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ARTICLE INFO ABSTRACT

Keywords: Understanding spatial and temporal heterogeneity in ecosystems is essential to forecasting the effects of envi-
165 rRNA ronmental changes. Freshwater microbes, including cyanobacteria, play a crucial role in food-web structures and
Cg::ba“erla blooms biochemical processes, yet can exhibit substantial heterogeneity through space and time. They also act as
€

powerful indicators of natural and human-induced stress due to their high metabolic and rapid response to
environmental change. The formation of cyanobacteria blooms can be particularly important due to the potential
production of toxins that are harmful to humans and wildlife. While high water temperatures and high nutrients
are largely recognized as triggers of cyanobacterial bloom formation, there is growing evidence of the role of its
associated microbiome in bloom formation. The inability to accurately forecast cyanobacteria blooms is chal-
lenged by uncertainty in the degree to which microbial diversity, and bloom forming taxa in particular, exhibit
spatial heterogeneity and how spatial heterogeneity varies seasonally or between lakes spanning the trophic
gradient. Here, we used long-read sequencing of the 16S rRNA gene to quantify variations in microbial spatio-
temporal dynamics over the course of an ice-free season between two lakes that varied substantially in trophic
status. Our results showed that the microbial community composition of eutrophic Chautauqua Lake was
seasonally and spatially structured; however, during bloom events we observed lower diversity and a homoge-
neous community dominated by Microcystis and enriched with Gammaproteobacteria. In oligotrophic Lake
George, seasonality rather than the basin of origin played a major role in structuring the microbial community;
however, there was a significant difference between basins when controlling for the temporal effect and was
linked to a South-to-North anthropogenic gradient. This study provides a solid foundation for exploiting long-
read sequencing of prokaryotes and couples sequencing with traditional water quality monitoring to assess
microbial dynamics (e.g., cyanobacteria bloom microbiome) and the effect of local and global stressors.

Lake George
Chautauqua Lake

1. Introduction

Freshwater microbes play vital roles in lake ecology and are uniquely
positioned as powerful indicators of natural and human-induced stress
due to their rapid response to environmental changes (Caruso et al.,
2016). Furthermore, changes in its community structure provide a more
holistic representation of ecosystem variations compared to traditional
physical and chemical monitoring programs (Cordier et al., 2021).
Environmental DNA-based methods (e.g. amplicon sequencing) can
offer insights into the trajectories of these microbes as sentinels of water

quality (Sagova-Mareckova et al., 2021). While past constraints such as
costly and lengthy protocols have hindered such approaches, recent
advancements, including a relatively new molecular approach involving
long-read sequencing (MinION™), make these methods more viable to
couple to chemical and hydrological lake monitoring (Baird and Haji-
babaei, 2012; Werner et al., 2022). This platform has been extensively
used to identify microbes in mock communities and in clinical studies
(Burton et al., 2020; Matsuo et al., 2021; Meslier et al., 2022; Rozas
et al., 2022), but non-epidemiological studies in environmental research
are still scarce (but see Koeppel et al., 2022).
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Changes in the microbial community, such as cyanobacterial blooms,
can cause regime shifts from clear-water to turbid-water dominated by
algae that can impose a substantial cost to local economies (Smith et al.,
2019), disrupt ecosystems (Scheffer et al., 1993) and become toxic
(Carmichael, 2001). Most cyanobacteria genera like Dolichospermum sp.
and Microcystis sp. are capable of producing various kinds of toxins
including cyclic peptides (e.g., microcystin) and alkaloids (e.g., ana-
toxin, saxitoxin, and cylindrospermopsin). They are also the most
common producers of the taste- and odor-forming compounds geosmin
and 2-methylisoborneol (MIB) found in surface waters (Jiittner and
Watson, 2007). Despite the need for accurate identification and quan-
tification of cyanotoxins, bioassays and chemo-analytical methods have
a number of methodological pitfalls (e.g. the need of specialized training
and expensive equipment) that pose serious constraints on routine field
assessments. Furthermore, they are only applicable once the toxins are
above a certain threshold. In contrast, molecular techniques have the
capability to identify toxigenic cyanobacteria prior to the production
and release of toxins into a water body (Al-Tebrineh et al., 2012). While
not yet functioning as a standalone early warning system, these molec-
ular analyses offer fundamental insights into bloom dynamics and po-
tential toxicity. When combined with other monitoring methods, this
data can play a vital role in refining predictive models and strengthening
our overall preparedness for managing bloom events.

High nutrient loads and warm conditions are major drivers in cya-
nobacterial bloom development (Bogard et al., 2020; O’Neil et al., 2012;
Tanvir et al., 2021). However, there is growing need to include the in-
teractions between cyanobacteria and their associated microbiomes in
cyanobacterial blooms studies (Pound et al., 2021). Specifically, het-
erotrophic bacteria can promote (Jiang et al., 2007) and suppress cya-
nobacterial growth (Gerphagnon et al., 2015). Moreover, Microcystis
colonies were identified as hotspots for bacterial production and serve as
a protected microhabitat where exchange of nutrients and carbon occur
(Cai et al., 2014; Krausfeldt et al., 2017; Wang et al., 2021).

The patchy spatial and stochastic nature of blooms suggest that these
processes are spatially heterogeneous and vary through time (Carpenter
et al., 2020). Nevertheless, the transition to a constant bloom stage has
been observed in changes in spatial indicators (e.g. spatial autocorre-
lation, skewedness, etc.) of state variables like pigments and biomass
and has been proposed as early warning indicators under computational
modeling (Buelo et al., 2018), field observations (Ortiz et al., 2020), and
experimental settings (Butitta et al., 2017). Coincidentally, these studies
documented an increase in spatial autocorrelation as systems
approached a critical tipping point, potentially offering an early warning
signal of the impeding shift to a bloom stage. While studies exploring
changes in the spatial statistics of bacterial communities exist (e.g., Zhao
et al., 2022), there is a scarcity of research exploring such changes in the
context of cyanobacterial bloom. Therefore, identifying and tracking the
dynamics of these specific bacteria while assessing changes in their
resilience can be a valuable approach to integrate with chemistry bio-
monitoring for early bloom detection.

