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ABSTRACT
Thanks to its fine balance between model flexibility and interpretability, the nonparametric additive model
has been widely used, and variable selection for this type of model has been frequently studied. However,
none of the existing solutions can control the false discovery rate (FDR) unless the sample size tends to
infinity. The knockoff framework is a recent proposal that can address this issue, but few knockoff solutions
aredirectly applicable tononparametricmodels. In this article,wepropose anovel kernel knockoffs selection
procedure for the nonparametric additive model. We integrate three key components: the knockoffs, the
subsampling for stability, and the random feature mapping for nonparametric function approximation.
We show that the proposed method is guaranteed to control the FDR for any sample size, and achieves a
power that approaches one as the sample size tends to infinity. We demonstrate the efficacy of our method
through intensive simulations and comparisons with the alternative solutions. Our proposal thus, makes
useful contributions to the methodology of nonparametric variable selection, FDR-based inference, as well
as knockoffs. Supplementary materials for this article are available online.
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1. Introduction

In the past decades, the nonparametric additive model has been
widely used in statistics and machine learning, thanks to its fine
balance between model flexibility and model interpretability
(Stone 1985; Hastie and Tibshirani 1990; Wood 2017). For a
univariate response variable Y P R and p predictor variables
X “ pX1, . . . ,XpqT P X p Ď R

p, the model postulates that,

Y “ μ `

p
ÿ

j“1
fjpXjq ` ε, (1)

where μ is the intercept, fj : X  Ñ R, with EXjrfjpXjqs “ 0,
j “ 1, . . . , p, are the component functions that are modeled
nonparametrically, and ε „ N p0, σ 2q is the random error, with
unknown σ . Furthermore, we assume throughout this article
that the component functions fj’s reside in a reproducing kernel
Hilbert space (RKHS, Aronszajn 1950; Wahba 1990).

Variable selection for the nonparametric additive model
dates back to Lin and Zhang (2006), and has seen substantial
developments ever since (Meier, Van de Geer, and Bühlmann
2009; Ravikumar et al. 2009; Huang, Horowitz, and Wei 2010;
Koltchinskii and Yuan 2010; Wood 2017, among others).
In particular, Lin and Zhang (2006) proposed a component
selection and smoothing operator (COSSO) penalty that
extends the Lasso penalty to the nonparametric additive model,
and penalized the sum of the reproducing kernel Hilbert space
norms of the component functions. Meanwhile, Meier, Van de
Geer, and Bühlmann (2009) and Ravikumar et al. (2009) both
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employed basis expansion, and penalized the sparsity and
smoothness seminorms. Huang, Horowitz, and Wei (2010)
employed the group Lasso penalty to obtain an initial estimator
and to reduce the dimension of the problem, then employed
the adaptive group Lasso to select nonzero components. This
family of methods guarantee the asymptotic optimality of the
function estimation and the selection consistency as the sample
size tends to infinity. However, none has achieved the control
of false discovery rate (FDR) unless the sample size tends to
infinity. There has been another family of solutions that target
simultaneous testing of multiple hypotheses and concentrate on
controlling some forms of false discovery (see, e.g., Benjamini
and Hochberg 1995; Efron et al. 2001; Storey 2007; Sun and
Cai 2007, 2009, among others); see also Cai and Sun (2017)
for a review. Nevertheless, none of the existing solutions in this
family directly addresses the problem of variable selection for
the nonparametric additive model while controlling the false
discovery at the same time.

More recently, Barber and Candès (2015) proposed a power-
ful framework called knockoffs that effectively controls the FDR
for variable selection in the linearmodel under the finite-sample
setting, in the sense that the sample size does not have to go to
infinity. The key idea is to construct a set of so-called “knockoff
variables” that are not associatedwith the response conditioning
on the original variables, while the structure of the knockoff
variables mimics that of the original ones. It then computes an
importance score for each variable, and selects those that have
considerably higher scores than their knockoff counterparts.
There have then been numerous generalizations of this work;

© 2021 American Statistical Association

https://doi.org/10.1080/01621459.2022.2039671
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2022.2039671&domain=pdf&date_stamp=2023-08-24
mailto:lexinli@berkeley.edu
http://www.tandfonline.com/r/JASA


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2159

see Barber, Candès, and Samworth (2020) and many references
therein. Related to our target of high-dimensional nonparamet-
ric additive model, Barber and Candès (2019) considered the
high-dimensional fixed design, and focused on the linear model
only. Dai and Barber (2016) developed an “expansion first”
strategy that performs feature expansion first then constructs
the knockoffs based on the expanded features, and proposed
to employ a group Lasso penalty for subsequent variable selec-
tion. They actually still studied the linear regression setting;
however, their proposal can, in principle, be extended to the
nonparametric additive model. Candès et al. (2018) proposed
a model-X knockoffs extension that works for random designs
of predictors and allows the conditional distribution of the
response given the predictors to be arbitrary and unknown,
though they mostly focused on the step of how to generate the
knockoff variables. Fan et al. (2020) further built on the model-
X knockoffs framework, and developed a knockoffs-based vari-
able selection procedure that is applicable to the nonparametric
additive model. It employs data splitting, uses half of the data to
estimate the predictor precision matrix and screen the predic-
tors, and uses the other half to performknockoffs based on some
empirical norm of the estimated component functions. These
pioneering works have opened the door for knockoffs-based
selection for the nonparametric additive model. However, some
may be difficult to extend beyond the linear model, and others
suffer a limited power or expensive computation. In addition,
there is generally a lack of theoretical power analysis for the
existing knockoffs-based methods, except for Fan et al. (2020)
andWeinstein et al. (2020), who made important first steps, but
only studied the power behavior for the linear model.

In this article, we propose a novel kernel knockoffs selec-
tion procedure for the nonparametric additive model (1). We
build on and integrate three key components: the knockoffs,
the subsampling for stability, and the random feature mapping
for nonparametric function approximation in RKHS. Specif-
ically, we employ the random feature mapping (Rahimi and
Recht 2007) to approximate the component function fj, and
construct a projection operator between the RKHS and the
original predictor space. Such a projection allows us to define
an analog of the effect size of the individual predictor in the
setting of nonparametric additive model. We then construct the
importance score based on the projected component function
fj, instead of the original predictor Xj or its knockoff. Moreover,
we note that the random features may introduce additional
stochastic errors, which can disturb the order of the variables
entering the model and lead to both false positives and false
negatives. We thus, further employ the subsampling strategy
to improve the selection stability (Meinshausen and Bühlmann
2010). That is, we subsample the data and apply the random
feature mapping multiple times, and compute the importance
score as the difference of selection frequencies over subsampling
replications between each predictor and its knockoff counter-
part. We show that the proposed method is guaranteed to con-
trol the FDR below the nominal level under any sample size, and
achieves a power that approaches one as the sample size tends to
infinity.

