pound et al., 2021). Speci昀椀cally, het-
erotrophic bacteria can promote (Jiang et al., 2007) and suppress cya-
nobacterial growth (Gerphagnon et al., 2015). Moreover, Microcystis 
colonies were identi昀椀ed as hotspots for bacterial production and serve as 
a protected microhabitat where exchange of nutrients and carbon occur 
(Cai et al., 2014; Krausfeldt et al., 2017; Wang et al., 2021). 

The patchy spatial and stochastic nature of blooms suggest that these 
processes are spatially heterogeneous and vary through time (Carpenter 
et al., 2020). Nevertheless, the transition to a constant bloom stage has 
been observed in changes in spatial indicators (e.g. spatial autocorre-
lation, skewedness, etc.) of state variables like pigments and biomass 
and has been proposed as early warning indicators under computational 
modeling (Buelo et al., 2018), 昀椀eld observations (Ortiz et al., 2020), and 
experimental settings (Butitta et al., 2017). Coincidentally, these studies 
documented an increase in spatial autocorrelation as systems 
approached a critical tipping point, potentially offering an early warning 
signal of the impeding shift to a bloom stage. While studies exploring 
changes in the spatial statistics of bacterial communities exist (e.g., Zhao 
et al., 2022), there is a scarcity of research exploring such changes in the 
context of cyanobacterial bloom. Therefore, identifying and tracking the 
dynamics of these speci昀椀c bacteria while assessing changes in their 
resilience can be a valuable approach to integrate with chemistry bio-
monitoring for early bloom detection. 

In this study, we followed the dynamics of the bacterial community 
composition in 12 nearshore basins in the oligotrophic Lake George (NY, 
USA) which is subjected to an anthropogenic impairment gradient, a rise 
in the water temperatures, and to the proliferation of ephemeral cya-
nobacterial blooms (Hintz et al., 2020; Reinl et al., 2023). We also 
identi昀椀ed and tracked the dynamics of the bloom-forming cyanobacteria 
and its associated microbiome along an eight-point transect in the 
eutrophic Chautauqua Lake (NY, USA) which undergoes recurrent cya-
nobacterial blooms. Additionally, we assessed cyanotoxin production 
potential by quantifying the abundance of genes associated with com-
mon cyanotoxins. We hypothesized that the speci昀椀c bloom-forming 
cyanobacteria harbor a distinct bacterial microbiome, and that the 
spatial autocorrelation of these bacteria is higher during blooms and 
lower during clear-water conditions. Moreover, we predicted that 
spatial autocorrelation would be higher in the eutrophic Chautauqua 
Lake and lower in the oligotrophic Lake George. Speci昀椀cally, the study 

addressed three research questions: (1) Can we use long-read sequencing 
of the 16S rRNA gene of prokaryotes to assess the identities and dy-
namics of bloom-forming cyanobacteria and their associated micro-
biome in Lake George and Chautauqua Lake? (2) Do these blooms have 
the potential to produce toxins in Chautauqua Lake and Lake George? 
(3) Can we use long-read sequencing of prokaryotes to capture the 
spatial and temporal structure of Chautauqua Lake and Lake George? Do 
we observe changes in the spatial structure of the microbial community 
composition and diversity during bloom events? We provide a 
comprehensive analysis of cyanobacterial dynamics, associated micro-
biomes, and the potential for toxin production, while also leveraging 
long-read sequencing technologies to enhance our monitoring methods 
for assessing environmental stressors and gain insight into the microbial 
communities in lake ecosystems. 

2. Materials and methods 

2.1. Study sites, sampling design and physical and chemical variables 

The two-basin Chautauqua Lake (42.157, −79.398) is 28 km long 
and 3.2 km wide at its widest point, has a mean (maximum) depth of 9.1 
(23) m in the North Basin and 4.7 (5.7) m in the South Basin. Early in the 
summer, Chautauqua Lake experiences dense cyanobacterial blooms 
from the genera Microcystis, Aphanizomenon, Dolichospermum and 
Planktothrix that usually extend into autumn, especially in the eutrophic, 
shallower and urbanized South Basin (Smith et al., 2020). In contrast, 
Lake George is a two-basin large lake (51 km long and maximum width 
of 3.3 km) with a mean (maximum) depth of 18 (58) m (Mather, 1939). 
This oligotrophic glacial lake has experienced an increase in water 
temperatures, orthophosphates and algal biomass over the past 37 years 
(Hintz et al., 2020). A slight phosphorus and chloride gradient has been 
observed as a result of widespread tourism activities and increasing 
human development (Hintz et al., 2020). Since the 昀椀rst reported algal 
bloom in 2020 (Reinl et al., 2023), Lake George has experienced more 
frequent autumn blooms, coincidentally in the more developed South 
Basin (Hintz et al., 2020). 

Lake George was sampled monthly from April to October 2022 at 14 
sites (n = 97) as part of a 40-year monitoring program aimed at 
capturing the growing season and assessing environmental changes 
(Fig. 1). Additional samples were collected from four opportunistic 
blooms along the shoreline of four basins in the southernmost part of the 
lake in late October (triangles in Fig. 1). Following a pilot survey in 2021 
that revealed cyanobacterial blooms starting in early August and 
extending beyond the growing season, Chautauqua Lake was sampled 
every two weeks from August 8th to November 11th, 2022, at eight sites 
(n = 56) (Fig. 1). Additionally, 昀椀ve opportunistic blooms were collected 
along the shoreline throughout the sampling period (triangles in Fig. 1). 

Twenty-two nearshore sampling sites were sampled, with an average 
distance from the shoreline of 585 ± 248 m for Chautauqua Lake and 
144 ± 124 m for Lake George. We accessed these sites via motorboat 
during the daytime between mid-late summer and autumn for Chau-
tauqua Lake and over the course of spring to autumn for Lake George. 
For all sampling, integrated water samples were collected in acid- 
washed polycarbonate bottles from the pelagic zone 30–40 cm below 
the surface. For bacterioplankton analysis, an average of 200 mL 
(Chautauqua Lake) and 430 mL (Lake George) of lake water was 昀椀ltered 
through a 0.22 µm polycarbonate 昀椀lter (Millipore), and frozen at −80 çC 
until nucleic acid extraction. Water temperature (çC), conductivity (S/ 
cm), pH, dissolved oxygen (mg O2 L-1) and Blue Green Algae (BGA, μg L- 
1) were collected following a ‘spot’ approach at a ~ 0.35 m depth at each 
sampling site using a calibrated handheld YSI EXO2 multiparameter 
sonde (Yellow Springs Instruments, Yellow Springs, OH), with an 
average collection time of 3:50 pm ± 2 h UTC for Chautauqua Lake and 
3:15 pm ± 1.51 h UTC for Lake George. To understand the role of nu-
trients in the algal blooms, epilimnetic water samples were collected 
from each site for measurement of chlorophyll a (Chl-a), total 
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phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive 
phosphorus (SRP), nitrate (NO3–), total nitrogen (TN), total dissolved 
nitrogen (TDN), dissolved carbon (fDOM), sodium (Na), chloride (Cl-), 
calcium (Ca), silica (Si) and iron (Fe), as described in Hintz et al. (2020). 
Chl-a and TP concentrations were used to calculate the Trophic Status 
Index (TSI) using the revised TSI proposed by Carlson (1977) while TN 
concentrations were used to calculate the TSI using Kratzer and Brezonik 
(1981) under nitrogen-limiting conditions. 

2.2. DNA Isolation, Sequencing, and analysis 

Genomic DNA was extracted using DNeasy PowerSoil Pro Kit (Qia-
gen, Germantown, MD) following the manufacturer’s instructions with 
minor modi昀椀cations including a 10-minute incubation step in warm 
(65 çC) lysis buffer and three bead-beading steps using a TissueLyser II 
(Qiagen, Germantown, MD). Concentration of eluted DNA was 
measured using a Qubit 4 Fluorometer with the Qubit™ dsDNA BR 
Assay Kit (ThermoFisher, Waltham, MA). Genomic DNA quality was 
checked by 2 % agarose gel electrophoresis (Bio-Rad, Hercules, CA) and 
stored at −20 çC prior to library preparation. 

