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Abstract

Several recent widespread temperature extremes across the United States (U.S.) have been
associated with power outages, disrupting access to electricity at times that are critical for the health
and well-being of communities. Building resilience to such extremes in our energy infrastructure
needs a comprehensive understanding of their spatial and temporal characteristics. In this study,
we systematically quantify the frequency, extent, duration, and intensity of widespread temperature
extremes and their associated energy demand in the six North American Electric Reliability
Corporation regions using ERA5 reanalysis data. We show that every region has experienced hot or
cold extremes that affected nearly their entire extent and such events were associated with
substantially higher energy demand, resulting in simultaneous stress across the entire electric gird.
The western U.S. experienced significant increases in the frequency (123%), extent (32%),
duration (55%) and intensity (29%) of hot extremes and Texas experienced significant increases in
the frequency (132%) of hot extremes. The frequency of cold extremes has decreased across most
regions without substantial changes in other characteristics. Using power outage data, we show
that recent widespread extremes in nearly every region have coincided with power outages, and
such outages account for between 12%-52% of all weather-related outages in the past decade
depending on the region. Importantly, we find that solar potential is significantly higher during
widespread hot extremes in all six regions and during widespread cold extremes in five of the six
regions. Further, wind potential is significantly higher during widespread hot or cold extremes in at
least three regions. Our findings indicate that increased solar and wind capacity could be leveraged
to meet the higher demand for energy during such widespread extremes, improving the resilience
and reliability of our energy systems in addition to limiting carbon emissions.

1. Introduction

Recent temperature extremes across the United States
(U.S.) have exposed vulnerabilities in regional energy
systems. In February 2021, the North American
cold wave resulted in power outages for >4.5 mil-
lion homes in Texas alone (Busby et al 2021, Doss-
Gollin et al 2021), and in June 2021, the record-
shattering Pacific Northwest heat wave was associated

© 2024 The Author(s). Published by IOP Publishing Ltd

with power outages affecting thousands of house-
holds and businesses (Geranios 2021, KOIN 6 News
2021, Bartusek et al 2022). Power outages coincid-
ent with such extremes can expose individuals to
life-threatening temperatures, exacerbate pre-existing
medical conditions and impair the response capab-
ility of communities by affecting healthcare facilit-
ies and other critical infrastructure (Ebi et al 2021,
Stone et al 2021). Outages often disproportionately
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impact overburdened and low-income communit-
ies due to higher exposure to climate hazards, poor
infrastructure, and inequities in energy management
(Chen et al 2022, Do et al 2023, Zamuda et al
2023). For instance, during the 2021 cold wave, low-
income and majority-black neighborhoods experi-
enced multi-day power outages earlier and for longer
durations (Dobbins and Tabuchi 2021, Lee et al 2022,
Flores et al 2023). Consequently, the design, opera-
tion, and planning for more equitable and resilient
electricity systems necessitates an understanding of
changing climate risks and their resulting influence
on energy demand and supply (Chen et al 2022).

Climate change is already affecting the char-
acteristics of temperature extremes across the U.S.
(Vose et al 2017, Marvel et al 2023). Heat waves
have increased in frequency, severity, and duration
over parts of the U.S. (Habeeb er al 2015, Lyon
and Barnston 2017, Lopez et al 2018, Keellings and
Moradkhani 2020, Perkins-Kirkpatrick and Lewis
2020) and are projected to continue to increase with
further warming (Lyon et al 2019). In contrast, cold
extremes have generally become less frequent and
severe across most of the U.S., with these trends also
projected to continue (van Oldenborgh et al 2019,
Smith and Sheridan 2020, Blackport et al 2022).
However, natural variability will continue to drive
widespread cold air outbreaks, such as the February
2021 cold wave, though they will likely be relatively
warmer and less frequent than present (Gao et al
2015, Cohen et al 2021, Smith and Sheridan 2021,
Blackport et al 2022, Smith et al 2022).

In addition to these well-studied characteristics
of extremes, an understanding of how these extremes
affect energy demand and interconnected systems
such as the energy grid requires an assessment of the
geographic region and the number of people affected
(Zamuda et al 2018). Recent studies have shown that
the spatial extent of heat waves across the U.S. and
other regions is increasing with warming (Lyon and
Barnston 2017, Lyon et al 2019, Rogers et al 2022).
However, an analysis of the spatial extent of heat
waves and cold waves across different U.S. energy
grids is currently lacking.