Our proposal makes useful contributions to the methodol-
ogy and theory of nonparametric variable selection, FDR-based
inference, as well as knockoffs.

First, whereas the methods such as Lin and Zhang (2006)
and Ravikumar et al. (2009) have obtained the variable selection
consistency asymptotically, there has been no existing method
that controls the FDR in the setting of nonparametric addi-
tive model for the finite-sample setting. A low FDR in such
a setting assures that most of the discoveries are indeed true
under any given sample size. By contrast, the asymptotic con-
trol is valid only when the sample size goes to infinity, which
can be problematic for the applications with limited sample
sizes. In those cases, the asymptotic control may provide lit-
tle guidance on quantifying the threshold of variable selection
(Barber and Candès 2015), and it is possible that the selected
variables may still include many unrelated ones (Su, Bogdan,
and Candes 2017). On the other hand, the classical reproducing
kernelmethods usually involve nonseparable variables and their
knockoffs, which renders the FDR control infeasible. To address
this challenge, we employ the random featuremapping to ensure
the exchangeability of the null variables and their knockoffs,
and in turn achieve the finite-sample FDR control. The ran-
dom feature mapping nevertheless introduces an extra layer
of randomness. We further resort to subsampling, construct
an importance score by averaging over multiple subsampling
replications, and show these techniques can handle the extra
randomness; see Section S1.2 of the Appendix, supplementary
materials for more technical details. In short, the finite-sample
FDR control for nonparametric variable selection has been a
long-standing and open question, and our proposal is among
the first solutions for this type of question.

Second, we employ the subsampling strategy, but it is dif-
ferent from the existing subsampling based methods for FDR
control. Specifically, Bach (2008) proposed a selection method
based on bootstrap replications, whichmay suffer from a limited
powerwhen the sample size does not go to infinity.Meinshausen
and Bühlmann (2010) proposed a stability-based procedure to
select the variables with the selection frequencies exceeding a
threshold level over the entire solution path, which guarantees
the control of the expected number of false positives, but may
fail to control the FDR. Li et al. (2013) proposed to use amixture
model for the distribution of selection frequencies, whereas
Ahmed et al. (2011) and He et al. (2016) suggested to estimate
this distribution via permutations. However, such a distribu-
tion estimation requires either strict parametric assumptions,
or expensive computations. By contrast, our method does not
require estimation of the distribution of selection frequencies,
but uses subsampling to tackle the extra randomness introduced
by random feature mapping and to achieve the FDR control.

Last but not least, our method expands the scope of the
currently fast growing area of knockoffs. Compared to Bar-
ber and Candès (2019) who focused on the high-dimensional
linear model only, we generalize the knockoffs to the high-
dimensional nonparametric additive model. Such an extension
is far from incremental, as it has to deal with nonlinear depen-
dency between the response and predictors, as well as the non-
separability of variables of the usual reproducing kernel meth-
ods. Compared to Dai and Barber (2016) who did “expan-
sion first,” we adopt a “knockoffs first” strategy, which leads
to an easier construction of the knockoff variables, ensures a
good statistical power, and is computationallymore economical.
Compared to Candès et al. (2018) who developed the model-
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X framework, but cannot handle the nonparametric additive
model directly, and did not provide any formal theoretical jus-
tification for the model-X knockoffs beyond the generalized
linearmodel setting, we propose a new and effective importance
score based on random feature mapping and resampling, and
we explicitly study the power behavior in the nonparametric
setting. Finally, compared to Fan et al. (2020) who extended
the model-X framework, and proposed a novel importance
score based on the basis functions and some empirical norm
of the estimated component functions, but only studied the
power for the linear model, we again develop a new importance
score that is built on the selection probability of the variables
and their knockoffs. As a result, we show that our solution is
more powerful and also more robust to the data distribution.
Moreover, we establish the power guarantee for the nonpara-
metric additivemodel, which ismore challenging than the linear
model case as it involves nonlinear associations. Toward that
end, we employ some functional data analysis techniques and
concentration inequalities for functional empirical processes to
study the spectral properties; see Section S1.4 of the Appendix,
supplementary materials for more technical details. We also
briefly comment that, our theoretical tools are applicable to
the FDR control for more general nonparametric models, for
example, the functional analysis of variance type models that
involve higher-order interactions (Wahba et al. 1995; Lin and
Zhang 2006). Moreover, in Section 5, we further compare with
some of these key alternative knockoff solutions numerically,
and demonstrate the advantages of our proposedmethod empir-
ically as well.

The rest of the article is organized as follows. Section 2
formulates the problem. Section 3 develops the kernel knockoffs
procedure. Section 4 establishes the theoretical guarantees on
the FDR and power. Section 5 presents the simulations, and also
an analysis of brain imaging data. TheAppendix, supplementary
materials collects all proofs and some additional numerical
results.

2. Problem Setup

2.1. Kernel Learning

Throughout this article, we consider regression functions that
reside in an infinite-dimensional reproducing kernel Hilbert
space. We begin with a Mercer kernel K : X ˆ X Ñ R,

KpX,X1
q “

8
ÿ

ν“1

rλν
rψνpXq rψνpX1

q,

where t rψνu8
ν“1 are eigenfunctions, trλνu8

ν“1 are eigenvalues
of the integral operator defined by the kernel function, and
rλν

rψνpXq “
ş

X KpX,X1q rψνpX1qdX1 (Mercer 1909). The
domainX Ď R can be either a compact or an unbounded space.
We consider the RKHS H1 generated by this kernel, which
is defined as the closure of linear combinations of the basis
functions t rψνu8

ν“1 as follows, where t¨u denotes the closure of
a function space,

H1 “

#

f : X Ñ R|f pXq “ r�pXqTrc, and }f }K ă 8 with }f }2K “

8
ÿ

ν“1

rc2ν
rλν

+

.

Here r�pXq is an infinite-dimensional vector with the νth ele-

ment equal to
b

rλν
rψνpXq, and rc is an infinite-dimensional

coefficient vector with the νth elementrcν , ν “ 1, 2, . . ..
Next, define the kernel Kp : X p ˆ X p Ñ R,

Kp
´

pX1, . . . ,Xpq
T, pX1

1, . . . ,X
1
pq

T
¯

“ KpX1,X1
1q ` ¨ ¨ ¨ ` KpXp,X1

pq.
The RKHSHp generated by Kp is of the form (Aronszajn 1950),

Hp “ H1‘¨ ¨ ¨‘H1 “

!

f : X p
Ñ R | f pXq “ f pX1, . . . ,Xpq

“ f1pX1q ` ¨ ¨ ¨ ` fppXpq,

fj P H1, and ErfjpXjqs “ 0, j “ 1, . . . , p
)

.