Sequencing libraries were prepared using 16S Barcoding Kit 1–24 
(Oxford Nanopore Technologies -ONT-, Oxford, UK) and loaded into an 
R9.4.1 昀氀ow cell and sequenced on a MinION nanopore sequencer (ONT, 
Oxford, UK; RPI Genomics Research Core Facility). MINKNOW 
v22.10.10 including Guppy v6.3.9 (ONT, Oxford, UK) was used for 
sequencing data generation, de-multiplexing and read 昀椀ltering by 
quality score of 7 and read length of 1300–2000 bp. We used the EPI2ME 
16S work昀氀ow which uses the RefSeq NCBI 16S bacterial database to 
assign taxonomy; however, the software provides an output 昀椀le that is 
not compatible for downstream analysis. Thus, sequence alignments 
were further conducted using minimap2 (Li, 2018) as recommended by 
Santos et al. (2020) against the SILVA database v-138-SSU-ref-NR-99 
(https://www.arb-silva.de/documentation/release-138/). Additionally, 
we assessed the identity of cyanobacteria during blooms using the 

newly-curated Cyanoseq database (v1.2) (Le昀氀er et al., 2023). During 
post-processing, the dataset was re昀椀ned by excluding all mitochondria, 
chloroplast and eukaryote annotated features. Abundance tables for the 
different taxonomical ranks were parsed using in-house scripts in R (R.- 
Core-Team, 2022). Sequences have been deposited at the European 
Nucleotide Archive (ENA) under the BioProject number (PRJEB67374). 

2.3. qPCR 

Genomic DNA was ampli昀椀ed via qPCR on a CFX96 thermocycler 
(Bio-Rad, Hercules, CA) with PhytoxigeneTM CyanoDTec Total Cyano-
bacteria kit (205–0050, Ohio, USA) to quantify cyanobacterial presence 
by targeting a universal sequence in the cyanobacterial 16S rRNA gene 
and The Toxin Gene kit for ampli昀椀cation of genes for microcystins/ 
nodularins (mcyE/ndaF), saxitoxins (sxtA), and cylindrospermopsin 
(cyrA) production. These assays contain an internal ampli昀椀cation con-
trol to ensure that the qPCR reactions were not inhibited. We followed 
manufacturer’s instructions for both reactions’ preparation and thermal 
cycling conditions, Positive controls and non-template controls were 
included in every qPCR run. Finally, standard curves were created using 
the Phytoxigene™ CyanoNAS Nucleic Acid Standards (NA011-NA015). 

2.4. Classi昀椀cation of bloom stages 

Bloom conditions were de昀椀ned as Chl-a exceeding 30 μg L-1, as 
proposed by Bruns et al. (2022) following USGS guidelines. In addition 
to Chl-a concentration, we used a threshold of one or two standard de-
viations (SD) from the Chl-a peak at each site to de昀椀ne different stages in 
the bloom cycle. Smaller variations were considered as continuations of 
the bloom stage, depending on the context of each phenology curve. Pre- 
bloom (Eq. (1), early bloom (Eq. (2) and post-bloom (Eq. (4) stages were 
delineated based on sample dates preceding or following the Chl-a peak 
(Eq. (3). Chl-a concentrations greater than two SD below the peak was 
used to de昀椀ne no-bloom conditions (Eq. (5). Bloom duration, de昀椀ned as 

Fig. 1. Sampling locations in Chautauqua lake in Western New York State (NYS, USA) and Lake George in Eastern NYS. Monitoring samples are indicated by black 
dots while opportunistic blooms are indicated by vertex triangles. 
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days above the 30 μg L-1 Chl-a threshold, was determined by estimating 
the 昀椀rst and last days where Chl-a concentrations were over 30 μg L-1 

while bloom intensity was de昀椀ned as the maximum Chl-a concentration 
registered in that period.  
Pre-bloom > 1SD Chl-a max < Chl-a threshold                                   (1)  
Early bloom > 1SD Chl-a max > Chl-a threshold                                (2)  
Bloom < 1SD Chl-a max > Chl-a threshold                                        (3)  
Post bloom > 1SD Chl-a max > Chl-a threshold                                  (4)  
No Bloom < 2SD Chl-a max < Chl-a threshold                                   (5)  

2.5. Statistical analysis 

All statistical analyses were performed in R 4.1.3 and Rstudio 
(Rstudio Team, 2020). To explore environmental variation, we con-
ducted a principal component analysis (PCA) using the ’pca’ function 
from the FactoMineR package. Diversity indices of Bacterioplankton, 
including species richness, Chao1, Shannon-Wiener, and Pielou even-
ness, were calculated by bloom stage using vegan. We tested for signif-
icant differences using the Kruskal-Wallis rank sum test and performed 
multiple comparisons (Dunn’s post hoc tests) with rstatix. 

Non-metric Multidimensional Scaling (NMDS) analyses were per-
formed on Bray-Curtis dissimilarity data (Hellinger transformed) using 
the metaMDS function from vegan to gain insights into changes in 
community structure during bloom stages. We considered only taxa 
accounting for more than 0.01 % of total abundance (Legendre and 
Gallagher, 2001). To assess the signi昀椀cance of spatial–temporal and 
bloom stages variations in community composition, we employed a one- 
way analysis of similarity (ANOSIM) as described by Clarke and War-
wick, 1994. To highlight and validate the proposed bloom stages and 
identify discriminating components and features we utilized sparse 
partial least squares discriminant analysis (sPLS-DA) following the 
approach by Cao et al. (2016) with the mixOmics package. For identi-
fying indicator taxa for each bloom stage based on their 昀椀delity and 
relative abundance, we employed the Indicator Species Analysis 
(InDVal) using the ‘multipatt’ function in the indicspecies package. We 
only considered taxa with a signi昀椀cance level of p < 0.05 and IndVal 
values > 0.4, as recommended by De Cáceres and Legendre (2009). 

To assess the in昀氀uence of local environmental variables on the 
explained variation in the microbial community across all taxonomical 
ranks, redundancy analysis (RDA) was performed. The selection of 
variables for each model was carried out using the ‘forward.sel’ function 
in the adespatial package (Dray et al., 2009, p < 0.01, after 999 random 
permutations). We performed Mantel tests and Mantel correlogram to 
assess similarities between the community structure with the geographic 
distances and environmental factors. We calculated the geographic 
distance between lakes based on their coordinates. Additionally, we Z- 
score transformed the environmental variables and used them to 
calculate the Euclidean distance matrix. To assess changes in the spatial 
autocorrelation that could be used as predictors of a regime shift, we 
calculated Moran I on three categories: 1) diversity indices, 2) the 
bacterial composition, and 3) selected heterotrophic bacteria within 
each bloom stage. We generated a connectivity matrix based on Gabriel 
graph and a weighting matrix (lw) was calculated for each sampling 
point. Finally, we employed a Regularized Canonical Correlation Anal-
ysis (rCCA) to investigate the correlation between environmental vari-
ables and the microbial composition following LÆe Cao et al. (2011). 

3. Results 

3.1. Physical and chemical conditions 

Chautauqua Lake. The lake’s trophic conditions ranged between 
meso- and eutrophic conditions. The South and Central Basin exhibited 
eutrophic conditions in 79 % of the samples (hereinafter both basins are 
grouped as South Basin), whereas the North Basin was mesotrophic in 
74 % of the samples. On the other hand, 96 % of the samples showed TSI 
values for Total Nitrogen below 60 and over 40 indicating a mesotrophic 
condition accordingly with the observed low TN:TP ratios (<10) sug-
gesting that the lake was nitrogen-limited during the period of this study 
(Table S1). During the summer, the South Basin had signi昀椀cantly higher 
levels of TP, Cl-, TDN, TN, Si (Table S1) and higher values of Chl-a, Fe 
and turbidity during the autumn. The North Basin had higher SRP and 
TFP, along with higher Ca concentrations during the summer. Principal 
component analysis was used to visualize this complexity and revealed 
that the 昀椀rst two axes explained 61 % of the total variation (Fig. 2a). 
Trophic state variables (TN, turbidity, Chl-a and TP) characterized the 
昀椀rst component which separated the South Basin from the North Basin 
(Fig. 2b), which was more clearly observed during the summer. Seasonal 
variables (e.g., water temperature, pH, Si, fDOM and Fe) and soluble 
nutrients that also showed a seasonal behavior (e.g., TDN, SRP and TDP) 
correlated with the second component resulting in a clear separation of 
summer from autumn samples (Fig. 2c). 