In this study, we followed the dynamics of the bacterial community
composition in 12 nearshore basins in the oligotrophic Lake George (NY,
USA) which is subjected to an anthropogenic impairment gradient, a rise
in the water temperatures, and to the proliferation of ephemeral cya-
nobacterial blooms (Hintz et al., 2020; Reinl et al., 2023). We also
identified and tracked the dynamics of the bloom-forming cyanobacteria
and its associated microbiome along an eight-point transect in the
eutrophic Chautauqua Lake (NY, USA) which undergoes recurrent cya-
nobacterial blooms. Additionally, we assessed cyanotoxin production
potential by quantifying the abundance of genes associated with com-
mon cyanotoxins. We hypothesized that the specific bloom-forming
cyanobacteria harbor a distinct bacterial microbiome, and that the
spatial autocorrelation of these bacteria is higher during blooms and
lower during clear-water conditions. Moreover, we predicted that
spatial autocorrelation would be higher in the eutrophic Chautauqua
Lake and lower in the oligotrophic Lake George. Specifically, the study
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addressed three research questions: (1) Can we use long-read sequencing
of the 16S rRNA gene of prokaryotes to assess the identities and dy-
namics of bloom-forming cyanobacteria and their associated micro-
biome in Lake George and Chautauqua Lake? (2) Do these blooms have
the potential to produce toxins in Chautauqua Lake and Lake George?
(3) Can we use long-read sequencing of prokaryotes to capture the
spatial and temporal structure of Chautauqua Lake and Lake George? Do
we observe changes in the spatial structure of the microbial community
composition and diversity during bloom events? We provide a
comprehensive analysis of cyanobacterial dynamics, associated micro-
biomes, and the potential for toxin production, while also leveraging
long-read sequencing technologies to enhance our monitoring methods
for assessing environmental stressors and gain insight into the microbial
communities in lake ecosystems.

2. Materials and methods
2.1. Study sites, sampling design and physical and chemical variables

The two-basin Chautauqua Lake (42.157, —79.398) is 28 km long
and 3.2 km wide at its widest point, has a mean (maximum) depth of 9.1
(23) m in the North Basin and 4.7 (5.7) m in the South Basin. Early in the
summer, Chautauqua Lake experiences dense cyanobacterial blooms
from the genera Microcystis, Aphanizomenon, Dolichospermum and
Planktothrix that usually extend into autumn, especially in the eutrophic,
shallower and urbanized South Basin (Smith et al., 2020). In contrast,
Lake George is a two-basin large lake (51 km long and maximum width
of 3.3 km) with a mean (maximum) depth of 18 (58) m (Mather, 1939).
This oligotrophic glacial lake has experienced an increase in water
temperatures, orthophosphates and algal biomass over the past 37 years
(Hintz et al., 2020). A slight phosphorus and chloride gradient has been
observed as a result of widespread tourism activities and increasing
human development (Hintz et al., 2020). Since the first reported algal
bloom in 2020 (Reinl et al., 2023), Lake George has experienced more
frequent autumn blooms, coincidentally in the more developed South
Basin (Hintz et al., 2020).

Lake George was sampled monthly from April to October 2022 at 14
sites (n = 97) as part of a 40-year monitoring program aimed at
capturing the growing season and assessing environmental changes
(Fig. 1). Additional samples were collected from four opportunistic
blooms along the shoreline of four basins in the southernmost part of the
lake in late October (triangles in Fig. 1). Following a pilot survey in 2021
that revealed cyanobacterial blooms starting in early August and
extending beyond the growing season, Chautauqua Lake was sampled
every two weeks from August 8th to November 11th, 2022, at eight sites
(n =56) (Fig. 1). Additionally, five opportunistic blooms were collected
along the shoreline throughout the sampling period (triangles in Fig. 1).

Twenty-two nearshore sampling sites were sampled, with an average
distance from the shoreline of 585 + 248 m for Chautauqua Lake and
144 + 124 m for Lake George. We accessed these sites via motorboat
during the daytime between mid-late summer and autumn for Chau-
tauqua Lake and over the course of spring to autumn for Lake George.
For all sampling, integrated water samples were collected in acid-
washed polycarbonate bottles from the pelagic zone 30-40 cm below
the surface. For bacterioplankton analysis, an average of 200 mL
(Chautauqua Lake) and 430 mL (Lake George) of lake water was filtered
through a 0.22 pym polycarbonate filter (Millipore), and frozen at —80 °C
until nucleic acid extraction. Water temperature (°C), conductivity (S/
cm), pH, dissolved oxygen (mg O, L'1) and Blue Green Algae (BGA, pg L’
1y were collected following a ‘spot’ approach at a ~ 0.35 m depth at each
sampling site using a calibrated handheld YSI EXO2 multiparameter
sonde (Yellow Springs Instruments, Yellow Springs, OH), with an
average collection time of 3:50 pm + 2 h UTC for Chautauqua Lake and
3:15 pm + 1.51 h UTC for Lake George. To understand the role of nu-
trients in the algal blooms, epilimnetic water samples were collected
from each site for measurement of chlorophyll a (Chl-a), total
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Fig. 1. Sampling locations in Chautauqua lake in Western New York State (NYS, USA) and Lake George in Eastern NYS. Monitoring samples are indicated by black

dots while opportunistic blooms are indicated by vertex triangles.

phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive
phosphorus (SRP), nitrate (NO3), total nitrogen (TN), total dissolved
nitrogen (TDN), dissolved carbon (fDOM), sodium (Na), chloride (CI),
calcium (Ca), silica (Si) and iron (Fe), as described in Hintz et al. (2020).
Chl-a and TP concentrations were used to calculate the Trophic Status
Index (TSI) using the revised TSI proposed by Carlson (1977) while TN
concentrations were used to calculate the TSI using Kratzer and Brezonik
(1981) under nitrogen-limiting conditions.

2.2. DNA Isolation, Sequencing, and analysis

Genomic DNA was extracted using DNeasy PowerSoil Pro Kit (Qia-
gen, Germantown, MD) following the manufacturer’s instructions with
minor modifications including a 10-minute incubation step in warm
(65 °C) lysis buffer and three bead-beading steps using a TissueLyser II
(Qiagen, Germantown, MD). Concentration of eluted DNA was
measured using a Qubit 4 Fluorometer with the Qubit™ dsDNA BR
Assay Kit (ThermoFisher, Waltham, MA). Genomic DNA quality was
checked by 2 % agarose gel electrophoresis (Bio-Rad, Hercules, CA) and
stored at —20 °C prior to library preparation.

