Sulfite-Activated Ferrate for Water Reuse Applications

- 2 Charles D. Spellman Jr. a, Sahar Da'Erb, Koaru Ikumab, Isabella Silvermana, Joseph E. Goodwilla*
- ^a Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI, 02881 USA
- 4 b Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011 USA
- 5 * Corresponding Author

6

7

8

1

Highlights

- Sulfite-Activated Ferrate is viable option for water reuse treatment
- Activation can lead to improved disinfection, pollutant oxidation, and fewer Br-DBPs
- Activation results in a stable colloidal suspension requiring coagulation
- Br-DBP formation risk exists, especially when activating super stoichiometrically
- Sub-stoichiometric FeSAOP is most effective and efficient, accentuating the role of
- Fe(IV)/Fe(V)

14

15

16

17

18

19

20

21

22

23

Abstract

Ferrate is a promising, emerging water treatment technology. However, there has been limited research on the application of Ferrate in a water reuse paradigm. Recent literature has shown that ferrate oxidation of target contaminants could be improved by "activation" with the addition of reductants or acid. This study examined the impact of sulfite-activated Ferrate in laboratory water matrix and spiked municipal wastewater effluents with the goal of transforming organic contaminants of concern (e.g., 1,4-dioxane) and inactivating pathogenic organisms. Additionally, the formation of brominated disinfection byproducts by activated ferrate were examined and a proposed reaction pathway for byproduct formation is presented. In particular,

the relative importance of reaction intermediates is discussed. This represents the first activated ferrate study to examine 1,4-dioxane transformation, disinfection, and brominated byproduct formation. Results presented show that the sub-stoichiometric ([Sulfite]:[Ferrate] = 0.5) activated ferrate treatment approach can oxidize recalcitrant contaminants by >50%, achieve >4-log inactivation of pathogens, and have relatively limited generation of brominated byproducts. However, stoichiometrically excessive ([Sulfite]:[Ferrate] = 4.0) activation showed decreased performance with decreased disinfection and increased risk of by-product formation. In general, our results indicate that sub-stoichiometric sulfite-activated ferrate seems a viable alternative technology for various modes of water reuse treatment.

- Keywords: Activated ferrate; Water reuse; Advanced oxidation processes; Coagulation;
- 35 Disinfection.

1. Introduction

Increasing demand for potable water has stressed water systems, accelerating the need for additional sources of water (Brown et al., 2013; Kummu et al., 2016). Secondary wastewater (MWW) effluent is a viable alternative water source (Asano and Levine, 1996; Huertas et al., 2008; Nichols, 1988). Reclaiming MWW, i.e., water reuse, can increase the capacity of water systems and decrease anthropogenic influence on surface waters (Anderson, 2003). However, water reuse also presents risks including associated with organic contaminants of emerging concern (CECs) and pathogenic organisms found in nearly all MWW effluents (Hendricks and Pool, 2012; Jelic et al., 2011; Kasprzyk-Hordern et al., 2009). Failure to remove CECs or inactivate pathogens during water reuse treatment can pose major health risks, regardless of end

use (Gennaccaro et al., 2003; Weber et al., 2006). Furthermore, the presence of effluent organic matter (EfOM), which can be detected even in effectively-treated MWW discharges (Shon et al., 2006), may result in downstream generation of disinfection by-products (DBPs) during reuse disinfection and oxidation processes. Water reuse systems must minimize these potential health risks to safely increase water supply.

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

As one of the largest global water reuse markets (Lassiter and Gleick, 2015), the state of California Department of Public Health has developed a framework to help mitigate risks from water reuse entitled Title 22 "Regulations Related to Recycled Water" (CA22). Many of the water reuse risks covered in CA22 can be addressed by adding strong oxidants, such as ozone (O₃), chlorine dioxide (ClO₂), or permanganate (MnO₄), to the treatment process. O₃ in particular is a widely deployed strong oxidant in water treatment, and has been shown to mitigate several risks associated with water reuse (Pisarenko et al., 2012). Although O₃ is generally effective, several disadvantages exist such as relatively complex equipment for onsite generation which challenges smaller municipalities that may benefit from water reuse (Daigger, 2009). Furthermore, oxidation with O₃ may result in compounds more toxic than target compounds (Dar et al., 2019), and may produce brominated DBPs if bromine (Br) is present in the system influent (Richardson et al., 1999; F. Wang et al., 2014). This is concerning for potential O₃-based (and other strong-oxidants) water reuse systems in water-scarce, coastal areas (e.g. southern and eastern Mediterranean, southwestern United States) where seawater intrusion leads to higher levels of Br in water systems (Barlow and Reichard, 2010; Demirel, 2004; Ged and Boyer, 2014).

High-valent iron species, specifically ferrate (Fe(VI)), are viewed as an alternative oxidant to O₃ and other strong oxidants (Jiang et al., 2019; Sharma et al., 2015; Yang et al.,

70 2013). Fe(VI) also offers associated operational advantages for water reuse systems including flexibility of being produced off-site by commercial Fe(VI) manufacturers as a stable salt 71 (K₂FeO₄) (Monzyk et al., 2013), or generated on-site by an electrochemical method using 72 commonplace water treatment chemicals (Ding et al., 2013; Jiang, 2014). Fe(VI) selectively 73 74 oxidizes compounds generally considered CECs (Jiang, 2014; Sharma et al., 2016), inorganic 75 contaminants (Goodwill et al., 2016; Virender K. Sharma, 2010), and inactivates pathogens (Daer et al., 2021; Hu et al., 2012; Schink and Waite, 1980). Fe(VI) can be "activated" yielding 76 an advanced oxidation process (AOP) by addition of a reducing agent to generate an unknown 77 combination of Fe(VI)-decay intermediates (i.e., "Fe(IV)/Fe(V)") and other radical species. The 78 activation process enables greater transformation of recalcitrant CECs without increasing Fe(VI) 79 dose (Sharma et al., 2021). Fe(VI) activation has been demonstrated via addition of various 80 81 chemical reductants (e.g., thiosulfate), acids (e.g., HCl), UV light, silica gel, or carbon nanotubes (Ghosh et al., 2019; Manoli et al., 2018, 2017b, 2017a; Yang et al., 2021). Sulfite (SO₃²⁻) has 82 gained attention due to its relatively fast kinetics with Fe(VI) $[k = 10^{12} \,\mathrm{M}^{-2} \,\mathrm{s}^{-1}]$ (Johnson and 83 Bernard, 1992) and is proposed to activate Fe(VI) (i.e., "FeSAOP") in water treatment contexts 84 due to high (>80%) transformation of CECs (Shao et al., 2019; Sun et al., 2018; Zhang et al., 85 2017). Some existing literature utilized sulfur-containing reductants for activation presumably 86 87 due to broad acceptance of sulfite in wastewater treatment systems. The FeSAOP mechanism is 88 believed to generate a combination of high-valent ephemeral iron intermediates (Fe(IV)/Fe(V)) 89 plus certain radical species (e.g., $SO_4^{-\bullet}$, •OH), likely as a function of $[SO_3^{2-}]$: [Fe(VI)] (Shao et al., 2020). As [SO₃²⁻]:[Fe(VI)] increases, so does the amount of SO₄-•/•OH formation relative to 90 91 Fe(IV)/Fe(V). FeSAOP also changes the size distribution of resultant particles (Bzdyra et al., 92 2020), although this impact has been relatively under studied.

Even with prior research demonstrating promising Fe(VI)-based (i.e., activated and non-activated) oxidation and disinfection results, there is little research covering FeSAOP in water reuse applications relative to CA22 benchmarks. The overarching objective of this research was to demonstrate that sulfite-activated Fe(VI) (i.e., FeSAOP) can mitigate risks associated with pathogens and CECs, and serve as an appropriate option for water reuse systems. Specific aims were to: (1) assess oxidation performance on a relatively recalcitrant CEC specified by CA22, 1,4-Dioxane (14D), in varying water matrices; (2) quantify activation impacts on coagulation mechanisms; (3) evaluated some FeSAOP byproducts, specifically brominated byproducts (Br-DBPs), due to their higher associate health risks (Chu et al., 1982) and elevated formation potential in EfOM (Sirivedhin and Gray, 2005a); and (4) establish suitability as a disinfectant. These represent the novel contributions to advancement of FeSAOP in water reuse systems. Benchmarks for success were based upon the CA22 indirect potable reuse requirements.

2. Materials and methods

2.1. Chemicals and reagents

All chemicals and reagents used were commercially sourced and reagent grade. High purity (>92%), electrochemically generated potassium ferrate (K_2FeO_4) powder was obtained from Element 26 Technology (League City, TX), a commercial supplier of Fe(VI) (Monzyk et al., 2013, US Patent 8.449,756 B2). Reagent grade water (RGW) with resistivity of 18.2 M Ω .cm was generated by a Direct-Q 5 UV Milli-Q water system (MilliporeSigma; Burlington, MA).

