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ABSTRACT

In this article, we develop a nonparametric graphical model for multivariate random functions. Most existing
graphical models are restricted by the assumptions of multivariate Gaussian or copula Gaussian distribu-
tions, which also imply linear relations among the random variables or functions on different nodes. We
relax those assumptions by building our graphical model based on a new statistical object—the functional
additive regression operator. By carrying out regression and neighborhood selection at the operator level,
our method can capture nonlinear relations without requiring any distributional assumptions. Moreover,
the method is built up using only one-dimensional kernel, thus, avoids the curse of dimensionality from
which a fully nonparametric approach often suffers, and enables us to work with large-scale networks. We
derive error bounds for the estimated regression operator and establish graph estimation consistency, while
allowing the number of functions to diverge at the exponential rate of the sample size. We demonstrate the
efficacy of our method by both simulations and analysis of an electroencephalography dataset. Supplemen-
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1. Introduction
1.1. Motivation and Proposal

Multivariate functional data, where continuous observations are
sampled from a vector of stochastic processes, are emerging in
a wide range of scientific applications. Examples include time-
course gene expression data in genomics studies (Wei and Li
2008), multivariate time series data in finance (Tsay and Pourah-
madi 2017), electrocorticography and functional magnetic res-
onance data in neuroimaging (Zhang et al. 2015), among many
others. Functional data analysis has received enormous inter-
est recently; see, for instance, Ramsay and Silverman (2005)
and Hsing and Eubank (2015), for reviews of contemporary
developments. A central problem in multivariate functional data
analysis is to investigate the interdependence among the multi-
variate random functions. This can be formulated as graphical
modeling of multivariate functional data, and is the problem to
be tackled in this article.

Our motivation is brain functional connectivity analysis,
which is currently at the forefront of neuroscience research.
Brain functional connectivity reveals intrinsic functional archi-
tecture of the brain (Varoquaux and Craddock 2013). Accu-
mulated evidences have shown that brain connectivity network
alters under different pathological conditions. Such alterations
are associated with cognitive and behavioral functions, and
hold crucial insights of pathologies of neurological disorders
(Fox and Greicius 2010). One of the common imaging tools to

study functional connectivity is electroencephalography (EEG),
which measures brain activities through voltage values of elec-
trodes placed at various scalp locations over a period of record-
ing times. It results in multivariate functional data that take
the form of a location by time data matrix for each individual
subject. Based on these functional data, an undirected graph
is constructed to characterize brain connectivity, where nodes
represent neurological elements such as different locations and
regions of the brain, and links represent interactions and depen-
dencies among the nodes (Fornito, Zalesky, and Breakspear
2013).

In this article, we propose a new nonparametric functional
graphical modeling approach. Built on a recently proposed
notion of functional additive conditional independence (Li and
Solea 2018), we formulate functional graphical estimation as
a neighborhood selection problem in a nonlinear regression
framework. To do so, we first introduce a new statistical
object called functional additive regression operator (FARO),
which is capable of capturing nonlinear relations without
requiring distributional or linear structural assumptions, nor
any conditional mean model. We next introduce an objective
function that follows the spirit of least-squares but whose
deployment is at the Hilbert-Schmidt operator level. This
is set forth from a broad synthesis of regression with linear
operators as parameters. We show that FARO is the minimizer
of the proposed objective function, and thus, offers a versatile
nonlinear measure of the function-to-function dependency.
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We estimate FARO by minimizing the objective function
subject to a mix of L; and L, type penalties. The estimation
algorithm is implemented efficiently via convex solvers. The
functional graphical model is then recovered according to the
zero operators in the coeflicients of the neighborhood selection.

1.2. Related Work

Our proposal is related to but also clearly distinct from several
existing lines of work, including graphical modeling for random
variables, functional graphical modeling, and linear operator-
based methods. Next we discuss the connections and differences
in detail.

There have been a large number of proposals for graphical
modeling of random variables, most notably, sparse graph esti-
mation under an L penalty or its variants (Yuan and Lin 2007;
Friedman, Hastie, and Tibshirani 2008; Ravikumar et al. 2011;
Cai, Liu, and Luo 2011; Fan and Lv 2016). It is also noteworthy
that some solutions reformulated the problem as neighborhood
selection (Meinshausen and Bithlmann 2006; Peng et al. 2009).
However, most of those methods imposed a Gaussian structure,
whereas some later proposals relaxed the Gaussian assumption
(Liu, Lafferty, and Wasserman 2009; Liu et al. 2012; Xue and
Zou 2012; Voorman, Shojaie, and Witten 2014). Besides, they all
have focused on graphical modeling of random variables. When
moving from random variables to random functions, it involves
a different set of techniques for both the method and the theory.
Moreover, when the functions are only partially observed, as we
discuss in Section 4.4, we need to estimate the random functions
and account for the estimation error, which in turn would lead
to a slower rate of convergence as shown in Theorem 7.

Qiao, Guo, and James (2019) recently proposed a graphical
model for functional data, assuming that the random func-
tions follow a multivariate Gaussian distribution. Specifically, let
X=UX,... ,Xp)T be a p-dimensional random function on an
interval of time T'in R. Let V = {1,...,p} and E = {(i,)) €
V x V,i > j} denote the sets of nodes and edges, and G = (V, E)
the corresponding undirected graph. A natural way to describe
the interrelations among X is via conditional independence (CI).
That is, nodes i and j are not connected in G if and only if
X; and X; are independent conditioning on the rest of random
functions:

(G.j) ¢ E
where X_; ;) denotes the set of random functions {X} : k €
V\{i,j}}. The relation embedded in (1) represents a functional
graphical model. As shown in Pearl, Geiger, and Verma (1989),
the three-way statistical relation of conditional independence
satisfies the semi-graphoid axioms, which are the key properties
of the notion of separation that underpins any graph structure.
For this reason, CI is commonly used as a criterion to define a
graph, and built on this notion, Qiao, Guo, and James (2019)
developed a functional graphical model under the Gaussian
assumption.

Although an intuitive and appealing idea, using CI to
characterize separation among the nodes requires the Gaussian
assumption, which is parametric and can be unrealistically
strong in numerous applications. Alternatively, one can resort to
a fully fledged nonparametric approach. However, it inevitably

& XillX; | Xoqy, 1

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1719

involves high-dimensional kernels, and thus, often suffers from
the curse of dimensionality, a problem that is more severe for
large networks. To strike a balance, Li, Chun, and Zhao (2014)
proposed a new three-way statistical relation to characterize
node separation: additive conditional independence (ACI). ACI
parallels many canonical principles of CI. Like CI, ACI also
satisfies the semi-graphoid axioms. But unlike CI, the estimation
of ACI requires neither parametric assumption nor high-
dimensional kernels. It thus, avoids the curse of dimensionality,
and is able to scale to large networks.

Li and Solea (2018) extended the notion of ACI to functional
additive conditional independence (FACI) to construct a non-
parametric graphical model for multivariate random functions.
Our proposal is similar to Li and Solea (2018) in that our
method is built upon FACI as well. However, our proposal is
also considerably different from theirs in both methodology and
theory. Methodologically, Li and Solea (2018) used the pairwise
Markov property induced by FACI as the criterion to construct
the graph, whereas we use the local Markov property induced
by FACI as such a criterion. More importantly, they used hard
thresholding to achieve sparsity, whereas we use penalized min-
imization to achieve this purpose, which can be carried out via
a range of penalty functions. Such a difference is analogous to
sparsifying a partial correlation matrix for random variables
by hard thresholding versus by penalized regularization (Zhu,
Shen, and Pan 2014). Theoretically, Li and Solea (2018) only
considered the scenario when the number of graph nodes is
fixed, and did not derive any concentration bounds. By contrast,
we allow the graph size to diverge at an exponential rate, establish
graph estimation consistency, and derive a set of concentration
inequalities and error bounds. The new asymptotic develop-
ment involves considerable challenges, as little theoretical work
has been done previously to investigate function-on-function
dependency involving both high dimensionality and nonlin-
earity. In fact, even under the setting for random variables,
the concentration inequalities and error bounds obtained here
appear to be the first of their kinds. Furthermore, the tools
and techniques we develop are sufficiently general to be applied
to broader settings involving sparse estimation at the operator
level.