Sequencing libraries were prepared using 16S Barcoding Kit 1-24
(Oxford Nanopore Technologies -ONT-, Oxford, UK) and loaded into an
R9.4.1 flow cell and sequenced on a MinION nanopore sequencer (ONT,
Oxford, UK; RPI Genomics Research Core Facility). MINKNOW
v22.10.10 including Guppy v6.3.9 (ONT, Oxford, UK) was used for
sequencing data generation, de-multiplexing and read filtering by
quality score of 7 and read length of 1300-2000 bp. We used the EPI2ME
16S workflow which uses the RefSeq NCBI 16S bacterial database to
assign taxonomy; however, the software provides an output file that is
not compatible for downstream analysis. Thus, sequence alignments
were further conducted using minimap2 (Li, 2018) as recommended by
Santos et al. (2020) against the SILVA database v-138-SSU-ref-NR-99
(https://www.arb-silva.de/documentation/release-138/). Additionally,
we assessed the identity of cyanobacteria during blooms using the

newly-curated Cyanoseq database (v1.2) (Lefler et al., 2023). During
post-processing, the dataset was refined by excluding all mitochondria,
chloroplast and eukaryote annotated features. Abundance tables for the
different taxonomical ranks were parsed using in-house scripts in R (R.-
Core-Team, 2022). Sequences have been deposited at the European
Nucleotide Archive (ENA) under the BioProject number (PRJEB67374).

2.3. qPCR

Genomic DNA was amplified via qPCR on a CFX96 thermocycler
(Bio-Rad, Hercules, CA) with Phytoxigene™ CyanoDTec Total Cyano-
bacteria kit (205-0050, Ohio, USA) to quantify cyanobacterial presence
by targeting a universal sequence in the cyanobacterial 16S rRNA gene
and The Toxin Gene kit for amplification of genes for microcystins/
nodularins (mcyE/ndaF), saxitoxins (sxtA), and cylindrospermopsin
(cyrA) production. These assays contain an internal amplification con-
trol to ensure that the qPCR reactions were not inhibited. We followed
manufacturer’s instructions for both reactions’ preparation and thermal
cycling conditions, Positive controls and non-template controls were
included in every qPCR run. Finally, standard curves were created using
the Phytoxigene™ CyanoNAS Nucleic Acid Standards (NA0O11-NAO15).

2.4. Classification of bloom stages

Bloom conditions were defined as Chl-a exceeding 30 pg L7, as
proposed by Bruns et al. (2022) following USGS guidelines. In addition
to Chl-a concentration, we used a threshold of one or two standard de-
viations (SD) from the Chl-a peak at each site to define different stages in
the bloom cycle. Smaller variations were considered as continuations of
the bloom stage, depending on the context of each phenology curve. Pre-
bloom (Eq. (1), early bloom (Eq. (2) and post-bloom (Eq. (4) stages were
delineated based on sample dates preceding or following the Chl-a peak
(Eq. (3). Chl-a concentrations greater than two SD below the peak was
used to define no-bloom conditions (Eq. (5). Bloom duration, defined as
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days above the 30 pg L Chl-a threshold, was determined by estimating
the first and last days where Chl-a concentrations were over 30 pg L'
while bloom intensity was defined as the maximum Chl-a concentration
registered in that period.

Pre-bloom > 1SD Chl-a max < Chl-a threshold (@D)]
Early bloom > 1SD Chl-a max > Chl-a threshold 2)
Bloom < 1SD Chl-a max > Chl-a threshold 3
Post bloom > 1SD Chl-a max > Chl-a threshold 4)
No Bloom < 2SD Chl-a max < Chl-a threshold 5)

2.5. Statistical analysis

All statistical analyses were performed in R 4.1.3 and Rstudio
(Rstudio Team, 2020). To explore environmental variation, we con-
ducted a principal component analysis (PCA) using the ’pca’ function
from the FactoMineR package. Diversity indices of Bacterioplankton,
including species richness, Chaol, Shannon-Wiener, and Pielou even-
ness, were calculated by bloom stage using vegan. We tested for signif-
icant differences using the Kruskal-Wallis rank sum test and performed
multiple comparisons (Dunn’s post hoc tests) with rstatix.

Non-metric Multidimensional Scaling (NMDS) analyses were per-
formed on Bray-Curtis dissimilarity data (Hellinger transformed) using
the metaMDS function from vegan to gain insights into changes in
community structure during bloom stages. We considered only taxa
accounting for more than 0.01 % of total abundance (Legendre and
Gallagher, 2001). To assess the significance of spatial-temporal and
bloom stages variations in community composition, we employed a one-
way analysis of similarity (ANOSIM) as described by Clarke and War-
wick, 1994. To highlight and validate the proposed bloom stages and
identify discriminating components and features we utilized sparse
partial least squares discriminant analysis (SPLS-DA) following the
approach by Cao et al. (2016) with the mixOmics package. For identi-
fying indicator taxa for each bloom stage based on their fidelity and
relative abundance, we employed the Indicator Species Analysis
(InDVal) using the ‘multipatt’ function in the indicspecies package. We
only considered taxa with a significance level of p < 0.05 and IndVal
values > 0.4, as recommended by De Caceres and Legendre (2009).

To assess the influence of local environmental variables on the
explained variation in the microbial community across all taxonomical
ranks, redundancy analysis (RDA) was performed. The selection of
variables for each model was carried out using the ‘forward.sel” function
in the adespatial package (Dray et al., 2009, p < 0.01, after 999 random
permutations). We performed Mantel tests and Mantel correlogram to
assess similarities between the community structure with the geographic
distances and environmental factors. We calculated the geographic
distance between lakes based on their coordinates. Additionally, we Z-
score transformed the environmental variables and used them to
calculate the Euclidean distance matrix. To assess changes in the spatial
autocorrelation that could be used as predictors of a regime shift, we
calculated Moran I on three categories: 1) diversity indices, 2) the
bacterial composition, and 3) selected heterotrophic bacteria within
each bloom stage. We generated a connectivity matrix based on Gabriel
graph and a weighting matrix (Iw) was calculated for each sampling
point. Finally, we employed a Regularized Canonical Correlation Anal-
ysis (rCCA) to investigate the correlation between environmental vari-
ables and the microbial composition following Le Cao et al. (2011).
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3. Results
3.1. Physical and chemical conditions

Chautauqua Lake. The lake’s trophic conditions ranged between
meso- and eutrophic conditions. The South and Central Basin exhibited
eutrophic conditions in 79 % of the samples (hereinafter both basins are
grouped as South Basin), whereas the North Basin was mesotrophic in
74 % of the samples. On the other hand, 96 % of the samples showed TSI
values for Total Nitrogen below 60 and over 40 indicating a mesotrophic
condition accordingly with the observed low TN:TP ratios (<10) sug-
gesting that the lake was nitrogen-limited during the period of this study
(Table S1). During the summer, the South Basin had significantly higher
levels of TP, CI', TDN, TN, Si (Table S1) and higher values of Chl-a, Fe
and turbidity during the autumn. The North Basin had higher SRP and
TFP, along with higher Ca concentrations during the summer. Principal
component analysis was used to visualize this complexity and revealed
that the first two axes explained 61 % of the total variation (Fig. 2a).
Trophic state variables (TN, turbidity, Chl-a and TP) characterized the
first component which separated the South Basin from the North Basin
(Fig. 2b), which was more clearly observed during the summer. Seasonal
variables (e.g., water temperature, pH, Si, fDOM and Fe) and soluble
nutrients that also showed a seasonal behavior (e.g., TDN, SRP and TDP)
correlated with the second component resulting in a clear separation of
summer from autumn samples (Fig. 2c).