Household energy demand typically peaks during
temperature extremes due to increased use of heating
or cooling systems. Temperature extremes also affect
energy supply by directly damaging energy infra-
structure including transmission lines, and overheat-
ing transformers during heat waves or freezing nat-
ural gas pipelines during cold waves (Anel et al 2017,
Zamuda et al 2018, Fischels 2021). Extreme temper-
atures can also influence the production capacity of
fossil fuel-based and renewable resources, and these
effects can be contrasting depending on the energy
sources (e.g. Pryor and Barthelmie 2013, Ravestein
et al 2018, Perera et al 2020, Busby er al 2021, Coffel
and Mankin 2021). For instance, while energy from
natural gas, coal, and wind experienced reductions of
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~37%, 43%, and 46% during the February 2021 Texas
cold wave, solar capacity was 157% higher than typ-
ical (Busby et al 2021). The U.S. Energy Information
Administration (EIA) projects that 24% of electricity
generation in the U.S. would come from renewables
in 2024, with solar and wind accounting for most
of the growth in generation capacity (U.S. Energy
Information Administration (EIA) 2023). Solar and
wind offer many advantages over fossil fuels, includ-
ing the potential for distributed energy systems that
allow communities to be self-reliant, a key step
towards energy and climate justice (Jenkins et al 2016,
Stephens 2022). However, the efficiency and power
output of solar and wind generation can be reduced
by extreme conditions depending on the region (Patt
et al 2013, Pryor and Barthelmie 2013, Novacheck
etal 2021).

In this study, we investigate widespread hot
and cold extremes and their influence on electri-
city demand and supply potential from renewable
resources within the interconnected North American
Electric Reliability Corporation (NERC) regions.
We specifically focus on quantifying: (1) the spati-
otemporal characteristics of widespread temperature
extremes; (2) energy demand and power outages dur-
ing widespread extremes; (3) theoretical changes in
renewable energy (wind and solar) potential during
widespread extremes; and (4) interannual variabil-
ity and trends in widespread extremes. Our findings
can inform the design and planning of energy sys-
tems, energy demand forecasts, resource allocation,
and preparedness to reduce the risk of outages (Orlov
et al 2020). We note that our analysis focuses mainly
on energy supply potential and more comprehensive
modeling and evaluation of the energy grid including
generation, transmission, distribution, and equitable
access is required to evaluate overall resilience of the
U.S. energy system.

2. Data and methods

2.1. Climate data

We use hourly atmospheric data from the European
Centre for Medium-Range Weather Forecasts ERA5
reanalysis (Hersbach ef al 2020). We use 2 m dry-
bulb temperatures between 0-23 UTC to calculate
daily maximum temperature, surface solar radiation
downwards (SSRD) to calculate daily cumulative
solar potential, and 100 m U and V wind compon-
ents to calculate daily maximum wind speeds (WS)
and wind potential (100 m represents the approxim-
ate hub height of modern wind turbines; Hartman
2022).

2.2. Regions

We quantify widespread hot and cold extremes
across the six NERC regional entities (figure 1(a))—
Western Electricity Coordinating Council (WECC),
Midwest Reliability Organization (MRO), Texas
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Reliability Entity (TRE), Southeastern and Central
Regional Reliability Corporation (SERC), Reliability
First Corporation (RFC), and Northeast Power
Coordinating Council (NPCC). NERC regions are
used because local electricity grids within these
regions are interconnected to enable resource sharing,
energy reliability, and security, as well as to coordin-
ate operations, monitoring, and infrastructure resili-
ence (NERC 2023).

2.3. Extreme temperature event metrics

We define hot extremes in summer (June—August)
and cold extremes in winter (December—February)
as standardized daily temperature anomalies exceed-
ing 1.5 o. These standardized anomalies are cal-
culated by removing the 15 day local climatological
(1991-2020) mean centered on that date and divid-
ing by the climatological standard deviation of daily
temperatures for that 15-day window. This is done to
remove the seasonal cycle and account for the local
conditions residents are acclimated to. Cold anom-
alies are multiplied by —1 to facilitate easier compar-
ison with hot anomalies. For each day, we calculate
the fractional area in each region experiencing hot or
cold extremes. Widespread extremes are days in the top
quintile of area affected by extremes, calculated from
all days in a region when extremes occur in at least
one grid cell. The top quintile threshold was selec-
ted to have sufficient sampling of events for calculat-
ing statistics. We define frequency as the number of
widespread extremes in a season, extent as the fraction
of the region under temperature extremes, duration
as the number of consecutive widespread extremes,
and cumulative intensity as the sum of the standard-
ized temperature anomalies multiplied by area (km?)
across all grid cells with extremes within each region.