2.2. Oxidation experiments

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

All experiments were performed in triplicate. 1L solutions were prepared of RGW with 5 μ M 14D buffered at pH 8.0 (\pm 0.1) with either 10mM phosphate or 10 mM tetraborate. Oxidation experiments were performed in 2-L rectangular batch-reactors (PB-900 Programmable Jar Tester, Phipps & Bird). The reactors were rapidly mixed ($G \sim 150 \text{ s}^{-1}$) for 60 s, and dosed with 150 µM Fe(VI) from a stock solution. Rapid mixing time and intensity was minimized to balance sample homogeneity and 14D volatilization ($H_{14D} = 0.005$ atm/(mol/L)). The 10mM Fe(VI) stock solution, prepared immediately before each experiment, was buffered at pH 9.2 with 5mM phosphate/0.3mM tetraborate with the Fe(VI) concentration confirmed spectrophotometrically at 510 nm (Rush et al., 1996). Each trial had a control (i.e., no Fe(VI)), Fe(VI)-alone, and an FeSAOP reaction. The FeSAOP reactors were dosed with SO₃²⁻ 30 seconds after Fe(VI) had been added. SO₃²- was dosed in one sub-stoichiometric and one stoichiometrically excessive activation ratio ([SO₃²-]:[Fe(VI)]) of either 0.5 or 4.0, respectively, to demonstrate the impact of varying the activation ratio. The [Fe(VI)] represents the molar Fe(VI) concentration at the time of activation (30 s), not the initial Fe(VI) dose. The solutions were slow mixed ($G \sim 50 \text{ s}^{-1}$) for 60 minutes until Fe(VI) < 5 µM in each reactor, which was confirmed by the ABTS method (Lee et al., 2005). Samples were passed through a 0.20 µm membrane filter (Whatman, Maidstone, U.K.) placed into 20-mL headspace-free volatile organic analysis vials and stored at ~4 °C until analysis. To simulate a water reuse scenario, experiments were repeated using two unchlorinated, filtered (0.45µm, nylon membrane, Whatman) secondary MWW effluents in place of RGW. Connecticut wastewater (CTWW) was collected at the Mattabassett District Water Pollution Control Facility (Cromwell, CT) and Iowa wastewater (IAWW) was collected at the Ames Water Pollution Control Facility (Ames, IA). Typical effluent water quality is given in Table SI-1. The

CTWW and IAWW samples were each buffered to pH $8.0~(\pm 0.1)$ with 10mM tetraborate and contained 7.7 and 4.1 mg/L EfOM, respectively.

2.3. Brominated by-product generation

Solutions of RGW were buffered to pH 7.0 (±0.1) or 8.0 (±0.1) with 10mM tetraborate and contained dissolved (<0.45μm) organic carbon (DOC) concentrations of either 2.2 or 5.1 mg/L (Suwanee River natural organic matter (NOM), RO Distillate, IHSS). Solutions also contained 200 μM Br- intended to represent a worst-case scenario (similar to values tested by Huang et al., 2016 and Jiang et al., 2016). 250mL amber-glass jars (pre-washed with 10% acetone and rinsed with RGW) were filled with 200 mL of solution and sealed with threaded caps during experimentation. Experiments proceeded in the same manner explained in Section 2.2, having Fe(VI) dose of 150 μM and [SO₃²⁻]:[Fe(VI)] of 0, 0.5 and 4.0, each tested in triplicate. Each reaction was allowed to run for 60 minutes, quenched with 2mM hydroxylamine, and then analyzed for Total THMs (i.e., chloroform, bromodichloromethane, dibromochloromethane, and bromoform) (TTHMs) immediately. TTHM experiments were repeated using the same CTWW and IAWW in place of RGW. Bromate was generated by dosing Fe(VI) at 150 μM with [SO₃²⁻]:[Fe(VI)] of 0, 0.5 and 4.0 in solutions of RGW containing 200 μM Br- and buffered at pH 7.0 (±0.1) or 8.0 (±0.1) with 1mM tetraborate.

2.4. Analytical and statistical methods

14D analysis was performed using a gas-chromatograph (GC) with a mass-spectrometer detector (QP2010-SE, Shimadzu Corp.; Kyoto, Japan), following EPA 8270-E. The GC contained a 30-m Restek RxiR-624Sil column. Pre-filtered samples were injected and pre-

concentrated with a purge and trap (O-I-Analytical; College Station, TX) according to EPA method 5030-C and similar to those used by M. Sun et al. (2016). Quantification was performed by comparing 14D peak areas directly to the control samples (i.e., no oxidant added). Samples for non-purgeable organic carbon concentrations (DOC and EfOM) were quantified using a TOC-L (Shimadzu Corp.; Kyoto, Japan), calibrated with a potassium hydrogen phthalate standard per Standard Method 5030 (APHA, 2012). TTHMs were quantified using a GC with a surface acoustic wave (SAW) detector (THM-1000, Parker Hannifin Corp.; Huntsville, AL), following the approach of Ahmadi and Wu (2017). The THM instrument was externally calibrated with standards prepared from a 2,000 µg/mL THM-mix reference standard (Restek Corp.; Bellefonte, PA). Bromate was quantified by liquid chromatography-mass spectrometry (LCMS-8060, Shimadzu Corp.; Kyoto, Japan) equipped with an Aguasil C18 column. LCMS-8060 operating conditions followed a method optimized for this instrument in Shimadzu LCMS Application Note number C144 (Jiang et al., 2016; Tanaka and Horiike, 2017). Active bromine (HOBr/OBr⁻) was determined using the Hach DPD Method 8016 (adapted from Standard Method 4500-Cl G, APHA, 2012). Values reported in figures represent the average of experimental replicates with error bars demonstrating two standard deviations (i.e., 95% confidence interval), unless noted otherwise.

177

178

179

180

181

182

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

2.5. Coagulation and flocculation of EfOM

Coagulation and flocculation processes used similar laboratory-prepared (5.1 mg/L DOC) and IAWW EfOM solutions at pH 7.0 as previously described in section 2.3. Pre-oxidation of EfOM by Fe(VI) and two activation ratios (similar to section 2.3) occurred in covered 600-mL glass beakers and mixed for 30 minutes. Resultant suspensions were then titrated with Nalcolyte

8100 (Nalco Water, Saint Paul, MN) cationic polyquaternary-amine-chloride polymer (specific gravity = 1.16) until suspended particle negative surface charge had been titrated. Polymer was diluted 1:200 immediately before coagulation experiments, and the volume of polymer solution added was always <3% of total volume. Suspended particle surface charge was quantified *in situ via* streaming current (Dentel et al., 1989) using a laboratory charge analyzer (Chemtrac LCA-01, Norcross, GA). Once streaming current values were \sim 0, samples were allowed to flocculate under gentle mixing (G < 40 s⁻¹) for 30 minutes. Flocs were then counted using the light obscuration method on a PC5000 particle counter (Chemtrac, Norcross, GA) using predefined size-range channels. The range of countable particle diameters was between 2 and 125 μ m.

2.6. E. coli disinfection and Fe(VI) activation

Escherichia coli K-12 cultures were grown in minimal media (MM) at room temperature (22-23°C) with continuous orbital shaking at 160 rpm and allowed to reach late exponential growth phase (optical density (OD) at 600nm = 0.5-0.6). MM details are described in Text SI-1. Cells were harvested by centrifugation (8000 ×g, 2 min), washed twice using 10 mM tetraborate buffer (pH 8.0±0.1), and subsequently resuspended in 10 mM tetraborate buffer (pH 8.0±0.1) or MWW (CTWW or IAWW) for disinfection experiments. A 50 mM Fe(VI) stock solution was prepared in 10 mM borate buffer (pH 9.0±0.1) prior to *E. coli* disinfection experiments and utilized within 5 min of preparation to minimize Fe(VI) auto-decomposition. *E. coli* cell suspensions were dosed with Fe(VI) and aliquots were subsequently withdrawn to quantify Fe(VI) concentrations using the same ABTS method as previously mentioned. After 15 seconds of Fe(VI) addition, cultures were dosed with SO₃²⁻ at [SO₃²⁻]:[Fe(VI)] of 0, 0.2, 0.4, 0.8, and 3.0. The time of SO₃²⁻ activation with respect to Fe(VI) addition was varied by introducing SO₃²⁻

after 15, 30, 45 and 60 seconds of Fe(VI) addition. For all cell inactivation measurements, *E. coli* cell concentrations were measured at 0 and 60 minutes of exposure by heterotrophic plate counting following Standard Method 9215. Losses in culturable cells was considered inactivation and calculated based on Equation SI-1.

3. Results and discussion

3.1. Dioxane Oxidation

Figure 1A presents the transformation of 14D by 150 μ M Fe(VI) in two different buffers. Results demonstrate limited transformation of 14D by Fe(VI) alone, with < 40% of 14D oxidized. The phosphate-buffered sub-stoichiometric activation experiments yielded the most significant (p < 0.01) improvement in transformation, increasing from 33% to 64%. Resultant 14D concentrations under these conditions approach the 0.5-log removal (69%) requirement set under CA22. The transformation of 14D with increasing activation ratio showed no improvement in borate and notably decreased performance in phosphate (< 20% transformation).

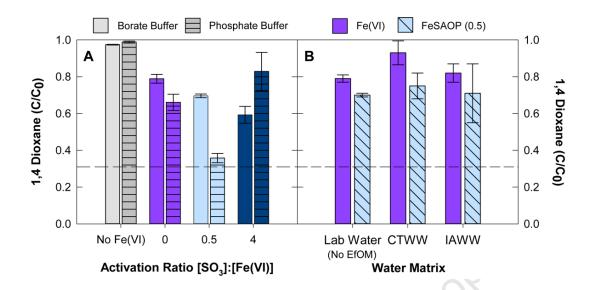


Figure 1: (A) Transformation of 5 μ M 14D by 150 μ M Fe(VI) at pH 8.0 (\pm 0.1) in 10mM Borate (solid bars) or 10 mM Phosphate (striped bars) buffer with increasing activation ratio. (B) Transformation of 5 μ M 14D by Fe(VI) (solid bars) and FeSAOP (striped bars) in two MWWs, buffered with 10mM Borate at pH 8.0, and compared with RGW (no NOM) performance. FeSAOP [SO₃²⁻]:[Fe(VI)] = 0.5:1. Dashed lines represents oxidation target set by CA22.