Lake George. All samples indicated oligotrophic conditions for Chl-a,
TP and TN, except for four mesotrophic samples that were collected
closer to storm events in the South Basin. In contrast to Chautauqua
Lake, during the study period, Lake George was more phosphorus-
limited (TN:TP > 10, Table S1). Most variables remained relatively
constant and showed overlapping ranges throughout the sampling sea-
son within each Basin. In every sampling event, the South Basin had
higher CI', conductivity, fDOM, TN, TP (both total and dissolved) and
Chl-a compared to the North Basin but differences were not significant
(Table S1). The first two axes of the PCA explained 58 % of the total
variation in Lake George (Fig. 2d) and the overlapping sites scores in the
plot (Fig. 2e) reflected the similarities in environmental characteristics
between basins. Major contributions of phosphorus (both filtered and
total) and minerals (Fe and Si) characterized the first component, while
the second component exhibited a correlation with seasonal variables
such as DO, water temperature, conductivity, Cl', and Na and led to the
separation of summer and autumn samples from spring samples (Fig. 2f).

3.2. Microbial community composition and environmental variables

Chautauqua Lake. The dataset consisted of 13,405,062 reads that
were classified into 28 phyla, 55 classes, 121 orders, 187 families and
318 genera. The predominant bacterial classes were: Cyanobacteria (37
%), Gammaproteobacteria (25 %), Bacteroidota (11 %), Acidimicrobiia
(4 %) and Verrucomicrobia (4 %). At the genus level, Microcystis PCC
7914 was the most abundant with an average value of 28 % throughout
the entire sampling season; the highest values were recorded during
mid-August through September (~63 %), followed by Limnohabitans and
CL500-29 clade, which had similar abundances of ~ 4 % (Fig. 3a). The
No-fixing cyanobacteria Aphanizomenon MDT14a and Gloeotrichia PYH6
were also present early in the sampling season.

RDA (Table 1) revealed that, on average, 54 % of the variation could
be explained by local environmental variables. The variables most
frequently selected, with the highest individual R?, were associated with
water quality (e.g., turbidity) and specifically with cyanobacterial
biomass (BGA). Water temperature explained approximately 12 % of the
variation, while nutrients (e.g., TFP, SRP) and other physicochemical
variables (Si and barometric pressure) explained a minor percentage of
the variation. The Mantel test disclosed a similar trend, showing that
cumulative environmental factors correlated with the microbial com-
munity composition (Mantel test r: 0.58, p < 0.001). Regularized
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Fig. 2. PCA correlation plots of the environmental variables in Chautauqua Lake (upper panel) and Lake George (lower panel). (a, d) Loading plots of Chautauqua
Lake and Lake George, respectively; (b, e) score plots of Chautauqua Lake and Lake George by Basin, respectively; and (c, f) score plots by season of Chautauqua Lake

and Lake George, respectively.

canonical correlation analysis (rCCA) identified 114 genera with cor-
relations > 0.50 and 10 environmental variables. Fig. 4a shows the
heatmap of pairwise Pearson correlations among these selected vari-
ables and genera. There was a high proportion of genera that correlated
positively (red) or negatively (blue) to high nutrients, low light quality,
high water temperature and macronutrients (especially calcium) and a
third group with intermediate correlations with these set of variables.
The cyanobacterium Microcystis PCC 7914 showed a high and positive
correlation with light quality (turbidity, TSS), TP, Fe, BGA, Chl-a and pH
and a negative correlation with Ca, suggesting its contribution to the
impairment of the water quality. The filamentous Aphanizomenon strain
MDT14a only showed a positive correlation with water temperature
while Gloeotrichia PYH6 showed a negative correlation with turbidity. In
general, taxa with an average abundance over 1 % (Fig. 3) except for the
uncultured Sutterelaceae and Ahniella showed opposite correlations with
environmental variables vs. that observed with Microcystis PCC 7914.

Lake George. The dataset consisted of 20,979,589 reads that were
classified into 23 phyla, 42 classes, 106 orders, 171 families and 287
genera. The predominant bacterial classes and genera were: Gammap-
roteobacteria (44 %; e.g., Limnohabitans, Polynucleobacter), Alphapro-
teobacteria (18 %; e.g., Candidatus Fonsibacter ubiquis), Bacteroidota (14
%; e.g., Pseudarcicella), and Verrucomicrobia (6 %; e.g., uncultured
Verrucomicrobiae) (Fig. 3b). The mean relative abundance of Cyano-
bacteria was low (0.2 % of total reads) and showed a seasonal dynamic
with higher values (~7% of total class sequences) in late summer and
early autumn. The picocyanobacteria Cyanobium PCC-6307 (black in
Fig. 3b) was present throughout the 2022 sampling period with higher
values in April and during the autumn while Microcystis PCC 7914 (or-
ange) peaked in autumn and Aphanizomenon sp. NIES81 (pink) had the
higher values in July. In four of the 101 samples, Aphanizomenon sp.
NIES81 represented over 68 % of the total sequences.