Suppose the observed training data tpxi, yiquni“1 consist of n
iid copies of pX,Yq following the nonparametric additive model
(1), with xi P R

p, yi P R. The representer theorem (Wahba
1990) shows that the solution to the kernel learning problem
when restricting f P Hp,

min
fPHp

«

n´1
n

ÿ

i“1
Lpf pxiq, yiq ` λ}f }2Kp

ff

,

for some loss function L, the kernel Kp, and the penalty param-
eter λ, is of the form,

rf pXq “

n
ÿ

i“1
αiKppX, xiq,

where α “ pα1, . . . ,αnqT P R
n are the corresponding coeffi-

cients. This in effect turns an infinity-dimensional optimization
problem to an optimization problem over n parameters. This
minimizer can be further written as, for any X P X p,

rf pXq “ r�ppXq
T
rcp, (2)

where r�ppXq “

”

r�pX1qT, . . . , r�pXpqT

ıT

assembles r�pXjq’s

and is an infinite-dimensional vector, and rcp “

”

r�ppx1q, . . . ,
r�ppxnq

ı

α is the infinite-dimensional coefficient vector.

2.2. Variable Selection for Nonparametric AdditiveModels

Next, we formally frame variable selection in the context of
nonparametric additive models. We say a variable Xj is null
if and only if Y is independent of Xj conditional on all other
variables X´j “ tX1, . . . ,XpuztXju, that is, Y KK Xj|X´j,
and say Xj is nonnull otherwise (Li, Cook, and Nachtsheim
2005). Let S Ď t1, . . . , pu denote the indices of all the nonnull
variables, and SK Ď t1, . . . , pu the indices of all the null
variables, or equivalently, the complement set ofS . Let |¨|denote
the cardinality, and pS the indices of variables selected by some
selection procedure. Our goal is to discover as many nonnull
variables as possible while controlling the FDR, which is defined
as,

FDR “ E

«

| pS X SK|

| pS| _ 1

ff

.

We next establish the identifiability of the problem under the
following condition.
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Assumption 1 (Irrepresentable Condition in RKHS). For any
j P t1, . . . , pu, and any functions gk P H1, k ‰ j, fjpXjq ‰
řp

k“1;k‰j gkpXkq.

This condition simply says that the component function fjpXjq
in model (1) cannot be strictly written as a linear combination
of some functions of other variables Xk, k ‰ j. This is a
fairly mild condition, and its parametric counterpart that Xj ‰
řp

k“1;k‰j βkXk for any βk P R has been commonly imposed in
the linear model scenario (Candès et al. 2018).

Under this condition, we establish the equivalence between
variable selection and selection of the component functions fj in
model (1). In other words, testing the hypothesis that Xj is null
is the same as testing whether fj “ 0.

Proposition 1. Suppose the nonparametric additive model (1)
and Assumption 1 hold. Then j P SK if and only if fj “ 0, for
j “ 1, . . . , p.

Proposition 1 makes the variable selection in a nonparametric
additive model comparable to that in a linear model, and is to
serve as the foundation for the new kernel knockoffs procedure
in Section 3, and the finite-sample FDR control in Section 4,
both of which are built upon the selection of the component
functions fj’s.Wenext develop the selection procedure formodel
(1) that is capable of controlling the FDR below any given
nominal level q P p0, 1q under any sample size, while achieving
a good power at the same time.

3. Kernel Knockoffs Procedure

3.1. Algorithm

Our kernel knockoffs selection procedure consists of six main
steps. Step 1 is to generate the knockoff variables. Step 2 is to
subsample without replacement half of the sample observations.
Step 3 is to construct the random features for both the orig-
inal and knockoff variables. Step 4 is to solve the coefficient
vector through a group Lasso penalized regression based on
the subsamples, which in effect leads to the selection of a set
of important variables. In addition, Steps 2–4 are carried out
repeatedly over a number of subsampling replications. Step 5
is to compute the importance score for each original variable,
which is defined as the empirical selection frequency based on
multiple subsampling replications. Finally, Step 6 is to apply a
knockoff filter to the importance scores to produce the final
set of selected variables under the given FDR level, as well as
the final estimate of the component functions. We summarize
our procedure in Algorithm 1 first, then discuss each step in
detail.

3.2. Knockoff Variable Construction

A random vector rX P R
p is said to be a knockoff copy of X P R

p

(Candès et al. 2018) if

pX, rXq
d
“ pX, rXqswappAq, for any

A Ď t1, . . . , pu, and Y KK rX | X, (3)

Algorithm1Kernel knockoffs selection procedure for nonpara-
metric additive models
1: Input: Training data tpxi, yiquni“1, the number of random

features r, the number of subsampling replications L, and
the nominal FDR level q P r0, 1s.

2: Step 1: Construct the knockoff variables trxiuni“1 to aug-
ment the original variables txiuni“1 using the second-order
knockoffs or the deep knockoffs machine.

3: for 	 “ 1 to L do
4: Step 2: Draw without replacement to obtain a subsample

I	 Ă t1, . . . , nu of size tn{2u.
5: Step 3: Sample 2p of iid r-dimensional random features

twν , bνurν“1 by (5), and construct the augmented random
feature vector �2ppXq by (6).

6: Step 4: Solve the coefficient vector pc2ppI	q by (8), and
record the selected variables.

7: end for
8: Step 5: Compute the importance score by (10), that is, the

empirical selection frequency, t p
jujPr2ps based on the L
estimates of tpc2ppI	qu	PrLs.

9: Step 6: Apply the knockoff filter by (11) at the nominal FDR
level q.

10: Output: the set of selected variables pS , and the function
estimatepf RFpXq.

where the symbol d
“ denotes the equality in distribution, and

swappjq is the operator swapping Xj with rXj. For instance, if
p “ 3 and A “ t1, 3u, then pX1,X2,X3, rX1, rX2, rX3qswappAq

becomes prX1,X2, rX3,X1, rX2,X3q. In the variable selection liter-
ature, there are alternative methods that add pseudo-variables
to help control the false positives in selection, for example, by
generating independent features, or permuting entries of the
existing features (Miller 2002; Wu, Boos, and Stefanski 2007).
Different from those methods, the knockoff framework has a
unique property of exchangeability as given by (3).

There have been numerous ways proposed to construct
the knockoff variables. We adopt two particular constructions,
depending on the data.

The first is the second-order knockoffs construction (Candès
et al. 2018), which generates the knockoffs by matching only the
first two moments of the two distributions. In this case, rX is a
second-order knockoff copy of X if

ErXs “ ErrXs, and

covrpX, rXqs “

„

� � ´ diagpsq
� ´ diagpsq �

j

,

where � is the covariance matrix of X, and s is a p-dimensional
vector such that covrpX, rXqs is positive semidefinite. To ensure
a good statistical power, s should be chosen as large as possible,
so that the original and knockoff variables are differentiable
(Candès et al. 2018). This strategy is implemented in practice
by approximating the distribution of X as the multivariate nor-
mal, and is employed in numerous knockoffs-based applications
(Barber, Candès, and Samworth 2020).