The buffer significantly impacted 14D oxidation during activation. Huang et al. (2018) concluded borate-buffered Fe(VI) solutions yielded higher transformation of several CECs compared to phosphate buffered solutions due to nucleophilic complexation of Fe-species by phosphate ligands. However, this phenomenon noted by Huang et al. was not seen in our study where the 0.5 activation in phosphate yielded the highest oxidation, with only \sim 35% 14D remaining. In borate-buffered experiments both Fe(VI)-alone and 0.5-ctivation had significantly (p < 0.02) decreased oxidation performance compared to the same conditions with phosphate. Improved performance under 0.5 activation could imply 14D is more susceptible to oxidation by ephemeral iron species Fe(V)/Fe(IV) (E⁰ > 1.8 V, Sharma, 2010) than SO₄·•/•OH (E⁰ \approx 2.5 V/2.7V, Giannakis et al., 2021) or Fe(VI) alone. The lower oxidation seen in borate buffers is

likely due to the formation of particulate Fe(III), which would have been sequestered in phosphate buffer, accelerating autocatalytic Fe(VI) decay in a way that does not lead to 14D transformation (Jiang et al., 2015). The decreased performance seen in stoichiometricallyexcessive activation in phosphate buffer may be associated with the formation of phosphate radicals (e.g., HPO₄-•) during activation. Both SO₄-• and •OH react rapidly with buffer HPO₄²- (k = 10⁵ and 10⁶ M⁻¹s⁻¹, respectively) to form HPO₄⁻• (Mártire and Gonzalez, 2001; Maruthamuthu and Neta, 1978) and likely would only have occurred during 4.0 FeSAOP conditions. Phosphate radicals are shorter lived and generally 1-2 orders of magnitude less reactive with organics than SO₄• and •OH at circumneutral pH, implying a decreased oxidative performance (Bosio et al., 2005; Criado et al., 2012; Mártire and Gonzalez, 2001). However, the phosphate buffered experiments hold little practical implications for a water reuse scenario as the buffer phosphate concentration was two orders of magnitude higher than typical MWW influent phosphate concentrations (0.1-0.2mM, Metcalf & Eddy et al., 2013). For this reason, the use of a strong (10mM) phosphate buffer was not utilized in further experiments as the complete sequestration of resulting Fe(III) by phosphate does not offer an accurate representation of a typical water reuse matrix.

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

The impact on 14D oxidation due to MWW EfOM is presented in Figure 1B. Substoichiometric activation showed no improvement in transformation in IAWW compared to Fe(VI) alone, but significantly improved (p = 0.02) oxidation by 18% in CTWW. Transformation was far from meeting CA22 0.5-log transformation goals in all conditions. Dosing Fe(VI) alone in CTWW was less effective compared to lab water, resulting in < 10% degradation, likely a result of the high EfOM (7.1 mg/L). These results imply that all oxidation conditions are impacted similarly by the presence EfOM and would not be appropriate for pre-oxidation of

certain recalcitrant MWW contaminants. These results agree with prior work suggesting the effectiveness of SO₄-•/•OH-based oxidation is impeded in the presence of EfOM, likely due to sorption of target CECs to EfOM (Lian et al., 2017). However, similar impacts from EfOM were also noted with O₃-based advanced oxidation processes (Pisarenko et al., 2012). Furthermore, EfOM does not impact all contaminants equally. For example, oxidation of Mn(II) by Fe(VI) was shown to be independent of NOM due to the Mn(II)-Fe(VI) reactions rapid kinetics (Goodwill et al., 2016).

3.2. <u>EfOM Coagulation</u>

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

Figure 2A demonstrates the surface charge neutralization of laboratory Suwannee River NOM and resultant iron particles by cationic polymer in RGW. NOM with no pre-oxidation required 3.1 mg of polymer for complete negative charge titration, as indicated by the streaming current results, while particles after pre-oxidation (all conditions) required greater than 4 mg of polymer. The polymer required for complete titration varied only slightly (4.1-4.3 mg) between the three methods of pre-oxidation. Polymer addition after pre-oxidation is in agreement with prior studies where higher coagulant doses required after Fe(VI) pre-oxidation of NOM, due to the cleaving of large molecules forming smaller hydrophilic molecules (Graham et al., 2010). This phenomenon is not limited to Fe(VI) pre-oxidation, and has been noted with other preoxidants (e.g., ozone) (Edwards et al., 1994; Schneider and Tobiason, 2000). However, significantly higher (\sim 1.5 to 3x) doses of polymer were required to obtain the point of zero charge in MWW EfOM samples (Figure 2B). Converse to results in the lab water matrix, EfOM absent of pre-oxidation demanded a higher polymer dose at 7.3 mg while the Fe(VI) preoxidation required the lowest coagulant dose of 5.9 mg to achieve complete surface charge neutralization. EfOM and Fe(VI) resultant particles after FeSAOP pre-oxidation were less

conducive to charge destabilization compared to Fe(VI) oxidation, similar to previously reported charge titrations (Bzdyra et al., 2020). Activation conditions each demanded nearly double the dose of polymer at 11.8 and 12.4 mg for [SO₃²⁻]:[Fe(VI)] 0.5 and 4.0, respectively.

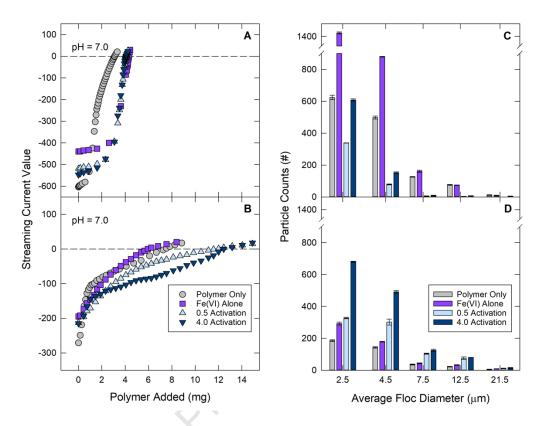


Figure 2: Polymer mass required for particle destabilization of lab NOM (A) and EfOM (B) surface charge in 0.5 L of pH 7 suspensions using cationic polymer with and without pre-oxidation, and the resulting floc size after 30-min for lab NOM (C) and MWW sample (D).

The polymer doses required for neutralization were similar to doses predictions based on the charge densities of the experimental solutions and the polymer. The charge density of the polymer was assumed to be 7.3 μ eq/mg as previously reported for a quaternary polyamine polymer (Bolto and Gregory, 2007). The lab NOM solution was assumed to have an average charge density of 10.5 μ eq/mg-DOC based on a previously determined value for Suwanee River NOM (Driver and Perdue, 2015) while the approximate average EfOM density was 25 μ eq/mg

based on a previously reported range for EfOM of 19-31 µeq/mg (Cho et al., 2000). It was estimated that the lab NOM and MWW, absent of Fe(VI), should require 3.5 and 7.1 mg doses of polymer, respectively. The modeled estimates had good agreement with lab data, having an over estimation by ~10% for lab NOM and only a 3% under estimation for EfOM. The required dose was within 1.0 mg/L of the expected dose. The difference in polymer dose and rate of destabilization between NOM and EfOM (< 5 mg vs > 8 mg polymer, respectively) is likely due to the differing organic matter make ups. Surface water NOM generally contains a high fraction of aromatic compounds (Mao and Schmidt-Rohr, 2004) while anthropogenically-influenced EfOM typically contains more high-carbon aliphatic compounds along with a high fraction of nitrogenated organics (Sirivedhin and Gray, 2005b). The aliphatic and nitrogenous compounds increased the stability of Fe-particles in the EfOM suspension. The coating (i.e., adsorption) of long aliphatic compounds unto Fe-oxides was demonstrated to alter particles electrostatic forces resulting in re-stabilization of Fe-particles (Liang and Morgan, 1990), thus counteracting the addition of polymer. Furthermore, organic nitrogen was shown to be less-emendable to Fe-based coagulation mechanisms (Hu et al., 2016; Pietsch et al., 2001) and requires cationic polymer dosing to destabilize particles complexed with organic nitrogen (Lee and Westerhoff, 2006). Our results show both Fe(VI) alone and FeSAOP pre-oxidation resulted in stable colloidal suspensions requiring further coagulation, regardless of organic matter type, to achieve aggregation. However, all pre-oxidation methods used in a water reuse context (i.e., with EfOM) required a higher polymer dose to achieve complete coagulation, likely due to the functional nature of EfOM complexed with resultant particles.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

The size of the resulting coagulated flocs are shown in Figure 2C and D. Generally, all flocs formed had Z-average diameters $< 5.5 \, \mu m$ under all conditions. All conditions were absent

of large-diameter (45-125 μm) NOM/EfOM particles before pre-oxidation and coagulation experiments. In RGW EfOM, Fe(VI) pre-oxidation produced the highest concentration of coagulated floc particles and the 0.5 activated resulted in the fewest. RGW EfOM flocs formed absent of Fe(VI) had the largest z-average diameter at 4.5 µm. Meanwhile both FeSAOP samples formed the smallest average floc size at 3.1-3.2 µm. These results are supported by prior work demonstrating FeSAOP results in a more polydisperse size distribution compared Fe(VI) (i.e., non-activated) particles, with FeSAOP particles smaller (and larger) than those generated by Fe(VI) (Bzdyra et al., 2020). These results differ from those obtained in MWW water trials. In MWW, the 4.0 activation resulted in the highest particle counts. The 0.5 activated resultant particles formed flocs with the largest z-average diameter (5.1 µm) while all other conditions resulted in flocs of similar, slightly smaller diameter (~4.5 µm). It is important to note that under all pre-oxidation conditions the resulting iron-based flocs (assuming $\rho = 1500 \text{ kg/m}^3$, per Bache and Gregory, 2010) would have sufficient settling velocities (> 0.75 m/hr) to be removed via sedimentation within a recommended 4-hour settling time (10 State Standards). Remaining unsettleable small particles ($d < 1.0 \mu m$), likely in higher abundance under activation conditions (Bzdyra et al., 2020), would need to be removed via subsequent dual-media or membrane/ultrafiltration.

