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ABSTRACT
In modern data science, dynamic tensor data prevail in numerous applications. An important task is
to characterize the relationship between dynamic tensor datasets and external covariates. However, the
tensor data are often only partially observed, rendering many existing methods inapplicable. In this article,
we develop a regression model with a partially observed dynamic tensor as the response and external
covariates as the predictor. We introduce the low-rankness, sparsity, and fusion structures on the regression
coefficient tensor, and consider a loss function projected over the observed entries. We develop an efficient
nonconvex alternating updating algorithm, and derive the finite-sample error bound of the actual estimator
from each step of our optimization algorithm. Unobserved entries in the tensor response have imposed
serious challenges. As a result, our proposal differs considerably in terms of estimation algorithm, regularity
conditions, as well as theoretical properties, compared to the existing tensor completion or tensor response
regression solutions. We illustrate the efficacy of our proposed method using simulations and two real
applications, including a neuroimaging dementia study and a digital advertising study.
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1. Introduction

In modern data science, dynamic tensor data are becoming
ubiquitous in a wide variety of scientific and business applica-
tions. The data take the form of a multidimensional array and
one mode of the array is time. It is often of keen interest to
characterize the relationship between such time-varying tensor
datasets and external covariates. One example is a neuroimaging
study of Alzheimer’s disease (AD) (Thung et al. 2016). Anatomi-
calmagnetic resonance imaging (MRI) data are collected for 365
individuals with and without AD every six months over a two-
year period. After preprocessing, each image is of dimension
32 × 32 × 32, and stacking these MRI images over time for-
mulates a fourth-way tensor for each subject. An important sci-
entific question is to understand how a patient’s structural brain
atrophy is associated with clinical and demographic character-
istics such as the patient’s diagnosis status, age and sex. Another
example is a digital advertising study (Bruce, Murthi and Rao
2017). The click-through rate (CTR) of 20 active users reacting
to digital advertisements from 2 publishers are recorded for
80 advertisement campaigns on a daily basis over a four-week
period. The data for each campaign are formed as a tensor
by user by publisher by time. An important business question
is to understand how features of an advertisement campaign
affect its effectiveness measured by CTR on the target audience.
Both questions can be formulated as a supervised tensor learn-
ing problem. However, a crucial but often overlooked issue is
that the tensor data are often only partially observed in real
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applications. For instance, in the neuroimaging study, not all
individuals have completed all five biannual MRI scans in two
years. In the digital advertising study, not all users are exposed to
all campaigns nor react to all publishers. Actually, in our digital
advertising data, more than 95% of the entire tensor entries are
unobserved. In this article, we tackle the problem of supervised
tensor learning with partially observed tensor data.

There are several lines of research that are closely related to
but also clearly distinctive of the problem we address. The first
line studies tensor completion (Jain and Oh 2014; Yuan and
Zhang 2016, 2017; Xia and Yuan 2017; Zhang 2019). Tensor
completion aims to fill in the unobserved entries of a par-
tially observed tensor, usually by resorting to some tensor low-
rankness and sparsity structures. It is unsupervised learning,
as it involves no external covariates. While we also handle
tensor data with unobserved entries and employ similar low-
dimensional structures as tensor completion, our goal is not
to complete the tensor. Instead, we target a supervised learn-
ing problem, and aim to estimate the relationship between the
partially observed tensor datasets and external covariates. Con-
sequently, our model formulation, estimation approach, and
theoretical analysis are considerably different from tensor com-
pletion. The second line tackles tensor regression where the
response is a scalar and the predictor is a tensor (Zhou, Li and
Zhu 2013; Wang and Zhu 2017; Hao, Zhang and Cheng 2020;
Han, Willett and Zhang 2020). By contrast, we treat tensor as
the response and covariates as the predictor. When it comes
to theoretical analysis, the two models involve utterly different
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techniques. The third line studies regressions with a tensor-
valued response, while imposing different structural assump-
tions on the resulting tensor regression coefficient (Rabusseau
and Kadri 2016; Li and Zhang 2017; Sun and Li 2017; Chen,
Raskutti and Yuan 2019; Xu, Hu and Wang 2019). This line
of work shares a similar goal as ours; however, none of these
existing methods can handle a tensor response with partially
observed entries. Moreover, none are able to pool information
from the dynamic tensor data collected at adjacent time points.
In our experiments, we show that focusing only on the subset
of completely observed tensor data, or ignoring the structural
smoothness over time would both lead to considerable loss
in estimation accuracy. Finally, there have been a number of
proposals motivated by similar applications and can handle
missing values. Particularly, Li et al. (2013) considered an adap-
tive voxel-wise approach bymodeling each entry of the dynamic
tensor separately.We instead adopt a tensor regression approach
by jointly modeling all entries of the entire tensor. We later
numerically compare our method with Li et al. (2013) and
other solutions. Xue andQu (2020) studied regressions ofmulti-
source data with missing values involving neuroimaging fea-
tures. However, the images were summarized as a vector instead
of a tensor, andwere placed on the predictor side. Similarly, Feng
et al. (2019) developed a scalar-on-image regressionmodel with
missing image scans. By contrast, we place the imaging tensor
on the response side.

In this article, we develop a regression model with partially
observed dynamic tensor as the response. We assume the coef-
ficient tensor to be both sparse and low-rank, which reduces the
dimension of the parameter space, lessens the computational
complexity, and improves the interpretability of the model. Fur-
thermore, we impose a fusion structure along the temporal
mode of the tensor coefficient, which helps to pool the infor-
mation from data observed at adjacent time points. All these
assumptions are scientifically plausible, and have been widely
used in numerous applications (Vounou et al. 2010; Zhou, Li
and Zhu 2013; Yin et al. 2015; Rabusseau and Kadri 2016; Bi,
Qu and Shen 2018; Tang, Bi and Qu 2019; Zhang et al. 2019).
To handle the unobserved entries in the tensor response, we
consider a loss function projected over the observed entries,
which is then optimized under the low-rankness, sparsity and
fusion constraints. We develop an efficient nonconvex alter-
nating updating algorithm, and derive the finite-sample error
bound of the estimator from each step of our optimization
algorithm.

Unobserved entries in the tensor response have introduced
serious challenges. The existing algorithms for estimating a
sparse low-rank tensor and technical tools for asymptotic analy-
sis are only applicable to either a single partially observed tensor
or a fully observed tensor (e.g., Jain and Oh 2014; Sun and Li
2017). As a result, our proposal differs considerably in terms
of estimation algorithm, regularity conditions, as well as theo-
retical properties. For estimation, since the unobserved entries
can occur at different locations for different tensors, the loss
function projected over the observed entries takes a complex
form. The traditional vector-wise updating algorithms (Jain and
Oh 2014; Sun and Li 2017) are no longer applicable. Alterna-
tively, we propose a new procedure that updates the low-rank
components of the coefficient tensor in an element-wise fashion

(see Step 1 of Algorithm 1 and Equation (7) in Section 3). For
regularity conditions, we add a μ-mass condition to ensure that
sufficient information is contained in the observed entries for
tensor coefficient estimation (seeAssumption 1).We also place a
lower bound on the probability of the observation p, and discuss
its relation with the sample size, tensor dimension, sparsity level
and mass parameter μ (see Assumptions 2 and 6). Our lower
bound is different from that in the tensor completion literature
(Jain and Oh 2014; Yuan and Zhang 2016, 2017; Xia and Yuan
2017), which considered only a single tensor; whereas we con-
sider a collection of n tensors. Consequently, our lower bound
on p depends on n, and tends to 0 as n tends to infinity. For
theoretical properties, we show that the statistical error of our
estimator has an interesting connection with the lower bound
on p, which does not appear in the tensor response regression for
complete data (Sun and Li 2017). This characterizes the loss at
the statistical level when modeling with only partially observed
tensors. In summary, our proposal is far from an incremental
extension from the complete case scenario, and involves a new
set of strategies for estimation and theoretical analysis.

We adopt the following notation throughout the arti-
cle. Let [d] = {1, . . . , d}, and let ◦ and ⊗ denote the
outer product and Kronecker product. For a vector a ∈
R
d, let ‖a‖ and ‖a‖0 denote its Euclidean norm and �0

norm, respectively. For a matrix A ∈ R
d1×d2 , let ‖A‖

denote its spectral norm. For a tensor A ∈ R
d1×···×dm , let

Ai1,...,im be its (i1, . . . , im)th entry, and Ai1,...,ij−1,:,ij+1,...,im =
(Ai1,...,ij−1,1,ij+1,...,im , . . . ,Ai1,...,ij−1,dj,ij+1,...,im)� ∈ R

dj . Let
unfoldm(A) denote themode-m unfolding ofA, which arranges
the mode-m fibers to be the columns of the resulting matrix; for
example, the mold-1 unfolding of a third-order tensor A ∈
R
d1×d2×d3 is unfold1(A) = [A:,1,1, . . . ,A:,d2,1, . . . ,A:,d2,d3 ] ∈

R
d1×(d2d3). Define the tensor spectral norm as ‖A‖ =

sup‖a1‖=···=‖am‖=1 |A ×1 a1 ×2 · · · ×m am|, and the ten-

sor Frobenius norm as ‖A‖F =
√∑

i1,...,im A2
i1,...,im . For

a ∈ R
dj , define the j-mode tensor product as A ×j a ∈

R
d1×···×dj−1×dj+1×···×dm , such that (A ×j a)i1,...,ij−1,ij+1,...,im =∑dj
ij=1Ai1,...,imaij . For aj ∈ R

dj , j ∈ [m], define the multilinear
combination of the tensor entries as A ×1 a1 ×2 . . . ×m am =∑

i1∈[d1] . . .
∑

im∈[dm] a1,i1 . . . am,imAi1,...,im , where aj,ij is the ijth
entry of aj. For two sequences an, bn, we say an = O(bn) if
an ≤ Cbn for some positive constant C.

The rest of the article is organized as follows. Section 2
introduces our regression model with a partially observed
dynamic tensor response. Section 3 develops the estimation
algorithm. Section 4 investigates the theoretical properties.
Section 5 presents the simulation results, and Section 6
illustrates with two real-world datasets, a neuroimaging study
and a digital advertising study. All technical proofs are relegated
to the supplementary materials.

2. Model

Suppose at each time point t, we collect anmth-order tensor Yt
of dimension d1 × · · · × dm, t ∈ [T]. We stack the collected
tensors Y1, . . . ,YT together, and represent it as an (m + 1)th-
order tensorY ∈ R

d1×···×dm×T . Correspondingly, the (m+1)th
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mode of Y is referred as the temporal mode. Suppose there are
totally n subjects in the study. For each subject i, we collect a
dynamic tensor represented as Yi, along with a q-dimensional
vector of covariates xi ∈ R

q, i ∈ [n]. The response tensorYi can
be partially observed, and the missing patterns can vary from
subject to subject. We consider the following regression model:

Yi = B∗ ×m+2 xi + Ei, (1)

where B∗ ∈ R
d1×···×dm×T×q is an (m + 2)th-order coefficient

tensor, and Ei ∈ R
d1×···×dm×T is an (m+1)th-order error tensor

independent of xi. Without loss of generality, we assume the
data are centered, and thus drop the intercept term in model
(1). The coefficient tensor B∗ captures the relationship between
the dynamic tensor response and the predictor, and is the main
object of interest in our analysis. For instance, B∗

i1,...,im,:,l ∈ R
T

describes the effect of the lth covariate on the time-varying
pattern of the (i1, . . . , im)th entry of tensor Yt . Next, we impose
three structures on B∗ to facilitate its analysis.