The second is the deep knockoffs machine (Romano, Sesia,
and Candès 2019), which generates the knockoff variables using
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deep generative models. The key idea is to iteratively refine a
knockoff sampling mechanism until a criterion measuring the
validity of the produced knockoffs is optimized. This strategy
is shown to be able to match higher-order moments, and also
achieve a better approximation of exchangeability.

In our construction of knockoff variables, we employ the
second-order knockoffs when there is clear evidence that the
predictor variables approximately follow a multivariate normal
distribution, and employ the deep knockoffsmachine otherwise.
Given the training samples tpxi, yiqu

n
i“1, we first augment with

the knockoff samples trxiuni“1, and form the data tpxi,rxi, yiqu
n
i“1,

where xi “ pxi,1, . . . , xi,pqT P X p, andrxi “ prxi,1, . . . ,rxi,pqT P R
p.

3.3. Random FeatureMapping

We next construct the random features for both original and
knockoff variables. The key idea is to employ the random feature
mapping (Rahimi and Recht 2007; Băzăvan, Li, and Sminchis-
escu 2012) to approximate the kernel function, which enables us
to construct a projection operator between the RKHS and the
original predictor space. Specifically, if the kernel functions that
generateH1 are shift-invariant, that is, KpX,X1q “ KpX ´ X1q,
and integrate to one, that is,

ş

X KpX ´ X1qdpX ´ X1q “ 1, then
the Bochner’s theorem (Bochner 1934) states that such kernel
functions satisfy the Fourier expansion:

KpX ´ X1
q “

ż

R

ppwq exp
�?

´1wpX ´ X1
q
(

dw,

where ppwq is a probability density defined by

ppwq “

ż

X
KpXqe´2π

?
´1wXdX.

We note that many kernel functions are shift-invariant and inte-
grate to one. Examples include the Laplacian kernel,KpX,X1q “

c1e´|X´X1|{b1 , the Gaussian kernel,KpX,X1q “ c2e´b22|X´X1|2{2,
and the Cauchy kernel, KpX,X1q “ c3p1 ` b23|X ´ X1|2q´1,
where c1, c2, c3 are the normalization constants, and b1, b2, b3
are the scaling parameters. It is then shown that (Rahimi and
Recht 2007; Băzăvan, Li, and Sminchisescu 2012) theminimizer
in (2) can be approximated by,

pf RFpXq “ �ppXq
Tcp, (4)

where �ppXq “
“

�pX1qT, . . . ,�pXpqT
‰T

P R
pr , and �pXjq “

“

ψ1pXjq, . . . ,ψrpXjq
‰T

P R
r is a vector of r Fourier bases with

the frequencies drawn from the density ppwq, that is,

ωj,ν
iid
„ ppωq, bj,ν

iid
„ Uniformr0, 2πs,

ψνpXjq “

c

2
r
cospXjωj,ν ` bj,νq,

j “ 1, . . . , p, ν “ 1, . . . , r. (5)

The use of random feature mapping achieves potentially
substantially dimension reduction. More specifically, the esti-
mator in (4) only requires to learn the pr-dimensional coefficient
cp, compared to the estimator in (2) that involves an infinite-
dimensional vector rcp. Rudi and Rosasco (2017) showed that
the random feature mapping obtains an optimal bias-variance
tradeoff if r scales at a certain rate and r{n Ñ 0 when n grows.

They further proved that the estimator in (4) can achieve the
minimax optimal estimation error. Beyond the estimation opti-
mality, we note that the random feature mapping also efficiently
reduces the computational complexity. That is, the computation
complexity of the estimator in (4) is only Opnr2q, compared to
the computation complexity of the kernel estimator in (2) that is
Opn3q. The saving of the computation is substantial if r{n Ñ 0
as n grows.

In our setting of kernel knockoffs selection, we construct the
random features for both original and knockoff variables and
obtain the augmented random feature vector as,

�2ppXq “

´

�pX1q
T, . . . ,�pXpq

T,�prX1q
T, . . . ,�prXpq

T
¯T

P R
2pr , (6)

where �pXjq “
“

ψ1pXjq, . . . ,ψrpXjq
‰T

P R
r , and �prXjq “

”

ψ1prXjq, . . . ,ψrprXjq
ıT

P R
r , j “ 1, . . . , p, are two sets of r-

dimensional random features that are independently sampled
from (5). Then the minimizer in (2) can be approximated by,

pf pXq “ 
2ppXq
Tc2p. (7)

Meanwhile, we note that the randomness of the features gen-
erated from (5) may alter the ranking of variable significances.
As such, we couple the random feature mapping with knockoffs
and subsampling to achieve the desired FDR control and power.

3.4. Resampling, Importance Score, and Knockoff Filtering

We adopt the subsampling scheme similarly as that in Mein-
shausen and Bühlmann (2010); Dümbgen, Samworth, and
Schuhmacher (2013). Specifically, we subsample a subset of
the training samples without replacement with size ns, and let I
denote the corresponding subsample indices out of t1, . . . , nu.
We set ns “ tn{2u, where tn{2u is the largest integer no
greater than n{2. We then estimate the coefficient vector
c2p “ pcT1, . . . , cT2pqT P R

2pr in (7), in which each cj P R
r for

j “ 1, . . . , 2p, via a group Lasso penalized regression based on
the subsample I of the observations,

min
cjPRr
j“1,...,2p

1
|I|

ÿ

iPI

»

–yi ´ ȳpIq ´

p
ÿ

j“1
�pxi,jqTcj ´

2p
ÿ

j“p`1
�prxi,j´pq

Tcj

fi

fl

2

` τ

2p
ÿ

j“1
}cj}2, (8)

where ȳpIq “
ř

iPI yi{|I| is the empirical mean, and τ ě 0 is
the penalty parameter. Letpc2ppIq “

´

pcT1pIq, . . . ,pcT2ppIq
¯T

denote
theminimizer of (8).We remark that the group Lasso penalty in
(8) encourages the entire vector cj P R

r to be shrunk to zero, for
j “ 1, . . . , 2p. Consequently, estimating c2p via (8) in effect leads
to the selection of important variables among all 2p candidate
variables pX1, . . . ,Xp, rX1, . . . , rXpq. We also remark that, our use
of the group Lasso penalty in (8) is different from Huang,
Horowitz, and Wei (2010). Specifically, Huang, Horowitz, and
Wei (2010) used the B-spline basis for nonparametric func-
tion approximation, and used the group Lasso twice, first for
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obtaining an initial estimator and reducing the dimension of
the problem, then for selecting the nonzero components. By
contrast, we use the random featuremapping for nonparametric
function approximation, and apply group Lasso for selection
and finite-sample FDR control. These differences have different
theoretical implications; for instance, the B-spline basis is usu-
ally orthonormal, whereas the random feature mapping is gen-
erally not orthogonal. Our group Lasso penalty is also different
from the COSSO penalty used in Lin and Zhang (2006), which
takes the form

řp
j“1 }�pxi,jqTcj}K `

ř2p
j“p`1 }�prxi,j´pqTcj}K .