2.4. Energy demand proxy

Degree days is a measure of heat or cold in a loca-
tion (Quayle and Diaz 1980, Heim et al 2003, Shaffer
et al 2022) that is commonly used to represent the

Wind power per turbine (kW)

D Singh et al

weather-driven component of energy demand (Waite
and Modi 2020, Doss-Gollin et al 2021, Lee and
Dessler 2022), as the two are correlated (Quayle
and Diaz 1980, Heim et al 2003, Lee and Dessler
2022). We use cooling degree days (CDD) in sum-
mer and heating degree days (HDD) in winter as
proxies for energy demand following the widely-used
American Society of Heating, Refrigerating, and Air-
Conditioning method (Thevenard 2011). These are
calculated as follows:

18°C—T, forT<18°C
HDD_{ 0, for T>18°C

T—18°C, forT>18°C
CDD_{ 0, for T< 18°C (M)

where T is dry-bulb temperature. This widely used

metric assumes energy use for heating (cooling) when
temperatures are below (above) 18 °C (64.4° F), and

thus provides an approximation of energy demand
that does not require representing the technological,
social, and other factors that shape local electricity
demand (Doss-Gollin et al 2023). Degree days are
multiplied by the 2020 population (CIESIN 2016) for
each grid cell to calculate population-weighted energy
demand as in Doss-Gollin ef al (2021). Total degree
days are summed over the entire region for each wide-
spread extreme and non-extreme day.

2.5. Solar and wind potential

We use daily cumulative SSRD and daily maximum
100 m WS data to calculate solar potential and wind
potential, respectively. These metrics are proxies for
how much renewable energy can be theoretically pro-
duced each day. Wind potential is measured by the
wind capacity factor, which is the wind power per
turbine (in kW) divided by the maximum power
generated, and solar potential for a photovoltaic
panel (PV) is similarly measured by solar capa-
city factor. These metrics are calculated following
(Bett and Thornton 2016, Amonkar et al 2022):

0; for WS < 3ms~lor WS > 25ms™!
=4 a—bxWS+cxWS? —d+x WS> +ex WS — fx WS® + g+ WS® — hx WS + i+« WS, for 3ms—! < WS < 13ms™!
2000; for 13ms—! < WS < 25ms—!

where WS = daily maximum windspeed, a = 634.228,
b = 1248.5, ¢ = 999.57, d = 426.224, ¢ = 105.617,
f = 155487, ¢ = 1.3223, h = 0.0609186, and
i = 0.001162565. a—i are coefficients from the wind
power curve for a V90-2.0 MW Vestas turbine from

3

(2)

Amonkar et al (2022). These coefficients and the
cut-in (3 m s~!; speed at which the turbine starts
to generate power), rated (13 m s~!), and cut-out
(25 m s~!; speed at which the turbine is mechanic-
ally limited and needs to shut down to avoid damage)
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Figure 1. Characteristics of widespread extremes: (a) North American Electric Reliability Corporation (NERC) Regions. (b)
Frequency, (c) extent, (d) cumulative intensity and (e) duration of widespread cold extremes (blue) in winter (DJF) and
widespread hot extremes (red) in summer (JJA) during 1980-2021 in each NERC region. Dots indicate years with the maximum
value for each metric in each region. In some regions, the maximum value of a characteristic occurred in multiple years; years

speed thresholds are turbine-specific and could vary
for different turbines. We convert the wind power
into a unitless wind capacity factor by dividing the
calculated wind power by the maximum operating
power output of 2000 kW. Since we are using a wind
power curve to calculate the wind capacity factor, the
mechanical efficiency is incorporated. However, wind
power efficiency losses due to temperature or icing are
not accounted for.