We first assume that B∗ admits a rank-r CP decomposition
structure, in that,

B∗ =
∑
k∈[r]

w∗
kβ

∗
k,1 ◦ · · · ◦ β∗

k,m+2, (2)

where β∗
k,j ∈ S

dj , Sd = {a ∈ R
d | ‖a‖ = 1}, and w∗

k > 0. The
CP structure is one of the most common low-rank structures
(Kolda and Bader 2009), and is widely used in tensor data
analysis (Zhou, Li and Zhu 2013; Anandkumar et al. 2014; Jain
and Oh 2014; Yuan and Zhang 2016, 2017; Zhang 2019; Chen,
Raskutti andYuan 2019, among others).We next assume thatB∗
is sparse, in that the decomposed components β∗

k,j’s are sparse.
That is, β∗

k,j ∈ S(dj, sj) for j ∈ [m + 1], k ∈ [r], where

S(d, s) =
{

β ∈ R
d |

d∑
l=1

1(βl 	=0) ≤ s

}
=

{
β ∈ R

d | ‖β‖0 ≤ s
}
.

This assumption postulates that the covariates x’s effects are
concentrated on a subset of entries of B∗, which enables us
to identify the most relevant regions in the dynamic tensor
that are affected by the covariates. The sparsity assumption is
againwidely employed in numerous applications including neu-
roscience and online advertising (Bullmore and Sporns 2009;
Vounou et al. 2010; Sun et al. 2017). We further assume a fusion
structure on the decomposed components β∗

k,j of B∗. That is,
β∗
k,j ∈ F(dj, fj) for j ∈ [m + 1], k ∈ [r], where

F(d, f ) =
{

β ∈ R
d |

d∑
l=2

1(|βl−βl−1|	=0) ≤ f

}
=

{
β ∈ R

d | ‖Dβ‖0 ≤ f − 1
}
,

and D ∈ R
(d−1)×d with Di,i = −1, Di,i+1 = 1 for i ∈

[d− 1], and other entries being zeros. This assumption encour-
ages temporal smoothness and helps pool information from
tensors observed at adjacent time points (Madrid-Padilla and

Scott 2017; Sun and Li 2019). Putting the sparsity and fusion
structures together, we have

β∗
k,j ∈ S(dj, sj) ∩ F(dj, fj), forj ∈ [m + 1], k ∈ [r]. (3)

We briefly comment that, since the dimension q of the covariates
x is relatively small in our motivating examples, we have chosen
not to impose any sparsity or fusion structure on the component
β∗
k,m+2 ∈ R

q, which is the last mode of the coefficient tensor
B∗. Nevertheless, we can easily incorporate such a structure for
β∗
k,m+2, or other structures. The extension is straightforward,

and thus is not further pursued.
Amajor challengewe face is thatmany entries of the dynamic

tensor response Y are unobserved. Let � ⊆ [d1] × [d2] × · · · ×
[dm+1] denote the set of indexes for the observed entries, and�i
denote the set of indexes for the observed entries in Yi, i ∈ [n].
We define a projection function ��(·) that projects the tensor
onto the observed set �, such that

[��(Y)]i1,i2,...,im+1 =
{

Yi1,i2,...,im+1 if(i1, . . . , im+1) ∈ �,
0 otherwise.

We then consider the following constrained optimization prob-
lem:

min
wk ,βk,j

k∈[r],j∈[m+2]

1
n

n∑
i=1

∥∥∥∥∥∥��i

⎛⎝Yi −
∑
k∈[r]

wk(β
�
k,m+2xi)βk,1 ◦ · · · ◦ βk,m+1

⎞⎠∥∥∥∥∥∥
2

F

subject to ‖βk,j‖2 = 1, j ∈ [m + 2], ‖βk,j‖0 ≤ τsj ,∥∥∥Dβk,j
∥∥∥
0

≤ τfj , j ∈ [m + 1], k ∈ [r]. (4)

In this optimization, both sparsity and fusion structures are
imposed through �0 penalties. Such nonconvex penalties have
been found effective in high-dimensional sparse models (Shen,
Pan and Zhu 2012; Zhu, Shen and Pan 2014) and fused sparse
models (Rinaldo 2009; Wang et al. 2016).

3. Estimation

The optimization problem in Equation (4) is highly nontrivial,
as it is a non-convex optimization with multiple constraints
and a complex loss function due to the unobserved entries.
We develop an alternating block updating algorithm to solve
Equation (4), and divide our procedure intomultiple alternating
steps. First, we solve an unconstrained weighted tensor com-
pletion problem, by updating βk,1, . . . ,βk,m+1, given wk and
βk,m+2, for k ∈ [r]. Since each response tensor is only par-
tially observed and different tensors may have different missing
patterns, the commonly used vector-wise updating approach in
tensor analysis is no longer applicable. To address this issue, we
propose a new element-wise approach to update the decom-
posed components of the low-rank tensor. Next, we define a
series of operators and apply them to the unconstrained estima-
tors obtained from the first step, so to incorporate the sparsity
and fusion constraints on βk,1, . . . ,βk,m+1. Finally, we update
wk and βk,m+2, both of which have closed-form solutions. We
summarize the procedure in Algorithm 1, then discuss each
step.
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Algorithm 1 Alternating block updating algorithm for (4)
1: input: the data

{
(xi,Yi,�i), i = 1, . . . , n

}
, the rank r, the

sparsity parameter τsj , and the fusion parameter τfj , j ∈ [m+
1].

2: initialization: set wk = 1, and randomly generate unit-
norm vectors βk,1, . . . ,βk,m+2 from a standard normal dis-
tribution, k ∈ [r].

3: repeat
4: for k = 1 to r do
5: for j = 1 tom + 1 do
6: Step 1: obtain the unconstrained estimator

β̃
(t+1)
k,j , given ŵ(t)

k , β̂
(t+1)
k,1 , . . . , β̂

(t+1)
k,j−1 , β̂

(t)
k,j+1, . . . ,

β̂
(t)
k,m+1, β̂

(t)
k,m+2, by solving (5); normalize β̃

(t+1)
k,j .

7: Step 2: obtain the constrained estimator β̂
(t+1)
k,j , by

applying the Truncatefuse operator to β̃
(t+1)
k,j ;

normalize β̂
(t+1)
k,j .

8: end for
9: Step 3: obtain ŵ(t+1)

k , given β̂
(t+1)
k,1 , . . . , β̂

(t+1)
k,m+1, β̂

(t)
k,m+2,

using (8).
10: Step 4: obtain β̂

(t+1)
k,m+2, given ŵ(t+1)

k , β̂
(t+1)
k,1 , . . . , β̂

(t+1)
k,m+1,

using (9).
11: end for
12: until the stopping criterion is met.
13: output: ŵk, β̂k,1, . . . , β̂k,m+2, k ∈ [r].

In Step 1, we solve an unconstrained weighted tensor com-
pletion problem,

min
βk,j

1
n

n∑
i=1

{
α

(t)
i,k

}2 ∥∥∥��i

(
R(t+1)

i,k − ŵ(t)
k β̂

(t+1)
k,1 ◦ · · · ◦

× β̂
(t+1)
k,j−1 ◦ βk,j ◦ β̂

(t)
k,j+1 ◦ · · · ◦ β̂

(t)
k,m+1

)∥∥∥2
F
, (5)

where α
(t)
i,k = β

(t)�
k,m+2xi, andR

(t+1)
i,k is a residual term defined as,

R(t+1)
i,k =

(
Yi −

∑
k′<k

ŵ(t+1)
k′ α

(t+1)
i,k′ β

(t+1)
k′,1 ◦ . . . ◦ β

(t+1)
k′,m+1

−
∑
k′>k

ŵ(t)
k′ α

(t)
i,k′β

(t)
k′,1 ◦ . . . ◦ β

(t)
k′,m+1

)
/α

(t)
i,k , (6)

for i ∈ [n], k ∈ [r]. The optimization problem in Equation (5)
has a closed-form solution. To simplify the presentation, we give
this explicit expression whenm = 2. For the case ofm ≥ 3, the
calculation is similar except involving more terms. Specifically,
the lth entry of β̃(t+1)

k,3 is

β̃
(t+1)
k,3,l =

∑n
i=1

{
α

(t)
i,k

}2 ∑
l1,l2 δi,l1,l2,l R

(t+1)
i,k,l1,l2,l β̂

(t+1)
k,1,l1 β̂

(t+1)
k,2,l2∑n

i=1

{
α

(t)
i,k

}2 ∑
l1,l2 ŵ

(t)
k δi,l1,l2,l

{
β̂

(t+1)
k,1,l1

}2 {
β̂

(t+1)
k,2,l2

}2 ,
(7)

where δi,l1,l2,l = 1 if (l1, l2, l) ∈ �i, and δi,l1,l2,l = 0 otherwise.
Here R(t+1)

i,k,l1,l2,l refers to the (l1, l2, l)th entry of R(t+1)
i,k . The

expressions for β̃
(t+1)
k,1 and β̃

(t+1)
k,2 can be derived similarly. We

remark that, Equation (7) is the key difference between our
estimation method and those for a single partially observed
tensor (Jain andOh 2014), or a completely observed tensor (Sun
and Li 2017). Particularly, the observed entry indicator δi,l1,l2,l
appears in both the numerator and denominator, and δi,l1,l2,l

is different across different entries of β̃
(t+1)
k,3 . Therefore, β̃(t+1)

k,3
needs to be updated in an element-wise fashion, as δi,l1,l2,l could
not be cancelled. After obtaining Equation (7), we normalize
β̃

(t+1)
k,j to ensure a unit norm.
In Step 2, we apply the sparsity and fusion constraints to

β̃
(t+1)
k,j obtained in the first step. Toward that goal, we define

a truncation operator Truncate(a, τs), and a fusion operator
Fuse(a, τf ), for a vector a ∈ R

d and two integer-valued tuning
parameters τs and τf , as,

[Truncate(a, τs)]j =
{
aj ifj ∈ supp(a, τs)
0 otherwise ;

[Fuse(a, τf )]j =
τf∑
i=1

1j∈Ci
1

|Ci|
∑
l∈Ci

al,

where supp(a, τs) refers to the indexes of τs entries with the
largest absolute values in a, and {Ci}τfi=1 are the fusion groups.
This truncation operator ensures that the total number of
nonzero entries in a is bounded by τs, and is commonly
employed in non-convex sparse optimizations (Yuan and Zhang
2013; Sun et al. 2017). The fusion groups {Ci}τfi=1 are calculated as
follows. First, the truncation operator is applied to Da ∈ R

d−1.
The resulting Truncate(Da, τf − 1) has at most (τf − 1)
nonzero entries. Then the elements aj and aj+1 are put into the
same group if [Truncate(Da, τf − 1)]j = 0. This procedure
in effect groups the elements in a into τf distinct groups, which
we denote as {Ci}τfi=1. Elements in each of the τf groups are then
averaged to obtain the final result. Combining the two operators,
we obtain the Truncatefuse(a, τs, τf ) operator as,

Truncatefuse(a, τs, τf ) = Truncate
{
Fuse(a, τf ), τs

}
,

where τs ≤ d is the sparsity parameter, and τf ≤ d is the
fusion parameter. For example, consider a = (0.1, 0.2, 0.4,
0.5, 0.6)�, τs = 3 and τf = 2. Correspondingly, Da =
(0.1, 0.2, 0.1, 0.1)�. We then have Truncate(Da, τf − 1) =
(0, 0.2, 0, 0)�. This in effect suggests that a1, a2 belong
to one group, and a3, a4, a5 belong to the other group. We
then average the values of a in each group, and obtain
Fuse(a, τf ) = (0.15, 0.15, 0.5, 0.5, 0.5)�. Lastly, Trun
catefuse(a, τs, τf ) = Truncate

{
Fuse(a, τf ), τs

} =
Truncate

{
(0.15, 0.15, 0.5, 0.5, 0.5)�, 3

}=(0, 0, 0.5, 0.5, 0.5)�.
We apply the Truncatefuse operator to the unconstrained
estimator β̃

(t+1)
k,j obtained from the first step, with the sparsity

parameter τsj and the fusion parameter τfj , and normalize the
result to ensure a unit norm.