RDA (Table 1) revealed that, on average, 32 % of the variation could
be explained by local environmental variables. Water temperature

emerged as the most frequently selected variable, explaining 20 % of the
variation. On the other hand, nutrients (e.g., TFP), fDOM and other
physicochemical variables (pH, Si and barometric pressure) each con-
tribuited to a minor percentage of the explained variation, averaging 5
%. The microbial community composition strongly correlated with cu-
mulative environmental factors (Mantel test r: 0.50, p < 0.001) and
rCCA analysis identified 51 genera and 14 environmental variables with
a correlation value over 0.40 (Fig. 4b). Two communities exhibited a
clear seasonal separation: one preferred warmer water temperature, and
correlated with conductivity and pH (including the cyanobacteria
Microcystis PCC 7914 and Aphanizomenon sp. NIES81), while the other
group showed preference for cooler temperatures and high DO con-
centration (CL500-29 clade, Candidatus Methylopumilus, hgcl clade), as
well as nutrients and fDOM (Verrucomicrobiae, Pseudarcicella). Despite
the contrasting lake conditions in both lakes, most genera, including
Limnohabitans, Candidatus Methylopumilus, Rhodoferax, Microcystis PCC
7914, Aphanizomenon NIES81, Verrucomicrobiae and Limnobacter,
showed consistent correlation with water temperature and pH across
this trophic gradient.

3.3. Spatial and temporal structure of the microbial community
composition and diversity during bloom stages

Chautauqua Lake. A total of 48 % of samples met our definition of a
bloom (>30 pg L' Chl-a) with all sites experiencing a bloom stage
(Fig. 5). 41 % occurred in the South Basin (Table S2), while 7 % occurred
in the North Basin. During Chl-a peaks nearly all cyanobacteria se-
quences mapped to Microcystis aeruginosa PCC 7914 using minimap2
and the EPI2ME workflow, and to Microcystis aeruginosa PCC 7941 using
minimap2 against the CyanoSeq database. The average (maximum)
abundance of cyanobacteria 16S rRNA and mcyE/ndaF copies were 2.58
x 10° L1 (3.97 x 10°L'}) and 4.60 x 10* L! (9.49 x 10° L), respec-
tively. The cyrA gene was not detected, while the sxtA gene for saxitoxin
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Redundancy Analysis (RDA) showing the individual R? for each selected environmental variable and total adjusted cumulative R? for Chautauqua Lake and Lake

George across all taxonomic ranks.

BGA Water temp. fDOM TFP Si Turbidity SRP pH B. pressure R?,
Chautauqua Lake
Phylum 0.46 0.11 0.04 0.59
Class 0.43 0.11 0.03 0.54
Order 0.14 0.05 0.34 0.50
Family 0.34 0.11 0.07 0.49
Genus 0.16 0.34 0.06 0.04 0.56
Lake George
Phylum 0.19 0.08 0.04 0.05 0.32
Class 0.19 0.07 0.04 0.26
Order 0.19 0.07 0.03 0.04 0.30
Family 0.21 0.06 0.04 0.04 0.04 0.03 0.37
Genus 0.21 0.06 0.04 0.04 0.05 0.03 0.37

Only variables with a p < 0.01 are shown.

production was detected once (Table S2). The mcyE/ndaF gene was at
least one order of magnitude lower than the 16S rRNA, yet it was
consistently present and its ratio ranged from 0.02 to 44 % (average 8 %)
with higher values observed during the summer. mcyE and 168S strongly
correlated with each other (r (48) = 0.95, p = <0.05), and with turbidity
and BGA (r (48) > 0.79, p = <0.05), indicating their presence within
Microcystis cells and its contribution to the water quality of the lake.
The most significant sources of variation on the microbial composi-
tion were season (ANOSIM R: 0.50, p < 0.001), sampling event

(ANOSIM R: 0.54, p < 0.001) and basin of sample origin (ANOSIM R:
0.22, p < 0.001), with a clearer basin separation during the summer
(ANOSIM R: 0.49, p < 0.001). Chl-a concentrations and bloom stages
also played a substantial role in shaping the microbial composition. At
the beginning of the sampling season, a brief pre-bloom occurred in the
North basin while the South Basin was already in a bloom stage. This
period exhibited the highest dissimilarities in the microbial composition
between basins (ANOSIM R: 0.82, p < 0.05, Fig. 5a). When blooms
developed in the North Basin the microbial community became more
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similar to that of the South Basin (Fig. 5b and Fig. 5c¢). Later, Chl-a
concentrations in the North Basin sharply decreased and remained low
and in a no bloom stage until the end of the season. Meanwhile, in the
South Basin, Chl-a concentrations gradually declined entering a post-
bloom stage where significant differences in microbial composition be-
tween the basins were still evident (Fig. 5d and Fig. 5e). However, as
Chl-a levels decreased and reached similar concentrations to those of the
North Basin, the grouping by basin of origin became less clear (Fig. 5f
and Fig. 5g).

Pre-bloom stages had a similar composition to the four blooms
observed in the North Basin, while the three early blooms were similar
to the blooms in the South Basin (ANOSIM p > 0.05). Thus, we treated
them as a single bloom stage consisting of early bloom, pre-bloom and
bloom (n: 25). The sPLS-DA analysis supported the bloom classification
proposed here: bloom and no-bloom stages formed two tight clusters
with few mismatches, while the post bloom stage had higher over-
lapping samples showing the transitional nature of this stage (average
cross validation error rate for the first component was 0.22 and 0.13 for
the second component) (Fig. S1a). Species richness and Chaol estimator
were lower during the bloom stage (Dunn’s p < 0.05), while the no

bloom stage had higher Shannon-Wiener and Pielou evenness. The in-
dicator value index (IndVal) revealed that genera belonging to Gam-
maproteobacteria were characteristic of the bloom stage (Table 2).
Genera belonging to the phyla Myxococcota and Planctomycetota were
indicators of post bloom stage and Actinobacteriota, Bacteroidota and
Chloroflexi were characteristic of the no bloom stage.

The proportion of bacteria with positive and significant Moran I
ranged from 0.09 to 0.47. After a sharp drop on August 8th, it gradually
increased towards late summer and declined as Chl-a concentrations
decreased (Fig. 6a). In contrast, Moran I values for Chl-a exhibited one
peak on September 12th, before the North Basin’s transition to a no
bloom stage, and another one on October 25th when the entire lake was
in a no bloom stage. Mean Moran I value for these bacteria ranged from
0.46 to 0.65 (Fig. 7a), revealing a subtle “humped” pattern, with values
gradually increasing towards the summer and decreasing afterwards,
and showing high overlap among adjacent sampling event. The Mantel
correlogram indicated that the observed spatial autocorrelation was
significant at the first distance class, suggesting that closely located sites
tended to show similar composition and diversity. However, Moran I of
the indicator species within each bloom stage showed a similar pattern
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to that of the entire microbial distribution (Figure S2, p > 0.05).
Moreover, no indicator species showed significant Moran I in all sam-
pling events hindering the potential to be used as an early warning to a

regime shift.