Since the random feature mapping generally cannot form an
orthogonal basis, there is no closed-form representation of the
RKHS norms }�pxi,jqTcj}K and }�prxi,j´pqTcj}K in our setting.
As a result, the COSSO penalty is difficult to implement, and
instead we adopt the group Lasso penalty in (8) that also yields
the desired theoretical properties.

Given the penalized estimate pc2ppIq, we obtain an estimate
of the selected variable indices pSpIq Ď t1, . . . , 2pu. That is, for
each j P t1, . . . , pu, j P pSpIq if pcjpIq ‰ 0 and the original
variable Xj is selected, and pj ` pq P pSpIq ifpcj`ppIq ‰ 0 and the
knockoff variable rXj is selected. Then the probability of being in
the selected set pSpIq is

p
j “ Ptj P pSpIqu, for j “ 1, . . . , 2p, (9)

where P is with respect to both subsampling I and the random
features. We note that p
j can be estimated accurately using the
empirical selection frequencies (Meinshausen and Bühlmann
2010). Specifically, we repeat the above subsampling and coef-
ficient estimation procedure L times, each time for a subsample
I	, 	 “ 1, . . . , L. We then obtain the selected variable indices
pSpI	q for I	, and compute (9) using the empirical selection fre-
quency as the percentage of times the jth variable, j “ 1, . . . , 2p,
is included in t pSpI	quL	“1.

Next, we define the importance score for the original variable
Xj, j “ 1, . . . , p, as,

�j “ p
j ´ p
j`p. (10)

We comment that �j in (10) is calculated for only one run
of the knockoffs procedure, that is, we generate the knockoffs
only once. This is different from the derandomized knockoffs
method recently proposed by Ren, Wei, and Candès (2020),
which aggregates the selection results across multiple runs of
knockoffs to reduce the randomness of the knockoff generation.

Finally, given the target nominal FDR level q, we apply a
knockoff filter (Barber and Candès 2015) to the importance
scores to produce the final set of selected variables,

T “ min

#

t P t|�j| : |�j| ą 0u :
#tj : �j ď ´tu
#tj : �j ě tu

ď q

+

pknockoffsq.

(11)
Set T “ 8 if the above set is empty. Another commonly
used but slightly more conservative knockoff filter (Barber and
Candès 2015; Candès et al. 2018) is,

T` “ min

#

t P t|�j| : |�j| ą 0u :
#tj : �j ď ´tu ` 1

#tj : �j ě tu
ď q

+

pknockoffs+q.

(12)

In our simulations, we have experimented with both filers,
which produce very similar results, sowe only present the results
based on T.

Given the threshold value T, the final set of selected variables
is,

pS “

!

j P t1, . . . , pu : �j ě T
)

. (13)

We then reestimate cp in (4) using all the sample observations
as,

pcRFp “

´

ppcRF1 q
T, . . . , ppcRFp q

T
¯T

“ argmin
cjPRr ,jP pS

1
n

n
ÿ

i“1

»

–yi ´
1
n

n
ÿ

i“1
yi ´

ÿ

jP pS

�pxi,jqTcj

fi

fl

2

.

We obtain the final knockoffs-based kernel regression estimator
as,

pf RFpXq “ �ppXq
T
pcRFp . (14)

3.5. Parameter Tuning

We next discuss the parameter tuning. We further carry out
a sensitivity analysis in Section S2.2, supplementary materi-
als, and a parallelization experiment in Section S2.5 of the
Appendix, supplementary materials.

For the number of random features r, we start with an initial
set � of candidate values for r. For each working rank r P

�, we calculate the selection frequencies
�

p
j,r
(

jPr2ps,rP�
, and

the standard deviation pσr “ sd
´

�

p
j,r
(

jPr2ps

¯

, with a rela-
tively small number for the subsampling replications. We then
choose the value of r P � that maximizes the following crite-
rion that balances the selection standard deviation and model
complexity,

pr “ argmax
rP�

2ppσr ´ lnprq.

We have observed through our numerical simulations that,
when we start from a small value of r, the selection frequen-
cies of both original variables and their knockoffs counter-
parts are close to zero. As r increases, it starts to separate the
truly important variables from the null variables and knock-
offs, where the selection frequencies of those truly important
variables grow positively, and correspondingly, the standard
deviation pσr increases. Meanwhile, the log penalty term helps
balance the model complexity.

For the regularization parameter τ in (8), we choose it by
minimizing the BIC criterion,

pτ “ argmin
τě0

logrRSSpτ qs ` r
log n
n

| pSpτ q|,

where RSSpτ q is the cross-validation residual sum of squares,
and | pSpτ q| is the cardinality.

For the number of subsampling replications L, our numerical
experiments have found that L “ 100 results in a competitive
performance in FDR control and power. For the subsampling
sample size ns, we have found that, when ns is no smaller
than tn{2u, the method performs well. We also comment that,
the computation of our method can be easily parallelized,
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since it requires no information sharing across different
subsamples.

4. Theoretical Guarantees

4.1. FDR Control

We show that our proposed procedure controls the FDR under
any given nominal level and any given sample size. Due to
the intrinsic difficulty of the nonparametric additive model,
we employ the random feature mapping to approximate the
component function fj, and construct a projection operator
between the RKHS and the original predictor space. By con-
struction, the random features of the knockoff variables have
a similar structure mimicking the random features of the orig-
inal variables, even though the knockoffs are not associated
with the response conditioning on the original ones. Since the
random features may introduce additional stochastic errors,
which can disturb the order of the variables entering the model,
we further employ the subsampling strategy to improve the
selection stability. Finally, we compute the importance score
for each variable based on the projected component function
fj, and select the variables that have considerably higher scores
than their knockoff counterparts. Intuitively, such a procedure
enjoys the finite-sample FDR control, similarly as the existing
knockoff solutions (Barber and Candès 2015; Candès et al.
2018).

We first show that the importance score �j in (10) has a
symmetric distribution for a null variable Xj P SK, and is
equally likely to be positive or negative. The symmetric property
of the null variables is crucial for the knockoffs procedure, which
then chooses a data-dependent threshold while having the FDR
under control (Barber and Candès 2015).