More recently, Solea and Li (2020) proposed a copula
method, and Solea and Dette (2020) proposed a nonparametric
method, both for functional graphical modeling. Although we
target similar problems, our solutions are completely different.
Solea and Li (2020) extended the copula Gaussian idea of
Liu et al. (2012) to the functional setting. Our model is more
general, and can capture structures beyond the copula Gaussian
distribution when using nonlinear kernels such as the radial
basis function kernel. Actually, if we choose the second-layer
kernel to be the inner product of the copula transformation
functions, our model includes that of Solea and Li (2020) as a
special case. Solea and Dette (2020) extended the joint additive
model of Voorman, Shojaie, and Witten (2014). Specifically, let
{aff},‘zil be the collection of all functional principal components
(fPC) from the random function X;. The model of Solea and
Dette (2020) is E(af | X-i) = 3, 372, fF (@), where £
R — R is an arbitrary function. That is, the conditional mean
of every fPCs of X; is an additive function of all the fPCs of the
rest of the random functions, for each i € V. Our model, on the
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other hand, is of the form, E(f(X;) | {X; : j # i}) = Zj#ifj(Xj),
for all f € Hx, and f; is an arbitrary function on X;. Our model
is clearly more general, and it reduces to the model of Solea
and Dette (2020) when we choose the kernel of X; to be the
linear kernel and the kernel of each component in X_; to be the
additive kernel on the fPCs. Another crucial difference is that,
both Solea and Li (2020) and Solea and Dette (2020) were built
on the classical conditional independence, whereas our method
is built on the functional additive conditional independence.
These differences lead to a substantially different solution.
There have also been developments of linear operator-based
methods; see Li (2018) for a survey. In particular, Lee, Li, and
Zhao (2016a) introduced an additive partial correlation oper-
ator to characterize ACI, which extends the partial correlation
to the nonlinear setting. Our method differs from Lee, Li, and
Zhao (2016a) in that we replace the hard thresholding with
the penalized, operator-level neighborhood selection, allow the
dimension to go to infinity, and replace random variables with
random functions. Lee, Li, and Zhao (2016b) applied ACI to
perform variable selection in a classical regression setting, which
contains a similar idea as this article, that is, regression with
operators as coefficients. On the other hand, we aim at a com-
pletely different problem: the graphical modeling of multivariate
random functions. At the individual regression level, Lee, Li,
and Zhao (2016b) only considered the setting when p is fixed,
whereas our theory allows p to diverge at an exponential rate
with the sample size. At the graph estimation level, we need
to consider p regressions simultaneously with a diverging p. In
addition, we establish the concentration bound of our functional
additive regression operator, and this type of result is not avail-
able in Lee, Li, and Zhao (2016b). There has been some work
studying the concentration bounds of the empirical covariance
operator, and some on the concentration bounds in a classical
regression setting where the response space is the Euclidean
space; see Bosq (2000); Yao, Rosasco, and Caponnetto (2007).
Our regression setting is more general than those existing results
in that our response space is a reproducing kernel Hilbert space.

1.3. Organization

The rest of the article is organized as follows. We set up the
nonparametric functional graphical model based on ACI and
neighborhood selection in Section 2. We develop an estimation
procedure at the operator-level in Section 3, and derive the
asymptotic theory in Section 4. We implement the estimation
procedure and present an algorithm using a coordinate repre-
sentation in Section 5. We conduct simulations, and illustrate
our method with an EEG data analysis in Section 6. We conclude
the article in Section 7, and relegate all proofs and additional
results to the supplementary material.

2. Model

In this section, we first introduce the functional additive regres-
sion operator (FARO), then develop the notions of functional
additive conditional independence and functional neighbor-
hood selection, from which we define our version of func-
tional graphical model. Finally, we connect neighborhood selec-

tion with FARO, which lays the foundation for the subsequent
development of estimating functional graphical model through
sparse estimation of FARO.

2.1. Functional Additive Regression Operator

Let (2, F,P) be a probability space. For eachi = 1,...,p, let
Qx, denote a Hilbert space of R-valued functions defined on an
interval T C R, and Q2 the Cartesian product 2y, x - - - x Qx,.
Let X = (Xy,... ,XP)T be a p-dimensional random function
defined on €2 and taking value in Qx.

Definition 1. Let (-, -)qy, denote the inner product in Qx;. Then,
foranyi=1,...,p,a positive definite kernel «; : Qx, x Qx, —
R is said to be induced by (-,-)qy, if, for any f,g € Qx;
there exists a function p : R* — R such that «;(f,g) =
p(fsfax, (&) ax,» (& &)ax,)-

The same construction was used in Li and Solea (2018).
This definition is inspired by kernel mapping in the multivariate
random variable setting, except that the domain of the kernel has
been changed from a Euclidean space to an infinite-dimensional
functional space. There are many types of kernels, for instance,
the radial basis kernel «;(f,g) = exp(—y||f — g||§2x‘), and the
polynomial kernel «;(f,g) = (1 + (f,g)ay,)". I

Given the kernel «;, we build up a second-level Hilbert space
‘Hx,, which is the reproducing kernel Hilbert space generated by
k. Let Hx be the direct sum EB‘f:le,., which is the linear space

Hx = if1+~~+]ff,:f1 E’HXI,...,fPE/HXP}withtheinner

product (fi + -+ + fy, g1 + -+ + &) = Yo {f &)y, For
any subset A of {1,..., p}, we define Hyx, to be the direct sum
DieaHx;.

Suppose, for each i = 1,...,p, every member of Hy, is
square-integrable. Then by Theorem 2.2 of Conway (1990), for
each pair (7,j), there exists a unique linear operator Zx.x;
HX]. — Hx; such that (f, EXiX;g>HX> = cov[f(Xy),g(X))],
forall f € Hx, and ¢ € Hy;. We then define an operator

Yxx : Hx — Hx via

p P
Exxf = Z Z in)(jﬁ:

i=1 j=1

where f = fi +--- + f, € Hx. In other words, Zxx is a
matrix of operators, whose (i, j)th entry is X, ;. This operator is
called the functional additive variance operator in Li and Solea
(2018). Similarly, for any subvectors U, V of X, we define the
functional additive covariance operator Xyy as the matrix of
operators whose entries are EU,.VJ..

We next define the Moore-Penrose inverse of an operator.
For a linear operator T, let (T) denote the kernel space (or null
space) of T; that is, ker(T) = T~1({0}) = {f : Tf = 0}. Let
ran(T) denote the range of T, and ran(T) denote the closure
of ran(T). Note that Xxx is not invertible if ker(Xxx) # {0}.
However, if we let {Zxx|ker(Zxx)*} to be Xxx restricted on
ker(Zxx)™, then the restricted operator is invertible. We call the
inverse of this restricted operator the Moore-Penrose inverse of
¥ xx, and denote it by Z;(X. Since Xxy is a self-adjoint operator,
we have ker(Zxx)* = ran(Zxx). Thus, Z;X is a mapping from



ran(Xxy) to ran(Xxx) that maps the member y of ran(Xxx) to
the unique member x € ran(Xxyx) that satisfies Xxxx = y.

Assumption 1. Suppose ran(Xyy) € ran(Zyy) for all disjoint
subvectors U, V of X. Moreover, the linear operator Bg)(_fo =

E;(_,-X_iZX—in is Hilbert-Schmidt, for alli € V.

We extend the definition of B?L,—Xi to B%V = Z{]UEUV,

for any disjoint subvectors U, V of X. Note that By, is well-
defined when ran(Xyy) < ran(Xyy), which is ensured by
Assumption 1. Moreover, the condition ran(Xyy) C ran(Zyy)
means the operator Xy sends the function in Hy to the low-
frequency part of Xyy, which is a type of collective smooth-
ness in the relation between U and V. This condition is not
directly related to the dimension of V, as Hy consists of scalar-
valued functions of V. Nevertheless, when the dimension of
V increases, we expect the class of Hy to be more complex,
and the condition ran(Xyy) <€ ran(Xyy) would impose a
stronger smoothness on the relation between U and V. This
agrees with the spirit of typical nonparametric estimations: the
more complex the function is, the stronger the penalty should
be. Later in Section 2.2, we discuss a concrete setting under
which Assumption 1 is satisfied.

Definition 2. Let U,V be any subvectors of X, and suppose
Assumption 1 holds. Then we call the operator B?JV the func-
tional additive regression operator (FARO) from Hy to Hy.