Lake George. The most significant sources of variation on the

microbial composition were sampling event (ANOSIM R: 0.75, p <
0.001) and season (ANOSIM R: 0.61, p < 0.05). The influence of the
basin of sample origin was only clear when considering sampling events
individually (Fig. 8). These differences were particularly pronounced
during the autumn, specifically in the months of September and October
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Table 2
Taxa identified at the dominant genus levels as potential indicators from taxa
analysis of the three post hoc groups in Chautauqua Lake and Lake George.

IndVal P
stage value

Bloom Taxon

Chautauqua Lake

Bloom >0.4 <0.05 Gammaproteobacteria: B63, Noviherbaspirillum,
Sphaerotilus, Comamonas, Silanimonas
Alphaproteobacteria: Sphingopyxis, uncultured
alphaproteobacteria, Rubellimicrobium,
Methylocystis; Gammaproteobacteria: Ahniella,
BD1-7 clade, MND1; Myxococcota: P30B,
Sandaracinaceae, Sandaracinus, mlel.27,
Nannocystis; Planctomycetota: Blastopirellula,
OM190
Alphaproteobacteria: Cereibacter, Reyranella,
Sphingorhabdus; Gammaproteobacteria:
Rhodoferax, Methylopumilus, Limnohabitans,
GKS98, Oxalobacteraceae, B1-7BS;
Actinobacteriota: CL500-29; Bacteroidota:
Fluviicola, Sediminibacterium, NS11-12; Chloroflexi:
SL56

Post >0.5 <0.05
Bloom

No >0.5 <0.05
Bloom

Lake George

Bloom >0.5 <0.05 Cyanobacteria: Aphanizomenon NIES81;
Alphaproteobacteria: Sphingorhabdus,
Phenylobacterium, SM2D12, Massilia, Caulobacter,
alphal cluster; Gammaproteobacteria: Acidovorax
IndVal, Indicator Value, the association between species and sampling groups with a

permutation test.

(Fig. 8f and Fig. 8g). It is worth mentioning that two sites, Ticonderoga
(located at the final discharge point of the lake in the North Basin) and
Warner Bay (situated in a highly developed area in the South Basin),
exhibited the highest Bray-Curtis distance when compared to the other
sites. The exclusion of these sites enhanced the grouping by sampling
event (ANOSIM R: 0.88, p < 0.01), season (ANOSIM R: 0.70, p < 0.01)
and basin of sample origin specially in the months of September
(ANOSIM R: 0.92, p < 0.01) and October (ANOSIM R: 0.83, p < 0.01).
On the other hand, we observed no significant differences (p > 0.05) in
the diversity indices between basins in any sampling event.

The microbial composition of the four autumn blooms showed sig-
nificant differences with the no-bloom samples collected in that time-
frame at all taxonomic ranks (ANOSIM R > ~ 0.90, p < 0.001), and also
exhibited significant lower diversity indices values (p < 0.05). Most
Aphanizomenon reads (pink in Fig. 3) mapped to Dolichospermum (NCBI:
txid748770) using the EPI2ME workflow and to Dolichospermum lem-
mermannii (NCBI: txid1927882) using minimap2 against the CyanoSeq
database. The average (maximum) abundance of cyanobacteria 16S
rRNA was 2.95 x 105 copies L — 1 (5.42 x 105 copies L — 1) while the
mcyE/ndaF, cyrA and sxtA were not detected. The sPLS-DA analysis
(average CV first component error: 0.28, second component: 0.06 and
third component: 0.04), supported a clustering by season and blooms
events (Fig. S1b). The indicator value index (IndVal) revealed that the
heterotrophic bacteria Sphingorhabdus, Lacibacterium aquatile, Acid-
ovorax, Phenylobacterium and the uncultured bacterium SM2D12 showed
the highest association values during these bloom events (Table 2).

The proportion of bacteria with positive and significant Moran I
ranged from 0.10 to 0.49. This proportion displayed a skewed distri-
bution towards the summer, with lower values in the spring and
decreasing towards the autumn (Fig. 6b). Moran I for these bacteria
ranged from 0.42 to 0.55 and were significantly lower than in Chau-
tauqua Lake (Fig. 7b). There was high overlap among adjacent sampling
events with no clear trend. The Mantel correlogram consistently showed
significant and positive correlation at the smaller distance class at all
sampling events except for October 18th. Moran I value of the bloom
indicator taxa were similar to those of the whole community and to
those assigned to no group (Figure S3). No bacterial genus showed
consistent spatial correlation throughout the season that could be used
as an early warning of a regime shift. Finally, we observed no significant
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spatial autocorrelation for Chl-a, which is consistent with the little
variation in Chl-a and the localized, sparse and ephemeral nature of the
reported bloom events (Table S2).

4. Discussion

The subsequent discussion is structured around the three questions
posed in the introduction section: Subsection 4.1) Can we use long-read
sequencing of the 16S rRNA gene of prokaryotes to assess the identities
and dynamics of bloom-forming cyanobacteria and their associated
microbiome in Lake George and Chautauqua Lake?; Subsection 4.2) Do
these blooms have the potential to produce toxins in Chautauqua Lake
and Lake George?; Subsection 4.3) Can we use long-read sequencing of
prokaryotes to capture the spatial and temporal structure of Chautauqua
Lake and Lake George? Do we observe changes in the spatial structure of
the microbial community composition and diversity during bloom
events? In the following subsections, we develop our interpretation of
the results framed within the above three questions.

4.1. Long-read sequencing of the 16S rRNA gene of prokaryotes during
cyanobacterial blooms

Classification of 16S rRNA gene reads using curated databases often



M. Castro Berman et al.

0.7

0.50

Moran |

0.25

Aug 8" Aug 22" Sep 12" Sep 27" Oct10" Oct25" Nov 11"

Moran |
=
(4.

o

0.25 |

0] ] .
Apr18" May 16" Jun21¢ Jul 13" Aug 16" Sep21* Oct18"

Fig. 7. Spatial indicator (Moran I) calculated for each bacteria genus with over
0.01 % contribution to total abundance in Chautauqua Lake (upper panel) and
Lake George (lower panel).