335

336

337

338

339

340

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

3.3. <u>Disinfection performance</u>

The results presented in Figure 3 show the log₁₀ inactivation of *E. coli* by Fe(VI) and FeSAOP. Sub-stochiometric activation led to notable improvements (28%) to inactivation in buffered RGW, similar to improvements demonstrated in oxidation experiments (i.e., Figure 1). Enhancement in *E. coli* disinfection using FeSAOP is likely due to generation of Fe(V)/Fe(IV)

and SO₄-•/•OH (Ghosh et al., 2006; Hu et al., 2012; Manoli et al., 2017a). Elevated inactivation by FeSAOP may be due to limited gene expression (i.e., downregulation) during exposure which differs from more conventional disinfectants (Daer et al., 2021). However, it is noteworthy that stoichiometrically excessive FeSAOP significantly (p=0.0003) decreased E. coli inactivation by 75% compared to Fe(VI) alone, suggesting Fe(V)/Fe(IV) drive Fe(VI) disinfection. The decreased inactivation may be a result of elevated cellular upregulation of oxidative-stress response genes when exposed to $SO_4^{-\bullet}/{\bullet}OH$ that is not seen when exposed to Fe(V)/Fe(IV) (Daer et al., 2021) in addition to no contact time with ephemeral iron species. Kazama (1994) showed that the addition of sodium thiosulfate with Fe(VI) led to a similar decrease in disinfection capacity of Fe(VI) against F-specific RNA coliphage(Qβ), likely due to quenching of disinfecting Fe(V)/Fe(IV) by the excess reductants. The average E. coli log inactivation by Fe(VI) alone in IAWW and CTWW was 6.2±0.4 and 7.7±0.2, respectively, two orders of magnitude higher than the average inactivation in RGW. These results are in agreement with Manoli et al. where a 2-log improvement in murine norovirus inactivation by Fe(VI) was also noted in MWW effluent compared to a lab matrix, possibly due to unintentional activation by MWW constituents, such as NH₃, and subsequent formation of Fe(V)/Fe(IV) (Manoli et al., 2020). Although still higher compared to RGW experiments, use of FeSAOP in IAWW and CTWW resulted in a significant drop in E. coli inactivation by 20 and 11%, respectively (Figure 3). Results presented here are dissimilar to from 14D oxidation results, where FeSAOP had slight improvements in MWW, but overall transformation was not better in MWW compared to RGW. Some differences may have resulted from reaction kinetics. Although specific rates were not determined in this study, inactivation of E. coli. by Fe(VI) is understood to be relatively fast (i.e., minutes, Gilbert et al., 1976), while oxidation of 14D by Fe(VI)-alone appears to be much slower

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

(e.g., < 20% transformation in RGW after 60 minutes, Figure 1) allowing for quenching by EfOM. Although FeSAOP appears to be a viable option for disinfection in water reuse, further examination, especially on role the Fe(VI)-derived intermediates during disinfection in MWW matrices, is needed to identify active species and their involvement in the FeSAOP-specific disinfection mechanism.

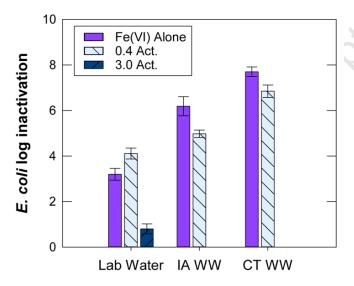


Figure 3: E. coli inactivation buffered lab water and MWW at pH 8.0 (±0.1) at room temperature. Error bars represent 1 standard error of at least three biological replicates. Initial cell concentration ~107

CFU/mL. 3.0 activation was not performed in MWW samples

3.4. DBP Formation

The formation of select Br-DBPs were quantified under various Fe(VI) and FeSAOP oxidation conditions. Figure 4 presents the generation of active bromine (i.e., HOBr/OBr-), a key intermediate of Br-DBP formation, and bromate after Fe(VI) and FeSAOP oxidation. At neutral pH, all oxidation methods produced similar concentrations of active bromine (\sim 200 μ g/L). While activation may have been anticipated to generate more active bromine due to the presence of

Fe(V)/Fe(IV) and SO₄•/•OH, slightly faster production of H₂O₂ during FeSAOP (see Figure S1) likely suppressed active bromine formation (Jiang et al., 2016). 4.0 FeSAOP generated more than double the HOBr/OBr- compared to Fe(VI) alone and 0.5 activation when under more basic conditions (i.e., at pH 8). This observed difference at elevated pH is likely due to an order of magnitude increase in solution OH-, a precursor for •OH formation (e.g., OH- oxidation by SO₄• only under 4.0 FeSAOP, Shao et al., 2020). The increased •OH would have reacted with H₂O₂ more rapidly than HOBr/OBr- (10⁷ vs 10⁵ M⁻¹s⁻¹; Crittenden et al., 1999; Von Gunten and Oliveras, 1997) lowering the level of suppression and increasing HOBr/OBr- yields. The level of HOBr/OBr- formed suggests Br-DBP formation is an important consideration when treating elevated Br- waters with 4.0 FeSAOP. Furthermore, the formation of Br• during FeSAOP in Br-rich waters may also have impacts on the degradation of target contaminants (Dar et al., 2020).

All oxidation methods also produced BrO₃ (Figure 4B). Results show experimental conditions produced normalized BrO₃ yields (i.e., μg/L BrO₃/μM Fe(VI)) of 0.8 and 0.6 μg/L BrO₃/μM Fe(VI) at pH 7 and 8, respectively. Comparatively, prior work in borate buffer with the same [Br-]_{initial} showed BrO₃/μM Fe(VI) of 0.9 and 1.5 at pH 6.2 and 7.5, respectively (Jiang et al., 2016). FeSAOP yielded less BrO₃ compared to Fe(VI) at pH 7.0, with 4.0 FeSAOP producing the lowest overall BrO₃ concentrations. BrO₃ yields by FeSAOP trended with pH, consistent with prior radical-based oxidation results where BrO₃ formation increased with pH (Guan et al., 2020; Pinkernell and Von Gunten, 2001). The opposite pH-effect was noted for Fe(VI)-alone where increased BrO₃ formation was observed with decreasing pH, which was also noted in prior studies (Huang et al., 2016; Jiang et al., 2016), likely resulting from the higher reduction potential associated with higher abundance of protonated Fe(VI) species (e.g., H₂FeO₄/HFeO₄) at relatively lower pH values (Sharma et al., 2016). Formation of elevated BrO₃

is explained by the HOBr/OBr- (a precursor to BrO₃) results previously presented, and due to the high [Br-]_{initial} used in this study as BrO₃ formation by Fe(VI) oxidation generally increases proportionately with increasing [Br-]_{initial} (Jiang et al., 2016). These results imply that reuse systems treating bromide-containing waters must use caution when implementing FeSAOP, as even with effective EfOM removal the formation of inorganic Br-DBPs remains. Decreasing pH in low-EfOM water may help decrease FeSAOP BrO₃ formation potential in water reuse systems. However, based on results from prior studies comparing Fe(VI) and O₃, yields from FeSAOP would likely be lower than BrO₃ resulting from O₃ under similar conditions (Jiang et al., 2019).

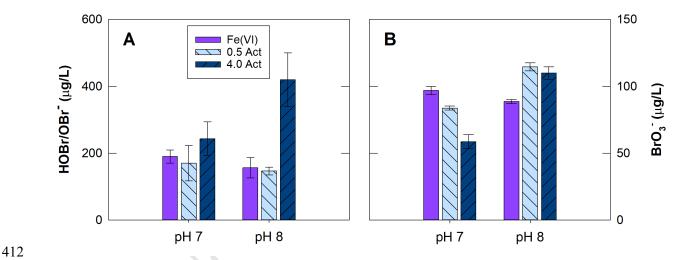


Figure 4: Generation of (A) active Bromine (HOBr/OBr-) in 10mM borate buffered RGW absent of NOM and (B) formation of Bromate in 1 mM borate buffer RGW absent of NOM.