This concept of FARO plays a central role in our proposal.
It can be viewed as the functional extension of the additive
regression operator, which was developed in Lee, Li, and Zhao
(2016b) for nonparametric variable selection. The term “regres-
sion operator” was motivated by the similarity of ZLUZUV to
the regression coefficient matrix in multivariate linear regres-
sion.

2.2. Functional Additive Conditional Independence

We first give an alternative but equivalent definition of FACI to
that in Li and Solea (2018).

Definition 3. Let U,V,W be subvectors of X, and suppose
Assumption 1 holds. We say that the random elements U and
V are additively conditionally independent given the random
element W, denoted by ULL,V | W, if and only if, for any
feHy, g€ Hy,

cov[f(U) — (BYyu N (W), g(V) — (BYyyg)(W)] = 0.

Li and Solea (2018) defined FACI using orthogonality
between subspaces. The above alternative definition directly
involves FARO, which helps greatly to simplify the subsequent
theoretical and computational developments.

Next, we discuss how different choices of kernels can lead to
different FACI relations. We first show that a stronger FACI is
implied by larger RKHSs.

Proposition 1. Suppose U, V are subvectors of X with the cor-
responding RKHSs HY, ’Hg) and ’Hg,l), ’H%,Z), and W is another
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subvector of X with the corresponding RKHS H. If 7-[([}) -
HP, 1Y < HP, 1L, is defined via (K, H{, Hyy), and

11 4, is defined via (H(L?),Hg),ﬂw), then ULLL,V | W =
Ulls, VI W.

The next result shows different relations between FACI and
CI under the functional copula Gaussian model. Specifically,
suppose X; = E(X;) + Y ro; @ik¢ik is the Karhunen-Loéve
expansion of X;, for each i € V. We say X; follows a copula
Gaussian distribution if there exists a collection of monotone
functions {fix : k = 1,...}, such that Fi(X;) = Y ;2| fic(@ik) Pik
is an Qy,-valued Gaussian element. Furthermore, X =
(Xi»...,Xp)" follows a joint copula Gaussian distribution
if FX) = [Fi(X1),....Fp(Xp)]" is an Qx, x -+ x Qux, -
valued Gaussian element; see also Li and Solea (2018) for such
definitions.

Proposition 2. Suppose X follows a copula Gaussian distribution
with the sequences of copula transformation functions F(-) =
(1O, FpOIT.

(a) Ifthere exists M > 0 such that E| F;(X;) ||?2X‘ < Mforalli e

V, and that #y, is dense in L, (Py;), then for any subvectors
UV,WofX,wehave ULL,V | W = ULLV | W.

(b) If Hx, = span{«i(-,x) x € Qx} with k;(x',x) =
(Fi(x'), Fi(x)) Qx, foranyx, x’ € Qx;, then for any subvectors
UV, WofX,wehave ULL,V | W & ULLV | W.

The proof of this proposition follows Li and Solea (2018,
Theorem 1) and is omitted. Proposition 2(a) shows that
FACI implies CI, but not vice versa, when the kernel is
characteristic, for example, the radial basis kernel, while
Proposition 2(b) shows that FACI and CI are equivalent when
the kernel induces the same space as spanned by the copula
transformation functions. Both Propositions 1 and 2 suggest
that it is beneficial to choose a kernel that is dense in the ambient
Ly-space. In practice, we suggest choosing a kernel function
that satisfies this condition, such as the radial basis kernel
function.

Next, to further understand the probabilistic mechanism
underlying FACI, as well as its relation with CI, we introduce
a new distribution, the Additive Gaussian Distribution, under
which FACI and CI are equivalent. This distribution is much
more general than the Gaussian distribution. More importantly,
it provides a concrete probability model that generates the FACI
relation for multivariate random functions.

If the p-variate random function X = (X, . .. ,Xp)T satisfies:
(a) Qx, is a finite-dimensional Hilbert space spanned by an
orthonormal basis {1, . . ., nm} with inner product (-, Qx; and
b) Xi = YL, Uink, where Uy = (X, Mk)Qy,» then the
Qx;-valued random function X; has a one-to-one correspon-
dence with the random vector U; = (Upy, . .., Uim)". Let N =
{1,2,...,} be the collection of natural numbers. Given o € N,
let Qy be the set of all monomials in U, ..., Uy, of orders
between 1 and a, thatis, Qu(Up) = {U' -+~ U, sy, ... 0 €

{00 U N1 < Yo < a)LetU = (UT,...,U;)T,

Ry (U) = (Q(U),. .., Qu(Up))T, pta = E[Rq(U)], and Ty =
var[Ry (U)]. By simple combinatorics, it can be shown that the
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dimension of Qy (U;) is c(m, o) = Z(ﬁle (m'HS_l). Henceforth,

-1
we abbreviate the elements of Q, (1;) by q1 (Z:,-), oo o Qe(ma) (Ui).

We say that U follows an additive Gaussian distribution if
there exists ¢ > 0 such that the density of U satisfies

fU) =f(U,...

1
= cexp {_E[Ra(U) - /'La]ngjl[Rot(U) - Ma]} . 2

> Up)

We write it as U ~ AN(ugy, Z¢). Note that AN(u1, X1) is
the p-variate Gaussian distribution; that is, the Gaussian dis-
tribution is the first-order additive Gaussian distribution. If
U ~ AN(ly, Z¢), then we call X an additive Gaussian random
function in Qx, x --- X QXP. Since there is a one-to-one corre-
spondence between X and U, we also write X ~ AN (g, Zqo).

Next, we give a concrete example to justify the existence of
the density in (2).

Example 1. Define u(x) = (6,27, and pu = (u1, w2)' € R2.
Consider the function,

1
f(x) = exp (—Ew(x) — T (u(x) — m) :

In Section S4 of the supplementary material, we show
the existence of the density f in Example 1. We can also
extend the same construction to the multivariate case of X =
Xt Xp)T.

The construction of X is in line with the original motivation
of ACIin Li, Chun, and Zhao (2014), and reveals the probabilis-
tic mechanism that generalizes partial correlation and Gaussian-
like behavior to nonlinear features. When X ~ AN(ug, Xo),
FACI and CI are equivalent, as shown in the next theorem.

Theorem 1. If X ~ AN(ug> 2q), and «;(x,x) = (1 +
(x, x’)gxi)“, for all i € V, then the three statements, (a)
(ZHij = 0, (0) XilLXj | X_gijy» () XilLX; | X_;j), are
all equivalent, where (E;l)i,j is the (4, j)th block of 2071.

We note that, when X is an additive Gaussian random func-
tion, Assumption 1 holds, because all operators involved are
finite-rank operators.

2.3. Functional Neighborhood Selection

Based on the definition of FACI, we now define the neighbor-
hood N;of nodei=1,...,p.

Definition 4. Suppose Assumption 1 holds. A subset N; of V is
called the neighborhood of node i with respect to FACI, if (a)
N; € V\{i}and X; 11 ,X_; | X\;, and (b) for any A that satisfies
(i), N; € A. Moreover, we say X = (X,. .. ,Xp)T is associated
with G = (V, E) with respect to FACLif N; = {j : (i,/) € E}.

By definition, N; is the smallest subset of V\{i} such that,
conditioning on Xj;, X; is additively independent of the rest
of random functions. Note that an equivalent way of saying
Xill, X | XN, is Xi L Xw\(nugip | XN;- Definition 4 essen-
tially gives a formal definition of our version of the functional
graphical model. That is, we aim to find the graph G, a functional

additive semi-graphoid, such that X is associated with G with
respect to FACI.

Li and Solea (2018) introduced their version of functional
additive semi-graphoid model based on the following equiva-
lence

(i,j) ¢ E

It is interesting to note that, the relations characterized in
Definition 4 and Equation (3) are closely related but not iden-
tical. Specifically, they are related to different Markov properties
for undirected graphs. Equation (3) requires the pairwise addi-
tive Markov property to hold, meaning that if two nodes are not
connected, they are additively conditionally independent given
the rest of nodes. Definition 4 relies on the local additive Markov
property, which indicates that, given its neighbors, a node is
additively conditionally independent with every nonadjacent
node. Lauritzen (1996, chap. 3) has shown that the local Markov
condition is generally stronger than the pairwise Markov condi-
tion. The next proposition provides a parallel relation between
the local and pairwise additive Markov conditions.