encounters difficulties in assigning taxonomy to cyanobacterial reads
due to the frequent changes in its lineages and taxonomy (Lefler et al.,
2023). For example, members of the genus Anabaena with gas vesicles
and planktonic habitat were reclassified as Dolichospermum (Wacklin
et al., 2009). This was the case for Lake George’ blooms, where most
sequences mapped to Dolichospermum in the NCBI (NCBLtxid748770)
and CyanoSeq (NCBI: txid1927882) databases, while they were mapped
to Anabaena sp. 90 in the SILVA database (Wang et al., 2012). Although
these hurdles are not specific to long-read sequencing and also exist for
short-reads sequencing technologies, a “polyphasic” approach that
incorporate and combines morphology-based with genetics, among
other features (ecology, toxin production, etc.), is highly encouraged
(Komadrek, 2016). Regarding the use of long-read sequencing technolo-
gies for genomic-based monitoring, to our knowledge, only Koeppel
et al. (2022) used MinION for the identification of cyanobacteria in a set
of bloom samples from Lake Erie. Nonetheless, despite being a limited
dataset (n: 10), the authors successfully identified the bloom-forming
cyanobacteria and two potential heterotrophic bacteria that could be
indicators of a microbial shift preceding the bloom. Limited by bioin-
formatics analysis, specifically the lack of methods for Operational
Taxonomic units (OTU) picking and Amplicon Sequence Variants
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analysis (ASV) for nanopore data (Santos et al., 2020), MinION none-
theless proves valuable for its affordability, quick library preparation
and rapid sequencing runs (~48hs). These advantages make it well-
suited to capturing clear signals and the local factors influencing the
dynamics of the microbial communities across diverse physical and
chemical conditions.

The bloom of a dominant species is considered a drastic environ-
mental disturbance and has been usually associated with a lower di-
versity of phytoplankton (Lopez-Archilla et al., 2004), zooplankton
(Bockwoldt et al., 2017) and bacterial communities (Yang et al., 2021).
In this study we found that a-diversity and evenness was lower during
the bloom and post-bloom stages, but the species richness during the
post-bloom stage was similar to that of the no-bloom stage, reflecting the
high resilience of the microbial communities after the initial disruption.
Cyanobacterial blooms can disrupt the microbial community structure
but may also rely on the functions such communities may provide. In
this sense, Cook et al. (2020) proposed that the microbiome associated
with Microcystis blooms shares a similar composition, phylogeny and
biochemical function at a global scale. Consistent with this proposition,
we observed a taxonomically conserved bacterial composition during
blooms in both lakes as supported by the ordination and machine
learning approaches.

Blooms were dominated by Microcystis in Chautauqua Lake and by
Anabaena/Dolichospermum in Lake George. Although its microbiomes
were not compositionally identical, they showed a remarkable func-
tional similarity. For instance, Lake George blooms were enriched with
Alphaprotebacteria with bioremediation properties for cyanopeptides
and cyanotoxins like Sphighordhabdus, which is novel to co-occurred
with Anabaena/Dolichospermum in natural samples, and Phenyl-
obacterium, Massilia and Caulovacter that can track organic compound
gradients and capitalize it in this patchy environments (Pernthaler,
2017). In Chautauqua Lake, blooms were enriched with copiotrophs of
Gammaproteobacteria, which are abundant in the proposed global
Microcystis interactome (Cook et al., 2020). During the post-bloom stage,
indicator species were associated with bloom decomposition (e.g.,
Sphingopyxis, Anhiella; Mankiewicz-Boczek & Font-Najera, 2022;
Sharma et al., 2021), phytoplankton exudates (Wang et al., 2022) and
carbohydrate degradation (e.g. Sandaracinus and unidentified Sandar-
acinaceae; Sharma et al., 2016). During the no-bloom stage, we observed
the coexistence of good-quality water indicators such as Oxalobacter-
aceae, NS11-12, Sediminibacterium and Fluviicula, which can also inhibit
Microcystis growth (Guo et al., 2020), along with bad quality indicators
found in sludge (e.g., Rhodoferax; Hu et al., 2021) and impaired envi-
ronments (e.g., Reyranella; Cui et al., 2017).

4.2. Toxin production potential

We further enhanced the accuracy and resolution of our environ-
mental genomic-based approach by assessing the abundance of cyano-
toxins genes and total cyanobacteria. Distinguishing toxigenic
populations is as critical as identifying the causes and identities of a
bloom. In this sense, a strain similar to the one found in Lake George was
recently linked to the death of 32 steers in southeastern Oregon (U.S.)
(Dreher et al., 2019). However, this was not the case in Lake George,
where no toxigenic genes or cyanotoxins were detected (Dr. Jacob
Shelley personal communication) and there were no reports of human or
animal exposure. On the other hand, we detected the mcyE gene which is
required for microcystin production in all Chautauqua Lake samples.
The presence of the sxtA gene supports the need to adopt a more thor-
ough cyanotoxin monitoring program that does not solely focus on
microcystin (Brown, 2022). Cyanotoxins are complex and expensive
secondary metabolites that have been suggested to be associated with
higher nutrient requirements in toxin strains compared to non-toxic
strains (Lee et al., 2000). Accordingly, we found that the mcyE/16S
rRNA ratio was similar to that reported in other eutrophic lakes (0-37 %
in Hotto et al., 2008 and 0.7-41 % in Ha et al., 2009). Brown (2022)
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observed concentrations of microcystin in Chautauqua Lake that span-
ned a wide range (0.04-1.0 pg L'!) for the same number of mcyE copies,
suggesting that monitoring these genes should be paired with expression
profiles and detailed toxin analysis.

4.3. Spatial and temporal community structure

In contrast to single fixed-location schemes, often conducted over the
deepest point, our multi-location approach allowed us to capture the
spatial heterogeneity of both lakes in each sampling event. In Chau-
tauqua Lake, the microbial community structure was influenced by the
bloom cycle. For instance, during the bloom stages in late summer, the
differences between the basins became less clear, and we observed a
slight homogenization of the lake. However, the presence of filamentous
N2-fixing cyanobacteria (Aphanizomenon MDT14a and Gloeotrichia
PYHS6), particularly during the first sampling events, suggests the pres-
ence of succession patterns between N2-fixing and non-diazotrophic
organism before our sampling began. This succession pattern is well-
studied in experimental settings (McDonald and Lehman, 2013; Paerl
and Otten, 2016; Wu et al., 2016) and field settings (Tanvir et al., 2021).
In many cases, it was observed to exhibit anticorrelation (Miller et al.,
2013) and of particular importance in nitrogen-limited lakes such as
Chautauqua Lake (Paerl et al., 2020a, 2020b). Interestingly, after the
Chl-a drop to a no bloom stage in the Autumn, the grouping by basin
became less clear despite the large environmental differences between

Basins (Smith et al., 2020). Cyanobacterial blooms can trigger bacterial
succession patterns (Eiler and Bertilsson, 2004; Niu et al., 2011) and
Microcystis was found to be among the main lines for succession in lake
sediments which suggest that once the bloom occurred it may trigger
successional patterns that may persist beyond the growing season (Zhu
et al., 2019). Local environmental variables explained a substantial
(>50 %) portion of the microbial variation; however, it cannot be
excluded that these variables are themselves spatially structured and
influenced by land use within the watershed. In Chautauqua Lake, for
example, agriculture encompasses 22 % of the watershed and contrib-
utes an estimated 7,500 kg of the total 20,500 kg annual phosphorus
load (Stainbrook et al., 2022). Agricultural practices, particularly
intensive ones, are well-documented in their promotion of algal biomass
(Sanchez et al., 2023) and cyanobacterial abundance (Castro Berman
et al., 2022, 2020).