Lake George. All samples indicated oligotrophic conditions for Chl-a, 
TP and TN, except for four mesotrophic samples that were collected 
closer to storm events in the South Basin. In contrast to Chautauqua 
Lake, during the study period, Lake George was more phosphorus- 
limited (TN:TP > 10, Table S1). Most variables remained relatively 
constant and showed overlapping ranges throughout the sampling sea-
son within each Basin. In every sampling event, the South Basin had 
higher Cl-, conductivity, fDOM, TN, TP (both total and dissolved) and 
Chl-a compared to the North Basin but differences were not signi昀椀cant 
(Table S1). The 昀椀rst two axes of the PCA explained 58 % of the total 
variation in Lake George (Fig. 2d) and the overlapping sites scores in the 
plot (Fig. 2e) re昀氀ected the similarities in environmental characteristics 
between basins. Major contributions of phosphorus (both 昀椀ltered and 
total) and minerals (Fe and Si) characterized the 昀椀rst component, while 
the second component exhibited a correlation with seasonal variables 
such as DO, water temperature, conductivity, Cl-, and Na and led to the 
separation of summer and autumn samples from spring samples (Fig. 2f). 

3.2. Microbial community composition and environmental variables 

Chautauqua Lake. The dataset consisted of 13,405,062 reads that 
were classi昀椀ed into 28 phyla, 55 classes, 121 orders, 187 families and 
318 genera. The predominant bacterial classes were: Cyanobacteria (37 
%), Gammaproteobacteria (25 %), Bacteroidota (11 %), Acidimicrobiia 
(4 %) and Verrucomicrobia (4 %). At the genus level, Microcystis PCC 
7914 was the most abundant with an average value of 28 % throughout 
the entire sampling season; the highest values were recorded during 
mid-August through September (~63 %), followed by Limnohabitans and 
CL500-29 clade, which had similar abundances of ~ 4 % (Fig. 3a). The 
N2-昀椀xing cyanobacteria Aphanizomenon MDT14a and Gloeotrichia PYH6 
were also present early in the sampling season. 

RDA (Table 1) revealed that, on average, 54 % of the variation could 
be explained by local environmental variables. The variables most 
frequently selected, with the highest individual R2, were associated with 
water quality (e.g., turbidity) and speci昀椀cally with cyanobacterial 
biomass (BGA). Water temperature explained approximately 12 % of the 
variation, while nutrients (e.g., TFP, SRP) and other physicochemical 
variables (Si and barometric pressure) explained a minor percentage of 
the variation. The Mantel test disclosed a similar trend, showing that 
cumulative environmental factors correlated with the microbial com-
munity composition (Mantel test r: 0.58, p < 0.001). Regularized 
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canonical correlation analysis (rCCA) identi昀椀ed 114 genera with cor-
relations > 0.50 and 10 environmental variables. Fig. 4a shows the 
heatmap of pairwise Pearson correlations among these selected vari-
ables and genera. There was a high proportion of genera that correlated 
positively (red) or negatively (blue) to high nutrients, low light quality, 
high water temperature and macronutrients (especially calcium) and a 
third group with intermediate correlations with these set of variables. 
The cyanobacterium Microcystis PCC 7914 showed a high and positive 
correlation with light quality (turbidity, TSS), TP, Fe, BGA, Chl-a and pH 
and a negative correlation with Ca, suggesting its contribution to the 
impairment of the water quality. The 昀椀lamentous Aphanizomenon strain 
MDT14a only showed a positive correlation with water temperature 
while Gloeotrichia PYH6 showed a negative correlation with turbidity. In 
general, taxa with an average abundance over 1 % (Fig. 3) except for the 
uncultured Sutterelaceae and Ahniella showed opposite correlations with 
environmental variables vs. that observed with Microcystis PCC 7914. 

Lake George. The dataset consisted of 20,979,589 reads that were 
classi昀椀ed into 23 phyla, 42 classes, 106 orders, 171 families and 287 
genera. The predominant bacterial classes and genera were: Gammap-
roteobacteria (44 %; e.g., Limnohabitans, Polynucleobacter), Alphapro-
teobacteria (18 %; e.g., Candidatus Fonsibacter ubiquis), Bacteroidota (14 
%; e.g., Pseudarcicella), and Verrucomicrobia (6 %; e.g., uncultured 
Verrucomicrobiae) (Fig. 3b). The mean relative abundance of Cyano-
bacteria was low (0.2 % of total reads) and showed a seasonal dynamic 
with higher values (~7% of total class sequences) in late summer and 
early autumn. The picocyanobacteria Cyanobium PCC-6307 (black in 
Fig. 3b) was present throughout the 2022 sampling period with higher 
values in April and during the autumn while Microcystis PCC 7914 (or-
ange) peaked in autumn and Aphanizomenon sp. NIES81 (pink) had the 
higher values in July. In four of the 101 samples, Aphanizomenon sp. 
NIES81 represented over 68 % of the total sequences. 

RDA (Table 1) revealed that, on average, 32 % of the variation could 
be explained by local environmental variables. Water temperature 

emerged as the most frequently selected variable, explaining 20 % of the 
variation. On the other hand, nutrients (e.g., TFP), fDOM and other 
physicochemical variables (pH, Si and barometric pressure) each con-
tribuited to a minor percentage of the explained variation, averaging 5 
%. The microbial community composition strongly correlated with cu-
mulative environmental factors (Mantel test r: 0.50, p < 0.001) and 
rCCA analysis identi昀椀ed 51 genera and 14 environmental variables with 
a correlation value over 0.40 (Fig. 4b). Two communities exhibited a 
clear seasonal separation: one preferred warmer water temperature, and 
correlated with conductivity and pH (including the cyanobacteria 
Microcystis PCC 7914 and Aphanizomenon sp. NIES81), while the other 
group showed preference for cooler temperatures and high DO con-
centration (CL500-29 clade, Candidatus Methylopumilus, hgcI clade), as 
well as nutrients and fDOM (Verrucomicrobiae, Pseudarcicella). Despite 
the contrasting lake conditions in both lakes, most genera, including 
Limnohabitans, Candidatus Methylopumilus, Rhodoferax, Microcystis PCC 
7914, Aphanizomenon NIES81, Verrucomicrobiae and Limnobacter, 
showed consistent correlation with water temperature and pH across 
this trophic gradient. 

3.3. Spatial and temporal structure of the microbial community 
composition and diversity during bloom stages 

Chautauqua Lake. A total of 48 % of samples met our de昀椀nition of a 
bloom (g30 μg L-1 Chl-a) with all sites experiencing a bloom stage 
(Fig. 5). 41 % occurred in the South Basin (Table S2), while 7 % occurred 
in the North Basin. During Chl-a peaks nearly all cyanobacteria se-
quences mapped to Microcystis aeruginosa PCC 7914 using minimap2 
and the EPI2ME work昀氀ow, and to Microcystis aeruginosa PCC 7941 using 
minimap2 against the CyanoSeq database. The average (maximum) 
abundance of cyanobacteria 16S rRNA and mcyE/ndaF copies were 2.58 
× 105 L-1 (3.97 × 106 L-1) and 4.60 × 104 L-1 (9.49 × 105 L-1), respec-
tively. The cyrA gene was not detected, while the sxtA gene for saxitoxin 

Fig. 2. PCA correlation plots of the environmental variables in Chautauqua Lake (upper panel) and Lake George (lower panel). (a, d) Loading plots of Chautauqua 
Lake and Lake George, respectively; (b, e) score plots of Chautauqua Lake and Lake George by Basin, respectively; and (c, f) score plots by season of Chautauqua Lake 
and Lake George, respectively. 
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production was detected once (Table S2). The mcyE/ndaF gene was at 
least one order of magnitude lower than the 16S rRNA, yet it was 
consistently present and its ratio ranged from 0.02 to 44 % (average 8 %) 
with higher values observed during the summer. mcyE and 16S strongly 
correlated with each other (r (48) = 0.95, p =<0.05), and with turbidity 
and BGA (r (48) > 0.79, p = <0.05), indicating their presence within 
Microcystis cells and its contribution to the water quality of the lake. 