& XilluXj | X—p)- 3)

Proposition 3. If X is associated with G = (V, E) with respect to
FACI, then we have X; L1 ,X; | X_;; for any (i,j) ¢ E.

We next give a counterexample to show that the local additive
Markov property is not implied by the pairwise additive Markov

property.

Example 2. Let X = (X1,X2,X3) € Q3 be a 3-variate random
function, and satisfy that P(X; = X, = X3) = 1. Let Hx =
@?ZIW{K,-C,:C,-) 1 x; € Qy,}, with «; being a positive kernel
function. Let G = (V,E), where V. = {1,2,3} and E is an
empty set. Then X satisfies Equation (3) with respect to G: for
example, X; 11 X, | X3 because X; and X, are both fixed given
X3. However, X does not satisfy Definition 4 with respect to G:
for example, N; = @ and X; 11 ,(X3,X3) | @ does not hold.

Although the pairwise additive Markov property does not
always imply the local additive Markov property, we next show
that this relation can still hold under some conditions.

Proposition 4. Suppose ker(Xxx) = {0}, and the correlation
operator Cx;x; is compact for any (i,j) € V x V with i # j.
Then statement (a) implies statement (b), where

(@) ()) ¢ E = X;1LXj | X_(ij (pairwise additive Markov
condition);
(b) XiLlL Xw\ugiy | XN; (local additive Markov condition).

Next we show that, the interdependency defined by func-
tional neighborhood selection in Definition 4 can be fully cap-
tured by FARO. The next theorem involves the regression oper-
ator B?(,,.xi- Since this is an operator from Hx, to Hx ,, it can
be written as a vector of operators (B, .. .,Bi_1, Bit1,. .. ,Bp),
where each By is a mapping from Hx, to Hyx,. For a subset
A C V\ {i}, we use (Bg)(_1 x,)A to denote the vector of operators
{Br : k € A}.

Theorem 2. Suppose Assumption 1 holds. Then, for any
N, € Wi}, i = 1,...,p, we have (Bg)(,ix,-)V\(NiU{i}) =
0 if and only if X;LL,Xw\Nugp | XN;.



Theorem 2 implies that one can recover the graphical model
through functional neighborhood selection, by estimating the
set of active predictors in regressions with X; as the response
and Xy ;) as the predictors. Also, by the rule of operator inver-
sion, we have [(Bx_x,);j(Zxx; — EX,-Xf,-E;(,iXﬂ.EX,,-X,-)fl]* =
(BX,ij)i(EXij — EXJ-X,j E;ijij Exfjxj)il, which implies that
(Bx_;x;)j = 0 if and only if (BX_ij)i = 0. Therefore, by
Theorem 2,j € N; < i€ N;.

3. Estimation

In this section, we first develop a population-level objective
function whose minimizer is FARO. We then add a mixture of
the L; and L, penalties to the sample-level objective function
to obtain a sparse estimate of the FAROQ, then the functional
graphical model.

3.1. The Objective Function

We first introduce some notation. Given two Hilbert spaces H
and /C, let 8(H, K) denote the collection of all bounded linear
operators from H to I, %1 (H, K) the collection of all trace-
class operators from # to K, and %, (#, K) the collection of all
Hilbert-Schmidt operators from # to /. It can be shown that
PB(H,K) C Br(H,K) C B(H,K). Note that %, (H,K) is a
Hilbert space, and we use (-, -)ygs and || - |gs to denote its inner
product and norm; A(7, %) is a Banach space with respect
to the operator norm denoted by || - ||. For convenience, % (H),
B, (H), and B(H) are used whenever H = K.

In the classical setting, the neighborhood of each node can
be determined by the nonzero linear regression coefficients. To
capture the nonlinear relations, we extend linear regression to
regression at the operator level. Toward that end, we define the
following objective function, L; : ,(Hx,, Hx ;) — R, fori =
L....p,

Li(B) =

_2<EX_,'X1'7B)HS + (B) EX_,‘X_iB>HS‘ (4)

This objective function is motivated by the least squares
idea which minimizes var(Y — B7X) over B. As we show in
Theorem 3 below, minimizing (4) is equivalent to minimizing
>0, var(fa(X;) — (Bfa) (X_i)], where {f,}°2 | is an orthonormal
basis in Hy,. As such, (4) is a generahzatlon of least squares by
regressing a class of functions of X; on a class of functions of
X_;. We next show that Bx_x; is the minimizer of L;(B). We
need an additional condition.

Assumption 2. There exists a constant m > 0, such that
|ki(f,g@)| <m,foranyf,g € Qx,i=1,...,p.

This condition requires the kernel «; to be uniformly
bounded, which is satisfied by many commonly used kernels
such as the radial basis kernel and the Laplacian kernel. Without
loss of generality, we take m = 1 in Assumption 2 for all
subsequent analyses.

Theorem 3. Suppose Assumptions 1 and 2 hold. Then, for i =
L....p,
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By x, = argmin{L;(B) : B € %(Hx,, Hx_;)}

oo
= argmin{)_ varlfa(X;) — (Bfa)(X_)] : B € Br(Hx;, Hx_,)»

a=1

{fa}o2 is an orthonormal basis in Hx; }.

Lee, Li, and Zhao (2016b, Theorem 2) showed a similar
result. However, we only require bounded kernels, while Lee, Li,
and Zhao (2016b) required the covariance operator to be trace-
class.

3.2. Sample-Level Regularized Estimation

We next derive the sample version of L;(B), and further
introduce a mix of L; and L, penalties. Let {(xk,... ,X}g)T k=
1,...,n} be independent copies of (Xj,... ,Xp)T. We estimate
the mean element 1y, of Hx, via fix, = n~' Y j_; ki, X5,
and estimate the covariance operator Exixj by ixixj =
n1 ZZ:I[Ki("sz) —ix]® [Kj(~,X]l-‘) — fix;], where ® denotes
the tensor product. We then use ﬁlx,x,- to build up Suy for
any subvectors U, V of X. With the covariance operators in (4)

substituted by their empirical counterparts, the sample version
of L;(B) becomes

Li(B) = —2(Sx_.x,» B)us + (B, x_.x_,B)us. (5)
To encourage sparsity and enhance prediction, we introduce two
penalty terms on L;(B):

PLi(B) = Li(B) + AullBllis + 2n( Y (B)jlus)>.  (6)
jeV\{i}

The first penalty term ||B||%{S is the Hilbert-Schmidt norm and
is similar to an L, penalty, while the second is equivalent to
(ZjeV\{i} [(B)jllus) that resembles an L; penalty. This type of
mixture of L; and L, penalties are often employed in high-
dimensional regressions (Zou and Hastie 2005; Lee, Li, and
Zhao 2016b). We use it here to achieve desired asymptotic prop-
erties. Also, to simplify tuning and theoretical development, we
impose the same parameter A, for both penalty terms, but in
pr1nc1ple they can be different.

Let B; = argmm{PL (B) : B € %(Hx;, Hx_;)}. We then
use N; = {||(B,)]||Hs # 0 :j € V\{i}} to estimate the neigh-
borhood of i. Subsequently, we use N; to estimate E via

ieNjorjENi} or
i€ N] andje N,}

R Eor = {(l:)]:) : @)
Eanp = {G,))

These are two slightly different ways to construct an estimate
of E in (7), because it may happen that j € N; but i ¢ N], and
vise versa. However, as we show later in Section 4.3, this type of
discrepancy, and thus, the difference between EOR and E AND> 18
asymptotically negligible. In our implementation in Section 5.2,

we choose Eog as our final estimate of the functional graphical
model.
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4. Theory

In this section, we derive the asymptotic property of the sparse
FARO estimator B;. We then derive the consistency of the sub-
sequent nelghborhood estimator N; and the graph estimators
Eor, Eanp based on B;. We achieve our goal in four steps. First,
we derive a concentration bound on the sample covariance
operator. Second, we introduce an intermediate estimator, B
and derive the concentration bound for the distance between
the intermediate estimator and the true FARO. Third, we show
that we can construct a minimizer of the original objective
function (6) based on B? with a high probability. Combined with
the second step, this in effect establishes the consistency and
convergence rate of the minimizer B; of (6). Finally, we establish
the desired neighborhood selection and the graph estimation
consistency built on B;. We mostly assume that the trajectory
of Xj is fully observed on t € T, fori = 1,...,p. We briefly
discuss the scenario when X; is partially observed in Section 4.4.
In the interest of space, we relegate some technical results to the
supplementary material.