Theorem 1. Suppose Assumption 1 holds. Let ps1, . . . , spq be a
set of independent random variables, such that sj “ ˘1 with
probability 1{2 if j P SK, and sj “ 1 if j P S . Then,

p�1, . . . ,�pq
d
“ p�1 ¨ s1, . . . ,�p ¨ spq.

Next, we show that our selection procedure successfully con-
trols the false discovery under any sample size. The result holds
regardless of the distribution or the number of predictors, and
does not require any knowledge of the noise level. The false
discovery here is measured by both the FDR, and the modified
FDR, which is defined as,

mFDR “ E

«

| pS X SK|

| pS| ` 1{q

ff

.

The definition of mFDR follows the knockoffs literature (Barber
and Candès 2015), with 1 replaced by 1{q in the denominator
compared to FDR. Meanwhile, it is close to FDR in the setting
when there are a large number of variables selected, that is, when
| pS| is large, and it is less conservative than FDR, in that mFDR
is always under control if FDR is.

Theorem 2. For any q P r0, 1s and any sample size n, the selected
set pS in (13) based on the knockoff filter T in (11) satisfies that

mFDR ď q.Meanwhile, the selected set pS based on the knockoff
filter T` in (12) satisfies that FDR ď q.

We remark that, Theorem 2 achieves the valid FDR control with
no restriction on the dimension p relative to the sample size
n. As such, the proposed method works for both settings of
p ă n and p ą n. In particular, the FDR control under p ą n
is achieved by building upon the model-X knockoffs (Candès
et al. 2018), which treats the variables as random and utilizes
the stochasticity of the random variables. This is different from
the original knockoff solution (Barber and Candès 2015), which
treats the variables as fixed and relies on specific stochastic
properties of the linear model, and thus, excludes the setting of
p ą n or nonlinear models.

4.2. Power Analysis

Next, we show that our proposed kernel knockoffs selection
procedure achieves a power that approaches one as the sam-
ple size tends to infinity. We first note that, the theoretical
power analysis for the knockoff methods is largely missing in
the current literature, with a few exceptions such as Fan et al.
(2020) and Weinstein et al. (2020). Fan et al. (2020) studied
the power for linear regressions under the model-X knockoff
framework. Weinstein et al. (2020) studied the power of knock-
offs with thresholded Lasso for linear models. By contrast, we
study the power for nonparametric models. We also remark
that, as is common for all knockoffs selection methods, the
power of our knockoffs-basedmethod is usually no greater than
that of the group Lasso-based selection. This is because the
proposed knockoffs procedure is built on top of the group Lasso
selection in (8). In a sense, the knockoffs procedure further
selects variables from the set of variables that are identified by
group Lasso for the augmented predictors. Therefore, the key
of our power analysis is to investigate how much power loss
that the knockoffs procedure would induce. We introduce some
regularity conditions.

Assumption 2. The number of nonzero component functions,
that is, |S|, is bounded.

Assumption 3. Suppose there exists a constant Cmin ą 0, such
that the minimal eigenvalue of matrix Ern´1�T

S�S s satisfies
that,

�min

ˆ

E

„

1
n
�T

S�S

j˙

ě
1
2
Cmin,

where the expectation is taken over the random features
and �S P R

nˆ2r|S| is the design matrix with the ith row
equal to

”

�pxi,j1qT, . . . ,�pxi,j|S|
qT,�prxi,j1qT, . . . ,�prxi,j|S|

qT

ı

,
i “ 1, . . . , n, S “ tj1, . . . , j|S|u.

Assumption 4. Suppose p ă en. Let ηR ” cη
!

n´β{p2β`1q

`rplog pq{ns1{2
)

for some constant cη ą 0. Suppose
minjPS }fjpXjq}L2pXjq ě κnηR, for some slowly diverging
sequence κn Ñ 8, as n Ñ 8, where the RKHSH1 is embedded
to a βth order Sobolev space with β ą 1.
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Assumption 5. Suppose there exists a constant 0 ď ξ� ă 1 such
that,

max
jRS

›

›t�jpIqu
T�SpIqr�SpIqT�SpIqs

´1›

›

2 ď ξ� , and

ξ�

a

|S| ` 1
τ

ηR ` ξ�

b

|S| ă 1.

All these conditions are reasonable and are commonly imposed
in the literature. Specifically, Assumption 2 concerns the overall
complexity in that it upper bounds the total number of nonzero
component functions. Similar conditions have been commonly
adopted in sparse additivemodels over RKHS (e.g., Koltchinskii
and Yuan 2010; Raskutti, Wainwright, and Yu 2012; Yuan and
Zhou 2016; Dai and Li 2021). Moreover, we carry out a numeri-
cal experiment in Section S2.4 of the Appendix, supplementary
materials, and show empirically that our method still works
reasonably well when the number of nonzero components |S|

increases along with the sample size. We speculate that it is
possible to allow |S| to diverge, but leave the full theoretical
investigation as future research. Assumption 3 ensures the iden-
tifiability among the |S| submatrices of�S . The same condition
has been used in Zhao and Yu (2006); Ravikumar, Wainwright,
and Lafferty (2010). Assumption 4 imposes some regularity on
the minimum regulatory effect. Similar conditions have been
used in Lasso regressions (Ravikumar,Wainwright, and Lafferty
2010; Raskutti, Wainwright, and Yu 2012; Fan et al. 2020). In
addition, similar to the treatment of high-dimensional linear
and additive models (Raskutti, Wainwright, and Yu 2011; Yuan
and Zhou 2016), we assume that p ă en to ensure nontrivial
probabilistic bounds. In other words, we allow the dimension
p to diverge at the exponential order of the sample size n.
Assumption 5 reflects the intuition that the large number of
irrelevant variables cannot exert an overly strong effect on the
relevant variables. Besides, the second inequality characterizes
the relationship between ξ� , the sparse tuning parameter τ , and
the sparsity level |S|. This condition is again standard for Lasso
regressions (Zhao and Yu 2006; Ravikumar, Wainwright, and
Lafferty 2010).

Next, we characterize the statistical power of the proposed
kernel knockoffs procedure. For the true set S and the selected
set pS , the power is defined as

Powerp pSq “ E

«

| pS X S|

|S| _ 1

ff

.

Theorem 3. Suppose Assumptions 1–5 hold, and the num-
ber of random features r ě crn2β{p2β`1q for some cr ą 0.
Then, the selected set pS in (13) satisfies that, Powerp pSq Ñ 1,
as n Ñ 8.

We again remark that, Theorem 3 holds for both settings of
p ă n and p ą n, or more specifically, n ă p ă en,
which is implied by Assumption 4. The power property under
p ą n is achieved by integrating Rademacher processes and the
concentration inequalities for empirical processes (van de Geer
2002; Yuan and Zhou 2016) with the deviation conditions for
nonparametric regressions (Loh andWainwright 2012; Dai and
Li 2021).