The most signi昀椀cant sources of variation on the microbial composi-
tion were season (ANOSIM R: 0.50, p < 0.001), sampling event 

(ANOSIM R: 0.54, p < 0.001) and basin of sample origin (ANOSIM R: 
0.22, p < 0.001), with a clearer basin separation during the summer 
(ANOSIM R: 0.49, p < 0.001). Chl-a concentrations and bloom stages 
also played a substantial role in shaping the microbial composition. At 
the beginning of the sampling season, a brief pre-bloom occurred in the 
North basin while the South Basin was already in a bloom stage. This 
period exhibited the highest dissimilarities in the microbial composition 
between basins (ANOSIM R: 0.82, p < 0.05, Fig. 5a). When blooms 
developed in the North Basin the microbial community became more 

Fig. 3. Relative abundance of bacteria genera that accounted for 70% of total sequences in (a) Chautauqua Lake and (b) Lake George in the South Basins ( ) and 
North Basins (□). 

Table 1 
Redundancy Analysis (RDA) showing the individual R2 for each selected environmental variable and total adjusted cumulative R2 for Chautauqua Lake and Lake 
George across all taxonomic ranks.   

BGA Water temp. fDOM TFP Si Turbidity SRP pH B. pressure R2a 

Chautauqua Lake          
Phylum 0.46 0.11     0.04   0.59 
Class 0.43 0.11  0.03      0.54 
Order  0.14  0.05  0.34    0.50 
Family 0.34 0.11   0.07     0.49 
Genus  0.16    0.34 0.06  0.04 0.56 
Lake George           
Phylum  0.19  0.08 0.04 0.05    0.32 
Class  0.19 0.07     0.04  0.26 
Order  0.19 0.07  0.03   0.04  0.30 
Family  0.21 0.06 0.04 0.04   0.04 0.03 0.37 
Genus  0.21 0.06 0.04 0.04   0.05 0.03 0.37 

Only variables with a p < 0.01 are shown. 
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similar to that of the South Basin (Fig. 5b and Fig. 5c). Later, Chl-a 
concentrations in the North Basin sharply decreased and remained low 
and in a no bloom stage until the end of the season. Meanwhile, in the 
South Basin, Chl-a concentrations gradually declined entering a post- 
bloom stage where signi昀椀cant differences in microbial composition be-
tween the basins were still evident (Fig. 5d and Fig. 5e). However, as 
Chl-a levels decreased and reached similar concentrations to those of the 
North Basin, the grouping by basin of origin became less clear (Fig. 5f 
and Fig. 5g). 

Pre-bloom stages had a similar composition to the four blooms 
observed in the North Basin, while the three early blooms were similar 
to the blooms in the South Basin (ANOSIM p > 0.05). Thus, we treated 
them as a single bloom stage consisting of early bloom, pre-bloom and 
bloom (n: 25). The sPLS-DA analysis supported the bloom classi昀椀cation 
proposed here: bloom and no-bloom stages formed two tight clusters 
with few mismatches, while the post bloom stage had higher over-
lapping samples showing the transitional nature of this stage (average 
cross validation error rate for the 昀椀rst component was 0.22 and 0.13 for 
the second component) (Fig. S1a). Species richness and Chao1 estimator 
were lower during the bloom stage (Dunn’s p < 0.05), while the no 

bloom stage had higher Shannon-Wiener and Pielou evenness. The in-
dicator value index (IndVal) revealed that genera belonging to Gam-
maproteobacteria were characteristic of the bloom stage (Table 2). 
Genera belonging to the phyla Myxococcota and Planctomycetota were 
indicators of post bloom stage and Actinobacteriota, Bacteroidota and 
Chloro昀氀exi were characteristic of the no bloom stage. 

The proportion of bacteria with positive and signi昀椀cant Moran I 
ranged from 0.09 to 0.47. After a sharp drop on August 8th, it gradually 
increased towards late summer and declined as Chl-a concentrations 
decreased (Fig. 6a). In contrast, Moran I values for Chl-a exhibited one 
peak on September 12th, before the North Basin’s transition to a no 
bloom stage, and another one on October 25th when the entire lake was 
in a no bloom stage. Mean Moran I value for these bacteria ranged from 
0.46 to 0.65 (Fig. 7a), revealing a subtle “humped” pattern, with values 
gradually increasing towards the summer and decreasing afterwards, 
and showing high overlap among adjacent sampling event. The Mantel 
correlogram indicated that the observed spatial autocorrelation was 
signi昀椀cant at the 昀椀rst distance class, suggesting that closely located sites 
tended to show similar composition and diversity. However, Moran I of 
the indicator species within each bloom stage showed a similar pattern 

Fig. 4. Heatmap depicting correlations among the selected genera and nutrients according to rCCA analysis of the bacterial communities and environmental var-
iables in (a) Chautauqua Lake and (b) Lake George. Red and blue denote positive and negative association, respectively. (For interpretation of the references to colour 
in this 昀椀gure legend, the reader is referred to the web version of this article.) 
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to that of the entire microbial distribution (Figure S2, p > 0.05). 
Moreover, no indicator species showed signi昀椀cant Moran I in all sam-
pling events hindering the potential to be used as an early warning to a 
regime shift. 

Lake George. The most signi昀椀cant sources of variation on the 

microbial composition were sampling event (ANOSIM R: 0.75, p <
0.001) and season (ANOSIM R: 0.61, p < 0.05). The in昀氀uence of the 
basin of sample origin was only clear when considering sampling events 
individually (Fig. 8). These differences were particularly pronounced 
during the autumn, speci昀椀cally in the months of September and October 

Fig. 5. Chl-a concentrations and bloom stages in Chautauqua Lake during pre-bloom ( ), early bloom ( ), bloom ( ), post bloom ( ) and no bloom ( ) stages from 
August (a) to November (g). Ordination diagram for Non-metric Multidimensional Scaling (NMDS) as well as the ANOSIM R test values comparing the microbial 
communities Bray-Curtis differences are showed for each sampling event. Chl-a values is labeled next to each sampling point. 
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(Fig. 8f and Fig. 8g). It is worth mentioning that two sites, Ticonderoga 
(located at the 昀椀nal discharge point of the lake in the North Basin) and 
Warner Bay (situated in a highly developed area in the South Basin), 
exhibited the highest Bray-Curtis distance when compared to the other 
sites. The exclusion of these sites enhanced the grouping by sampling 
event (ANOSIM R: 0.88, p < 0.01), season (ANOSIM R: 0.70, p < 0.01) 
and basin of sample origin specially in the months of September 
(ANOSIM R: 0.92, p < 0.01) and October (ANOSIM R: 0.83, p < 0.01). 
On the other hand, we observed no signi昀椀cant differences (p > 0.05) in 
the diversity indices between basins in any sampling event. 

The microbial composition of the four autumn blooms showed sig-
ni昀椀cant differences with the no-bloom samples collected in that time-
frame at all taxonomic ranks (ANOSIM R > ~ 0.90, p < 0.001), and also 
exhibited signi昀椀cant lower diversity indices values (p < 0.05). Most 
Aphanizomenon reads (pink in Fig. 3) mapped to Dolichospermum (NCBI: 
txid748770) using the EPI2ME work昀氀ow and to Dolichospermum lem-
mermannii (NCBI: txid1927882) using minimap2 against the CyanoSeq 
database. The average (maximum) abundance of cyanobacteria 16S 
rRNA was 2.95 × 105 copies L − 1 (5.42 × 105 copies L − 1) while the 
mcyE/ndaF, cyrA and sxtA were not detected. The sPLS-DA analysis 
(average CV 昀椀rst component error: 0.28, second component: 0.06 and 
third component: 0.04), supported a clustering by season and blooms 
events (Fig. S1b). The indicator value index (IndVal) revealed that the 
heterotrophic bacteria Sphingorhabdus, Lacibacterium aquatile, Acid-
ovorax, Phenylobacterium and the uncultured bacterium SM2D12 showed 
the highest association values during these bloom events (Table 2). 

The proportion of bacteria with positive and signi昀椀cant Moran I 
ranged from 0.10 to 0.49. This proportion displayed a skewed distri-
bution towards the summer, with lower values in the spring and 
decreasing towards the autumn (Fig. 6b). Moran I for these bacteria 
ranged from 0.42 to 0.55 and were signi昀椀cantly lower than in Chau-
tauqua Lake (Fig. 7b). There was high overlap among adjacent sampling 
events with no clear trend. The Mantel correlogram consistently showed 
signi昀椀cant and positive correlation at the smaller distance class at all 
sampling events except for October 18th. Moran I value of the bloom 
indicator taxa were similar to those of the whole community and to 
those assigned to no group (Figure S3). No bacterial genus showed 
consistent spatial correlation throughout the season that could be used 
as an early warning of a regime shift. Finally, we observed no signi昀椀cant 

spatial autocorrelation for Chl-a, which is consistent with the little 
variation in Chl-a and the localized, sparse and ephemeral nature of the 
reported bloom events (Table S2). 