Solar capacity factor is calculated using the fol-
lowing equation:

G
Solar Capacity Factor = 1y * —— (3)
Gstc

where G is the irradiance or the SSRD; Ggr¢ = irra-
diance at standard testing conditions (STC) of
1000 W m~2 and 7, (G, T) is the relative efficiency
that accounts for variations in performance of the
PV with temperature. 1 (G, T) is calculated from
the PV module temperature (T'mo4), standard testing
temperature (Tsyc = 25°C), ambient temperature
(Tp = 20°C), and nominal operating cell temperature

(Tnoct = 48°C). The module temperature is calcu-
lated as follows:

G
Tmod = (T4 Tnoct — To) * e (4)
0
where the irradiance Gy = 800 W m~2. Using T'nod»
the relative efficiency 7, is calculated using the fol-
lowing equation:

et (G, T) =
[1+ aATod] * [1+c1ln G’ + In*G’ + BAT o4l
(5)
where @ = 4.2 x 103K} B = —4.6x%
103K 56, =0.033;¢c; = —0.00925 A Tinod = (Trmod —
TSTC)) and G/ = G/GSTC-

2.6. Power outage data

Annual summaries of electrical disturbances com-
piled by the U.S. Department of Energy (DOE) Office
of Cybersecurity, Energy Security, and Emergency
Response (ISER—electric disturbance events (DOE-
417), 2023) are used to examine power outages asso-
ciated with ‘severe weather’ from 2012-2021. Within

4
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each region, we identify the days on which weather-
related outages coincide with widespread extremes
and refer to them as extreme-related power out-
ages. Non-weather related outages and unmatched
outages are excluded from our analysis. Power out-
ages during widespread temperature extremes could
occur due to supply shortages from reductions in
power generation capacity or failures in the trans-
mission or distribution infrastructure such as sag-
ging power lines due to heat or ice accumulation or
strong winds during winter storms. The outage data
does not include detailed information on the cause
of the outage beyond categorizing them as ‘severe
weather’ disturbances nor the precise location of out-
ages within the NERC region in which they occurred.
Linking the outage to the specific weather conditions
during widespread extremes would require the out-
age location to co-locate with weather conditions. In
the absence of such data, we focus on the coincidence
of outages with widespread temperature extremes in
each region.

2.7. Natural climate variability modes

To examine the influence of modes of variabil-
ity on widespread extremes characteristics, we use
standardized indices of the Arctic Oscillation (AO),
North Atlantic Oscillation (NAO), El Nino-Southern
Oscillation (ENSO; Nino3.4), and Pacific/North
American pattern (PNA) (https://psl.noaa.gov/data/
climateindices/list/). The positive and negative phases
for each mode are defined as months with standard-
ized anomalies exceeding £0.5.

3. Results and discussion

3.1. Characteristics and trends of widespread
temperature extremes

First, we quantify the frequency, extent, intensity,
and duration of widespread hot and cold extremes
(1980-2021). Median characteristics vary substan-
tially across seasons and NERC regions, as does
their variability (figure 1). WECC, MRO, and SERC
have the highest median frequencies of widespread
cold extremes (11.5, 9, and 7.5 d-per-year) and hot
extremes (13, 9.5, and 11 d-per-year, figure 1(b)).
However, individual years can have substantially
more events. For instance, during the 1983-1984
winter, TRE and MRO recorded their highest number
of widespread cold extremes, ~5 times and 2 times
higher than their median, respectively. Similarly, the
record high frequency of widespread hot extremes in
TRE and SERC in 2011, in MRO, NPCC, and RFC
in 1988 and in WECC in 2021, exceeded their corres-
ponding medians by a factor of 4.

Every region has experienced at least one wide-
spread cold or hot extreme that affected nearly the
entire region. Widespread cold extremes typically
affect larger fractions of each region than widespread
hot extremes, and have higher cumulative intensities

5
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(figures 1(b) and (c)). NPCC and TRE have the largest
extents of widespread cold extremes, with their medi-
ans exceeding 85%. Some events that affected the
entire extent of these region lasted multiple days. For
example, the February 2021 cold wave included sev-
eral days with 100% of TRE affected and the highest
cumulative intensity day. In winter 1983-84, MRO,
SERC, and RFC experienced their most intense cold
extremes. This winter also produced the largest cold
events for SERC and RFC. While extent is standard-
ized by region size making their maximum extents
similar across regions, cumulative intensity depends
on region size. Therefore, the regions with the highest
extents do not have the highest maximum or median
intensities—these are typically experienced in WECC
and MRO.