In Step 3, we update ŵ(t+1)
k , given β̂

(t+1)
k,1 , . . . , β̂

(t+1)
k,m+1, β̂

(t)
k,m+2,

which has a closed-form solution,

ŵ(t+1)
k = R(t+1) ×1 β̂

(t+1)
k,1 ×2 · · · ×m+1 β̂

(t+1)
k,m+1∑n

i=1

{
α

(t)
i,k

}2 ∥∥∥��i

(
β̂

(t+1)
k,1 ◦ · · · ◦ β̂

(t+1)
k,m+1

)∥∥∥2
F

, (8)
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where R(t+1) = ∑n
i=1

{
α

(t)
i,k

}2
��i

(
R(t+1)

i,k

)
, and R(t+1)

i,k is

as defined in Equation (6) by replacing β̂
(t)
k,1, . . . , β̂

(t)
k,m+1 with

β̂
(t+1)
k,1 , . . . , β̂

(t+1)
k,m+1.

In Step 4, we update β̂
(t+1)
k,m+2, given ŵ

(t+1)
k , β̂

(t+1)
k,1 , . . . , β̂

(t+1)
k,m+1,

which again has a closed-form solution. Write R̃(t+1)
i,k = Yi −∑

k′ 	=k,k′∈[r] w
(t+1)
k′ α

(t)
i,k′β

(t+1)
k′,1 ◦ · · · ◦ β

(t+1)
k′,m+1, and A(t+1)

k =
w(t+1)
k β

(t+1)
k,1 ◦ · · · ◦ β

(t+1)
k,m+1. Then we have,

β̂
(t+1)
k,m+2 =

{
1
n

n∑
i=1

∥∥∥��i

(
A(t+1)

k

)∥∥∥2
F
xix�

i

}−1

× n−1
n∑

i=1

〈
��i

(
R̃(t+1)

i,k

)
,��i

(
A(t+1)

k

)〉
xi, (9)

where 〈·, ·〉 is the tensor inner product.
We make some remarks regarding the convergence of Algo-

rithm 1. First, with a suitable initial value, the iterative estimator
fromAlgorithm1 converges to a neighborhood that iswithin the
statistical precision of the true parameter at a geometric rate, as
we show later in Theorems 1 and 2. These results also provide a
theoretical termination condition forAlgorithm1. That is, when
the computational error is dominated by the statistical error,
we can stop the algorithm. In practice, we iterate the algorithm
until the estimates from two consecutive iterations are close, that
is, maxj∈[m+2],k∈[r] min

{∥∥∥β̂
(t+1)
k,j − β̂

(t)
k,j

∥∥∥ , ∥∥∥β̂
(t+1)
k,j + β̂

(t)
k,j

∥∥∥}
≤

10−4. Second, with any initial value, and if there are no sparsity
and fusion constraints, that is, without the Truncatefuse
step, then Algorithm 1 is guaranteed to converge to a stationary
point, because the objective function monotonically decreases
at each iteration (Wang and Li 2020). Finally, when imposing
the sparsity and fusion constraints, the algorithmic convergence
from any initial value becomes very challenging, since both
constraints are non-convex. Actually, the general convergence
of non-convex optimizations remains an open question. For
instance, in the existing non-convex models that employ trun-
cation in optimizations, including sparse PCA (Ma 2013), high-
dimensional EM (Wang et al. 2015b), sparse phase retrieval (Cai,
Li andMa 2016), sparse tensor decomposition (Sun et al. 2017),
and sparse generalized eigenvalue problem (Tan et al. 2018), the
convergence to a stationary point has only been established for
a suitable initial value, but not for any initial value.We leave this
for future research.

The proposed Algorithm 1 involves a number of tuning
parameters, including the rank r, the sparsity parameter τsj , and
the fusion parameter τfj , j ∈ [m + 1]. We propose to tune the
parameters by minimizing a BIC-type criterion,

2 log

{
1
n

n∑
i=1

∥∥∥��i

(
Yi − B̂ ×m+2 xi

)∥∥∥2
F

}

+
log

(
n

∏m+1
j=1 dj

)
n

∏m+1
j=1 dj

× df, (10)

where the total degrees of freedom df is the total number of
unique nonzero entries of βk,j. The criterion in Equation (10)

naturally balances themodel fitting andmodel complexity. Sim-
ilar BIC-type criterions have been used in tensor data analysis
(Zhou, Li and Zhu 2013; Wang et al. 2015a; Sun and Li 2017).
To further speed up the computation, we tune the three sets of
parameters r, τsj and τfj sequentially. That is, among the set of
values for r, τsj , τfj , we first tune r while fixing τsj , τfj at their
maximum values. Then, given the selected r, we tune τsj , while
fixing τfj at its maximum value. Finally, given the selected r and
τsj , we tune τfj . In practice, we find such a sequential procedure
yields good numerical performance.

4. Theory

Wenext derive the nonasymptotic error bound of the actual esti-
mator obtained from Algorithm 1. We first develop the theory
for the case of rank r = 1, because this case has clearly captured
the roles of various parameters, including the sample size, tensor
dimension, and proportion of the observed entries, on both
the computational and statistical errors. We then generalize
to the case of rank r > 1. Due to the involvement of the
unobserved entries, our theoretical analysis is highly nontrivial,
and is considerably different from Sun and Li (2017, 2019).
We discuss in detail the effect of missing entries on both the
regularity conditions and the theoretical properties.

We first introduce the definition of the sub-Gaussian distri-
bution.

Definition 1 (sub-Gaussian). The random variable ξ is said to
follow a sub-Gaussian distribution with a variance proxy σ 2, if
E(ξ) = 0, and for all t ∈ R, E(exp{tξ}) ≤ exp{t2σ 2/2}.

Next we introduce some basic model assumptions common
for both r = 1 and r > 1. Let sj denote the number of nonzero
entries in β∗

k,j, j ∈ [m + 1], and s = maxj{sj}.
Assumption 1. Assume the following conditions hold.

(i) The predictor xi satisfies that ‖xi‖ ≤ c1, n−1 ∑n
i=1‖xix�

i ‖2 ≤ c2, i ∈ [n], and 1/c0 < λmin ≤ λmax < c0,
where λmin, λmax are the minimum and maximum
eigenvalues of the sample covariance matrix � =
n−1 ∑n

i=1 xix�
i , respectively, and c0, c1, c2 are some positive

constants.
(ii) The true tensor coefficientB∗ in (1) satisfies theCP decom-

position (2) with sparsity and fusion constraints (3), and
the decomposition is unique up to a permutation. More-
over, ‖B∗‖ ≤ c3w∗

max where w∗
max = maxk{w∗

k}, w∗
min =

mink{w∗
k}, and c3 is some positive constant. Furthermore,

w∗
max = O(w∗

min).
(iii) The decomposed component β∗

k,j is a μ-mass unit vector,
in that maxl∈dj |β∗

k,j,l| ≤ μ/
√
s.

(iv) The entries in the error tensor Ei are iid sub-Gaussian with
a variance proxy σ 2.

(v) The entries of the dynamic tensor responseYi are observed
independently with an equal probability p ∈ (0, 1].

We make some remarks about these conditions. Assump-
tion 1(i) is placed on the designmatrix, which ismild and can be
easily verified when xi is of a fixed dimension. Assumption 1(ii)
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is about the key structures we impose on the coefficient tensor
B∗. It also ensures the identifiability of the decomposition
of B∗, which is always imposed in CP decomposition based
tensor analysis (Zhou, Li and Zhu 2013; Sun and Li 2017; Chen,
Raskutti and Yuan 2019). Assumption 1(iii) is to ensure that the
mass of the tensor would not concentrate on only a few entries.
In that extreme case, randomly observed entries of the tensor
response may not contain enough information to recover B∗.
Note that, since β∗

k,j is a vector of unit length, a relatively smallμ
implies that the nonzero entries inβ∗

k,j would bemore uniformly
distributed. This condition has been commonly imposed in the
tensor completion literature for the same purpose (Jain and Oh
2014). Assumption 1(iv) assumes the error terms follow a sub-
Gaussian distribution. This assumption is again fairly common
in the theoretical analysis of tensor models (Cai et al. 2019;
Xia, Yuan and Zhang 2020). Finally, Assumption 1(v) specifies
the mechanism of how each entry of the tensor response is
observed, which is assumed to be independent of each other and
have an equal observation probability. We recognize that this is
a relatively simple mechanism. It may not always hold in real
applications, as the actual observation pattern of the tensor data
can depend onmultiple factors, andmay not be independent for
different entries. We impose this condition for our theoretical
analysis, even though our estimation algorithm does not require
it. In the tensor completion literature, this mechanism has been
commonly assumed (Jain and Oh 2014; Yuan and Zhang 2016,
2017; Xia and Yuan 2017). We have chosen to impose this
assumption because the theory of supervised tensor learning
even for this simple mechanism remains unclear, and is far from
trivial.We feel a rigorous theoretical analysis for thismechanism
it deserves a full investigation. We leave the study under a more
general observation mechanism for future research.

4.1. TheoryWith r = 1

To ease the notation and simplify the presentation, we focus
primarily on the case with a third-order tensor response, that
is, m = 2. This however does not lose generality, as all our
results can be extended to the case ofm > 2 in a straightforward
fashion. Let d = max{d1, . . . , dm+1}. Next, we introduce some
additional regularity conditions.

Assumption 2. Assume the observation probability p satisfies
that,

p ≥ c4{log(d)}4μ3

n s1.5
.

where c4 > 0 is some constant.

Due to Assumption 1(v), the observation probability p also
reflects the proportion of the observed entries of the tensor
response. Assumption 2 places a lower bound on this propor-
tion to ensure a good recovery of the tensor coefficient. This
bound depends on the sample size n, true sparsity parameter
s, maximum dimension d, and mass parameter μ. We discuss
these dependencies in detail. First, compared to the lower bound
conditions on p in the tensor completion literature where a
single tensor is considered (Jain and Oh 2014; Yuan and Zhang
2016, 2017; Xia andYuan 2017; Cai et al. 2019), our lower bound

is different, as it depends on the number of tensor samples n,
and it tends to 0 as n tends to infinity. When n = 1, our lower
bound is comparable to that in Jain and Oh (2014), Cai et al.
(2019), with s replaced by d, as they did not consider any sparsity.
Second, the lower bound on p increases as s decreases, that is, as
the data becomemore sparse. This is because, when the sparsity
is involved, both our tensor regression problem and the tensor
completion problem become more difficult. Intuitively, when
the sparsity increases, the nonzero elements may concentrate
on only a few tensor entries. As a result, a larger proportion of
the tensor entries needs to be observed to ensure that a suffi-
cient number of nonzero elements can be observed for tensor
estimation or completion. We also note that this condition on
the lower bound on p is different from the sample complexity
condition on n that we will introduce in Assumption 5. The
latter suggests that the required sample size n decreases as s
decreases. Third, when there is no sparsity, Jain and Oh (2014),
Cai et al. (2019) showed that the lower bound on p is of the order
(log d)4/(d3/2), which decreases as d increases. In our setting
with the sparsity, however, the lower bound on p increases as d
increases. Finally, the lower bound on p increases as the mass
parameter μ increases. This is because when μ increases, the
mass of the tensor may become more likely to concentrate on
a few entries, and thus the entries need to be observed with a
larger probability to ensure the estimation accuracy.