4. Discussion 

The subsequent discussion is structured around the three questions 
posed in the introduction section: Subsection 4.1) Can we use long-read 
sequencing of the 16S rRNA gene of prokaryotes to assess the identities 
and dynamics of bloom-forming cyanobacteria and their associated 
microbiome in Lake George and Chautauqua Lake?; Subsection 4.2) Do 
these blooms have the potential to produce toxins in Chautauqua Lake 
and Lake George?; Subsection 4.3) Can we use long-read sequencing of 
prokaryotes to capture the spatial and temporal structure of Chautauqua 
Lake and Lake George? Do we observe changes in the spatial structure of 
the microbial community composition and diversity during bloom 
events? In the following subsections, we develop our interpretation of 
the results framed within the above three questions. 

4.1. Long-read sequencing of the 16S rRNA gene of prokaryotes during 
cyanobacterial blooms 

Classi昀椀cation of 16S rRNA gene reads using curated databases often 

Table 2 
Taxa identi昀椀ed at the dominant genus levels as potential indicators from taxa 
analysis of the three post hoc groups in Chautauqua Lake and Lake George.  

Bloom 
stage 

IndVal P 
value 

Taxon 

Chautauqua Lake   
Bloom >0.4 <0.05 Gammaproteobacteria: B63, Noviherbaspirillum, 

Sphaerotilus, Comamonas, Silanimonas 
Post 
Bloom 

>0.5 <0.05 Alphaproteobacteria: Sphingopyxis, uncultured 
alphaproteobacteria, Rubellimicrobium, 
Methylocystis; Gammaproteobacteria: Ahniella, 
BD1-7 clade, MND1; Myxococcota: P3OB, 
Sandaracinaceae, Sandaracinus, mle1.27, 
Nannocystis; Planctomycetota: Blastopirellula, 
OM190 

No 
Bloom 

>0.5 <0.05 Alphaproteobacteria: Cereibacter, Reyranella, 
Sphingorhabdus; Gammaproteobacteria: 
Rhodoferax, Methylopumilus, Limnohabitans, 
GKS98, Oxalobacteraceae, B1-7BS; 
Actinobacteriota: CL500-29; Bacteroidota: 
Fluviicola, Sediminibacterium, NS11-12; Chloro昀氀exi: 
SL56 

Lake George   
Bloom >0.5 <0.05 Cyanobacteria: Aphanizomenon NIES81; 

Alphaproteobacteria: Sphingorhabdus, 
Phenylobacterium, SM2D12, Massilia, Caulobacter, 
alphaI cluster; Gammaproteobacteria: Acidovorax 

IndVal, Indicator Value, the association between species and sampling groups with a 
permutation test.  

Fig. 6. Chl-a concentration (bars), and Chl-a Moran I correlation values 
(dashed) and proportion of bacteria (solid line) with positive and signi昀椀cant 
Moran I in Chautauqua Lake (upper panel) and Lake George (lower panel). 
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encounters dif昀椀culties in assigning taxonomy to cyanobacterial reads 
due to the frequent changes in its lineages and taxonomy (Le昀氀er et al., 
2023). For example, members of the genus Anabaena with gas vesicles 
and planktonic habitat were reclassi昀椀ed as Dolichospermum (Wacklin 
et al., 2009). This was the case for Lake George’ blooms, where most 
sequences mapped to Dolichospermum in the NCBI (NCBI:txid748770) 
and CyanoSeq (NCBI: txid1927882) databases, while they were mapped 
to Anabaena sp. 90 in the SILVA database (Wang et al., 2012). Although 
these hurdles are not speci昀椀c to long-read sequencing and also exist for 
short-reads sequencing technologies, a “polyphasic” approach that 
incorporate and combines morphology-based with genetics, among 
other features (ecology, toxin production, etc.), is highly encouraged 
(Komárek, 2016). Regarding the use of long-read sequencing technolo-
gies for genomic-based monitoring, to our knowledge, only Koeppel 
et al. (2022) used MinION for the identi昀椀cation of cyanobacteria in a set 
of bloom samples from Lake Erie. Nonetheless, despite being a limited 
dataset (n: 10), the authors successfully identi昀椀ed the bloom-forming 
cyanobacteria and two potential heterotrophic bacteria that could be 
indicators of a microbial shift preceding the bloom. Limited by bioin-
formatics analysis, speci昀椀cally the lack of methods for Operational 
Taxonomic units (OTU) picking and Amplicon Sequence Variants 

analysis (ASV) for nanopore data (Santos et al., 2020), MinION none-
theless proves valuable for its affordability, quick library preparation 
and rapid sequencing runs (~48hs). These advantages make it well- 
suited to capturing clear signals and the local factors in昀氀uencing the 
dynamics of the microbial communities across diverse physical and 
chemical conditions. 

The bloom of a dominant species is considered a drastic environ-
mental disturbance and has been usually associated with a lower di-
versity of phytoplankton (López-Archilla et al., 2004), zooplankton 
(Bockwoldt et al., 2017) and bacterial communities (Yang et al., 2021). 
In this study we found that α-diversity and evenness was lower during 
the bloom and post-bloom stages, but the species richness during the 
post-bloom stage was similar to that of the no-bloom stage, re昀氀ecting the 
high resilience of the microbial communities after the initial disruption. 
Cyanobacterial blooms can disrupt the microbial community structure 
but may also rely on the functions such communities may provide. In 
this sense, Cook et al. (2020) proposed that the microbiome associated 
with Microcystis blooms shares a similar composition, phylogeny and 
biochemical function at a global scale. Consistent with this proposition, 
we observed a taxonomically conserved bacterial composition during 
blooms in both lakes as supported by the ordination and machine 
learning approaches. 

Blooms were dominated by Microcystis in Chautauqua Lake and by 
Anabaena/Dolichospermum in Lake George. Although its microbiomes 
were not compositionally identical, they showed a remarkable func-
tional similarity. For instance, Lake George blooms were enriched with 
Alphaprotebacteria with bioremediation properties for cyanopeptides 
and cyanotoxins like Sphighordhabdus, which is novel to co-occurred 
with Anabaena/Dolichospermum in natural samples, and Phenyl-
obacterium, Massilia and Caulovacter that can track organic compound 
gradients and capitalize it in this patchy environments (Pernthaler, 
2017). In Chautauqua Lake, blooms were enriched with copiotrophs of 
Gammaproteobacteria, which are abundant in the proposed global 
Microcystis interactome (Cook et al., 2020). During the post-bloom stage, 
indicator species were associated with bloom decomposition (e.g., 
Sphingopyxis, Anhiella; Mankiewicz-Boczek & Font-Nájera, 2022; 
Sharma et al., 2021), phytoplankton exudates (Wang et al., 2022) and 
carbohydrate degradation (e.g. Sandaracinus and unidenti昀椀ed Sandar-
acinaceae; Sharma et al., 2016). During the no-bloom stage, we observed 
the coexistence of good-quality water indicators such as Oxalobacter-
aceae, NS11-12, Sediminibacterium and Fluviicula, which can also inhibit 
Microcystis growth (Guo et al., 2020), along with bad quality indicators 
found in sludge (e.g., Rhodoferax; Hu et al., 2021) and impaired envi-
ronments (e.g., Reyranella; Cui et al., 2017). 

4.2. Toxin production potential 

We further enhanced the accuracy and resolution of our environ-
mental genomic-based approach by assessing the abundance of cyano-
toxins genes and total cyanobacteria. Distinguishing toxigenic 
populations is as critical as identifying the causes and identities of a 
bloom. In this sense, a strain similar to the one found in Lake George was 
recently linked to the death of 32 steers in southeastern Oregon (U.S.) 
(Dreher et al., 2019). However, this was not the case in Lake George, 
where no toxigenic genes or cyanotoxins were detected (Dr. Jacob 
Shelley personal communication) and there were no reports of human or 
animal exposure. On the other hand, we detected the mcyE gene which is 
required for microcystin production in all Chautauqua Lake samples. 
The presence of the sxtA gene supports the need to adopt a more thor-
ough cyanotoxin monitoring program that does not solely focus on 
microcystin (Brown, 2022). Cyanotoxins are complex and expensive 
secondary metabolites that have been suggested to be associated with 
higher nutrient requirements in toxin strains compared to non-toxic 
strains (Lee et al., 2000). Accordingly, we found that the mcyE/16S 
rRNA ratio was similar to that reported in other eutrophic lakes (0–37 % 
in Hotto et al., 2008 and 0.7–41 % in Ha et al., 2009). Brown (2022) 

Fig. 7. Spatial indicator (Moran I) calculated for each bacteria genus with over 
0.01 % contribution to total abundance in Chautauqua Lake (upper panel) and 
Lake George (lower panel). 
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observed concentrations of microcystin in Chautauqua Lake that span-
ned a wide range (0.04–1.0 μg L-1) for the same number of mcyE copies, 
suggesting that monitoring these genes should be paired with expression 
pro昀椀les and detailed toxin analysis. 