The formation of bromoform in RGW with NOM is presented in Figure 5A&B. Under all conditions, bromoform concentrations were below the 80 μ g/L Maximum Contaminant Level (MCL) for TTHMs set by CA22 and the U.S. Safe Drinking Water Act. However, chlorine was not present in the system elimination formation of chlorinated THMs. Fe(VI) alone formed < 20 μ g/L of bromoform in every test condition. Prior work has shown Fe(VI) pre-oxidation generally

results in similarly low bromoform yields. Work by Huang et al. (2016) yielded only ~1 µg/L bromoform with notably different experimental conditions (e.g., 70% smaller Fe(VI) dose, an order of magnitude lower [Br-]_{initial}, etc.). FeSAOP sub-stoichiometrically at pH 7.0, bromoform yields were significantly (p < 0.03) lower when compared to Fe(VI) alone with changes of -39% and -32% in 2.2 and 5.1 mg/L NOM, respectively. This difference is also noted in Figure 4A (active bromine), and is likely a result of active oxidants shifting from Fe(VI) to primarily Fe(V)/Fe(IV) in the sub-stoichiometric FeSAOP mechanism (Shao et al., 2020). However, excess (i.e., 4.0) activation in lower NOM at pH 7 yielded more than double the bromoform concentration compared to Fe(VI) alone, and 3.5 times more than 0.5 activation. This is likely due to increased SO₄-•/•OH generation by 4.0 FeSAOP compared to 0.5 FeSAOP (Shao et al., 2020) that preferentially result in bromoform formation in the presence of low molecular weight carboxylic acids (Y. Wang et al., 2014), which are relatively abundant in the NOM source used in this study (Palma et al., 2021). More than doubling the NOM increased the bromoform generation six-fold (10.7 to 61.4 µg/L) under 4.0 activation at pH 7 (e.g., Figure 5B). There was limited formation ($< 6 \mu g/L$) of bromoform at pH 8.0, independent of DOC concentration and activation ratio. Prior studies have shown that bromoform formation by Fe(VI) changes inversely proportional with pH (e.g., bromoform not detected at higher pH by Huang et al., 2016). This is most likely a result of the lower reduction potential of Fe(VI) at elevated pH due to the larger fraction of deprotonated Fe(VI) (e.g., FeO₄²⁻), which generally reacts slower with target compounds (Jiang et al., 2016; Sharma, 2011). Only FeSAOP 4.0 activation in the

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

presence of 5 mg/L NOM had significantly different results (p < 0.01), with less bromoform resulting compared to Fe(VI).

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

Bromoform formation was also determined in unchlorinated Br-spiked MWW samples (Figure 5C). Experiments in both real MWW samples yielded less than 10 µg/L of TTHMs. Fe(VI) alone generated only 1.5 and 0.9 μg/L bromoform in CT and IAWW, respectively. These yields are similar ($\sim 1 \mu g/L$) to those in aforementioned Fe(VI) studies (Huang et al., 2016). Activating at 0.5:1 produced negligible bromoform (< 1 µg/L) in either effluent. The higher activation ratio again yielded increased byproduct concentrations, showing 5-6 fold increased formation than Fe(VI) alone. This again is most likely due to shift in radical species during FeSAOP from Fe-based to SO₄-•/•OH. Although the overall MWW yields were lower, the trend agrees with results in RGW matrix experiments. In general, these results suggest implementation of sub-stoichiometric FeSAOP at pH ≤ 7.0 would generate fewer Br-DBPs when compared to other tested oxidation methods and may be most viable conditions for water reuse applications. A proposed reaction pathway for formation of the measured Br-DBPs by FeSAOP radical preoxidation in a water reuse context is given in Figure 6. It is important to note that anything exhibiting oxidant demand (e.g., 14D) may alter these proposed reaction pathways and resulting yields of certain DBPs.

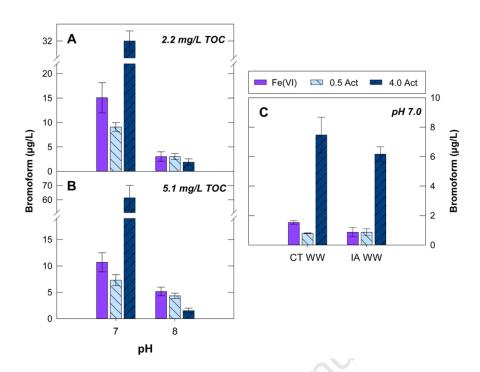


Figure 5: Formation of Bromoform at pH 7.0 and 8.0 (10mM borate buffer) with 2.2 (A) and 5.1 (B) mg/L of IHSS Suwannee River NOM. Bromoform was also quantified in pH 7.0 MWW (C). Other measured THMs (chloroform, bromodichloromethane, dibromochloromethane) accounted for < 2 µg/L in 5C.

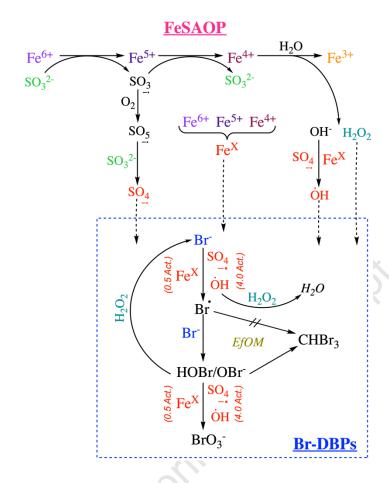


Figure 6: Proposed reaction mechanism for formation of measured Br-DBPs by FeSAOP in a water reuse paradigm

3.5. Implications For Water Reuse

FeSAOP as a water reuse technology that may address several aforementioned risks facing water reuse systems, including needs for inactivation of pathogenic organisms, destruction of residual suspended EfOM, and transformation of numerous CECs. Novel contributions from this study indicate that FeSAOP at [SO₃²⁻]:[Fe(VI)] 0.5 could serve as a feasible alternative technology for some water reuse systems due to the combined mode of action (i.e., ephemeral iron species and radicals) leading to oxidation of recalcitrant CECs, inactivation of pathogens, and decreased direct Br-DBP formation. 0.5 FeSAOP was comparable to, or an improvement

over, Fe(VI)-alone in nearly all experimental trials. Although 4.0 FeSAOP may produce stronger oxidative strength (due to SO₄•/•OH) resulting in oxidation of EfOM and certain CECs, it may not be effective against all CECs (e.g., 14D) and does not inactivate pathogenic organisms. Also stoichiometric-excessive activation leads to significantly elevated direct Br-DBP formation.

Reuse systems with elevated levels of Br in raw water should use caution when implementing FeSAOP due to the potential risks of Br-DBPs. Furthermore, stoichiometric-excessive FeSAOP simply acts as a mode for generation of SO₄• and •OH which several existing technologies also accomplish (Giannakis et al., 2021; Miklos et al., 2018), while no existing technology provides the combined mode of action with ephemeral iron species. Rural areas, often most impacted by water scarcity, may especially benefit most from implementation of 0.5 FeSAOP due to certain installation and operational simplicities compared to other technologies such as O₃ (Bauer, 2020) and should be a point of focus in future research. Key remaining knowledge gaps include operational proof of concept through pilot studies.

4. Conclusions

- 0.5 FeSAOP can improve oxidation of a recalcitrant organics compared to Fe(VI) alone and may achieve CA22 benchmarks, but performance is highly dependent on water quality and chemistry (e.g., buffer, EfOM, etc.).
- FeSAOP results in stable colloidal suspensions requiring subsequent coagulation to a
 great extent than Fe(VI) alone, with FeSAOP requiring double the coagulant dose.
 However, measured flocs from all oxidating conditions could be removed via
 sedimentation.

- 0.5 FeSAOP leads to significantly less formation of measured Br-DBPs compared to 4.0
 FeSAOP, likely through increased H₂O₂ formation resulting in suppression of
 HOBr/OBr⁻.
 - Sub-stoichiometric Fe(VI) activation results in adequate disinfection, however, inactivation is noticeably decreased at a [SO₃²⁻]:[Fe(VI)] of 4.0, likely from instant quenching of all residual iron species leading to insufficient inactivation contact time.
 - 0.5 FeSAOP may be the most advantageous option for water reuse systems, achieving improved transformation of contaminants and comparable disinfection performance to Fe(VI) while limiting direct formation of Br-DBPs.

5. Acknowledgments

Project funding provided by the U.S. Department of the Interior's Bureau of Reclamation (R17AC00133) and National Science Foundation CAREER Award (2046383). The expressed views are exclusively those of the authors, not the funding agencies The authors thank Element 26 Technology (400 Hobbs Road, Suite 107, League City, TX 77546; soundar.ramchandran@gmail.com; jtstrehl@gmail.com) for supplying the potassium ferrate product used in this work, and general collaboration. The authors thank undergraduate students Bradley Bzdyra, Ian Hallam, Jonathan Villada, and Michael Rothenbucher for laboratory contributions as well as Benjamin Cromwell and Dr. Thomas Boving for assisting the measurement of 1,4 dioxane.

6. References

Ahmadi, A., Wu, T., 2017. Inactivation of E. coli using a novel TiO 2 nanotube electrode. Environ. Sci.