For widespread hot extremes, the largest median
extents (~60%) also occur in NPCC, followed by
RFC (~44%), whereas the median extent in all
other regions is <32%. The relatively large extent
of both widespread hot and cold extremes in these
regions is likely due to their small sizes and region-
ally homogenous response to synoptic-scale temper-
ature extremes. The largest region—WECC, has the
smallest median fractional extent of widespread hot
extremes (typically <25%). However, in 2021 WECC
experienced multiple heat days that affected up to
~70% of the region simultaneously and contributed
to the highest cumulative intensity during 1980-2021.

The median duration of widespread extremes is
~1-2 d, but every region has experienced protrac-
ted events that have resulted in substantial dam-
ages (figure 1(e)). For example, during the 1983-84
winter, MRO and TRE experienced 14- and 9 day
stretches of widespread cold extremes, respectively,
during a cold wave that broke duration records in
many cities, resulting in economic damages of ~6.2
billion USD (in 2023 dollars; NOAA Billion Dollar
Weather disaster database; Ludlum 1984)). While
event extents and intensities are typically greater
in winter, frequencies, and durations are generally
greatest in summer. Multiple regions experienced
widespread hot extremes lasting >10 d, with the
longest event lasting 22 d in SERC in 2011. MRO and
TRE experienced their longest lasting widespread hot
extremes (14 and 11 d, respectively) in 1980, during
a prolonged hot, dry summer which resulted in eco-
nomic losses of at least 39.7 billion USD (in 2023 dol-
lars; NOAA Billion Dollar Weather disaster database;
Karl and Quayle 1981). In WECC, the longest hot
event (18 days in 2020) contributed to severe wild-
fire activity and a multi-week widespread air pollu-
tion episode across the western U.S. (Kalashnikov et al
2022).

3.2. Energy demand and power outages

Hot and cold extremes often drive peak demands for
energy, the prediction of which is an important com-
ponent of resource planning on seasonal time scales
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Figure 2. Energy demand and power outages: Distributions of population-weighted (a) heating degree days (HDD) during
widespread cold extremes (blue) and DJF non-extreme days (gray) and (b) cooling degree days (CDD) during widespread hot
extremes (red) and JJA non-extreme days (gray). The distributions of degree days in all regions are significantly different than
their distributions on non-extreme days in both seasons (p-value <0.01). Colored and gray circles in (a), (b) indicate days with
weather-related power outages. (c—d) Number of days with weather-related power outages coincident with widespread extremes
in DJF and JJA (2012-2021). Numbers above the bars indicate the fraction of outage days coinciding with widespread extreme
days in each region. (e—f) Percentage of widespread extremes in each year with weather-related power outages.
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(Zamuda et al 2018). To compare the energy demand
during days with widespread extremes to normal
days, we calculate the population-weighted HDD
and CDD (equation (1)). Widespread extremes are
associated with significantly higher median energy
demand (HDD and CDD) in all regions, relative
to demand on non-extreme days (figures 2(a) and
(b)). Differences between degree-day distributions
on extreme and non-extreme days are larger for
widespread cold extremes, compared to widespread
hot extremes, likely due to their greater extents and
cumulative intensities (figures 1(c) and (d)). During
winter, the median HDD is greatest in RFC, nearly
2 times that on non-extreme days. Similar ratios are
also seen in TRE and SERC (figure 2(a)). During sum-
mer, the median CDD is greatest in SERC, WECC,
and RFC, and widespread hot extremes also signific-
antly amplify CDD compared to non-extreme days
(figure 2(b)).

The increase in energy demand along with dir-
ect impacts to electricity infrastructure (Dawson et al
2018, Climate Central 2022) have resulted in power
outages in all NERC regions in at least one sea-
son in the past decade (figures 2(c) and (f)). Using
data between 2012-2021, we quantify widespread
extreme days with power outages, fraction of days
with weather-related outages that coincide with wide-
spread extremes, and the annual fraction of wide-
spread extremes with an outage. Across all years,
SERC and TRE have experienced the highest number
of widespread cold extremes with outages, account-
ing for ~19% and 53% of all winter days experiencing
weather-related outages, respectively (figure 2(c)). In
2021, >42% of widespread cold extremes were asso-
ciated with power outages in every region except
NPCC, including 100% of events in TRE and RFC
(figure 2(e)). In summer seasons, RFC has experi-
enced the highest number of widespread hot extremes
with outages, accounting for ~26% of all summer
days with weather-related outages (figure 2(d)). In
four of the past ten summers, >50% of widespread
hot extremes in RFC have been associated with out-
ages, the highest among all 6 regions (figure 2(f)).
These results suggest that the electricity infrastruc-
ture in RFC is considerably more vulnerable to wide-
spread hot extremes than other regions whereas SERC
and TRE are relatively more vulnerable to widespread
cold extremes. Although WECC has a relatively lower
absolute number of outages than these regions, wide-
spread heat extreme-related outages account for 41%
of all summer days with weather-related outages in
this region, a majority of which occurred in 2020
(figures 2(d) and (f)). Notably, NPCC has experi-
enced no outages associated with widespread cold
extremes during this period.