Assumption 3. Assume the sparsity and fusion parameters sat-
isfy that τsj ≥ sj, τsj = O(sj), and τfj ≥ fj. Moreover, define the
minimal gap, 
∗ = min1<s≤dj,β∗

1,j,s 	=β∗
1,j,s−1,j∈[3] |β∗

1,j,s − β∗
1,j,s−1|.

Assume that, for the positive constant C1 as defined in Theo-
rem 1, we have


∗ >
C1σ

w∗
1

√
s log(d)

np
.

The condition for the sparsity parameter ensures that the
truly nonzero elements would not be shrunk to zero. Similar
conditions have been imposed in truncated sparsemodels (Yuan
and Zhang 2013; Wang et al. 2015b; Sun et al. 2017; Tan et al.
2018). The conditions for the fusion parameter and the mini-
mum gap ensure that the fused estimator would not incorrectly
merge two distinct groups of entries in the true parameter. Such
conditions are common in sparse and fused regression models
(Tibshirani et al. 2005; Rinaldo 2009).

Assumption 4. Define the initialization error ε = max{|ŵ(0)
1 −

w∗
1|/w∗

1, maxj ‖β̂(0)
1,j − β∗

1,j‖2}. Assume that

ε < min

{
λ3min

24
√
10 c2 λ2max

,
1
6

}
,

where c2 is the same constant as in Assumption 1.

This assumption is placed on the initialization error of Algo-
rithm 1, and requires that the initial values are reasonably close
to the true parameters. Particularly, the condition on ε requires
the initial error to be smaller than some constant, which is
a relatively mild condition, since β∗

1,j’s are unit vectors. Such
constant initialization condition is commonly employed in the
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tensor literature (Sun and Li 2017; Han,Willett and Zhang 2020;
Xia, Yuan and Zhang 2020). In Section 4.3, we further propose
an initialization procedure, and show both theoretically and
empirically that such a procedure can produce initial values that
satisfy Assumption 4.

Assumption 5. Assume the sample size n satisfies that

n ≥ max

{
c5 σ 2 s2 log(d)

w∗2
1 p

,
c6σ s log(d) log(

√
s3/p)

w∗
1p

}
where c5 and c6 are some positive constants.

There are two terms in this lower bound, both of which are
due to the error tensor Ei in the model and the missing entries
in the response tensor. In addition, the first term is needed to
ensure the μ-mass condition is satisfied. When the observa-
tional probability p satisfies the lower bound requirement in
Assumption 2, the required sample size decreases as s decreases,
since in this case the number of free parameters decreases.
When the strength of signal w∗

1 increases or the noise level σ

decreases, the required sample size also decreases.
We now state the main theory for the estimator of Algo-

rithm 1 when r = 1.

Theorem 1. Suppose Assumptions 1–5 hold. When the tensor
rank r = 1, the estimator from the tth iteration of Algorithm 1
satisfies that, with high probability,

max
{
|ŵ(t)

1 − w∗
1|/w∗

1, max
j

‖β̂(t)
1,j − β∗

1,j‖2
}

≤ κ tε︸︷︷︸
computational error

+ 1
1 − κ

C1σ

w∗
1

√
s log(d)

np︸ ︷︷ ︸
statistical error

,

where κ = 6
√
10c2λ2maxε/λ

3
min + 1/2 < 1 is the positive

contraction coefficient, with ε as defined in Assumption 4, and
the constant C1 = (6

√
10C̃λmax + C̃2λmin

√q)/λ2min. Here, c2 is
the same constant as defined in Assumptions 1, C̃, C̃2 are some
positive constants, and q is fixed under Assumption 1(i).

The nonasymptotic error bound inTheorem1 can be decom-
posed as the sum of a computational error and a statistical error.
The former is related to the optimization procedure, while the
latter is related to the statistical model. The statistical error
decreases with a decreasing κ , an increasing signal-to-noise
ratio as reflected by σ/w∗

1, an increasing sample size n and
an increasing observation probability p. When p = 1 and
σ = 1, the statistical error rate in our Theorem 1 actually
improves the statistical error rate in the completely observed
tensor response regression (Sun and Li 2017), which is of order
1/w∗

1
√
s3 log(d)/n. This improvement is achieved because we

have employed a new proof technique using the covering num-
ber argument (Ryota and Taiji 2014) in bounding the sparse
spectral of the error tensor, which allows us to obtain a sharper
rate in terms of the sparsity parameter s. Moreover, when n = 1
and s = d, our statistical error rate matches with the rate
σ/w∗

1
√
d log(d)/p in the nonsparse tensor completion (Cai et al.

2019).

One of the key challenges of our theoretical analysis is the
complicated form of the element-wise estimator β̃k,3 in Equa-
tion (7). Consequently, one cannot directly characterize the
distance between β̃k,3/‖β̃k,3‖ and β∗

k,3 with a simple analytical
form. Furthermore, the presence of noise error poses several
fundamental challenges. The missing entries in noise tensors
make existing proof techniques no longer applicable in our
theoretical analysis. As we shall demonstrate later, we need to
carefully control the upper bound of error tensor with missing
entries.

We also briefly comment that, Theorem 1 provides a theoret-
ical termination condition for Algorithm 1. When the number
of iterations t exceedsO{log1/κ(ε/ε∗)}, where ε∗ is the statistical
error term in Theorem 1, then the computational error is to be
dominated by the statistical error, and the estimator falls within
the statistical precision of the true parameter.

4.2. TheoryWith r > 1

Next, we extend our theory to the general rank r > 1. The
regularity conditions for the general rank case parallel those for
the rank one case. Meanwhile, some modifications are needed,
due to the interplay among different decomposed components
βk,j.

Assumption 6. Assume the observation probability p satisfies
that

p ≥ c7{log(d)}4μ3rw∗2
max

n s1.5 w∗2
min

,

where c7 > 0 is some constants.

For the general rank case, the lower bound on the observa-
tion probability p depends additionally on the rank r and the
ratio w∗

max/w∗
min. In particular, the lower bound will increase

with an increasing rank r, which suggests that more observa-
tions are needed if the rank of the coefficient tensor increases.
When the sample size n = 1, our condition is comparable
to that in tensor completion (Jain and Oh 2014), where the
latter requires p ≥ cμ6r5w∗4

max/(d1.5w∗4
min) ignoring the loga-

rithm term, with s replaced by d, as they do not consider any
sparsity.

Assumption 7. Assume the sparsity and fusion parameters sat-
isfy that τsj ≥ sj, τsj = O(sj), and τfj ≥ fj. Moreover, define
the minimal gap 
∗ = min1<s≤dj,β∗

k,j,s 	=β∗
k,j,s−1,j∈[3],k∈[r], |β∗

k,j,s −
β∗
k,j,s−1|. Assume that,


∗ >
C2σw∗

max
w∗2
min

√
s log(d)
np

,

where positive constant C2 is the same constant as defined in
Theorem 2.

This assumption is similar to Assumption 3, and it reduces
to Assumption 3 when r = 1.
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Assumption 8. Define ε = maxk
{
|ŵ(0)

k − w∗
k |/w∗

k , maxj

‖β̂(0)
k,j − β∗

k,j‖2
}
. Assume ε satisfies,

ε < min

{
λ3minw∗2

min
24

√
10c2λ2maxw∗2

maxr
,

λ3minw∗3
min

4c21c2λmaxw∗3
maxr2

,
1
6

}
,

where c1, c2 are the same constants as defined in Assumption 1.

It is seen that the initial error depends on the rank r. The
upper bound tightens as r increases, as in such a case, the tensor
recovery problem becomes more challenging. It is also noted
that, when r = 1, this condition is still stronger than that
in Assumption 4. This is due to the interplay among different
decomposed components in the general rank case.

Assumption 9. Define the incoherence parameter ξ =
maxj∈[3],k 	=k′

∣∣∣〈β∗
k,j,β

∗
k′,j〉

∣∣∣. Assume,

ξ ≤ λ3minw∗3
min

4c21c2λmaxw∗3
maxr2

,

where c1, c2 are the same constants as defined in Assumption 1.

For the general rank case, we need to control the correlations
between the decomposed components across different ranks.
The incoherence parameter ξ quantifies such correlations. As
rank r increases, the upper bound on ξ becomes tighter. Similar
conditions have been introduced in Anandkumar et al. (2014),
Sun et al. (2017), and Hao, Zhang and Cheng (2020).

Assumption 10. Assume the sample size n satisfies that,

n ≥ max

{
c5 σ 2 s2 log(d)

w∗2
minp

,
c6σ s log(d) log(

√
s3/p)

w∗
minp

}
where c5 and c6 are the same positive constants as defined in
Assumption 5.

This assumption is similar to Assumption 5, and it reduces
to Assumption 5 when r = 1.

We next state the main theory for the estimator of Algo-
rithm 1 when r > 1.

Theorem 2. Suppose Assumptions 1 and 6–10 hold. For a gen-
eral rank r, the estimator from the tth iteration of Algorithm 1
satisfies that, with a high probability,

max
{
max
k

|ŵ(t)
k − w∗

k |/w∗
k , max

k,j
‖β̂(t)

k,j − β∗
k,j‖2

}

≤ κ̃ tε︸︷︷︸
computational error

+ 1
1 − κ̃

C2w∗
maxσ

w∗2
min

√
s log(d)
np︸ ︷︷ ︸

statistical error

.

where

κ̃ = 6
√
10c2λ2maxw∗2

maxr
λ3minw∗2

min
ε + c21c2λmaxw∗3

maxr2

λ3minw∗3
min

ε

+ c21c2λmaxw∗3
maxr2

λ3minw∗3
min

ξ + 1
4

< 1,

is the positive contraction coefficient, and the constants C2 =
(6

√
10C̃λmax + 12C̃2

√qλmin)/λ
2
min. Here c1, c2 is the same

constant as defined in Assumptions 1, C̃, C̃2 are some positive
constants, and q is fixed under Assumption 1(i).

The contraction coefficient κ̃ is greater than κ in Theorem 1,
which indicates that the algorithm has a slower convergence
rate for the general rank case. Moreover, κ̃ increases with an
increasing rank r. This agrees with the expectation that, as
the tensor recovery problem becomes more challenging, the
algorithm will have a slower convergence rate.

4.3. Initialization

As the optimization problem in Equation (4) is nonconvex, the
success of Algorithm 1 replies on good initializations.Motivated
by Cai et al. (2019), we next propose a spectral initialization
procedure for r = 1 and r > 1, respectively. Theoretically, we
show that the produced initial estimator satisfies the initializa-
tion Assumption 4 when r = 1. Numerically, we demonstrate
that the initialization error decays fast for both r = 1 and
r > 1 cases as the sample size n increases, and thus the constant
initialization error bound in the initialization Assumptions 4
and 8 is expected to hold with a sufficiently large n.