4.1. A Key Lemma and an Intermediate Estimator

We begin with a lemma that establishes a key concentration
inequality for the norm || Xx, x; — Zx,x; llHs. Let |A| denote the
cardinality of a set A.

Lemma 1. Suppose Assumption 2 holds. Then, for any § > 0,

- O{eXp <_|:|8|ZB|>}'

Since both |A| and |B| can be arbitrary, this lemma extends
the bound for a high-dimensional covariance matrix to the
operator level. Since the estimation of covariance plays a crucial
role in many topics in high-dimensional statistics, we expect this
result to be useful in other contexts involving high-dimensional
matrices of linear operators. We note that Bosq (2000) has
studied the concentration bound of the empirical covariance
operator for functional data too. However, our result extends his
to both nonlinear and high-dimensional settings.

We next derive the concentration bound for the FARO esti-
mator B;. Toward that end, we introduce an intermediate esti-
mator. Consider the following objective function,

P (IExxs — Zxasllns = 9)

/\0 A A
PL; (B) = —2(Xxy,x;» Blus + (B, Xxy xy, B)us
+ Al Bl + AullBliZ, (8)

where |Bllus = Y jen, | (B)jllns. Let BY = argmin(PL;(B) -
B € %, (Hx,» Hxy,)}- Note that the objective function (8) differs
from (6) in that (18) treats Np,...,N, as known. Besides, the
dimension of the minimizer B? of (8) is |N;|, whereas the dimen-
sion of the minimizer B; of (6) is (p — 1). We first establish the
concentration bound for B? Let Cn;,N; be the correlation oper-
ator from HXN,- to HXN,- that satisfies EXN,-XN,- = DN, Cn;N;DN;»
where Dy; is a diagonal matrix of the operators with diagonal
entries (DN)ik = ZX{( i( , for k € N;. The existence and
uniqueness of the correlation operator Cy;n; was established by
Baker (1973). We require another two assumptions.

Assumption 3. There exists a constant ¢ > 0 such that, for all
>INy = Cning» where Iy, @ Hxy, — Hxy, is the
identity mapping.

i=1,...

Assumption 3 holds for all i € V, if there exists ¢ > 0
such that the joint correlation operator Cyy is bounded below
by cI. This is a fairly general condition, and it holds when Cyy
is invertible and all its off-diagonal elements C;j, i,j € V x V
with i # j, are compact; see also Solea and Li (2020, Propo-
sition 2). Fukumizu, Bach, and Gretton (2007) has studied the
condition for the compact operators, and showed that the corre-
lation operator is compact when the mean square contingency
of the associated random elements is finite, which in general
requires that there cannot be too strong dependency between
the random elements. We also note that Zhao and Yu (2006);
Wainwright (2009); Ravikumar et al. (2009) all imposed a sim-
ilar condition in the linear model or the generalized additive
model settings to derive the consistency of LASSO. Moreover,
under the Additive Gaussian distribution setting as discussed
in Section 2.2, Assumption 3 holds, because all the pairwise
correlation operators have finite ranks.

Suppose H? is an |N;| x |N;| diagonal matrix of operators
with the diagonal entries (H?)jj =1+ ||B?|IHB/II(B?)j||HS)1j,
and 1; : Hx; — Hy; is the identity mapping, j € N;.

Assumption 4. Fori = 1,...,p, there exists an operator C? €
%Z(Hxi,’}-lxNi), such that B? = (H?)_IZXNiXN,- C?. Moreover,
||(C?)j||Hs < ¢ forall j € N; and some constant ¢; > 0.

Note that Assumption 4 is satisfied, if [|[Zxy, xy, (HY)!
ZXN,-XN,-]TZXN,-X,-”HS < ¢}, for all i € V. Under the additive
Gaussian distribution setting, this is equivalent to

-1
LY} [{(Ba)j 1ok € N HD T H(Ba)jg 1k € Nil

X {(Za)ji 1 j € N2 |Ip < 1,

| diag{L'/?, ...,

&)

where (X4);; is the (i, j)th block of Xy, [H?] isa {c(m, a)|N;|} x
{c(m,a)|N;|} diagonal block matrix with [H?]jj = 1+
B8/ (BY)jlls) Ieimay» for j € Ni, L is the Gram kernel

matrix {(qs,qt)Hxi}gftZ’f), and || - ||F is the Frobenius norm.

Condition (9) is essentially a form of smoothness in the relation
between X; and its neighborhood Xy;,. To see this, note that
(9) implies that [{(Za)jk : juk € N} {(Za)ii : j € Ni}lle
is uniformly bounded, which means the Frobenius norm of the
regression coeflicient for regressing Q, (U;) on {Qu(U)) : j € Ni}
is uniformly bounded. Li and Song (2017) used a similar
condition and referred it as “collective smoothness” in the
context of nonlinear dimension reduction. The next proposition
shows that, if X follows an Additive Gaussian distribution with
some additional conditions, then Assumption 4 is satisfied for
eachie V.

Proposition 5. Suppose the random function X = (Xj, . .. ,Xp)T
~ AN(la> 2¢), With (@) onin(Ze) > ¢1, (b) max{[N;| : i €
V} < ¢, and (¢) min {||(Z5Yijlle : (g hij # 0,(Ghj) € V x
V,i#j } > ¢3, where ¢y, ¢3, c3 are positive constants, and omin ()
is the minimum eigenvalue of the designated matrix. Then, for
each i € V, there exists an operator C? € Br(Hx,, HXN,-) and




co > 0, such that B) = (H?)*IEXNI_XNI_C? with [|(C)jllus < co
forallj € N;.

Now we are ready to derive the concentration bound and the
convergence rate of the intermediate estimator E? Hereafter, for
two positive sequences {a,} and {b,}, leta, < b, representa, =
O(by); let a, < by, represent a, = o(by,); a, A b, = a, and
an V b, = by, if a, < by, Similarly, if ¢, is a third sequence and
< orders {a,}, {b,} and {c,}, then we use the notations a, A b, A
cn = (ap ANby) Acegsand a, V b, V¢, = (ap V by) V. Let
b? = min{[|(B));llus : j € Ni}.

Theorem 4. Suppose Assumptions 1-4 hold. Then,

(a) The concentration bound: P(||1§? - B?HHS > §) =
O{exp (—nINi| =7 (1,b?8]|B?I;35)%)}, for § > 0 and A, with
b = BY8 [Nl 7/ 1B -

(b) The convergence rate: ||B? — B?||HS =
1B l118 (A v 1~ /20 1 INGI)).

Op{(BD)THN;?/

4.2. Consistency and Convergence Rate of the FARO
Estimator

We next construct an estimator based on the intermediate esti-
mator E?, and show that, with a high probability, it minimizes
the objective function }/’L(B) in (6). Coupled with Theorem 4,
this in effect establishes the concentration bound and conver-
gence rate of the FARO estimator B; of (6). Specifically, we
construct an operator in %, (Hx,, Hx_;) whose corresponding
N;-subvector is equal to ﬁ? € B(Hx,, HXNi)’ and the rest is a
(p—1—|N;|)-dimensional zero-operator 0. To avoid overly com-
plicated notation, we denote this operator by (E?, 0), keeping in
mind that E? doesn’t have to occupy the first |N;| positions. We
derive a series of inequalities under which (B?, 0) satisfies the
Karush-Kuhn-Tucker (KKT) conditions with a high probability.
This is equivalent to saying that (B?, 0) and the FARO estimator
B; are asymptotically equivalent. In the interest of space, we give
the full details in Section S3 in the supplementary material. We
also introduce another assumption,

Assumption 5. There exists 0 < 1 < 1 such that, for any j €
VA(N;U{i}),andi=1,...,p,

0
|B; llus

—1
ID;Cn,Cyn llHS < ——————5—
PO Il CnN DN CY Nl s

1—mn.