3.3. Solar and wind energy potential
The risk of power outages during extremes could
be exacerbated by coincident reductions in energy
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supply. The meteorological processes that drive
widespread temperature extremes also affect surface
solar radiation and wind speeds, and thus have the
potential to affect the capacity of solar and wind
energy systems. Therefore, we examine how energy
potential from these sources is affected during wide-
spread extremes. The median regional-average solar
capacity factor is significantly higher in most regions
during widespread cold extremes, with the largest
increases over RFC, SERC, and NPCC and smallest
increases over WECC and MRO (figure 3(a)). TRE
is the exception where the solar capacity factor is
significantly lower during widespread cold extremes.
Similarly, the median regionally averaged solar capa-
city factor is significantly higher during widespread
hot extremes than during non-extreme days in all
regions, with the largest increase in TRE (figure 3(b)).
These results suggest that all regions could likely
benefit from expanding solar capacity to enhance
electricity generation during widespread temperature
extremes.

The response of wind energy potential on wide-
spread temperature extreme days is more varied
across regions than solar potential. NPCC is the only
region with significantly higher median wind poten-
tial during widespread cold extremes relative to non-
extreme days (figure 3(c)). Conversely, wind potential
across SERC and MRO is significantly lower during
widespread cold extremes, whereas across WECC and
TRE the differences are statistically indistinguishable
(figure 3(c)). In contrast, wind potential during wide-
spread hot extremes is significantly higher over all
regions except WECC relative to non-extreme days.
The largest increases in median wind potential during
widespread hot extremes occurs over TRE and MRO,
suggesting that these regions could likely benefit most
from increased wind generation capacity during hot
events.

Enhanced solar potential during widespread hot
extremes is because such events are primarily asso-
ciated with atmospheric ridges (Horton et al 2015,
Grotjahn et al 2016, Loikith et al 2017, Xie et al 2017,
Agel et al 2021). Ridges are typically associated with
clear skies that allow more solar radiation to reach the
surface, however these conditions can also decrease
wind potential in some areas. For example, during the
hottest day of the 2021 Pacific Northwest heat wave
(29th June), solar radiation was higher than average
across areas of WECC experiencing the largest pos-
itive temperature anomalies (figures 3(e)—(g)). Near-
surface winds were below-normal across much of the
northern and eastern part of WECC (figure 3(f)),
the leading edge of the associated ridge. Due to the
large size of WECC compared to other regions, tem-
perature, wind, and solar conditions vary spatially
during such extremes. For example, solar anomalies
were below normal over southeastern WECC where
cool anomalies persisted while wind anomalies were
above normal over Arizona. Such heterogeneity likely
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Figure 3. Solar and wind energy potential during widespread extremes: Distributions of area-averaged (a-b) solar energy
potential, calculated using solar capacity factor, and (c—d) wind energy potential, calculated using wind capacity factor (equations
2, 3). Blue curves show the distributions of energy potential during widespread cold extremes, and red curves show the
distributions during widespread hot extremes. Black curves show the distributions on non-extreme days in the respective seasons.
The vertical lines represent medians of the distributions, and stars beside each panel indicate that the medians of the widespread
extreme and non-extreme distributions are significantly different at the 10% level based on a permutation test. (¢)—(g)
Standardized temperature anomalies, wind speed anomalies, and solar radiation anomalies for the hottest day of the Pacific
Northwest heat wave (29th June 2021). (h)—(j) Same as in (e)—(g) but on the coldest day of the North American cold wave (15th
February 2021), identified as the day with the highest cumulative intensity over TRE (other regions had their coldest temperatures
on different days). Refer figure S2 for climatology of wind and solar potential.
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Figure 4. Changes in characteristics of widespread extremes: percent change in the (a) frequency, (b) average extent, (c) average
duration, and (d) average cumulative intensity (CI) of widespread cold (top) and widespread hot (bottom) extremes
(1980—-2021). Changes are calculated from the linear trends (see figures S1 and S2) multiplied by the number of years and are
expressed as a percent of the climatological mean (1991-2020). Bold numbers with a dot indicate significance of linear trends at

the 10% level using the t-test.

explains why WECC shows some of the smallest
differences between median solar and wind poten-
tial anomalies on widespread extreme versus non-
extreme days (figures 3(a)—(d)).