4.3. Spatial and temporal community structure 

In contrast to single 昀椀xed-location schemes, often conducted over the 
deepest point, our multi-location approach allowed us to capture the 
spatial heterogeneity of both lakes in each sampling event. In Chau-
tauqua Lake, the microbial community structure was in昀氀uenced by the 
bloom cycle. For instance, during the bloom stages in late summer, the 
differences between the basins became less clear, and we observed a 
slight homogenization of the lake. However, the presence of 昀椀lamentous 
N2-昀椀xing cyanobacteria (Aphanizomenon MDT14a and Gloeotrichia 
PYH6), particularly during the 昀椀rst sampling events, suggests the pres-
ence of succession patterns between N2-昀椀xing and non-diazotrophic 
organism before our sampling began. This succession pattern is well- 
studied in experimental settings (McDonald and Lehman, 2013; Paerl 
and Otten, 2016; Wu et al., 2016) and 昀椀eld settings (Tanvir et al., 2021). 
In many cases, it was observed to exhibit anticorrelation (Miller et al., 
2013) and of particular importance in nitrogen-limited lakes such as 
Chautauqua Lake (Paerl et al., 2020a, 2020b). Interestingly, after the 
Chl-a drop to a no bloom stage in the Autumn, the grouping by basin 
became less clear despite the large environmental differences between 

Basins (Smith et al., 2020). Cyanobacterial blooms can trigger bacterial 
succession patterns (Eiler and Bertilsson, 2004; Niu et al., 2011) and 
Microcystis was found to be among the main lines for succession in lake 
sediments which suggest that once the bloom occurred it may trigger 
successional patterns that may persist beyond the growing season (Zhu 
et al., 2019). Local environmental variables explained a substantial 
(>50 %) portion of the microbial variation; however, it cannot be 
excluded that these variables are themselves spatially structured and 
in昀氀uenced by land use within the watershed. In Chautauqua Lake, for 
example, agriculture encompasses 22 % of the watershed and contrib-
utes an estimated 7,500 kg of the total 20,500 kg annual phosphorus 
load (Stainbrook et al., 2022). Agricultural practices, particularly 
intensive ones, are well-documented in their promotion of algal biomass 
(Sánchez et al., 2023) and cyanobacterial abundance (Castro Berman 
et al., 2022, 2020). 

Lake George’s physical and chemical conditions have largely 
remained unchanged and in an oligotrophic state for decades (Hintz 
et al., 2020). Nonetheless, water temperature raised 1.8 çC over a 37- 
year period from 1980 to 2016 (Hintz et al., 2020) and it was consis-
tently selected in the RDA analysis as the main predictor of microbial 
variation. Accordingly, we observed a clear seasonal structure, and the 
microbial composition clustered following their water temperature 
preferences. For instance, the bloom-forming Aphanizomenon sp. NIES81 
showed a positive correlation with water temperatures, and the four 
bloom events could be linked to the longer growing season (Swinton 

Fig. 8. Ordination diagram for Non-metric Multidimensional Scaling (NMDS) and ANOSIM test values used to compare Bray-Curtis differences in microbial com-
munities between the Lake George’s South ( ) and North ( ) Basins during spring ( ), summer ( ) and autumn ( ) for the months of b) April (Δ), c) May (+), d) 
June (x), e) July (◊), f) August (▽), g) September ( ) and h) October (o), center 昀椀gure (a) shows all Lake George samples plotted together for a better visualization 
of the temporal pattern. 
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et al., 2015). Close to the beginning of that temperature increase, Methe 
et al. (1998) found that the bacterial communities in the lake were 
dominated by Betaproteobacteria (now Gammaproteobacteria) and 
Alphaproteobacteria in a similar abundance as reported here. None-
theless, the limited taxonomic resolution and variations in sequencing 
technologies and databases hinder our ability to examine potential 
changes at lower taxonomic ranks. 

Lake George is also experiencing a slight chloride and nutrient 
gradient as a result of the increasing urban development and road salt 
contamination (Hintz et al., 2020). Accordingly, we observed higher 
chloride and nutrients concentrations in the South Basin at all sampling 
events, and the microbial composition re昀氀ected signi昀椀cant dissimilar-
ities when considering only samples collected in the same sampling 
event. While dispersal from riverine communities and storm events 
(Adams et al., 2014) could have promoted some of these dissimilarities, 
environmental habitat characteristics is suggested to be the predomi-
nant mechanism structuring the microbial composition in lakes with 
long retention times, such as Lake George (Adams et al., 2014; 
Lindström and Bergström, 2004; Logue and Lindström, 2010). This 
observation was further supported by the signi昀椀cant co-variation 
observed between local environmental variables explaining 30 % in 
the 16S rRNA community structure as revealed by the RDA analysis. On 
the other hand, Ruka et al. (2022) reported that the south to north 
anthropogenic gradient observed in Lake George promotes the growing 
of small centric diatoms during the summer in the South Basin. While we 
did not explicitly assess land use variables, such as urbanization, there 
was a large proportion of unexplained variation in the RDA analysis that 
could be associated to spatially structured human activities as reported 
by Ruka et al. (2022). 

Spatial statistics are proposed as promising tools to study cyano-
bacterial blooms as they faithfully re昀氀ect the ecosystem state and can 
provide a classi昀椀cation of bloom stages from a single spatial snapshot 
(Buelo et al., 2018). Moran I was observed to increase or decrease to-
wards a critical transition, depending whether the bloom is rising or 
falling (Butitta et al., 2017). Accordingly, in Chautauqua Lake, we 
observed that the spatial autocorrelation of Chl-a concentration rose 
prior the transition to the no bloom stage in September 12th, almost a 
month earlier, and it rose again when the entire lake transitioned to a 
no-bloom stage. On the context of lake management, bloom collapse can 
be linked to the release of intracellular toxins, as observed during the 
2014 and 2019 water crisis in Toledo (USA; McKindles et al., 2020). 
Spatial asymmetry has been reported before but in an opposite trajec-
tory: higher values, closer to 1, were observed during a constant bloom 
state rather than to the no bloom stage (Buelo et al., 2018). However, the 
high asynchronicity in bloom development, where geographically close 
sites have large differences in Chl-a concentration, poses a complication 
in the interpretation of early warnings at this lake-wide scale. Finally, 
phytoplankton may not be the only source of Chl-a in the ecosystem (e. 
g., macrophytes), and living organisms such as prokaryotes, could be 
used to predict ecosystem transitions as well. Here, we observed that 
both the proportion of bacteria with signi昀椀cant and positive autocor-
relation and the Moran I values were higher during September 27tt, that 
is one sampling event later the 昀椀rst peak in Chl-a autocorrelation. While 
bacteria have short generation times, that enable them to quickly react 
to variations in the environment, this could suggest a delay between 
stress signal which is the rise in Chl-a to a bloom stage and the response 
of the microbial composition. 