Lake George’s physical and chemical conditions have largely
remained unchanged and in an oligotrophic state for decades (Hintz
et al., 2020). Nonetheless, water temperature raised 1.8 °C over a 37-
year period from 1980 to 2016 (Hintz et al., 2020) and it was consis-
tently selected in the RDA analysis as the main predictor of microbial
variation. Accordingly, we observed a clear seasonal structure, and the
microbial composition clustered following their water temperature
preferences. For instance, the bloom-forming Aphanizomenon sp. NIES81
showed a positive correlation with water temperatures, and the four
bloom events could be linked to the longer growing season (Swinton
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et al., 2015). Close to the beginning of that temperature increase, Methe
et al. (1998) found that the bacterial communities in the lake were
dominated by Betaproteobacteria (now Gammaproteobacteria) and
Alphaproteobacteria in a similar abundance as reported here. None-
theless, the limited taxonomic resolution and variations in sequencing
technologies and databases hinder our ability to examine potential
changes at lower taxonomic ranks.

Lake George is also experiencing a slight chloride and nutrient
gradient as a result of the increasing urban development and road salt
contamination (Hintz et al., 2020). Accordingly, we observed higher
chloride and nutrients concentrations in the South Basin at all sampling
events, and the microbial composition reflected significant dissimilar-
ities when considering only samples collected in the same sampling
event. While dispersal from riverine communities and storm events
(Adams et al., 2014) could have promoted some of these dissimilarities,
environmental habitat characteristics is suggested to be the predomi-
nant mechanism structuring the microbial composition in lakes with
long retention times, such as Lake George (Adams et al., 2014;
Lindstrom and Bergstrom, 2004; Logue and Lindstrom, 2010). This
observation was further supported by the significant co-variation
observed between local environmental variables explaining 30 % in
the 16S rRNA community structure as revealed by the RDA analysis. On
the other hand, Ruka et al. (2022) reported that the south to north
anthropogenic gradient observed in Lake George promotes the growing
of small centric diatoms during the summer in the South Basin. While we
did not explicitly assess land use variables, such as urbanization, there
was a large proportion of unexplained variation in the RDA analysis that
could be associated to spatially structured human activities as reported
by Ruka et al. (2022).

Spatial statistics are proposed as promising tools to study cyano-
bacterial blooms as they faithfully reflect the ecosystem state and can
provide a classification of bloom stages from a single spatial snapshot
(Buelo et al., 2018). Moran I was observed to increase or decrease to-
wards a critical transition, depending whether the bloom is rising or
falling (Butitta et al., 2017). Accordingly, in Chautauqua Lake, we
observed that the spatial autocorrelation of Chl-a concentration rose
prior the transition to the no bloom stage in September 12th, almost a
month earlier, and it rose again when the entire lake transitioned to a
no-bloom stage. On the context of lake management, bloom collapse can
be linked to the release of intracellular toxins, as observed during the
2014 and 2019 water crisis in Toledo (USA; McKindles et al., 2020).
Spatial asymmetry has been reported before but in an opposite trajec-
tory: higher values, closer to 1, were observed during a constant bloom
state rather than to the no bloom stage (Buelo et al., 2018). However, the
high asynchronicity in bloom development, where geographically close
sites have large differences in Chl-a concentration, poses a complication
in the interpretation of early warnings at this lake-wide scale. Finally,
phytoplankton may not be the only source of Chl-a in the ecosystem (e.
g., macrophytes), and living organisms such as prokaryotes, could be
used to predict ecosystem transitions as well. Here, we observed that
both the proportion of bacteria with significant and positive autocor-
relation and the Moran I values were higher during September 27", that
is one sampling event later the first peak in Chl-a autocorrelation. While
bacteria have short generation times, that enable them to quickly react
to variations in the environment, this could suggest a delay between
stress signal which is the rise in Chl-a to a bloom stage and the response
of the microbial composition.

5. Concluding remarks

In this study, we couple an environmental genomics approach with
Lake George’s long-term monitoring program to represent its ecology in
line with recent reports on water warming and the anthropogenic
impairment gradient. Due to limited information on bacterial commu-
nities in Lake George, we compare it with reports on other biological
groups and to a hybridization-based sequencing study from almost 30
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years ago. This underscores this study’s importance as a benchmark for
bacterial research and impairment assessment in Adirondack lakes, and
supports the need to build robust and consensual methodological stan-
dards for the routine adoption of the e-DNA-based approaches in water
quality monitoring programs (Cordier et al., 2021). Additionally, we
tracked cyanobacteria bloom dynamics and identified indicator species
in both lakes. Microcystis and Anabaena/Dolichospermum blooms
exhibited a conserved microbiome irrespective of the basin of origin or
date. This suggests that the proposed interactome for Microcystis could
be applied for other bloom-forming species. However, the transient
nature of the Anabaena/Dolichospermum blooms in Lake George hin-
dered the assessment of its microbiome’ dynamics, if any, and suggest
that future research should include an intensive sampling before bloom’
senescence. Crucially, extending the monitoring before the onset of the
bloom season in Chautauqua Lake is necessary to assess cyclical changes
and repeatable patterns that can be used to fuel early warnings models of
ecosystem transitions (Ortiz et al., 2020) or to predict blooms in long
term studies (Tromas et al., 2017). Finally, access to the molecular tools
and personnel required for a rapid turnaround or blooms is limited. In
this context, the advantages of the sequencing technology presented in
this study became particularly compelling, especially for researchers in
resource-limited settings where access to expensive sequencers remains
a significant constraint.
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