Together, Theorems 2 and 3 show that our proposed selection
method is able to achieve both the finite-sample FDR control
and the asymptotic power that approaches one.

5. Numerical Studies

We carry out intensive simulations to examine the empirical
performance of our proposed method under the varying signal
strength, the predictor distribution, the nonparametric compo-
nent function, the sample size and the number of predictors.We
comparewith several alternative solutions.We also illustrate our
method with an analysis of brain imaging data for Alzheimer’s
disease. We report additional simulation results in Section S2 of
the Appendix, supplementary materials.

5.1. AlternativeMethods for Comparison

We abbreviate our proposed kernel knockoffs selection method
as KKO. We solve the group Lasso penalized problem in (8)
using the R package grpreg. We employ the Laplacian kernel
with r P � “ t2, 3, 4u, and tune the hyperparameters following
Section 3.5. We set the target FDR level at q “ 0.2 following
Fan et al. (2020). We also briefly comment that, in addition to
the reproducing kernel approach, the spline basis expansion is
another commonly used approach in the nonparametric addi-
tive modeling. But it involves a totally different set of method-
ological tools and theoretical analysis, and we leave it as future
research.

We compare our method with three main competitors. The
first competitor is the nonparametric selection method for
sparse additive models (SPAM) of Ravikumar et al. (2009),
which combines B-spline basis expansion with grouped Lasso.
We set the number of B-spline expansions at rn1{5s, that is,
the largest integer no greater than n1{5, and tune the sparsity
penalty by generalized cross-validation. We implement the
method using the R package SAM. We did not compare with
the COSSO method of Lin and Zhang (2006), due to that the
code is not available, and SPAM usually achieves a similar
and sometimes more competitive performance than COSSO.
The second competitor is the linear knockoffs (LKO) selection
method, andwe implement it using theRpackageknockoffs.
The third competitor is the graphical nonlinear knockoffs
(RANK) selection method of Fan et al. (2020). We follow the
same parameter setup as in Fan et al. (2020), and implement
their method based on the R package gamsel.

We also compare our method with that of Dai and Barber
(2016). More specifically, Dai and Barber (2016) adopted an
“expansion first” strategy, which first performs feature expan-
sion r�pXjq, j “ 1, . . . , p, then constructs the knockoffs based
on the expanded features. By contrast, we adopt the “knockoffs
first” approach, which constructs the knockoffs directly for the
variables tXju

p
j“1, then performs the random feature expansion

on both original variables and their knockoffs. There are two
advantages of doing the knockoffs first. First, it ensures a better
knockoffs construction and eventually a better statistical power.
That is, to construct a good knockoff variable using either the
second-order knockoffs or the deep knockoffs, it requires a
reasonably slow eigenvalue decay of the covariance�, so that the
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Figure 1. Comparison between the “expansion first”strategy and the “knockoffs first”strategy. Left panel: the eigenvalue decay of the sample covariancematrix (blue line)
and the random kernel expansion (red line). Right panel: the marginal sample correlations between the original variables and the knockoff variables (blue line), between
the random kernel expansion and the “expansion first”knockoff variables (red line), and between the random kernel expansion and the “knockoffs first”knockoff variables
(green line).

original variables and their knockoffs are differentiable (Candès
et al. 2018). We consider a simulation example replicated
200 times, where the predictors follow a multivariate normal
distribution with the zero mean and the identity covariance
matrix, n “ 500, p “ 5, and we employ the Laplacian kernel
with r “ 3. Figure 1(a) shows the eigenvalue decay of the sample
covariance matrix (blue line), and the random kernel expansion
(red line). It is seen that the former decays more slowly than
the latter, and therefore, it is better to construct the knockoffs
based on the original variables. Second, the “expansion first”
leads to larger correlations between the original variables and
their knockoffs, compared to the “knockoffs first,” as shown
in Figure 1(b), which would in turn make the subsequent
group Lasso selection harder. Finally, the “expansion first” is
computationallymore expensive. This is because the “expansion
first” approach requires generating the knockoffs for pr-
dimensional variables, whereas our “knockoffs first” approach
only requires generating the knockoffs for p-dimensional
variables.

5.2. Varying Signal Strength, Predictor Design, and
Component Functions

We first study the performance with the varying signal strength
and the predictor distribution.

We simulate the response, Y “
ř

jPS θjfjpXjq ` ε, where
S is the set of relevant predictors with |S| “ 10, and ε is
a standard normal error. We sample θj independently from
a uniform distribution p´θ , θq for some positive constant θ .
The magnitude of θ reflects the strength of the signal, and
we vary θ “ t0.1, 1, 10, 100, 200u. We simulate the predictors
independently from three different distributions, a multivariate
normal distribution with mean zero and covariance �ij “

0.3|i´j|, a mixture normal distribution, with an equal prob-
ability from three multivariate normal distributions, all with
mean zero, and different covariances where �1,ij “ 0.1|i´j|,
�2,ij “ 0.3|i´j|, and �3,ij “ 0.5|i´j|, and a uniform r´2, 2s

distribution. We employ the second-order knockoffs when the
predictor distribution is normal, and the deep knockoffs oth-
erwise, to generate the knockoff variables. We first consider
a trigonometric polynomial component function, and fix the
number of predictors at p “ 50, and the sample size at n “ 900.
We later consider other forms of component functions, and

different pp, nq.

fjpxq “ uj,1 sinpcj,1xq ` uj,2 cospcj,2xq ` uj,3 sin2pcj,3xq

` uj,4 cos2pcj,4xq, (15)

where uj,k follows a uniform p1, 2q distribution, and cj,k follows
a uniform p1, 10q, for k “ 1, 2, 3, 4. Figure 2 reports the FDR
and power over 200 data replications for the four methods
with the varying signal strength θ and three different predictor
distributions. It is seen that ourmethod successfully controls the
FDR blow the expected level, and at the same time achieves the
best power. Besides, the performance is robust with respect to
different predictor distributions. By comparison, the alternative
methods are much more sensitive in terms of the FDR control,
and the powers are consistently lower. Moreover, the linear
knockoffs method often fails to control the FDR.

Next, we consider more forms of component functions. The
first is a sin-ratio function,

fjpxq “
sinpcj,1xq

2 ´ sinpcj,2xq
, (16)

where cj,k follows a uniform p1, 10q distribution for k “ 1, 2,
and |S| “ 10. We note that it is generally more difficult to
estimate the sin-ratio function (16) compared to the trigono-
metric polynomial function (15). The second is amixed additive
model, where we sample the component function with an equal
probability from (15) or (16). We fix the predictor distribution
as the multivariate normal, p “ 50 and n “ 900. We continue
to vary the signal strength θ “ t0.1, 1, 10, 100, 200u. Figure 3
reports the FDR and power based on 200 data replications. It is
seen again that our method achieves the best power while con-
trolling the FDRunder the nominal level for the new component
functions.