We first present the initialization procedure for r = 1
in Algorithm 2. Denote T = n−1 ∑

i ��i(Yi). Let A1 =
unfold3(p−1T ) ∈ R

d3×d1d2 , and B1 = �off-diag(A1A�
1 ) ∈

R
d3×d3 , where �off-diag(·) keeps only the off-diagonal entries

of the matrix. Let U1�1U�
1 be the rank-r decomposition

of B1. Next, let A2 = unfold1(p−1T ) ∈ R
d1×d2d3 , B2 =

�off-diag(A2A�
2 ) ∈ R

d1×d1 , and U2�2U�
2 be the rank-r

decomposition ofB2.We then feedU1 andU2 into Algorithm 2.

Algorithm 2 Spectral initialization algorithm for r = 1.
1: input: the number of restarts L, the estimates U1, U2, and

the sparsity parameter τsj , j ∈ [3].
2: for l = 1 to L do
3: generate gl1 ∼ Normal(0, Id3), and compute g̃l1 =

U1U�
1 g1,Ml

1 = p−1T ×3 g̃l1.
4: set vl1 and vl2 as the first left and right singular vector ofMl

1
corresponding to the largest absolute singular value |λl1|.

5: end for
6: for l = 1 to L do
7: generate gl2 ∼ Normal(0, Id1), and compute g̃l2 =

U2U�
2 g2,Ml

2 = p−1T ×3 g̃l2.
8: set vl3 and vl4 as the left and right singular vector of Ml

2
corresponding to the largest absolute singular value |λl2|.

9: end for
10: choose (v1, v2) from {(vl1, vl2)}Ll=1 with the largest |λl1|;

choose (v3, v4) similarly.
11: compute β̂

(0)
1,j = Norm(Truncate(ṽj, τsj)) for j = 1, 2, 3,

where (ṽ1, ṽ2, ṽ3) is obtained from (v1, v2), (v3, v4), and
Norm is the normalization operator.

12: compute ŵ(0)
1 and β̂

(0)
1,4 using (11).

13: output: ŵ(0)
1 , β̂

(0)
1,1, β̂

(0)
1,2, β̂

(0)
1,3 and β̂

(0)
1,4.
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When r = 1, we have E(A1) = w∗
1
∑

i
1
n (β∗�

1,4xi)β∗
1,3(β

∗
1,1 ⊗

β∗
1,2)

�, whose column space is the span of β∗
1,3. A natural way to

estimate the column space of E(A1) is from the principal space
of A1A�

1 . Similar to Cai et al. (2019), we exclude the diagonal
entries of A1A�

1 to remove their influence on the principal
directions. To retrieve tensor factors from the subspace estimate,
we first generate random vectors from normal distribution,
that is, gl1 in line 3 and gl2 in line 7 of Algorithm 2 . Then
we project the random vectors gl1 and gl2 onto U1 and U2.
This projection step helps mitigate the perturbation incurred
by both unobserved values and data noise (Cai et al. 2019).
Note that E(Ml

1 | g̃l1) = w∗
1
∑

i n−1(β∗�
1,4xi)〈β∗

1,3, g̃l1〉β∗
1,1β

∗�
1,2 .

Correspondingly, the left leading singular vector corresponding
to the largest absolute singular value of Ml

1 is expected to
be close to β∗

1,1. Similarly, the right leading singular vector
of Ml

1 is expected to be close to β∗
1,2. Following the same

argument, we can obtain a good estimate of β∗
1,2 and β∗

1,3
from Ml

2. Then, in line 11 of Algorithm 2, we match the
identified singular vector pairs with (ṽ1, ṽ2, ṽ3). That is, let l =
argmaxj=3,4

{
maxk=1,2{〈vj, vk〉}

}
. Set ṽ2 = vl, the remaining

one in the pair (v3, v4) as ṽ3, and ṽ1 = argminj=1,2{〈vj, ṽ2〉}.
Next, given β̂

(0)
1,1, β̂

(0)
1,2, β̂

(0)
1,3, we obtain ŵ(0)

1 , β̂
(0)
1,4 by solving the

following optimization,

minw1>0,‖β1,4‖=1
1
n

n∑
i=1

∥∥∥��i

(
Yi − w1(β

�
1,4xi)β̂

(0)
1,1 ◦ β̂

(0)
1,2 ◦ β̂

(0)
1,3

)∥∥∥2
F
.

Finally, leting A = β̂
(0)
1,1 ◦ β̂

(0)
1,2 ◦ β̂

(0)
1,3, we obtain the initial

estimates β̂
(0)
1,4 and ŵ(0)

1 as

β̂
(0)
1,4 = Norm

⎛⎝{
1
n

∑
i

∥∥��i(A)
∥∥2
F xix

�
i

}−1

× n−1
∑
i

〈��i(Yi),��i(A)〉xi
)
,

ŵ(0)
1 =

∑
i β̂

(0)�
1,4 xi��i(Yi) ×1 β̂

(0)
1,1 ×2 β̂

(0)
1,2 ×3 β̂

(0)
1,3∑

i{β̂
(0)�
1,4 xi}2

∥∥��i (A)
∥∥2
F

. (11)

We next present the initialization procedure for r > 1 in
Algorithm 3. We first apply Algorithm 2 to generate two sets
(vl1, vl2)

L
l=1, (vl3, vl4)

L
l=1. Since β̂k,1 and β̂k,2 are from (vl1, vl2),

and β̂k,2, β̂k,3 are from (vl3, vl4), we merge the two and find the
triplet (ṽl1, ṽl2, ṽl3). Next, we search for (β̂k,1, β̂k,2, β̂k,3) such that
|p−1T ×1 ṽ1 ×2 ṽ2 ×3 ṽ3| is maximized. This is because the
selected vectors are expected to be close to true factors when
|p−1T ×1 ṽ1 ×2 ṽ2 ×3 ṽ3| is large (Sun et al. 2017). We also
remove all those triplets that are close to (β̂k,1, β̂k,2, β̂k,3), since
they eventually generate the same decomposition vectors up to
the tolerance parameter. We then iteratively refine the selected
vectors. In our numerical experiments, we have found that one
iteration is often enough, and the algorithm is not sensitive to
the tolerance parameter εth because of the used refinement step.

Next, we present a proposition showing that the initial esti-
mator obtained from Algorithm 2 satisfies the initialization
Assumption 4 when r = 1. The theoretical guarantee for the
r > 1 case is very challenging, andwe leave it for future research.

Algorithm 3 Spectral initialization algorithm for r > 1.
1: input: the number of restarts L, the estimates U1, U2, the

tolerance parameter εth, and the sparsity parameter τsj , j ∈
[3].

2: obtain (vl1, vl2)
L
l=1, (v

l
3, vl4)

L
l=1 using Algorithm 2.

3: obtain the triplet S = {(ṽl1, ṽl2, ṽl3)}Ll=1 from (vl1, vl2)
L
l=1,

(vl3, vl4)
L
l=1.

4: for k = 1 to r do
5: find (β̂k,1, β̂k,2, β̂k,3) = argmax(ṽl1,ṽl2,ṽl3)∈S |p−1T×1 ṽl1×2

ṽl2 ×3 ṽl3|.
6: remove all triplets in (ṽl1, ṽl2, ṽl3)

L
l=1 with

max{|〈β̂k,1, ṽl1〉|, |〈β̂k,2, ṽl2〉|, |〈β̂k,3, ṽl3〉|} > 1 − εth.
7: end for
8: set ŵk = 1, and randomly generate unit-norm vectors

β̂k,4, k ∈ [r] from a standard normal distribution.
9: repeat
10: update β̂k,1, β̂k,2, β̂k,3 using (7), and set β̂k,j =

Norm(Truncate(β̂k,j.τsj)), j ∈ [3],
11: update ŵk using (8), and update β̂k,4 using (9), k ∈ [r].
12: until the stopping criterion is met
13: denote the final update of ŵk, {β̂k,j}4j=1 as ŵ

(0)
k , {β̂(0)

k,j }4j=1, k ∈
[r], respectively.

14: output: ŵ(0)
k , β̂

(0)
k,1 , β̂

(0)
k,2 , β̂

(0)
k,3 , β̂

(0)
k,4 , k ∈ [r].

Proposition 1. Suppose Assumptions 1, 2, 3, and 5 hold.
Furthermore, suppose L ≥ C′

1 for some large enough C′
1,| ∑i n−1β∗�

1,4xi| ≥ C′
2 for some constant C′

2 > 0. Then, the
initial estimator produced by Algorithm 2 satisfies that

max
{
|ŵ(0)

1 − w∗
1|/w∗

1,max
j

‖β̂(0)
1,j − β∗

1,j‖2
}

= Op

{√
log(d)
nps2

+ σ

w∗
1

√
s log(d)
np

}
.

Wemake some remarks about Proposition 1. First, this result
shows that the error of the initial estimator obtained fromAlgo-
rithm 2 decays with n, and thus the constant initialization error
bound on ε inAssumption 4 is guaranteed to hold as n increases.
Second, the estimation error in Proposition 1 is slower than the
statistical error rate in Theorem 1 when σ/w∗

1 ≤ c/s1.5. This
suggests that, after obtaining the initial estimator from Algo-
rithm 2, applying the alternating block updating Algorithm 1
could further improve the error rate of the estimator.

Finally, we conduct a simulation to evaluate the empirical
performance of the proposed spectral initialization Algo-
rithms 2 and 3. We simulate the coefficient tensor B∗ ∈
R
30×20×10×5 = ∑r

k=1 w∗
kβ

∗
k,1◦β∗

k,2◦β∗
k,3◦β∗

k,4.We generate the
entries of β∗

k,j, k ∈ [2], j ∈ [3] from iid standard normal, and set
β∗
k,4 as (1, 1, 1, 1, 1)�. We then normalize each vector to have a

unit norm, and set w∗
k = 20. We consider two ranks, r = 1 and

r = 2, while we vary the sample size n = {20, 40, 60, 80, 100}.
We then generate the error tensor Ei with iid standard normal
entries, and the response tensor Yi ∈ R

30×20×10, with each
entry missing with probability 0.5. For Algorithms 2 and 3, we
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Figure 1. Estimation error of the initial estimator by the spectral initialization algorithms as the sample size increases. The left panel is for r = 1, and the right panel is for
r = 2.

set L = 30, εth = 0.8, and τsj as dj. Figure 1 reports the error,
maxk,j ‖β̂(0)

k,j − β∗
k,j‖2, of the initial estimator based on 100 data

replications. It is seen that, as the sample size increases, the
estimation error decreases rapidly. This agrees with our finding
in Proposition 1, and suggests that the constant initialization
error bound in Assumptions 4 and 8 is to hold when n is
sufficiently large.

5. Simulations

We carry out simulations to investigate the finite-sample perfor-
mance of our proposed method. For easy reference, we call our
method Partially ObServed dynamic Tensor rEsponse Regres-
sion (POSTER). We also compare with some alternative solu-
tions.One competingmethod is themultiscale adaptive general-
ized estimating equationsmethod (MAGEE) proposed by Li et al.
(2013), which integrated a voxel-wise approachwith generalized
estimating equations for adaptive analysis of dynamic tensor
imaging data. Another competing method is the sparse tensor
response regression method (STORE) proposed by Sun and
Li (2017), which considered a sparse tensor response regres-
sion model but did not incorporate fusion type smoothness
constraint and can only handle completely observed data. In
our analysis, STORE is applied to the complete samples only.
Moreover, to examine the effect of using the partially observed
samples and incorporating structural smoothness over time, we
also consider our method applied to the completely observed
samples, orwithout fusion constraint, which serve as two bench-
marks.