520 Water Res. Technol. 3, 534–545. https://doi.org/10.1039/C6EW00319B 521 Anderson, J., 2003. The environmental benefits of water recycling and reuse. Water Sci. Technol. Water 522 Supply 4, 1–10. https://doi.org/10.2166/ws.2003.0041 523 APHA, 2012. Standard Methods for Examination of Water and Wastewater (Standard Methods for the 524 Examination of Water and Wastewater). Am. Public Heal. Assoc. Washington, DC, USA. 525 https://doi.org/ISBN 9780875532356 526 Asano, T., Levine, A.D., 1996. Wastewater reclamation, recycling and reuse: past, present, and future. 527 Water Sci. Technol. 33, 1–14. https://doi.org/10.1016/0273-1223(96)00401-5 Bache, D.H., Gregory, R., 2010. Flocs and separation processes in drinking water treatment: a review. J. 528 529 Water Supply Res. Technol. 59, 16–30. https://doi.org/10.2166/aqua.2010.028 530 Barlow, P.M., Reichard, E.G., 2010. Saltwater intrusion in coastal regions of North America. Hydrogeol. 531 J. 18, 247–260. https://doi.org/10.1007/s10040-009-0514-3 532 Bauer, S., 2020. Identification of water-reuse potentials to strengthen rural areas in water-scarce 533 regions—the case study of Wuwei. Land 9. https://doi.org/10.3390/land9120492 534 Bolto, B., Gregory, J., 2007. Organic polyelectrolytes in water treatment. Water Res. 41, 2301–2324. 535 https://doi.org/10.1016/j.watres.2007.03.012 536 Bosio, G., Criado, S., Massad, W., Rodríguez Nieto, F.J., Gonzalez, M.C., García, N.A., Mártire, D.O., 537 2005. Kinetics of the interaction of sulfate and hydrogen phosphate radicals with small peptides of 538 glycine, alanine, tyrosine and tryptophan. Photochem. Photobiol. Sci. 4, 840–846. 539 https://doi.org/10.1039/b507856c 540 Brown, T.C., Foti, R., Ramirez, J.A., 2013. Projected freshwater withdrawals in the United States under a 541 changing climate. Water Resour. Res. 49, 1259–1276. https://doi.org/10.1002/wrcr.20076 542 Bzdyra, B.M., Spellman, C.D., Andreu, I., Goodwill, J.E., 2020. Sulfite activation changes character of 543 ferrate resultant particles. Chem. Eng. J. 393, 124771. https://doi.org/10.1016/j.cej.2020.124771 544 Cho, J., Amy, G., Pellegrino, J., 2000. Membrane filtration of natural organic matter: comparison of flux 545 decline, NOM rejection, and foulants during filtration with three UF membranes. Desalination 127,

546	283–298. https://doi.org/10.1016/S0011-9164(00)00017-5		
547	Chu, I., Villeneuve, D.C., Secours, V.E., Becking, G.C., Valli, V.E., 1982. Toxicity of Trihalomethanes		
548	the Acute and Subacute Toxicity of Chloroform, Bromodichloromethane, Chlorodibromomethane		
549	and Bromoform in Rats. J. Environ. Sci. Heal. Part B 17, 205-224.		
550	https://doi.org/10.1080/03601238209372314		
551	Criado, S., Rosso, J.A., Cobos, C.J., García, N.A., Mártire, D.O., 2012. Oxidation of ophthalmic drugs		
552	photopromoted by inorganic radicals. J. Photochem. Photobiol. A Chem. 244, 32–37.		
553	https://doi.org/10.1016/j.jphotochem.2012.06.018		
554	Crittenden, J.C., Hu, S., Hand, D.W., Green, S.A., 1999. A kinetic model for H2O2/UV process in a		
555	completely mixed batch reactor. Water Res. 33, 2315-2328. https://doi.org/10.1016/S0043-		
556	1354(98)00448-5		
557	Daer, S., Goodwill, J.E., Ikuma, K., 2021. Effect of ferrate and monochloramine disinfection on the		
558	physiological and transcriptomic response of Escherichia coli at late stationary phase. Water Res.		
559	189, 116580. https://doi.org/10.1016/j.watres.2020.116580		
560	Daigger, G.T., 2009. Evolving Urban Water and Residuals Management Paradigms: Water Reclamation		
561	and Reuse, Decentralization, and Resource Recovery. Water Environ. Res. 81, 908-823.		
562	https://doi.org/10.2175/193864708790893378		
563	Dar, A.A., Chen, J., Shad, A., Pan, X., Yao, J., Bin-Jumah, M., Allam, A.A., Huo, Z., Zhu, F., Wang, Z		
564	2020. A combined experimental and computational study on the oxidative degradation of		
565	bromophenols by Fe(VI) and the formation of self-coupling products. Environ. Pollut. 258, 113678		
566	https://doi.org/10.1016/J.ENVPOL.2019.113678		
567	Dar, A.A., Wang, X., Wang, S., Ge, J., Shad, A., Ai, F., Wang, Z., 2019. Ozonation of pentabromopheno		
568	in aqueous basic medium: Kinetics, pathways, mechanism, dimerization and toxicity assessment.		
569	Chemosphere 220, 546–555. https://doi.org/10.1016/J.CHEMOSPHERE.2018.12.154		
570	Demirel, Z., 2004. The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin,		
571	Turkey. J. Environ. Manage. 70, 275–282. https://doi.org/10.1016/j.jenvman.2003.12.007		

572 Dentel, S.K., Thomas, A. V, Kingery, K.M., 1989. Evaluation of the streaming current detector—I. Use 573 in jar tests. Water Res. 23, 413–421. https://doi.org/10.1016/0043-1354(89)90132-2 574 Ding, L., Li, X.Z., Lee, S.C., 2013. Kinetics of CH3S- reaction with in situ ferrate(VI) in aqueous alkaline 575 solution. Chemosphere 92, 1301–1306. https://doi.org/10.1016/j.chemosphere.2013.04.098 576 Driver, S.J., Perdue, E.M., 2015. Acid-base chemistry of natural organic matter, hydrophobic acids, and 577 transphilic acids from the Suwannee River, Georgia, as determined by direct potentiometric titration. 578 Environ. Eng. Sci. 32, 66–70. https://doi.org/10.1089/ees.2014.0356 579 Edwards, M., Benjamin, M.M., Tobiason, J.E., 1994. Effects of ozonation. On coagulation of NOM using 580 polymer alone and polymer/metal salt mixtures. J. / Am. Water Work. Assoc. 86, 105–116. https://doi.org/10.1002/j.1551-8833.1994.tb06140.x 581 582 Ged, E.C., Boyer, T.H., 2014. Effect of seawater intrusion on formation of bromine-containing 583 trihalomethanes and haloacetic acids during chlorination. Desalination 345, 85–93. 584 https://doi.org/10.1016/j.desal.2014.04.021 585 Gennaccaro, A.L., McLaughlin, M.R., Quintero-Betancourt, W., Huffman, D.E., Rose, J.B., 2003. 586 Infectious Cryptosporidium parvum oocysts in final reclaimed effluent. Appl. Environ. Microbiol. 587 69, 4983–4984. https://doi.org/10.1128/AEM.69.8.4983-4984.2003 588 Ghosh, M., Manoli, K., Renaud, J.B., Sabourin, L., Nakhla, G., Sharma, V.K., Ray, A.K., 2019. Rapid 589 removal of acesulfame potassium by acid-activated ferrate(VI) under mild alkaline conditions. 590 Chemosphere 230, 416–423. https://doi.org/10.1016/j.chemosphere.2019.05.069 591 Ghosh, R.S., Dzombak, D.A., Luthy, R.G., Smith, J.R., 2006. In Situ Treatment of Cyanide-592 Contaminated Groundwater by Iron Cyanide Precipitation. Water Environ. Res. 71, 1217–1228. 593 https://doi.org/10.2175/106143096x122456 594 Giannakis, S., Lin, K.Y.A., Ghanbari, F., 2021. A review of the recent advances on the treatment of 595 industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem.

Eng. J. 406, 127083. https://doi.org/10.1016/J.CEJ.2020.127083

Gilbert, M.B., Waite, T.D., Hare, C., 1976. Analytical Notes - an Investigation of the Applicability of

596

- Ferrate Ion for Disinfection. J. / Am. Water Work. Assoc. 68, 495–497.
- 599 https://doi.org/10.1002/j.1551-8833.1976.tb02456.x
- 600 Goodwill, J.E., Mai, X., Jiang, Y., Reckhow, D.A., Tobiason, J.E., 2016. Oxidation of manganese(II) with
- ferrate: Stoichiometry, kinetics, products and impact of organic carbon. Chemosphere 159, 457–464.
- https://doi.org/10.1016/j.chemosphere.2016.06.014
- 603 Graham, N.J.D., Khoi, T.T., Jiang, J.-Q., 2010. Oxidation and coagulation of humic substances by
- 604 potassium ferrate. Water Sci. Technol. 62, 929–936. https://doi.org/10.2166/wst.2010.369
- 605 Guan, C., Jiang, J., Pang, S., Zhou, Y., Gao, Y., Li, J., Wang, Z., 2020. Formation and control of bromate
- in sulfate radical-based oxidation processes for the treatment of waters containing bromide: A
- 607 critical review. Water Res. https://doi.org/10.1016/j.watres.2020.115725
- Hendricks, R., Pool, E.J., 2012. The effectiveness of sewage treatment processes to remove faecal
- pathogens and antibiotic residues. J. Environ. Sci. Heal. Part A Toxic/Hazardous Subst. Environ.
- Eng. 47, 289–297. https://doi.org/10.1080/10934529.2012.637432
- Hu, H., Ding, L., Geng, J., Huang, H., Xu, K., Ren, H., 2016. Effect of coagulation on dissolved organic
- 612 nitrogen (DON) bioavailability in municipal wastewater effluents. J. Environ. Chem. Eng. 4, 2536–
- 613 2544. https://doi.org/10.1016/j.jece.2016.04.036
- Hu, L., Page, M.A., Sigstam, T., Kohn, T., Mariñas, B.J., Strathmann, T.J., 2012. Inactivation of
- bacteriophage MS2 with potassium ferrate(VI). Environ. Sci. Technol. 46, 12079–12087.
- 616 https://doi.org/10.1021/es3031962
- Huang, X., Deng, Y., Liu, S., Song, Y., Li, N., Zhou, J., 2016. Formation of bromate during ferrate(VI)
- oxidation of bromide in water. Chemosphere 155, 528–533.
- https://doi.org/10.1016/j.chemosphere.2016.04.093
- 620 Huang, Z.-S., Wang, L., Liu, Y.-L., Jiang, J., Xue, M., Xu, C.-B., Zhen, Y.-F., Wang, Y.-C., Ma, J., 2018.
- Impact of Phosphate on Ferrate Oxidation of Organic Compounds: An Underestimated Oxidant.
- 622 Environ. Sci. Technol. 52, acs.est.8b04655. https://doi.org/10.1021/acs.est.8b04655
- Huertas, E., Salgot, M., Hollender, J., Weber, S., Dott, W., Khan, S., Schäfer, A., Messalem, R., Bis, B.,