5.3. Varying Sample Size andDimension

Next, we investigate the empirical performance with the varying
n and p.

For the varying n, we consider the trigonometric polyno-
mial function (15) with p “ 50, |S| “ 10, θ “ 100, and
the multivariate normal predictor distribution with mean zero
and covariance �ij “ 0.3|i´j|. We vary the sample size n “

t400, 900, 1500, 2500u. Figure 4 reports the FDR and power
based on 200 data replications. It is seen that our method
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Figure 2. Empirical performance and comparison in terms of FDR and power with the varying signal strength and predictor distribution. Four methods are compared:
the nonparametric selection method for sparse additive models (SPAM) of Ravikumar et al. (2009), the linear knockoffs (LKO) of Barber and Candès (2015), the graphical
nonlinear knockoffs (RANK) of Fan et al. (2020), and our proposed kernel knockoffs (KKO).

successfully control the FDR at all sample sizes, while its power
quickly increases as n increases, and dominates the powers of all
the competitive methods considerably. Besides, both LKO and
RANK have an inflated FDR especially when the sample size is
small.

For the varying p, we consider the trigonometric polynomial
function (15) with n “ 900, |S| “ 10, θ “ 100, and the
multivariate normal predictor distribution with mean zero and
covariance�ij “ 0.3|i´j|.We vary the number of predictors p “

t30, 50, 150, 500, 1500, 2000u. As such, we have considered both
cases that p ă n and p ą n. Recall that the proposed method
can handle both the low-dimensional and high-dimensional
regimes, and the theoretical guarantees in Section 4 are estab-
lished for both p ă n and p ą n. Moreover, for the p ą n case,
we construct the knockoff variables for all the original variables;
that is, we construct the p-dimensional knockoffs rX for the p-
dimensional X. This follows a similar strategy as in Fan et al.
(2020), but is different from Barber and Candès (2019), where
a precedent step of feature screening is carried out first, and
the knockoff variables are constructed only for those selected

variables. Our approach avoids to require the sure screening
property; see also the discussion in Fan et al. (2020). Figure 5
reports the FDR and power based on 200 data replications. It
is seen that our method again achieves the best performance in
terms of FDR and power in both regimes. By contrast, LKO and
RANK have a low power and inflated FDR. Although SPAM
sometimes obtains a power similar to ours, its FDR is much
inflated and is far above the nominal level.

5.4. Brain Imaging Data Analysis

We illustrate the proposed method with a brain imaging data
analysis to study the Alzheimer’s disease (AD). AD is an irre-
versible neurodegenerative disorder, and is characterized by
progressive impairment of cognitive and memory functions,
loss of bodily functions, and ultimately death. It is the leading
form of dementia in elderly subjects, and is the sixth leading
cause of death in the United States. Over 5.5 million Americans
were affected by AD in 2018, and without any effective treat-
ment or prevention, this number is projected to triple by 2050
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Figure 3. Empirical performance and comparison in terms of FDR and power with the varying signal strength and component function. The same four methods as in
Figure 2 are compared.

Figure 4. Empirical performance and comparison in terms of FDR and power with the varying sample size n. The same four methods as in Figure 2 are compared.

Figure 5. Empirical performance and comparison in terms of FDR and power with the varying number of predictors p in both regimes where p ă n and p ą n with
n “ 900. The same four methods as in Figure 2 are compared.

(Alzheimer’s Association 2020). Brain atrophy as reflected by
brain gray matter cortical thickness is a well-known biomarker
for AD.We study a dataset with n “ 697 subjects, each of whom
received an anatomicalmagnetic resonance imaging (MRI) scan
that measures cortical thickness. The data is publicly available at
http://adni.loni.usc.edu/. TheMRI image has been preprocessed
by the standard pipeline, and is summarized in the form of a
vector of cortical thicknessmeasurements for a set of parcellated
brain regions-of-interest. There are p “ 68 regions in total.

Brain parcellation is particularly useful to facilitate the interpre-
tation, and has been frequently employed in brain imaging anal-
ysis (Fornito, Zalesky, and Breakspear 2013; Kang et al. 2016).
In addition to the MRI image, for each subject, the data also
records a composite cognitive score, which combines numerous
tests that assess episodicmemory, timed executive function, and
global cognition (Donohue et al. 2014). Our goal is to study
the association between the composite cognitive score and the
vector of brain cortical thickness, and identify individual brain

http://adni.loni.usc.edu/
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Table 1. Brain regions identified by the kernel knockoffs selection procedure.

l-middletemporal l-superiorparietal r-fusiform r-inferiorparietal l-entorhinal
l-fusiform l-inferiorparietal l-precuneus l-superiortemporal r-entorhinal

NOTE: “l-” stands for the left hemisphere, and “r-” stands for the right hemisphere.

regions with strong associations. A linearmodel is inadequate to
capture such an association, and we turn to the nonparametric
additivemodel instead.We apply the proposed kernel knockoffs
selection procedure. As the distribution of the predictors is not
necessarily normal, we employ the deep knockoffs machine to
generate the knockoff variables. We continue to set the target
FDR level at q “ 0.2.

Table 1 reports the ten brain regions selected by our method.
These findings agree with and support the current literature
on AD research. Particularly, the middle temporal gyrus is
located on the temporal lobe, and is associated with processes of
recognition of known faces and accessing word meaning while
reading. Middle temporal lobe atrophy is common in AD as
well as its prodromal stage, mild cognitive impairment (Visser
et al. 2002). The superior parietal lobe is involvedwith attention,
visuospatial perception, and spatial orientation. Damage to the
parietal lobe is common in AD, and leads to problems with
performing gestures and skilled movements (Pini et al. 2016).
The fusiform is linked with various neural pathways related to
recognition. The inferior parietal lobe is involved in perception
of emotions. The superior temporal gyrus is involved in auditory
processing, and has also been implicated as a critical structure in
social cognition. Numerous studies have found involvement of
these brain regions in the development ofAD (Convit et al. 2000;
Du et al. 2007; Pini et al. 2016). The precuneus is associated
with episodicmemory, visuospatial processing, reflections upon
self, and aspects of consciousness, and is found to be an AD-
signature region (Bakkour et al. 2013). Finally, the entorhinal
cortex functions as a hub in a widespread network for memory,
navigation and the perception of time. It is found implicated in
the early stages of AD, and is one of the most heavily damaged
cortices in AD (van Hoesen, Hyman, and Damasio 1991).

Supplementary Materials

The online Supplementary Appendix collects all technical proofs and addi-
tional simulation results.
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