5. Concluding remarks 

In this study, we couple an environmental genomics approach with 
Lake George’s long-term monitoring program to represent its ecology in 
line with recent reports on water warming and the anthropogenic 
impairment gradient. Due to limited information on bacterial commu-
nities in Lake George, we compare it with reports on other biological 
groups and to a hybridization-based sequencing study from almost 30 

years ago. This underscores this study’s importance as a benchmark for 
bacterial research and impairment assessment in Adirondack lakes, and 
supports the need to build robust and consensual methodological stan-
dards for the routine adoption of the e-DNA-based approaches in water 
quality monitoring programs (Cordier et al., 2021). Additionally, we 
tracked cyanobacteria bloom dynamics and identi昀椀ed indicator species 
in both lakes. Microcystis and Anabaena/Dolichospermum blooms 
exhibited a conserved microbiome irrespective of the basin of origin or 
date. This suggests that the proposed interactome for Microcystis could 
be applied for other bloom-forming species. However, the transient 
nature of the Anabaena/Dolichospermum blooms in Lake George hin-
dered the assessment of its microbiome’ dynamics, if any, and suggest 
that future research should include an intensive sampling before bloom’ 
senescence. Crucially, extending the monitoring before the onset of the 
bloom season in Chautauqua Lake is necessary to assess cyclical changes 
and repeatable patterns that can be used to fuel early warnings models of 
ecosystem transitions (Ortiz et al., 2020) or to predict blooms in long 
term studies (Tromas et al., 2017). Finally, access to the molecular tools 
and personnel required for a rapid turnaround or blooms is limited. In 
this context, the advantages of the sequencing technology presented in 
this study became particularly compelling, especially for researchers in 
resource-limited settings where access to expensive sequencers remains 
a signi昀椀cant constraint. 
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Cordier, T., Alonso-Sáez, L., Apothéloz-Perret-Gentil, L., Aylagas, E., Bohan, D.A., 
Bouchez, A., Chariton, A., Creer, S., Frühe, L., Keck, F., Keeley, N., Laroche, O., 
Leese, F., Pochon, X., Stoeck, T., Pawlowski, J., Lanzén, A., 2021. Ecosystems 
monitoring powered by environmental genomics: A review of current strategies with 
an implementation roadmap. Mol. Ecol. 30, 2937–2958. https://doi.org/10.1111/ 
mec.15472. 

Cui, Y., Chun, S.J., Ko, S.R., Lee, H.G., Srivastava, A., Oh, H.M., Ahn, C.Y., 2017. 
Reyranella aquatilis sp. Nov., an alphaproteobacterium isolated from a eutrophic 
lake. Int. J. Syst. Evol. Microbiol. 67, 3496–3500. https://doi.org/10.1099/ 
ijsem.0.002151. 
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Mankiewicz-Boczek, J., Font-Nájera, A., 2022. Temporal and functional 
interrelationships between bacterioplankton communities and the development of a 
toxigenic Microcystis bloom in a lowland European reservoir. Sci. Rep. 12, 1–15. 
https://doi.org/10.1038/s41598-022-23671-2. 

Mather, K.F., 1939. Physiography of Eastern United States . By Nevin M. Fenneman. 691 
pp., maps, photographs and diagrams, index. New York: McGraw-Hill Book 
Company. 1938. $6.00. Science (80-.). 90, 493–493. https://doi.org/10.1126/ 
science.90.2343.493.a. 

Matsuo, Y., Komiya, S., Yasumizu, Y., Yasuoka, Y., Mizushima, K., Takagi, T., 
Kryukov, K., Fukuda, A., Morimoto, Y., Naito, Y., Okada, H., Bono, H., Nakagawa, S., 
Hirota, K., 2021. Full-length 16S rRNA gene amplicon analysis of human gut 

M. Castro Berman et al.                                                                                                                                                                                                                       

https://doi.org/10.3389/fmicb.2014.00082
https://doi.org/10.3389/fmicb.2014.00082
https://doi.org/10.1016/j.hal.2011.11.001
https://doi.org/10.1111/j.1365-294X.2012.05519.x
https://doi.org/10.1111/j.1936-704x.2017.03243.x
http://refhub.elsevier.com/S1470-160X(24)00195-X/h0035
http://refhub.elsevier.com/S1470-160X(24)00195-X/h0035
http://refhub.elsevier.com/S1470-160X(24)00195-X/h0035
https://doi.org/10.1002/ecs2.4348
https://doi.org/10.1002/ecs2.4348
https://doi.org/10.1002/lol2.10091
https://doi.org/10.3390/genes11010076
https://doi.org/10.1002/ecs2.1941
https://doi.org/10.1002/ecs2.1941
https://doi.org/10.1371/journal.pone.0102879
https://doi.org/10.1371/journal.pone.0102879
https://doi.org/10.1371/journal.pone.0160169
https://doi.org/10.1371/journal.pone.0160169
https://doi.org/10.1080/20018091095087
https://doi.org/10.1080/20018091095087
https://doi.org/10.1002/lol2.10152
https://doi.org/10.1002/lol2.10152
https://doi.org/10.3109/1040841X.2015.1087380
https://doi.org/10.3109/1040841X.2015.1087380
https://doi.org/10.1016/j.scitotenv.2019.134601
https://doi.org/10.1016/j.agee.2021.107740
https://doi.org/10.1016/j.agee.2021.107740
https://doi.org/10.1007/BF00699231
https://doi.org/10.1007/BF00699231
https://doi.org/10.1002/lno.11361
https://doi.org/10.1002/lno.11361
https://doi.org/10.1111/mec.15472
https://doi.org/10.1111/mec.15472
https://doi.org/10.1099/ijsem.0.002151
https://doi.org/10.1099/ijsem.0.002151
https://doi.org/10.1890/08-1823.1
https://doi.org/10.1890/08-1823.1
https://doi.org/10.1016/j.toxcx.2018.100003
https://doi.org/10.1111/j.1462-2920.2004.00657.x
https://doi.org/10.1111/1462-2920.12860
https://doi.org/10.15244/pjoes/119094
https://doi.org/10.1021/es801265f
https://doi.org/10.1002/lno.11359
https://doi.org/10.1016/j.hal.2008.02.001
https://doi.org/10.1016/j.envres.2021.111363
https://doi.org/10.1016/j.envres.2021.111363
https://doi.org/10.1007/s10750-006-0518-0
https://doi.org/10.1007/s10750-006-0518-0
https://doi.org/10.1128/AEM.02250-06
https://doi.org/10.1080/09670262.2016.1163738
https://doi.org/10.1080/09670262.2016.1163738
https://doi.org/10.1111/j.1752-1688.1981.tb01282.x
https://doi.org/10.1111/j.1752-1688.1981.tb01282.x
https://doi.org/10.1186/1471-2105-12-253
https://doi.org/10.1046/j.1365-2672.2000.01112.x
https://doi.org/10.1046/j.1365-2672.2000.01112.x
https://doi.org/10.1111/jpy.13335
https://doi.org/10.1007/s004420100716
https://doi.org/10.1007/s004420100716
https://doi.org/10.4319/lo.2004.49.1.0125
https://doi.org/10.1038/ismej.2009.156
https://doi.org/10.1007/s00792-003-0369-9
https://doi.org/10.1007/s00792-003-0369-9
https://doi.org/10.1038/s41598-022-23671-2


Ecological Indicators 159 (2024) 111738

14

microbiota using MinIONTM nanopore sequencing confers species-level resolution. 
BMC Microbiol. 21, 1–14. https://doi.org/10.1186/s12866-021-02094-5. 

McDonald, K.E., Lehman, J.T., 2013. Dynamics of Aphanizomenon and Microcystis 
(cyanobacteria) during experimental manipulation of an urban impoundment. Lake 
Reserv. Manag. 29, 103–115. https://doi.org/10.1080/10402381.2013.800172. 

McKindles, K.M., Manes, M.A., DeMarco, J.R., McClure, A., McKay, R.M., Davis, T.W., 
Bullerjahn, G.S., 2020. Dissolved Microcystin Release Coincident with Lysis of a 
Bloom Dominated by Microcystis spp. in Western Lake Erie Attributed to a Novel 
Cyanophage. Appl. Environ. Microbiol. 86 https://doi.org/10.1128/AEM.01397-20. 

Meslier, V., Quinquis, B., Da Silva, K., Plaza OÞnate, F., Pons, N., Roume, H., Podar, M., 
Almeida, M., 2022. Benchmarking second and third-generation sequencing 
platforms for microbial metagenomics. Sci. Data 9, 1–9. https://doi.org/10.1038/ 
s41597-022-01762-z. 

Methe, B.A., Hiorns, W.D., Zehr, J.P., 1998. Contrasts between marine and freshwater 
bacterial community composition: Analyses of communities in Lake George and six 
other Adirondack lakes. Limnol. Oceanogr. 43, 368–374. https://doi.org/10.4319/ 
lo.1998.43.2.0368. 

Miller, T.R., Beversdorf, L., Chaston, S.D., McMahon, K.D., 2013. Spatiotemporal 
Molecular Analysis of Cyanobacteria Blooms Reveals Microcystis-Aphanizomenon 
Interactions. PLoS One 8, e74933. https://doi.org/10.1371/journal.pone.0074933. 