624 Aharoni, A., Chikurel, H., 2008. Key objectives for water reuse concepts. Desalination 218, 120– 625 131. https://doi.org/10.1016/j.desal.2006.09.032 626 Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., Barcelo, D., 2011. 627 Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during 628 wastewater treatment. Water Res. 45, 1165–1176. https://doi.org/10.1016/j.watres.2010.11.010 629 Jiang, J.Q., 2014. Advances in the development and application of ferrate(VI) for water and wastewater 630 treatment. J. Chem. Technol. Biotechnol. 89, 165–177. https://doi.org/10.1002/jctb.4214 631 Jiang, Y., Goodwill, J.E., Tobiason, J.E., Reckhow, D.A., 2019. Comparison of ferrate and ozone pre-632 oxidation on disinfection byproduct formation from chlorination and chloramination. Water Res. 156, 110–124. https://doi.org/10.1016/j.watres.2019.02.051 633 634 Jiang, Y., Goodwill, J.E., Tobiason, J.E., Reckhow, D.A., 2016. Bromide oxidation by ferrate(VI): The 635 formation of active bromine and bromate. Water Res. 96, 188–197. 636 https://doi.org/10.1016/j.watres.2016.03.065 637 Jiang, Y., Goodwill, J.E., Tobiason, J.E., Reckhow, D.A., 2015. Effect of Different Solutes, Natural 638 Organic Matter, and Particulate Fe(III) on Ferrate(VI) Decomposition in Aqueous Solutions. 639 Environ. Sci. Technol. 49, 2841–2848. https://doi.org/10.1021/es505516w 640 Johnson, M.D., Bernard, J., 1992. Kinetics and mechanism of the ferrate oxidation of sulfite and selenite 641 in aqueous media. Inorg. Chem. 31, 5140-5142. https://doi.org/10.1021/ic00050a040 642 Kasprzyk-Hordern, B., Dinsdale, R.M., Guwy, A.J., 2009. The removal of pharmaceuticals, personal care 643 products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the 644 quality of receiving waters. Water Res. 43, 363–380. https://doi.org/10.1016/j.watres.2008.10.047 Kazama, F., 1994. Inactivation of coliphage Qβ by potassium ferrate. FEMS Microbiol. Lett. 118, 345– 645 646 349. https://doi.org/10.1111/j.1574-6968.1994.tb06851.x 647 Kummu, M., Guillaume, J.H.A., De Moel, H., Eisner, S., Flörke, M., Porkka, M., Siebert, S., Veldkamp, 648 T.I.E., Ward, P.J., 2016. The world's road to water scarcity: Shortage and stress in the 20th century 649 and pathways towards sustainability. Sci. Rep. 6, 1–16. https://doi.org/10.1038/srep38495

- Lassiter, A., Gleick, P., 2015. Sustainable Water: Challenges and Solutions from California, 1st ed.
- University of California Press.
- 652 Lee, W., Westerhoff, P., 2006. Dissolved organic nitrogen removal during water treatment by aluminum
- sulfate and cationic polymer coagulation. Water Res. 40, 3767–3774.
- https://doi.org/10.1016/j.watres.2006.08.008
- Lee, Y., Yoon, J., von Gunten, U., 2005. Spectrophotometric determination of ferrate (Fe(VI)) in water by
- 656 ABTS. Water Res. 39, 1946–1953.
- Lian, L., Yao, B., Hou, S., Fang, J., Yan, S., Song, W., 2017. Kinetic Study of Hydroxyl and Sulfate
- Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents. Environ. Sci. Technol. 51,
- 659 2954–2962. https://doi.org/10.1021/acs.est.6b05536
- 660 Liang, L., Morgan, J.J., 1990. Coagulation of Iron Oxide Particles in the Presence of Organic Materials,
- in: Chemical Modeling of Aqueous Systems II. American Chemical Society, pp. 293–308.
- https://doi.org/10.1021/bk-1990-0416.ch023
- Manoli, K., Maffettone, R., Sharma, V.K., Santoro, D., Ray, A.K., Passalacqua, K.D., Carnahan, K.E.,
- Wobus, C.E., Sarathy, S., 2020. Inactivation of Murine Norovirus and Fecal Coliforms by
- Ferrate(VI) in Secondary Effluent Wastewater. Environ. Sci. Technol. 54, 1878–1888.
- https://doi.org/10.1021/acs.est.9b05489
- 667 Manoli, K., Morrison, L.M., Sumarah, M.W., Nakhla, G., Ray, A.K., Sharma, V.K., 2018.
- Pharmaceuticals and pesticides in secondary effluent wastewater: Identification and enhanced
- removal by acid-activated ferrate(VI). Water Res. 148, 272–280.
- https://doi.org/10.1016/j.watres.2018.10.056
- Manoli, K., Nakhla, G., Feng, M., Sharma, V.K., Ray, A.K., 2017a. Silica gel-enhanced oxidation of
- caffeine by ferrate(VI). Chem. Eng. J. 330, 987–994. https://doi.org/10.1016/j.cej.2017.08.036
- Manoli, K., Nakhla, G., Ray, A.K., Sharma, V.K., 2017b. Enhanced oxidative transformation of organic
- 674 contaminants by activation of ferrate(VI): Possible involvement of FeV/FeIV species. Chem. Eng. J.
- 675 307, 513–517. https://doi.org/10.1016/j.cej.2016.08.109

676 Mao, J.-D., Schmidt-Rohr, K., 2004. Accurate Quantification of Aromaticity and Nonprotonated 677 Aromatic Carbon Fraction in Natural Organic Matter by 13 C Solid-State Nuclear Magnetic Resonance. Environ. Sci. Technol. 38, 2680–2684. https://doi.org/10.1021/es034770x 678 679 Mártire, D.O., Gonzalez, M.C., 2001. Aqueous phase kinetic studies involving intermediates of 680 environmental interest: Phosphate radicals and their reactions with substituted benzenes. Prog. 681 React. Kinet. Mech. 26, 201–218. https://doi.org/10.3184/007967401103165253 682 Maruthamuthu, P., Neta, P., 1978. Phosphate radicals. Spectra, acid-base equilibria, and reactions with 683 inorganic compounds. J. Phys. Chem. 82, 710–713. https://doi.org/10.1021/j100495a019 684 Metcalf & Eddy, I., Tchobanoglous, G., Stensel, H.D., Tsuchihashi, R., Burton, F., 2013. Wastewater 685 Engineering: Treatment and Resource Recovery, 5th ed. McGraw-Hill Education, New York, NY. 686 Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hübner, U., 2018. Evaluation of advanced 687 oxidation processes for water and wastewater treatment – A critical review. Water Res. 139, 118– 688 131. https://doi.org/10.1016/J.WATRES.2018.03.042 689 Monzyk, I.B.F., Creek, T., Smeltz, A.D., Rose, J.K., 2013. Method for producing ferrate (V) and/or (VI). 690 US 8.449,756 B2. 691 Nichols, A.B., 1988. Water Reuse Closes Water-Wastewater Loop. J. (Water Pollut. Control Fed. 60, 692 1930–1937. 693 Palma, D., Khaled, A., Sleiman, M., Voyard, G., Richard, C., 2021. Effect of UVC pre-irradiation on the 694 Suwannee river Natural Organic Matter (SRNOM) photooxidant properties. Water Res. 202. 695 https://doi.org/10.1016/j.watres.2021.117395 696 Pietsch, J., Sacher, F., Schmidt, W., Brauch, H.-J., 2001. Polar nitrogen compounds and their behaviour in 697 the drinking water treatment process. Water Res. 35, 3537–3544. https://doi.org/10.1016/S0043-698 1354(01)00086-0 699 Pinkernell, U., Von Gunten, U., 2001. Bromate minimization during ozonation: Mechanistic 700 considerations. Environ. Sci. Technol. 35, 2525–2531. https://doi.org/10.1021/es001502f

Pisarenko, A.N., Stanford, B.D., Yan, D., Gerrity, D., Snyder, S.A., 2012. Effects of ozone and

- ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse
- 703 applications. Water Res. 46, 316–326. https://doi.org/10.1016/j.watres.2011.10.021
- Richardson, S.D., Thruston, A.D., Caughran, T. V., Chen, P.H., Collette, T.W., Floyd, T.L., Schenck,
- K.M., Lykins, B.W., Sun, G.R., Majetich, G., 1999. Identification of new drinking water
- disinfection byproducts formed in the presence of bromide, Environ. Sci. Technol. 33, 3378–3383.
- 707 https://doi.org/10.1021/es9900297
- Rush, J.D., Zhao, Z., Bielski, B.H.J., 1996. Reaction of Ferrate (VI)/Ferrate (V) with Hydrogen Peroxide
- and Superoxide Anion a Stopped-Flow and Premix Pulse Radiolysis Study. Free Radic. Res. 24,
- 710 187–198. https://doi.org/10.3109/10715769609088016
- 711 Schink, T., Waite, T.D., 1980. Inactivation of f2 virus with ferrate (VI). Water Res. 14, 1705–1717.
- 712 https://doi.org/10.1016/0043-1354(80)90106-2
- Schneider, O.D., Tobiason, J.E., 2000. Preozonation effects on coagulation. J. / Am. Water Work. Assoc.
- 714 92, 74–87. https://doi.org/10.1002/j.1551-8833.2000.tb09025.x
- Shao, B., Dong, H., Feng, L., Qiao, J., Guan, X., 2020. Influence of [sulfite]/[Fe(VI)] molar ratio on the
- active oxidants generation in Fe(VI)/sulfite process. J. Hazard. Mater. 384, 121303.
- 717 https://doi.org/10.1016/j.jhazmat.2019.121303
- Shao, B., Dong, H., Sun, B., Guan, X., 2019. Role of Ferrate(IV) and Ferrate(V) in Activating Ferrate(VI)
- 719 by Calcium Sulfite for Enhanced Oxidation of Organic Contaminants. Environ. Sci. Technol. 53,
- 720 894–902. https://doi.org/10.1021/acs.est.8b04990
- 721 Sharma, V.K., 2011. Oxidation of inorganic contaminants by ferrates (VI, V, and IV)-kinetics and
- mechanisms: A review. J. Environ. Manage. 92, 1051–1073.
- 723 https://doi.org/10.1016/j.jenvman.2010.11.026
- Sharma, Virender K., 2010. Oxidation of inorganic compounds by Ferrate (VI) and Ferrate(V): One-
- electron and two-electron transfer steps. Environ. Sci. Technol. 44, 5148–5152.
- 726 https://doi.org/10.1021/es1005187
- 727 Sharma, Virender K, 2010. Oxidation of Inorganic Compounds by Ferrate(VI) and Ferrate(V): One-

- Technol. 44, 5148–5152.
- 729 https://doi.org/10.1021/es1005187
- 730 Sharma, V.K., Chen, L., Zboril, R., 2016. Review on High Valent FeVI(Ferrate): A Sustainable Green
- Oxidant in Organic Chemistry and Transformation of Pharmaceuticals. ACS Sustain. Chem. Eng. 4,
- 732 18–34. https://doi.org/10.1021/acssuschemeng.5b01202
- Sharma, V.K., Feng, M., Dionysiou, D.D., Zhou, H.-C., Jinadatha, C., Manoli, K., Smith, M.F., Luque,
- R., Ma, X., Huang, C.-H., 2021. Reactive High-Valent Iron Intermediates in Enhancing Treatment
- of Water by Ferrate. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c04616
- Sharma, V.K., Zboril, R., Varma, R.S., 2015. Ferrates: Greener Oxidants with Multimodal Action in
- Water Treatment Technologies. Acc. Chem. Res. 48, 182–191. https://doi.org/10.1021/ar5004219
- 738 Shon, H.K., Vigneswaran, S., Snyder, S.A., 2006. Effluent Organic Matter (EfOM) in Wastewater:
- Constituents, Effects, and Treatment. Crit. Rev. Environ. Sci. Technol. 36, 327–374.
- 740 https://doi.org/10.1080/10643380600580011
- Sirivedhin, T., Gray, K.A., 2005a. 2. Comparison of the disinfection by-product formation potentials
- 5742 between a wastewater effluent and surface waters. Water Res. 39, 1025–1036.
- 743 https://doi.org/10.1016/j.watres.2004.11.031
- Sirivedhin, T., Gray, K.A., 2005b. Part I. Identifying anthropogenic markers in surface waters influenced
- by treated effluents: A tool in potable water reuse. Water Res. 39, 1154–1164.
- 746 https://doi.org/10.1016/j.watres.2004.11.032
- Sun, M., Lopez-Velandia, C., Knappe, D.R.U.U., 2016. Determination of 1,4-Dioxane in the Cape Fear
- 748 River Watershed by Heated Purge-and-Trap Preconcentration and Gas Chromatography-Mass
- 749 Spectrometry. Environ. Sci. Technol. 50, 2246–2254. https://doi.org/10.1021/acs.est.5b05875
- 750 Sun, S., Pang, S.Y., Jiang, J., Ma, J., Huang, Z., Zhang, J., Liu, Y., Xu, C.-B.C., Liu, Q., Yuan, Y., 2018.
- The combination of ferrate(VI) and sulfite as a novel advanced oxidation process for enhanced
- degradation of organic contaminants. Chem. Eng. J. 333, 11–19.
- 753 https://doi.org/10.1016/j.cej.2017.09.082

754 Tanaka, M., Horiike, H., 2017. C144: Analysis of Bromate in Tap Water Using a Triple Quadrupole 755 LC/MS/MS. Tokyo, Japan. 756 Von Gunten, U., Oliveras, Y., 1997. Kinetics of the reaction between hydrogen peroxide and 757 hypobromous acid: Implication on water treatment and natural systems. Water Res. 31, 900-906. 758 https://doi.org/10.1016/S0043-1354(96)00368-5 759 Wang, F., Ruan, M., Lin, H., Zhang, Y., Hong, H., Zhou, X., 2014. Effects of ozone pretreatment on the 760 formation of disinfection by-products and its associated bromine substitution factors upon 761 chlorination/chloramination of Tai Lake water. Sci. Total Environ. 475, 23–28. 762 https://doi.org/10.1016/j.scitotenv.2013.12.094 763 Wang, Y., Le Roux, J., Zhang, T., Croué, J.P., 2014. Formation of brominated disinfection byproducts 764 from natural organic matter isolates and model compounds in a sulfate radical-based oxidation 765 process. Environ. Sci. Technol. 48, 14534–14542. https://doi.org/10.1021/es503255j Weber, S., Khan, S., Hollender, J., 2006. Human risk assessment of organic contaminants in reclaimed 766 767 wastewater used for irrigation. Desalination 187, 53-64. https://doi.org/10.1016/j.desal.2005.04.067 Yang, T., Mai, J., Cheng, H., Zhu, M., Wu, S., Tang, L., Liang, P., Jia, J., Ma, J., 2021. UVA-LED-768 769 Assisted Activation of the Ferrate(VI) Process for Enhanced Micropollutant Degradation: Important 770 Role of Ferrate(IV) and Ferrate(V). Environ. Sci. Technol. acs.est.1c03725. 771 https://doi.org/10.1021/ACS.EST.1C03725 772 Yang, X., Guo, W., Zhang, X., Chen, F., Ye, T., Liu, W., 2013. Formation of disinfection by-products 773 after pre-oxidation with chlorine dioxide or ferrate. Water Res. 47, 5856–5864. 774 https://doi.org/10.1016/j.watres.2013.07.010

Zhang, J., Zhu, L., Shi, Z., Gao, Y., 2017. Rapid removal of organic pollutants by activation sulfite with

ferrate. Chemosphere 186, 576–579. https://doi.org/10.1016/j.chemosphere.2017.07.102

775

776

Supplementary Information

Sulfite activated Ferrate for Water Reuse Applications

Charles D. Spellman Jr.a, Sahar Da'Erb, Koaru Ikumab, Isabella Silvermana, Joseph E. Goodwilla*

^a Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI, 02881 USA

Number of pages: 2 Author Preprint Manuscropt Number of figures: 1 Number of tables: 1

^b Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011 USA

<u>Table SI-1:</u> Typical MWW Effluent Water Quality obtained from facility records. N/A denotes value was not available in facility records at time of publication.

<u>Parameter</u>	<u>CTWW</u>	<u>IAWW</u>
Facility Name	Mattabassett District Water Pollution Control Facility	Ames Water Pollution Control facility
EPA Facility Look-up ID #	110001404178	110002039918
Flow (x10 ⁶ gal/day)	24.4	10.1
рН	7.2	N/A
Biochemical Oxygen Demand (mg/L)	2.5	5.6
Total Suspended Solids (mg/L)	2.0	8.4
Nitrate (mg-N/L)	0.02	N/A
Total Phosphorus (mg/L)	0.77	4.7
Fecal Coliforms (#/100 mL)	2.7	N/A

Text SI-1: Additional Disinfection Methods

Bacteria media consisted of 0.3 g/L KH₂PO₄; 5.0 g/L K₂HPO₄; 0.5 g/L NaCl; 1.0 g/L (NH₄)₂SO₄; 0.12 g/L MgSO₄.7H₂O; 0.02 g/L CaCl₂·2H₂O; 1.36 mg/L FeSO₄·7H₂O; 0.24 mg/L NaMoO₄·2H₂O; 0.10 mg/L NiSO₄·6H₂O; 0.27 mg/L ZnCl₂; 14.6 mg/L EDTA (pH 8.0 ± 0.1) supplemented with 1 g/L glucose from a 20% (w/v) stock glucose solution.

Log inactivation was calculated by:

[Eq. SI-1] Inactivation =
$$\log_{10} \left(\frac{N_0}{N} \right)$$

where N₀ and N are E. coli cell concentrations (CFU/mL) present initially and following treatment, respectively.

JUSCHOP

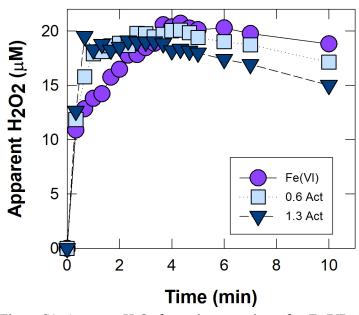


Figure S1: Apparent H₂O₂ formation over time after Fe(VI), 0.6, and 1.3 activation in pH 7.0 RGW, measured using the horseradish-peroxidase ABTS method, as described in Lee et al., 2014.

References

Lee, Y., Kissner, R., von Gunten, U., 2014. Reaction of Ferrate(VI) with ABTS and Self-Decay of Ferrate(VI): Kinetics and Mechanisms. Environ. Sci. Technol. 48, 5154–5162. https://doi.org/10.1021/es500804g