Assumption 5 can be viewed as a generalized version of
the irrepresentable condition usually imposed in the classical
regression setting to establish the consistency of LASSO (Zhao
and Yu 2006; Wainwright 2009). Under the Additive Gaussian
distribution, we have || [{(Za)jk : j. k € N,-}]_1 {(Zo)jj 1 €
Ni}Hlr < 1 —n, forallj € V\(N; U {i}). This simply means that
the Frobenius norm of the regression coefficient for regressing
Qo (Xj), which are the random elements at the nonneighboring
nodes, on {Qy(Xj) : j € N;}, which are the random elements
at neighboring nodes, is uniformly bounded by 1 — 5. Since
Qu(Xj) are random vectors, this condition is similar in spirit
to its counterpart in the random variable case; that is, it avoids
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strong dependency between the nonneighboring and neighbor-
ing nodes. Besides, Qiao, Guo, and James (2019, Condition 5)
used a similar condition for the Gaussian functional graphical
model. Our Assumption 5 can be seen as a nonlinear exten-
sion of their condition. We also give an example under which
Assumption 5 is satisfied for each i € V.

Example 3. Suppose X = (X1,X2,X3)" follows an Additive
Gaussian distribution, such that, for each i = 1,2,3, (a) X; =
Unm + Upne € Rx;, where Qy, is the linear span of the
orthonormal basis {11, 72}; (b) ki(x, x") = 1+ (x, x’)gxi; and (¢)
the covariance matrix of U = (U, Uy, Ua1, Uaa, Usp, Usp) T is,
with —1 < B, B2 < 1 being some constants,

1 0 B 0 B 0

0 1 0 B 0 B

5 B 0 1 0 B 0
1o B 0 1 0 B2
B 0 pE 0 1 0

0 B 0 B 0 1

The proof for this example is given in the supplementary
material. Similar to the classical neighborhood selection, when
Assumption 5 does not hold, we still expect the support of our
functional neighborhood selection to recover the true graph
to a certain extent, in the sense that the probability of erro-
neous selection converges to a small positive constant instead
of zero. Moreover, in the usual regression setting, alternative
regularization methods, such as adaptive LASSO and SCAD,
may be employed to relax the irrepresentable condition. We
expect that similar modifications can be made to FARO, so that
Assumption 5 can be removed.

The next corollary provides the convergence rate of B;, and
the connection between the convergence rate and the 1, and p.

Corollary 1. Suppose Assumptions 1-5 hold, |N;| does not
depend on #, and {(logp)/n}'/> < A, < 1. Then, ||B; —
(B;,0)l1s = Op(hn A 112201

We remark that the convergence rate of FARO in terms of the
Hilbert-Schmidt norm depends on p through X,, whose order
of magnitude can be arbitrarily close to (logp/n)'/3. In the
classical linear regression, the convergence rate of the estimated
regression coefficient from LASSO and Dantzig estimators in
terms of the L, norm depends on (logp/n)!/? (Bickel, Ritov,
and Tsybakov 2009; Fan and Lv 2010). This discrepancy is
somehow expected though, as our setting is more general and
involves both nonlinearity and high-dimensional functional
data.

4.3. Neighborhood Selection and Graph Estimation
Consistency

We now establish the asymptotics of neighborhood selection.
The next theorem provides an upper bound for the probability
of incorrectly selecting the neighbors.

Theorem 5. Suppose Assumptions 1-5 hold, A, < 1, )Li/ 2 <
(b9 INil /411 B [ 35 Then,
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P(N; # Ny = (p — IN;])
(o{ < nA%)}+O n(knb?A)? )
ex _—— eXxX _—_— N
PUINE PUTINTIB012,

where A; = 2,2 INj7¥4 and Ay = A2 INi| 754 (B0)2
1B 8-

In the classical regression setting, the sparsistency of LASSO
has been studied in Zhao and Yu (2006); Wainwright (2009).
Theorem 5 establishes the sparsistency in a much more gen-
eral setting where both response and predictors are random
functions, and no structural assumptions such as linearity are
imposed on their relationships.

The next theorem shows that, using (7), E can be correctly
recovered with probability tending to one. Moreover, the dif-
ference between Egg and E AND is asymptotically negligible. Its
proof follows immediately from Theorem 5, and is omitted.

Theorem 6. Suppose the same conditions of Theorem 5 hold.
Moreover, suppose [Ny, ..., |N,| donot depend on n, and E can

be either IAEOIS or EAND defined in (7). Then, there exists ¢c; > 0
such that P(E # E) = O {p? exp (—c2n2})} .

We make some remarks regarding Corollary 1 and Theo-
rem 6. First, by Corollary 1, the convergence rate of our FARO
estimator depends on A, + n~ /231, with the parameter A,
satisfying that (logp/n)'/> < A, < 1. As a comparison, Li and
Solea (2018, Theorem 4) showed that the rate of convergence
for their FACI estimator was n~1/®. However, they treated the
number of functions p as fixed, while we allow p to grow with
n in an exponential order. If we also treat p as fixed, then our
rate can be made arbitrarily close to /¢, Second, in the same
vein, our consistency of graph estimation in Theorem 6 holds
while allowing the graph size to diverge at an exponential order,
whereas Li and Solea (2018) treated p as fixed. In fact, their
estimator did not take advantage of the sparsity of the graph,
and needed to estimate all the off-diagonal elements on their
precision operator. Since the cardinality of all the off-diagonal
elements grows in the order of p?, this means p can grow only in
a polynomial rate of #, but not in an exponential rate as in our
result. Finally, we note that, in both Corollary 1 and Theorem 6,
we assume the number of neighborhoods for each node fixed.
This condition can be relaxed by carefully choosing the rates
of p, INil, ||B?||Hs, and b?, which we leave as potential future
research.

4.4. Consistency for Partially Observed Random Functions

We have so far assumed that X; is fully observed. Next, we briefly
study the scenario when the function is only partially observed.
See Wang, Chiou, and Muller (2016) for discussions on different
schedules on which functional data are collected. Note that
Theorems 5 and 6 only rely on the concentration bound of the
sample covariance operator in Lemma 1. In the following, we
allow the convergence rate under a partially observed schedule
to be slower than the one under a fully observed schedule.
However, we do not pursue any specific measurement schedule

or smoothing setting to avoid digressing too much from the
main theme.

Suppose X = (Xi,... ,XP)T is an estimator of X. We then
estimate the sample covariance operator by

2xx; = Enlki( X)) — Enici( X1 ® [ki(-, Xi) — Enici( Xi)].

for i,j = 1,...,p. For any subvectors U, V of X, let flUy be
the matrix of operators whose elements are composed of Xx;x;
with Xj € U and X; € V. Then we compute the new penalized

estimator of B by B; = arg min{PNLi(B) : Be B(Hx,, Hx )}
where P~L,~(B) is obtained by substituting EAIX_,.XI. and EAJX_iX_,.
with Xx_x, and x_x_, in (5) and (6) accordingly. Finally, we
estimate the neighborhood and the graph by

Ni = (I (Bi)jllus > 0:j € V\{i}l,
Eor = {(i,j) : i€ NjorjeN;} or
Eanp = {(,j) : i€ Njandj e Ny}
The next theorem shows the consistency of our method
under a partially observed schedule, which is a generalization

of Theorems 5 and 6. Its proof follows immediately from that of
Theorem 5 and is thus, omitted.

Theorem 7. Suppose Assumptions 1-5hold, A, < 1,and )L,l/ 7 <
(b%)3 IN;|~11/4 || BY || ;35 Moreover, suppose there exists 0 < & <
1 such that, for any § > 0,

) n“s?
P (IEx0x = Sxaxglis = 8) = O {‘”‘p (‘ Al |B|>} '

Then we have,

. n* A
P(N; # Ni) = (p — INi]) (O {eXP (— )}

IN;|?

* (Al A)?
+ O exp _1/1(7;1—102) ,
N7 11B; Il i

where A; = A2 INj7¥4 and Ay = /2 INi| 754 (B0)2
||B?||I§]13. More~over, if~|N1|, ...>[Np| do not depend on #, and E
can be either Eor or EpnD, then, there exists ¢c; > 0 such that

P(E #E) = Op® exp (—c3n2})}.

5. Implementation

In this section, we introduce a coordinate system to implement
the estimator developed at the operator-level in Section 3.

5.1. Coordinate Representation

We first develop the coordinate system for Qy;, Qx, Hx;
and Hy. For a generic finite-dimensional Hilbert space €2
spanned by B = {by,...,bu}, any x € € can be written as
ZZ’ZI oy by. We call the vector (a1, ...,o,)" the coordinate
of x relative to the spanning system B, and write it as [x]p =
([x]B,l,...,[x]B,m)T. For any pair (x1,x2) € £, the inner
product (x1, %) = [x115Kp[x2]5, where Kg = [(by, byl
is the Gram matrix of B.