We consider two patterns for the unobserved entries, block
missing in Section 5.1 and randommissing in Section 5.2. Both
patterns are common in real data applications. For instance,
in our neuroimaging example, individual subjects would miss
some scheduled biannual scans, and as a result, the entire tensor
images are unobserved, and the missing pattern is more likely
a block missing. In our digital advertising example, on the
other hand, some users may randomly react to only a subset
of advertisements on certain days, and the missing pattern
would be closer to a randommissing. Finally, in Section 5.3, we
consider a model used in Li et al. (2013). The data generation

does not comply with our proposed model, and we examine the
performance of our method under model misspecification.

To evaluate the estimation accuracy, we report the estimation
error of the coefficient tensor B∗ measured by ‖B̂ − B∗‖F ,
and the estimation error of the decomposed components β̂k,j
measured bymaxk,jmin{‖β̂k,j−β∗

k,j‖, ‖β̂k,j+β∗
k,j‖}. To evaluate

the variable selection accuracy, we compute the true positive rate
as the mean of TPRj, and the false positive rate as the mean
of FPRj, where TPRj = K−1 ∑K

k=1
∑

l 1(β
∗
k,j,l 	= 0, β̂k,j,l 	=

0)/
∑

l 1(β
∗
k,j,l 	= 0) is the true positive rate of the estimator

in mode j, and FPRj = K−1 ∑K
k=1

∑
l 1(β

∗
k,j,l = 0, β̂k,j,l 	=

0)/
∑

l 1(β
∗
k,j,l = 0) is the false positive rate of the estimator

in mode j.

5.1. BlockMissing

In the first example, we simulate a fourth-order tensor response
Yi ∈ R

d1×d2×d3×T , where the fourth mode corresponds to the
time dimension, and there are blocks of tensor entries missing
along the time mode. More specifically, we generate the coeffi-
cient tensorB∗ ∈ R

d1×d2×d3×T×q asB∗ = ∑
k∈[r] w∗

kβ
∗
k,1◦β∗

k,2◦
β∗
k,3 ◦ β∗

k,4 ◦ β∗
k,5, where d1 = d2 = d3 = 32,T = 5, q = 5, and

the true rank r = 2. We generate the entries of β∗
k,j, j ∈ [4] as iid

standard normal.We then apply the Truncatefuse operator
on β∗

k,j, j ∈ [3], with the true sparsity and fusion parameters
(sj, fj), j ∈ [3], and apply the Fuse operator to β∗

k,4 with the
true fusion parameter f4. We set the true sparsity parameters
sj = s0 × dj, j ∈ [3] with s0 = 0.7, and set the true fusion
parameters fj = f0 × dj, j ∈ [4], with f0 ∈ {0.3, 0.7}. A smaller
f implies a smaller number of fusion groups in β∗

k,j. We set
β∗
k,5 = (1, . . . , 1)�, a vector of all ones. We then normalize

each vector to have a unit norm. We set the weight w∗
k ∈

{30, 40}, with a larger weight indicating a stronger signal. Next,
we generate the q-dimensional predictor vector xi whose entries
are iid Bernoulli with probability 0.5, and the error tensor Ei,
whose entries are iid standard normal. Finally, we generate the
response tensor Yi following model (1). We set the blocks of
entries of Yi along the fourth mode randomly missing. Among
all n subjects, we set the proportion of subjects with missing
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Table 1. Simulation example with block missing, for varying missing proportionsmn ,mt , signal strengthw∗
k , and fusion setting f0.

(mn ,mt) w∗
k f0 method Error ofB∗ Error of β∗

k,j TPR FPR

(0.8, 0.4) 30 0.3 STORE 0.586 (0.055) 0.992 (0.109) 0.879 (0.016) 0.369 (0.035)
MAGEE 1.397 (0.005) NA NA NA

Complete 0.232 (0.051) 0.366 (0.104) 0.952 (0.017) 0.104 (0.026)
No-fusion 0.125 (0.003) 0.112 (0.005) 1.000 (0.000) 0.120 (0.000)
POSTER 0.069 (0.003) 0.068 (0.005) 1.000 (0.000) 0.020 (0.004)

0.7 STORE 0.574 (0.063) 0.905 (0.113) 0.878 (0.019) 0.343 (0.043)
MAGEE 1.411 (0.003) NA NA NA

Complete 0.207 (0.038) 0.259 (0.082) 0.979 (0.008) 0.103 (0.021)
No-fusion 0.120 (0.003) 0.111 (0.006) 1.000 (0.000) 0.072 (0.000)
POSTER 0.102 (0.003) 0.098 (0.006) 1.000 (0.000) 0.055 (0.003)

40 0.3 STORE 0.287 (0.055) 0.402 (0.104) 0.957 (0.013) 0.212 (0.028)
MAGEE 1.233 (0.002) NA NA NA

Complete 0.085 (0.022) 0.087 (0.044) 0.995 (0.005) 0.036 (0.011)
No-fusion 0.115 (0.004) 0.111 (0.005) 1.000 (0.000) 0.120 (0.000)
POSTER 0.063 (0.004) 0.067 (0.005) 1.000 (0.000) 0.020 (0.004)

0.7 STORE 0.167 (0.036) 0.160 (0.06) 0.984 (0.009) 0.131 (0.029)
MAGEE 1.250 (0.002) NA NA NA

Complete 0.142 (0.030) 0.190 (0.073) 0.984 (0.008) 0.107 (0.026)
No-fusion 0.107 (0.003) 0.115 (0.005) 1.000 (0.000) 0.093 (0.021)
POSTER 0.093 (0.004) 0.094 (0.006) 1.000 (0.000) 0.074 (0.019)

(0.8, 0.6) 30 0.3 STORE 0.579 (0.057) 0.975 (0.109) 0.883 (0.016) 0.360 (0.034)
MAGEE 1.515 (0.004) NA NA NA

Complete 0.233 (0.051) 0.366 (0.104) 0.952 (0.017) 0.108 (0.026)
No-fusion 0.155 (0.006) 0.146 (0.008) 1.000 (0.000) 0.120 (0.000)
POSTER 0.089 (0.006) 0.091 (0.009) 1.000 (0.000) 0.023 (0.005)

0.7 STORE 0.434 (0.058) 0.729 (0.120) 0.924 (0.015) 0.248 (0.034)
MAGEE 1.528 (0.004) NA NA NA

Complete 0.207 (0.038) 0.259 (0.082) 0.979 (0.008) 0.103 (0.021)
No-fusion 0.151 (0.007) 0.150 (0.009) 1.000 (0.000) 0.072 (0.000)
POSTER 0.128 (0.008) 0.121 (0.010) 1.000 (0.000) 0.058 (0.002)

40 0.3 STORE 0.228 (0.045) 0.323 (0.096) 0.971 (0.011) 0.178 (0.021)
MAGEE 1.310 (0.003) NA NA NA

Complete 0.090 (0.022) 0.176 (0.073) 0.983 (0.010) 0.054 (0.016)
No-fusion 0.142 (0.006) 0.142 (0.008) 0.999 (0.001) 0.124 (0.003)
POSTER 0.082 (0.006) 0.089 (0.009) 1.000 (0.000) 0.023 (0.004)

0.7 STORE 0.228 (0.047) 0.290 (0.090) 0.969 (0.012) 0.146 (0.029)
MAGEE 1.325 (0.003) NA NA NA

Complete 0.137 (0.022) 0.205 (0.076) 0.955 (0.016) 0.159 (0.038)
No-fusion 0.131 (0.005) 0.141 (0.010) 0.999 (0.001) 0.073 (0.002)
POSTER 0.110 (0.006) 0.122 (0.016) 0.999(0.001) 0.061 (0.003)

NOTES: Reported are the average estimation errors ofB∗ andβ∗
k,j , and the true and false positive rates of selection based on 30 data replications (the standard errors in the

parentheses). Fivemethods are compared: STORE of Sun and Li (2017),MAGEE of Li et al. (2013), method applied to the complete data only (Complete), our method
without the fusion constraint (No-fusion), and our proposed method (POSTER).

valuesmn ∈ {0.8, 0.9}, and for each subject with missing values,
we set the proportion of missing blocks along the time mode
as mt ∈ {0.4, 0.6}. For example, n = 100, mn = 0.8 and
mt = 0.4 means there are 80 subjects out of 100 having partially
observed tensors, and for each of those 80 subjects, the tensor
observations at 2 out of 5 time points are missing.

Table 1 reports the average criteria based on 30 data repli-
cations with mn = 0.8. The results with mn = 0.9 are
similar qualitatively and are reported in the Appendix. Since
the method MAGEE of Li et al. (2013) does not decompose
the coefficient tensor and does not carry out variable selection,
the corresponding criteria of β∗

k,j and selection are reported as
NA. From Table 1, it is clearly seen that our proposed method
outperforms all other competing methods in terms of both
estimation accuracy and variable selection accuracy.

The computational time of our method scales linearly
with the sample size and tensor dimension. Consider the
simulation setup with mn = 0.8,mt = 0.4,wk = 30,
and f0 = 0.3 as an example. When we fix d1 = 32 and

other parameters, the average computational time of our
method was 112.5, 200.3, and 384.2 seconds for the sample
size n = 100, 200, and 300, respectively. When we fix n = 100
and other parameters, the average computational time of our
method was 42.5, 82.3, and 101.8 sec for the tensor dimension
d1 = 10, 20, and 30, respectively. The reported computational
time does not include tuning. All simulations were run on a
personal computer with a 3.2 GHz Intel Core i5 processor.

5.2. RandomMissing

In the second example, we simulate data similarly as in Sec-
tion 5.1, but the entries of the response tensor are randomly
missing. We set the observation probability p ∈ {0.3, 0.5}. For
this setting, MAGEE cannot handle a tensor response with ran-
domly missing entries, whereas STORE or our method applied
to the complete data cannot handle either, since there is almost
no complete Yi, with the probability of observing a complete Yi
being pd1d2d3q. Therefore, we can only compare our proposed
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Table 2. Simulation example with randommissing, for varying observation probability p, signal strengthw∗
k , and fusion setting f0.

p w∗
k f0 method Error ofB∗ Error of β∗

k,j TPR FPR

0.5 30 0.3 No-fusion 0.091 (0.001) 0.059 (0.001) 1.000 (0.000) 0.121 (0.001)
POSTER 0.055 (0.001) 0.037 (0.001) 1.000(0.000) 0.021 (0.004)

0.7 No-fusion 0.088 (0.001) 0.056 (0.001) 1.000 (0.000) 0.099 (0.026)
POSTER 0.079 (0.002) 0.051 (0.001) 1.000 (0.000) 0.079 (0.024)

40 0.3 No-fusion 0.068 (0.001) 0.044 (0.001) 1.000 (0.000) 0.120 (0.000)
POSTER 0.042 (0.001) 0.029 (0.001) 1.000 (0.000) 0.019 (0.003)

0.7 No-fusion 0.066 (0.001) 0.043 (0.001) 1.000 (0.000) 0.072 (0.000)
POSTER 0.059 (0.001) 0.039 (0.001) 1.000 (0.000) 0.056 (0.003)

0.3 30 0.3 No-fusion 0.119 (0.002) 0.078 (0.002) 0.998 (0.001) 0.148 (0.023)
POSTER 0.077 (0.002) 0.054 (0.002) 1.000 (0.000) 0.052 (0.016)

0.7 No-fusion 0.113 (0.002) 0.074 (0.002) 0.998 (0.001) 0.104 (0.026)
POSTER 0.103 (0.002) 0.066 (0.002) 0.998 (0.001) 0.086 (0.024)

40 0.3 No-fusion 0.092 (0.020) 0.060 (0.001) 1.000 (0.000) 0.120 (0.000)
POSTER 0.058 (0.001) 0.042 (0.001) 1.000 (0.000) 0.025 (0.005)

0.7 No-fusion 0.084 (0.001) 0.054 (0.001) 0.999 (0.000) 0.074 (0.001)
POSTER 0.075 (0.001) 0.049 (0.001) 1.000 (0.000) 0.054 (0.030)

NOTES: Reported are the average estimation errors ofB∗ and of β∗
k,j , and the true and false positive rates of selection based on 30 data replications (the standard errors in

the parentheses). Two methods are compared: our method without the fusion constraint (No-fusion), and our proposed method (POSTER).

method with the variation that imposes no fusion constraint.
Table 2 reports the results based on 30 data replications. It is
seen that incorporating the fusion structure clearly improves the
estimation accuracy. Moreover, Table 2 shows that the estima-
tion error of our method decreases when the signal strength w∗

k
increases or when the observation probability p increases. These
patterns agree with our theoretical findings.