Niu, Y., Shen, H., Chen, J., Xie, P., Yang, X., Tao, M., Ma, Z., Qi, M., 2011. Phytoplankton 
community succession shaping bacterioplankton community composition in Lake 
Taihu. China. Water Res. 45, 4169–4182. https://doi.org/10.1016/j. 
watres.2011.05.022. 

O’Neil, J.M., Davis, T.W., Burford, M.A., Gobler, C.J., 2012. The rise of harmful 
cyanobacteria blooms: The potential roles of eutrophication and climate change. 
Harmful Algae 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027. 

Ortiz, D., Palmer, J., Wilkinson, G., 2020. Detecting changes in statistical indicators of 
resilience prior to algal blooms in shallow eutrophic lakes. Ecosphere 11. https:// 
doi.org/10.1002/ecs2.3200. 

Paerl, H.W., Havens, K.E., Hall, N.S., Otten, T.G., Zhu, M., Xu, H., Zhu, G., Qin, B., 2020a. 
Mitigating a global expansion of toxic cyanobacterial blooms: confounding effects 
and challenges posed by climate change. Mar. Freshw. Res. 71, 579. https://doi.org/ 
10.1071/MF18392. 

Paerl, H.W., Havens, K.E., Xu, H., Zhu, G., McCarthy, M.J., Newell, S.E., Scott, J.T., 
Hall, N.S., Otten, T.G., Qin, B., 2020b. Mitigating eutrophication and toxic 
cyanobacterial blooms in large lakes: The evolution of a dual nutrient (N and P) 
reduction paradigm. Hydrobiologia 847, 4359–4375. https://doi.org/10.1007/ 
s10750-019-04087-y. 

Paerl, H.W., Otten, T.G., 2016. Duelling ‘CyanoHABs’: unravelling the environmental 
drivers controlling dominance and succession among diazotrophic and non-N 2 
-昀椀xing harmful cyanobacteria. Environ. Microbiol. 18, 316–324. https://doi.org/ 
10.1111/1462-2920.13035. 

Pernthaler, J., 2017. Competition and niche separation of pelagic bacteria in freshwater 
habitats. Environ. Microbiol. 19, 2133–2150. https://doi.org/10.1111/1462- 
2920.13742. 

Pound, H.L., Martin, R.M., Sheik, C.S., Steffen, M.M., Newell, S.E., Dick, G.J., McKay, R. 
M.L., Bullerjahn, G.S., Wilhelm, S.W., 2021. Environmental Studies of 
Cyanobacterial Harmful Algal Blooms Should Include Interactions with the Dynamic 
Microbiome. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c04207. 

R.-Core-Team, 2022. R: A language and environment for statistical computing. 
Reinl, K.L., Harris, T.D., North, R.L., Almela, P., Berger, S.A., Bizic, M., Burnet, S.H., 

Grossart, H., Ibelings, B.W., Jakobsson, E., Knoll, L.B., Lafrancois, B.M., 
McElarney, Y., Morales-Williams, A.M., Obertegger, U., Ogashawara, I., Paule- 
Mercado, M.C., Peierls, B.L., Rusak, J.A., Sarkar, S., Sharma, S., Trout-Haney, J.V., 
Urrutia-Cordero, P., Venkiteswaran, J.J., Wain, D.J., Warner, K., Weyhenmeyer, G. 
A., Yokota, K., 2023. Blooms also like it cold. Oceanogr. Lett. Limnol. https://doi. 
org/10.1002/lol2.10316. 

Rozas, M., Brillet, F., Callewaert, C., Paetzold, B., 2022. MinIONTM Nanopore 
Sequencing of Skin Microbiome 16S and 16S–23S rRNA Gene Amplicons. Front. Cell. 
Infect. Microbiol. 11, 1–9. https://doi.org/10.3389/fcimb.2021.806476. 

Ruka, A.T., Johansen, J.R., Leps, J., Loken, Z.J., Schuler, M., Mattes, B., Yates, E., 
Relyea, R.A., 2022. Seasonal diatom community responses to development and 
climate change in Lake George, an oligotrophic lake in the Adirondack Mountains. 
Hydrobiologia 849, 2761–2780. https://doi.org/10.1007/s10750-022-04892-y. 

Sagova-Mareckova, M., Boenigk, J., Bouchez, A., Cermakova, K., Chonova, T., 
Cordier, T., Eisendle, U., Elersek, T., Fazi, S., Fleituch, T., Frühe, L., Gajdosova, M., 
Graupner, N., Haegerbaeumer, A., Kelly, A.M., Kopecky, J., Leese, F., NÞoges, P., 
Orlic, S., Panksep, K., Pawlowski, J., Petrusek, A., Piggott, J.J., Rusch, J.C., Salis, R., 
Schenk, J., Simek, K., Stovicek, A., Strand, D.A., Vasquez, M.I., Vrålstad, T., 
Zlatkovic, S., Zupancic, M., Stoeck, T., 2021. Expanding ecological assessment by 
integrating microorganisms into routine freshwater biomonitoring. Water Res. 191, 
116767 https://doi.org/10.1016/j.watres.2020.116767. 

Sánchez, M.L., Izaguirre, I., Zagarese, H., Schiaf昀椀no, M.R., Castro Berman, M., 
Lagomarsino, L., Chaparro, G., BaliÞna, S., Vera, M.S., Cheruvelil, K.S., 2023. Drivers 
of planktonic chlorophyll a in pampean shallow lakes. Ecol. Indic. 146 https://doi. 
org/10.1016/j.ecolind.2022.109834. 

Santos, A., van Aerle, R., Barrientos, L., Martinez-Urtaza, J., 2020. Computational 
methods for 16S metabarcoding studies using Nanopore sequencing data. Comput. 
Struct. Biotechnol. J. 18, 296–305. https://doi.org/10.1016/j.csbj.2020.01.005. 

Scheffer, M., Hosper, S.H., Meijer, M.-L., Moss, B., Jeppesen, E., 1993. Alternative 
equilibria in shallow lakes. Trends Ecol. Evol. 8, 275–279. https://doi.org/10.1016/ 
0169-5347(93)90254-M. 

Sharma, G., Khatri, I., Subramanian, S., 2016. Complete Genome of the Starch-Degrading 
Myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol. Evol. 8, 
2520–2529. https://doi.org/10.1093/gbe/evw151. 

Sharma, M., Khurana, H., Singh, D.N., Negi, R.K., 2021. The genus Sphingopyxis: 
Systematics, ecology, and bioremediation potential - A review. J. Environ. Manage. 
280, 111744 https://doi.org/10.1016/j.jenvman.2020.111744. 

Smith, R.B., Bass, B., Sawyer, D., Depew, D., Watson, S.B., 2019. Estimating the 
economic costs of algal blooms in the Canadian Lake Erie Basin. Harmful Algae 87, 
101624. https://doi.org/10.1016/j.hal.2019.101624. 

Smith, Z.J., Conroe, D.E., Schulz, K.L., Boyer, G.L., 2020. Limnological Differences in a 
Two-Basin Lake Help to Explain the Occurrence of Anatoxin-a, Paralytic Shell昀椀sh 
Poisoning Toxins, and Microcystins. Toxins (basel). 12 https://doi.org/10.3390/ 
toxins12090559. 

Stainbrook, K., Ross, C., Davis, C., Townley, L., 2022. Developing a watershed screening 
tool to estimate relative contribution of phosphorus to guide management planning. 
J. Environ. Manage. 312, 114937 https://doi.org/10.1016/j.jenvman.2022.114937. 

Swinton, M.W., Eichler, L.W., Farrell, J.L., Boylen, C.W., 2015. Evidence for water 
temperature increase in Lake George, NY: impact on growing season duration and 
degree days. Lake Reserv. Manag. 31, 241–253. https://doi.org/10.1080/ 
10402381.2015.1067660. 

Tanvir, R.U., Hu, Z., Zhang, Y., Lu, J., 2021. Cyanobacterial community succession and 
associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. 
Environ. Pollut. 290, 118056 https://doi.org/10.1016/j.envpol.2021.118056. 

Tromas, N., Fortin, N., Bedrani, L., Terrat, Y., Cardoso, P., Bird, D., Greer, C.W., 
Shapiro, B.J., 2017. Characterising and predicting cyanobacterial blooms in an 8- 
year amplicon sequencing time course. ISME J. 11, 1746–1763. https://doi.org/ 
10.1038/ismej.2017.58. 
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