Let (X!,...,X™) denote iid samples from X of size n and
Xf‘ denote the ith component of XKk =1,....,n Suppose
Xf‘ is observed on a finite subset Tx = {tx1,...,tm} of T,
where my is the number of time points observed for subject
k. Let (t1,...,tm) = U[_,Tx denote all the unique time
points ordered from the smallest to the largest, where M is
its cardinality. Let k7 : T x T — R be a positive definite
kernel. We consider the reproducing kernel Hilbert space 2" =
span{xr(-, 71),. .., k7(TmM)} = span{B) : u = 1,...,M},
with the inner product determined by (B!, Bl)or = k1(Ty, Ty)
foru,v = 1,..., M. Since Xf‘ is only observed at the my time
points in Ty, we use k7(-, Tx) = {KT(’, tk1)s .- kT, tkmk)} to
construct Xf‘. That is, Xf‘ = Zumil[Xf]uKT(-, try), implying that

.
XEro = (Xet o X)) = KEOIXEL - (10)

where KI}’k is the my x my matrix (K7 (b to) Juyv=1,...,my -

From (10), we estimate the coordinate [Xl’.‘] by [Xf‘] = (K%k—i—
e%lmk)_le‘(Tk), where 6’} is a ridge-regression-type tuning
parameter. Note that the coordinates are not unique when the
spanning system is linearly dependent. Nevertheless, both the
inner product and the norm it induces are unique. This is
because the inner product, like eigenvalues and eigenfunctions,

is coordinate-free. We then compute the inner product between
X¥ and X! by,

(XK, X0 an = XK TR + epl ) KR

(K2 + erLy) T1XE(TY), (11)

where Ké‘«’e = [k (tkus tew) lu=1,...mpv=1,...me> for k, £ € {1, ..., n}.
Having constructed Xf, we next proceed to the construc-
tion of the sample version of Hx;, which we denote by H .
Letting «;(-,-) be the second-level kernel that can be com-
puted via Definition 1 and Equation (11), we define ¢f‘ =
ki XE) = n 7 30 k(5 XE), k= 1,...,n. Let H} be the
RKHS spanned by {c/)!C : k = 1,...,n}, and K; be the Gram
matrix [Ki(Xlk,Xf)]k)g=1’m,n. Let G; = Q,K;Q, be the centered
version of K;, where Q,, = I, — n_lllln with I,, and 1, being
the identity matrix and the #-dimensional vector (1,.. ., l)T.

It is often the case that the important features of a kernel are
concentrated on leading eigenfunctions (Lee and Huang 2007;
Chen et al. 2010). So, without losing much efficiency, we may
use the leading eigenfunctions to construct the empirical RKHS,
which can bring substantial saving of computing time. Suppose
G has the eigen-decomposition,

G; = ViD;V] + V:D;V], (12)

where V;D; Vl.T and ViDiViT correspond to the first n; and the last
n — n; eigenvalues of G;. Let wlk = (D,'),:kl/2 VZ.T(¢1.1, e ,¢i”)T.
We then use {wil, et wi”"} as a basis of the reduced space 7—[;;,
by which we replace Hy to save computing time. We lose no
information aslongasran(Zy,x ;) span{l//il, ey 1//1."" }.In the
following, we denote (¥},...,v")T by .

Using the coordinate representations and the reduced space
derived above, we next provide the numerical procedure to
implement the constrained optimization problem in Section 3.2.

Let B; be an operator in L@Z(Hxn:, 69#,-7-[;;). Since {wik k=
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. . . n; .
1,...,n;} is an orthonormal basis in Hy', we can rewrite the

objective function Li(B;) in (5) as

n;
LiB)=-2)" { (Ex_x Vi B

k=1

+ (Bl‘(//1k) iX_,‘X_iBiwik>H;l(i } .

—1

By the definition of empirical covariance operator, the penalized
objective function PL;(B) in (6) can be written as

PLi(A) = —2) tr { (ViD}/z)T (Vijl/z(Ai)j)}
j#i
+1Y° (ViDy ;) I
i
+ 2 QA I + IAilIE).
J#i

(13)

where A; = [(A)], (AD]_1, (AD], ..., (A1 with (A); =
[(B;)j] € R">" being the coordinate expression of (B;); with

respect to ¥; and ;.

5.2. Algorithm and Tuning

We next summarize our estimation algorithm, followed by a dis-
cussion on parameter tuning and the computation complexity.

Step 1: Choose the kernel x7. One option is the Brownian
motion function «7(s, ) = min(s, £). Another option is
the radial basis function (RBF) k7 (s, t) = exp{—yrl|s —
t|?}, for s, t € R, where yr is determined by (Zﬁ\it |Ts —
wl)’yr = MA(M — 1)*/4.

Step 2: Compute the first-level Gram matrices K;c-’g, for k, ¢ =
1,...,n

Step 3: Determine the ridge parameter 653 via 617{« = cr X
amaX(Kéi), k = 1,...,n, where onax(+) denotes the
largest eigenvalue of the associated matrix; cr is to con-
trol the level of smoothness, which we fix at cr = 0.04.
Then use (11) to calculate the inner product (Xf.‘, Xf Yan,
fork,{ =1,...,nandi=1,...,p.

Step 4: Select the second-level kernel function, and compute the
second-level Gram matrix K; and its centered version G;
fori = 1,...,p. If the RBF kernel is used, compute the
width parameter y by (3" _, ||X1’.‘—Xf lan)?y = n?(n—
1)2/4, where || - ||q» is the norm induced by the inner
product in (11).

Step 5: Conduct the eigen-decomposition on G; in (12). For the
selection of n;, we follow the rule in Ravikumar et al.
(2009) and choose it adaptively based on the sample size
asn; = O(n'/?), i = 1,...,p.

Step 6: For a given A, and each i = 1,...,p, minimize PLi(A;)
in (13) over A; € R"i*"_ where n_; = Zj#i i,
using, for example, the disciplined convex programming
method of Boyd and Vandenberghe (2004).

Step 7: Let Al)‘" denote the resulting minimizer in the previous
step. Estimate the neighbors Nf\” = {j e V\{i}

tr[(A?”)}-(AiA")j] # 0}. Then estimate the graph Ehn by
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Eé)R or B AN in (7). We use Eg”R as the final estimate for

all the numerical analyses.

We next discuss the tuning of the penalty parameter X, in
Step 6. Specifically, we consider a BIC-type criterion,

P
BIC(A) = ) BIC;(A), where
i=1
BIC;(A) = nlog{RSS;(1)} + log(n) DF;(%), (14)
and RSS;(%) = |[[I, — Ui(W) V|2, with V; (VDI/Z)T,

Ui(1) = Wi){W )W) + r(A)IR,.m}-lwlT(A), Wih) =
(Vips > Vig ) 1) = 173 X oy [W] (W ()], Ri(R) =
Z}\i’f” nis (i i} = N2, M) = [N} and DF,(3) =
tr[U;(A)]. Our idea is to regress each random function on its
neighboring functions, and thereby calculate the sum of squared
errors RSS;(1). We then select A that minimizes BIC(A) over a
grid of candidate values.

In Section S5.3 of the supplementary material, we further
investigate the effect of the choice of the tuning parameters
and the kernel functions. In general, we have found that our
algorithm is relatively robust, as long as the choices are within
reasonable ranges.

Finally, we discuss the computation complexity of our algo-
rithm. This complexity can be divided into two parts: the pre-
convex optimization part and the convex optimization part.
The first part involves the construction of both first-layer and
second-layer kernels, and the eigen-decomposition of the Gram
matrix G;. Its complexity grows in the order of p[ "} ,_, (m} +
mymyg)+n’] for the unbalanced setting, and p(n2 m3+n?) for the
balanced setting, assuming that my = mforallk = 1,...,n. For
the convex optimization part, for graphs of small to moderate
sizes, we recommend CVX, a Matlab toolbox for constrained
minimization, whose default solver is based on the semidefinite-
quadratic-linear program (Tutuncu, Toh, and Todd 2003). For
each iteration and each regression, the complexity of this part
is of the order (pn*)> (Sra, Nowozin, and Wright 2011, chap.
3), where n* = max(ni,...,n,). For large graphs, we can
reduce the computation by keeping only the L; penalty in the
optimization. This simplified algorithm is equivalent to the
group Lasso, and can be easily implemented by the iterative
shrinkage thresholding algorithm (ISTA, Beck and Teboulle
2009), whose complexity grows in the order of p(n*)?(n + n*).
In our numerical experiments, we have found this simplification
loses little estimation accuracy, but brings substantial gain in
computation. Moreover, in our simulation with p = 100 and
n = 100, the average number of iterations for our algorithm
to converge was 33, and the average running time of a single
optimization was 2.48 sec. The implementation was done on a
2 x E5-2630 v4 workstation.