5.3. ModelMisspecification

In the third example, we simulate data from the model in Li
et al. (2013). Data generated this way does not comply with
our proposed model (1), and we examine the performance
of our method under model misspecification. Following Li
et al. (2013), we simulate a third-order tensor response Yi ∈
R
d1×d2×T , where the first two modes correspond to imaging

space and the third mode corresponds to the time dimension,
with d1 = d2 = 88, T = 3, and the sample size n = 80. At
voxel (j, k) the response of subject i at time point l is simulated
according to

Yi,j,k,l = x�
i,lβ

∗
j,k + εi,j,k,l, i ∈ [n], l ∈ [3].

The predictor vector xi,l = (1, xi,l,2, xi,l,3)�, and we consider two
settings of generating xi,l. The first setting is that xi,l,2 is time-
dependent and is generated from a uniform distribution on [l−
1, l] for l = 1, 2, 3, and xi,l,3 is time independent and is generated
from a Bernoulli distribution with probability 0.5. The second
setting is that both xi,l,2 and xi,l,3 are time independent and are
generated from a Bernoulli distribution with probability 0.5.
The error term εi,j,k = (εi,j,k,1, εi,j,k,2, εi,j,k,3)� is generated from
a multivariate normal N(0,�), where the diagonal entries of �
are 1 and Corr(εi,j,k,l1 , εi,j,k,l2) = 0.7|l1−l2|, l1, l2 = 1, 2, 3. The
coefficient β∗

j,k = (0,β∗
j,k,2,β

∗
j,k,3)

�, and the coefficient image
is divided into six different regions with two different shapes.
Following Li et al. (2013), we set (β∗

j,k,2,β
∗
j,k,3) to (0, 0), (0.05, 0.9),

(0.1, 0.8), (0.2, 0.6), (0.3, 0.4) and (0.4, 0.2) in those six regions.
Among the 80 subjects, the first half have their 88 × 88 images
observed only at the first two time points.

Figure 2 presents the true and estimated image of β∗
j,k,2,

along with the estimation error of the coefficient tensor B∗.
The standard error shown in parenthesis is calculated based
on 20 replications. The results for β∗

j,k,3 are similar and hence
are omitted. It is seen that our method is able to capture all
six important regions in both settings of covariates, even if the
model is misspecified. When the covariates are time depen-
dent, our method is comparable to Li et al. (2013). When the
covariates are time independent, our estimator is more accurate
compared to the method of Li et al. (2013).

6. Applications

We illustrate the proposed method with two real data applica-
tions. The first is a neuroimaging study, where about 50% of
subjects have at least one imaging scan missing. The second is a
digital advertising study, where about 95% of tensor entries are
missing.

6.1. Neuroimaging Application

The first example is a neuroimaging study of dementia. Demen-
tia is a broad category of brain disorders with symptoms associ-
ated with decline in memory and daily functioning (Sosa-Ortiz,
Acosta-Castillo and Prince 2012). It is of keen scientific interest
to understand how brain structures change and differ between
dementia patients and healthy controls, which in turn would
facilitate early disease diagnosis and development of effective
treatment.

The data we analyze are from Alzheimer’s disease neu-
roimaging initiative (ADNI, http://adni.loni.usc.edu), where
anatomical MRI images were collected from n = 365
participates every six months over a two-year period. Each
MRI image, after preprocessing and mapping to a common
registration space, is summarized in the form of a 32× 32× 32
tensor. For each participant, there are at the most five scans, but
many subjects missed some scheduled scans, and 178 subjects
out of 365 have at least one scan missing. For each subject, we
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Figure 2. True and estimated image of β∗
j,k,2. The top left panel is the true image of β∗

j,k,2 with six regions. The middle panels are the estimated images by MAGEE, and
the right panels by our method POSTER. The top panels correspond to the time dependent covariates, and the bottom panels the time independent covariates. The
estimation error (with the standard error in the parenthesis) based on 20 data replications is reported for each image.

Figure 3. Neuroimaging application example. Shown are the estimated coefficient tensor overlaid on a randomly selected brain image. Top to bottom: MAGEE, STORE,
and our method POSTER. Left to right: frontal view, side view, and top view.

stack the MRI brain images collected over time as a fourth-
order tensor, which is to serve as the response Yi. Its dimension
is 32 × 32 × 32 × 5, and there are block missing entries.
Among these subjects, 127 have dementia and 238 are healthy
controls. In addition, the baseline age and sex of the subjects
were collected. As such, the predictor vector xi consists of the

binary diagnosis status, age and sex. Our goal is to identify
brain regions that differ between dementia patients and healthy
controls, while controlling for other covariates.

We apply MAGEE, STORE and our POSTER method to this
data set. Figure 3 shows the heatmap of the estimated coeffi-
cient tensor at the baseline time point obtained by the three
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methods. It is seen that the estimate from MAGEE identifies
a large number of regions with relatively small signals. Both
STORE and POSTER identify several important brain regions,
and the parameters in those identified regions are negative,
indicating that those regions become less active for patients with
dementia. The regions identified by the two methods largely
agree with each other, with one exception, that is, Brodmann
area 38, which POSTER identifies but STORE does not. The
regions identified by both include the hippocampus and the
surrounding medial temporal lobe. These findings are con-
sistent with existing neuroscience literature. Hippocampus is
found crucial inmemory formation, andmedial temporal lobe is
important for memory storage (Smith and Kosslyn 2007). Hip-
pocampus is commonly recognized as one of the first regions in
the brain to suffer damages for patients with dementia (Hampel
et al. 2008). There is also clear evidence showing that medial
temporal lobe is damaged for dementia patients (Visser et al.
2002). In addition to those two important regions, our method
also identifies a small part of the anterior temporal cortex, that
is, Brodmann area 38, which is highlighted in Figure 3. This area
is involved in language processing, emotion and memory, and
is also among the first areas affected by AD, which is the most
common type of dementia (Delacourte et al. 1998).

6.2. Digital Advertising Application

The second example is a digital advertising study of CTR for
some online advertising campaign. CTR is the number of times
a user clicks on a specific advertisement divided by the number
of times the advertisement is displayed. It is a crucial measure
to evaluate the effectiveness of an advertisement campaign, and
plays an important role in digital advertising pricing (Richard-
son, Dominowska and Ragno 2007).

The data we analyzed are obtained from a major internet
company over four weeks in May to June 2016. The CTR of
80 advertisement campaigns were recorded for 20 users by 2
different publishers. Since it is of more interest to understand
the user behavior over different days of a week, the data were
averaged by days of a week across the four-week period. For
each campaign, we stack the CTR data of different users and
publishers over seven days of the week as a third-order tensor,
which serves as the response Yi. Its dimension is 20 × 2 × 7,
and there are 95% entries missing. Such a missing percentage,
however, is not uncommon in online advertising, since a user
usually does not see every campaign in every publisher every
day. For each campaign, we also observe two covariates. One
covariate is the topic of the advertisement campaign, which

Figure 4. Digital advertising application example. Shown are the estimated coefficient tensor. In each panel, the rows represent users and columns represent days of a
week. The top panels are for the topic “online dating,”and the bottom panels for “investment.”The left panels are slices from the topic mode, and the right panels are slices
from the impression mode.
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takes three categorical values, “online dating,” “investment,” or
“others.” The other covariate is the total number of impressions
of the advertisement. The predictor vector xi consists of these
two covariates. Our goal is to study how the topic and total
impression of an advertisement influence its effectiveness mea-
sured by CTR.

Due to the large proportion of missing values and nearly
randommissing patterns, neither MAGEE nor STORE are appli-
cable to this dataset.We applied ourmethod. For the categorical
covariate, topic, we created twodummyvariables, one indicating
whether the topic was “online dating” or not, and the other
indicating whether the topic was “investment” or not. Figure 4
shows the heatmap of the estimated coefficient tensor for one
publisher, whereas the result for the other publisher is similar
and is thus omitted. The rows of the heatmap represent the users
and the columns represent the days of a week. We first consider
the topic of “online dating.” The top left panel shows that, for this
topic, the CTR is higher than other topics during the weekend.
The top right panel shows that, if the total impression on “online
dating” increases, then the CTR increases more on weekends
than weekdays. It is also interesting to see that the topic of
“online dating” has a negative impact on the CTR on Mondays.
We next consider the topic of “investment.” The bottom left
panel shows that, for this topic, the CTR is lower than other top-
ics for most users during the weekend. The bottom right panel
shows that, if the total impression increases, the CTR increases
more on weekends than weekdays. These findings are useful
for managerial decisions. Based on the findings about “online
dating,” one should increase the allocation of “online dating”-
related advertisements onweekends, and decrease the allocation
on Mondays. On the other hand, the allocation recommen-
dation for “investment”-related advertisements are different.
For most users, one should allocate more such advertisements
during the early days of a week, and fewer during weekends.
For a small group of users who seem to behave differently from
the majority, some personalized recommendations regarding
“investment” advertisements can also be beneficial.

Supplementary Material
The supplementary materials collect all technical proofs and additional
numerical results.

Acknowledgments
The authors thank to the editor Professor Ian McKeague, the associate
editor and two anonymous reviewers for their valuable comments and
suggestions which led to a much improved article. Any opinions, findings,
and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the Office of Naval
Research, the National Science Foundation, or the National Institutes of
Health.

Funding
Will Wei Sun’s research was partially supported by ONR grant N00014-
18-1-2759. Jingfei Zhang’s research was partially supported by NSF grant
DMS-2015190. Lexin Li’s research was partially supported by NIH grants
R01AG061303, R01AG062542, and R01AG034570.

ORCID

Will Wei Sun http://orcid.org/0000-0002-8412-6430

References

Anandkumar, A., Ge, R., Hsu, D., and Kakade, S. M. (2014), “A Tensor
Approach to LearningMixedMembershipCommunityModels,” Journal
of Machine Learning Research, 15, 2239–2312. [426,431]

Bi, X., Qu, A., and Shen, X. (2018), “Multilayer Tensor Factorization With
Applications to Recommender Systems,” Annals of Statistics, 46, 3308–
3333. [425]

Bruce, N. I., Murthi, B., and Rao, R. C. (2017), “A Dynamic Model for
Digital Advertising: The Effects of Creative Format, Message Content,
and Targeting on Engagement,” Journal of Marketing Research, 54, 202–
218. [424]

Bullmore, E., and Sporns, O. (2009), “Complex Brain Networks: Graph
Theoretical Analysis of Structural and Functional Systems,” Nature
Reviews Neuroscience, 10, 186–198. [426]

Cai, C., Li, G., Poor, H., and Chen, Y. (2019), “Nonconvex Low-Rank
Tensor Completion From Noisy Data,” NeurIPS, 32, 1863–1874.
[429,430,431,432]

Cai, T. T., Li, X., and Ma, Z. (2016), “Optimal Rates of Convergence for
Noisy Sparse Phase Retrieval Via Thresholded Wirtinger Flow,” The
Annals of Statistics, 44, 2221–2251. [428]

Chen, H., Raskutti, G., and Yuan, M. (2019), “Non-Convex Projected Gra-
dient Descent for Generalized Low-Rank Tensor Regression,” Journal of
Machine Learning Research, 20, 1–37. [425,426,429]

Delacourte, A., David, J. P., Sergeant, N., Buée, L.,Wattez, A., Vermersch, P.,
Ghozali, F., Fallet-Bianco, C., Pasquier, F., Lebert, F., Petit, H., Di Menza,
C. (1998), “The Biochemical Pathway of Neurofibrillary Degeneration
in Aging and Alzheimer’s Disease,” American Academy of Neurology, 52,
1158–1165. [437]

Feng, X., Li, T., Song, X., and Zhu, H. (2019), “Bayesian Scalar on
Image Regression With Non-Ignorable Non-Response,” Journal of the
American Statistical Association, 115, 1574-1597. [425]

Hampel, H., Burger, K., Teipel, S. J., Bokde, A. L., Zetterberg, H., Blennow,
K. (2008), “Core Candidate Neurochemical and Imaging Biomarkers of
Alzheimer’s Disease,” Alzheimer’s and Dementia, 4, 38–48. [437]

Han, R., Willett, R., and Zhang, A. (2020), “An Optimal Statistical
and Computational Framework for Generalized Tensor Estimation,”
arXiv:2002.11255. [424,430]

Hao, B., Zhang, A., and Cheng, G. (2020), “Sparse and Low-Rank Tensor
Estimation Via Cubic Sketchings,” IEEE Transactions on Information
Theory, 66, 5927–5964. [424,431]

Jain, P., and Oh, S. (2014), “Provable Tensor Factorization With Missing
data,” Advances in Neural Information Processing Systems, 2, 1431–1439.
[424,425,426,427,429,430]

Kolda, T. G., and Bader, B. W. (2009), “Tensor Decompositions and
Applications,” SIAM Review, 51, 455–500. [426]

Li, L., and Zhang, X. (2017), “Parsimonious Tensor Response Regression,”
Journal of the American Statistical Association, 112, 1131–1146. [425]

Li, Y., Gilmore, J. H., Shen, D., Styner, M., Lin, W., and Zhu, H. (2013),
“Multiscale Adaptive Generalized Estimating Equations for Longitudi-
nal Neuroimaging Data,” NeuroImage, 72, 91-105. [425,433,434,435]

Ma, Z. (2013), “Sparse Principal Component Analysis and Iterative Thresh-
olding,” Annals of Statistics, 41, 772–801. [428]

Madrid-Padilla, O., and Scott, J. (2017), “Tensor Decomposition With
Generalized Lasso Penalties,” Journal of Computational and Graphical
Statistics, 26, 537–546. [426]

Rabusseau, G., and Kadri, H. (2016), “Low-Rank Regression With Tensor
Responses,” in Advances in Neural Information Processing Systems,
(Vol. 29), eds. D. Lee,M. Sugiyama, U. Luxburg, I. Guyon andR. Garnett,
Barcelona, Spain: Curran Associates, Inc. [425]

Richardson,M., Dominowska, E., and Ragno, R. (2007), “Predicting Clicks:
Estimating the Click-Through Rate for New Ads,” in Proceedings of
the 16th International Conference on World Wide Web. Banff, Alberta,
Canada: ACM Press. [437]

Rinaldo, A. (2009), “Properties and Refinements of the Fused Lasso,” The
Annals of Statistics, 37, 2922–2952. [426,429]

Ryota, T., and Taiji, S. (2014), “Spectral Norm of Random Tensors,”
arXiv:1407.1870. [430]

Shen, X., Pan, W., and Zhu, Y. (2012), “Likelihood-Based Selection and
Sharp Parameter Estimation,” Journal of American Statistical Association,
107, 223–232. [426]

http://orcid.org/0000-0002-8412-6430


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 439

Smith, E. E., and Kosslyn, S. M. (2007), Cognitive Psychology: Mind and
Brian, Upper Saddle River, NJ: Prentice-Hall, 279–306. [437]

Sosa-Ortiz, A. L., Acosta-Castillo, I., and Prince, M. J. (2012), “Epidemi-
ology of Dementias and Alzheimer’s Disease,” Archives of Medical
Research, 43, 600–608. [435]

Sun, W., Lu, J., Liu, H., and Cheng, G. (2017), “Provable Sparse Tensor
Decomposition,” Journal of the Royal Statistical Society, Series B, 79, 899–
916. [426,427,428,429,431,432]

Sun, W. W., and Li, L. (2017), “Store: Sparse Tensor Response Regression
and Neuroimaging Analysis,” Journal of Machine Learning Research, 18,
1–37. [425,427,428,429,430,433,434]

(2019), “Dynamic Tensor Clustering,” Journal of American
Statistical Association, 114, 1894 – 1907. [426,428]

Tan, K. M., Wang, Z., Liu, H., and Zhang, T. (2018), “Sparse Generalized
Eigenvalue Problem: Optimalstatistical Rates Via Truncated Rayleigh
Flow,” Journal of the Royal Statistical Society, Series B, 80, 1057–1086.
[428,429]

Tang, X., Bi, X., and Qu, A. (2019), “Individualized Multilayer Tensor
Learning With an Application in Imaging Analysis,” Journal of the
American Statistical Association, 115, 836–851. [425]

Thung, K.-H., Wee, C.-Y., Yap, P.-T., and Shen, D. (2016), “Identification
of Progressive Mild Cognitive Impairment Patients Using Incomplete
LongitudinalMRI Scans,” Brain Structure and Function, 221, 3979–3995.
[424]

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005),
“Sparsity and Smoothness Via the Fused Lasso,” Journal of the Royal
Statistical Society, Series B, 67, 91–108. [429]

Visser, P., Verhey, F. R. J., Hofman, P. A. M., Scheltens, P., Jolles, J.
(2002), “Medial Temporal Lobe Atrophy Predicts Alzheimer’s Disease
in Patients With Minor Cognitive Impairment,” Journal of Neurology,
Neurosurgery and Psychiatry, 72, 491–497. [437]

Vounou, M., Nichols, T. E., Montana, G., Initiative, A. D. N. (2010), “Dis-
covering Genetic Associations With High-Dimensional Neuroimaging
Phenotypes: A Sparse Reduced-Rank Regression Approach,” Neuroim-
age, 53, 1147–1159. [425,426]

Wang, M., and Li, L. (2020), “Learning From Binary Multiway Data: Prob-
abilistic Tensor Decomposition and its Statistical Optimality,” Journal of
Machine Learning Research, 21, 1–38. [428]

Wang, X., and Zhu, H. (2017), “Generalized Scalar-on-Image Regression
Models Via Total Variation,” Journal of the American Statistical Associa-
tion, 112, 1156–1168. [424]

Wang, Y., Sharpnack, J., Smola, A., and Tibshirani, R. (2016), “Trend
Filtering on Graphs,” Journal of Machine Learning Research, 17, 1–41.
[426]

Wang, Y., Tung, H.-Y., Smola, A., and Anandkumar, A. (2015a), “Fast
and Guaranteed Tensor Decomposition Via Sketching,” in Advances in
Neural Information Processing Systems (Vol. 1), eds. C. Cortes, D. D. Lee,
M. Sugiyama and R. Garnett, Cambridge, MA: MIT Press. pp. 991–999.
[428]

Wang, Z., Gu, Q., Ning, Y., and Liu, H. (2015b), “High Dimensional
EM Algorithm: Statistical Optimization and Asymptotic Normality,”
NeurIPS, 28, 2512–2520. [428,429]

Xia, D., and Yuan,M. (2017), “On Polynomial TimeMethods for Exact Low
Rank Tensor Completion,” Foundations of Computational Mathematics,
19, 1–49. [424,425,429]

Xia, D., Yuan, M., and Zhang, C. (2020), “Statistically Optimal and
Computationally Efficient Low Rank Tensor Completion From Noisy
Entries,” Annals of Statistics, 49(1), 76–99. [429,430]

Xu, Z., Hu, J., and Wang, M. (2019), “Generalized Tensor Regression With
Covariates on Multiple Modes,” arXiv:1910.09499. [425]

Xue, F., and Qu, A. (2020), “Integrating Multisource Block-Wise Missing
Data inModel Selection,” Journal of the American Statistical Association,
1–14. [425]

Yin, H., Cui, B., Chen, L., Hu, Z., and Zhou, X. (2015), “Dynamic User
Modeling in Social Media Systems,” ACM Transactions on Information
Systems, 33, 1–44. [425]

Yuan,M., andZhang, C. (2016), “OnTensorCompletionViaNuclearNorm
Minimization,” Foundations of Computational Mathematics, 16, 1031–
1068. [424,425,426,429]

(2017), “Incoherent TensorNorms and their Applications inHigher
Order Tensor Completion,” IEEE Transactions on Information Theory,
63, 6753–6766. [424,425,426,429]

Yuan, X.-T., and Zhang, T. (2013). “Truncated Power Method for Sparse
Eigenvalue Problems,” Journal of Machine Learning Research, 14, 899–
925. [427,429]

Zhang, A. (2019), “Cross: Efficient Low-Rank Tensor Completion,” Annals
of Statistics, 47, 936–964. [424,426]

Zhang, Z., Allen, G. I., Zhu, H., and Dunson, D. (2019), “Tensor Network
Factorizations: Relationships Between Brain Structural Connectomes
and Traits,” NeuroImage, 197, 330–343. [425]

Zhou, H., Li, L., and Zhu, H. (2013), “Tensor RegressionWith Applications
in Neuroimaging Data Analysis,” Journal of the American Statistical
Association, 108, 540–552. [424,425,426,428,429]

Zhu, Y., Shen, X., and Pan, W. (2014), “Structural Pursuit Over Multiple
Undirected Graphs,” Journal of the American Statistical Association, 109,
1683–1696. [426]


	Abstract
	1.  Introduction
	2.  Model
	3.  Estimation
	4.  Theory
	4.1.  Theory With r=1
	4.2.  Theory With r > 1
	4.3.  Initialization

	5.  Simulations
	5.1.  Block Missing
	5.2.  Random Missing
	5.3.  Model Misspecification

	6.  Applications
	6.1.  Neuroimaging Application
	6.2.  Digital Advertising Application

	Supplementary Material
	Acknowledgments
	Funding
	ORCID
	References