6. Numerical Studies

In this section, we first investigate the finite-sample perfor-
mance of our proposed method by simulations. We then illus-
trate our method with an EEG data analysis.

6.1. Simulations

We generate multivariate random functions using the structural
equation model of Pearl (2009). We consider both the Gaussian
case (Model I), and the non-Gaussian case with nonlinear rela-
tions among the nodes (Models II and III). Specifically, given a
directed edge set D with the ordering 1 — - -- — p, we generate
X1 (0),... ,Xp(t))T sequentially via

Xi(t) = fi[{X;(t) : (i) € D}, &),

for some functions fi,...,f, we specify later. We use the
Brownian motion covariance as the kernel to construct the
error function ;(t), i = 1,...,p; that is, &;(t) is generated by
ZLZI &.k7(t, t,), where t, and &, are independently generated
from Uniform(0,1) and Normal(0, 1). For the observed time
points {tx1,...,tkm, : k= 1,...,n}, we consider two different
scenarios: the balanced case with m; = 10 equally spaced
points between [0, 1], and the unbalanced case with m; = 10
time points independently drawn from the discrete uniform
distribution on {0.01,0.02,...,1}. We consider the following

i=1,...,p,

choices of f;:
Model I: fi[{Xj(t) : G,i) € D} ei(t)] = > xj+ e
(»eb
Model 11 : £[{X;(t) : i) € D}, &i(®] = Y x +&;,
(»eb
Model I : fi[{X;(t) : (i) € D}, ei(t)] = { Z xj) €.
(j,i)eD

The edge set D is generated from a hub structure. We then use
the moral graph of D as the undirected graph E (Lauritzen 1996).
Given a graph of size p, ten independent hubs are generated so
that the module in each hub is of degree p/10 — 1. We set the
sample size as n = 100, and the number of nodes as p = 100. In
Section S5.1 of the supplementary material, we further consider
additional network structures, including the tree and the chain
structures, and additional network sizes, including p = 50, 200.

For each model, the proposed method is applied with the
second layer kernel being a Gaussian kernel (denoted as FARO),
and a linear kernel (denoted as Linear). The latter shares the
same spirit as the Gaussian graphical model method of Qiao,
Guo, and James (2019), while we further compare with Qiao,
Guo, and James (2019) in Section S5.2 of the supplementary
material. We also compare with the functional additive precision
operator of Li and Solea (2018) (denoted as Li and Solea). We
first calculate the false positive (FP) rate and true positive (TP)
rate,

Yicici<p G ) € B, (ij) € EG)]
Zl§i<j§p1 [(i’j) € EO]

Y 1cicjep LG ) ¢ B, (i) € BV
Yizicizp [G)) ¢ E]

for a given parameter A, where I(-) denotes the indicator func-

tion, E° the true graph, and E(1) the estimated graph under A.

We then compute the receiver operating characteristic (ROC)

curve for a gird of values of A. Figure 1 shows the average
ROC curves for the three methods under different models. Each

TP(L) =

>

FP(L) =
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Figure 1. ROC curves for Models | to lll, and for the balanced case (top panels) and the unbalanced case (bottom panels).

curve is averaged over 40 replications. It is seen that our method
performs about the same as the Gaussian estimation method
when the true model is indeed Gaussian (Model I), but performs
much better when the underlying model is non-Gaussian (Mod-
els II and III). Moreover, FARO performs significantly better
than Li and Solea (2018) in Model III for both the balanced
and unbalanced settings, indicating the benefit of penalized
optimization over hard thresholding.

6.2. EEG Data Analysis

We next apply our method in an EEG data analysis. The
data are available at https://kdd.ics.uci.edu/databases/eeg/eeg.
data.html. The goal of the study is to investigate the EEG
relatedness of genetic predisposition with alcoholism. The data
were collected from two groups of individuals: 77 subjects
from the alcoholic group and 45 from the control group. Each
subject was asked to wear a 64-channel electrode cap and shown
one of three types of stimuli, while the voltage value from
each electrode was recorded every second for a total of 256
sec. Each subject completed 120 trials from each of the three
stimuli.

The same dataset has been analyzed before (Li, Kim, and
Altman 2010; Xia and Li 2017; Qiao, Guo, and James 2019).
Following Li, Kim, and Altman (2010), a preprocessing step
was carried out by taking the average of measurements from
single-stimulus trials. This results in a 64 x 256 data matrix for
each individual. Our goal is to estimate the brain connectivity
network with p = 64 for the alcoholic group and the con-
trol group, respectively. We employ a Gaussian kernel for this

data analysis, and use the BIC criterion in (14) for parameter
tuning.

Figure 2 shows the estimated graphs, Earc and Ecry, for the
alcoholic group and the control group, as well as the difference
graphs, EaLc \ Ecrr and Ecrp \ EaLc. It is seen that both
Earc and Ecrp are relatively sparse, with a 10.2% and 9.9 %
sparsity rate, respectively, which also indicates a decrease of
connectivity in the alcoholic group. Moreover, compared to the
control individuals, the alcoholic individuals reveal asymmetric
patterns, in which the left frontal, central and parietal regions
have more connections than their right counterparts. We also
note that the electrodes in regions other than frontal and parietal
are connected only sparsely. These findings in general agree with
the literature (Hayden et al. 2006).

7. Discussion

In this article, we have proposed a new nonparametric func-
tional graphical model. A key and novel feature of this work is
the estimation of a large number of regressions at the operator
level, where both the number of predictors in each regression
and the number of the regressions increase with the sample
size at an exponential rate. This versatile framework yields
flexible, accurate and computationally feasible estimate of the
non-Gaussian and nonlinear functional graphical model with
a large number of nodes. To the best of our knowledge, our
consistency result is the first of its kind for neighborhood selec-
tion where both the response and the predictor are functions,
the relation between them can be nonlinear, and the dimension
of the functions can outgrow the sample size. Additional novel
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Figure 2. Estimated graphs by BIC: the alcoholic group EALC (upper left); the control group ECTL (upper right); the difference EALC \ ECTL (lower left); and Ecﬂ \ EALC (lower

right).

features include the use of ACI as the selection criterion in the
functional setting, the new concept of local additive Markovian
property and its relation with the pairwise additive Markovian
property, as well as the introduction of the Additive Gaussian
distribution that puts ACI in solid footing.

This new framework involves considerable asymptotic devel-
opments. Specifically, we need to extend the individual conver-
gence in Lee, Li, and Zhao (2016b) to the uniform convergence.
Toward that end, we derive a series of concentration bounds for
the sample covariance operator and the sample mean elements
in RKHS, as shown in Lemma 1 and Lemma S3. From these, we
show that the tail probability of the estimation error in terms of
the Hilbert-Schmidt norm behaves like a sub-Gaussian variable.
These concentration bounds and tail probabilities are the key
elements for developing the uniform consistency in the high-
dimensional setting. Li and Solea (2018) and Lee, Li, and Zhao
(2016b) did not have such results.

Moreover, in order to make these concentration bounds
applicable to our setting, we need to develop several relations to

link the covariance operator with various key quantities in our
method. For example, in Proposition S2, we derive an inequality
between the estimated FARO and an intermediate operator,
based on which we obtain the concentration bound of the FARO
estimator. In Proposition S3, we derive a series of inequalities
under which the KKT conditions are satisfied, which leads to
an upper bound of the probability of erroneous neighborhood
selection. These developments are far beyond routine. Besides,
they are sufficiently general to be useful for other problems in
functional data analysis.

Although the current form of the Additive Gaussian distri-
bution is of a finite dimension, we expect that it can be extended
to the infinite-dimensional setting. In addition, our experience
suggests that, often in practice, there exist only a few dominating
eigenfunctions in the empirical covariance operator. For the
truly infinite-dimensional setting, we expect that some addi-
tional regularization is needed, such as the fast decaying of
the tail eigen-structures. We leave such an extension to future
research.
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