Widespread cold extremes across the U.S. are
associated with cold air outbreaks (Smith and
Sheridan 2020). These systems are associated with
strong winds at their leading edge during cold air
advection, but calmer conditions at their center
under the surface high pressure system, co-located
in space and time with the coldest conditions (Robert
De 1923). These atmospheric conditions explain
the increased solar potential and suppressed wind
potential across most regions during cold extremes
(figures 3(a) and (c)). For instance, during the cold-
est day of the exceptional 2021 North American cold
wave across the central U.S. (15th February), MRO
and TRE experienced above-normal solar radiation,
and much of MRO experienced below-normal winds
(figures 3(h)—(j)). Conversely, TRE saw relatively
weak but positive windspeed anomalies over most
of the region. Concurrently, stronger than normal
winds were observed including over parts of SERC
and WECC and weaker winds were observed over
NPCC (figure 3(j)). However, these negative anom-
alies over NPCC are not typical during cold extremes
and are likely due to the winter storm’s extreme
southward extent (Bolinger et al 2022). Typically,
positive median wind anomalies in this region dur-
ing widespread cold extremes (figure 3(c)) are likely
because the region generally lies at the leading edge
of cold air outbreaks that are most often centered
around central US. For similar reasons, solar radi-
ation anomalies were above normal over TRE even
though typically, solar radiation is suppressed dur-
ing widespread cold extremes. Such event-to-event
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variability in energy potential is observed for solar
and wind across all regions (figures 3(a)—(d)).

3.4. Trends and interannual variability

To understand the changing nature of widespread
hot and cold extremes, we calculate trends in event
characteristics over 1980-2021 (figures 4, SI and
S2). All regions show a decline in the frequency
of widespread cold extremes, with significant trends
(p-value < 0.1) over TRE (—79.9%) and NPCC
(—97.8%; figure 4(a)). There are no significant
changes in the extent, duration, or cumulative intens-
ity of widespread cold extremes over any region,
although there is a tendency towards less frequent,
less intense, and smaller extent events in SERC,
and less intense events in RFC (p-value <0.17,
figures 4(b)-(d) and SI). Contrastingly, half of the
regions showed trends in one or more character-
istics of widespread hot extremes (figures 4(e)—(g)
and S2). WECC is the only region with signific-
ant trends in all metrics—increases in frequency
(123.6%), average extent (32.5%), average duration
(55.2%), and average cumulative intensity (29.3%)
of widespread hot extremes. Of the six regions, TRE
experienced the largest increase in frequency of wide-
spread hot extremes (131.6%), along with small,
insignificant trends in other characteristics. In con-
trast, SERC experienced a significant decline in the
extent (—30.4%) and intensity (—37.4%), along with
a substantial but insignificant decline in duration
(p-value = 0.15; figures 4(f), (h) and S$2). MRO
and NPCC are the only regions with no significant
changes in the characteristics for either widespread
hot or cold extremes. These observed trends are con-
sistent with greater warming in the western U.S. rel-
ative to other regions (van Oldenborgh et al 2019,
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Figure 5. Influence of natural variability modes on widespread cold extremes: distributions of the (a) frequency, (b) intensity, and
(c) spatial extent of widespread cold events (DJF) during negative (yellow) and positive (purple) phases of the Arctic Oscillation
(AO), North Atlantic Oscillation (NAO), El Nino-Southern Oscillation (ENSO), and Pacific/North American (PNA) pattern in
each NERC region. Asterisks above a pair of boxplots indicate that the distributions during opposite phases of the climate mode
are significantly different at the 10% level, based on the permutation test. Absence of boxplots insufficient (<20) events in that
region to calculate statistics. Duration not shown as there were no significant differences in any region.

Keellings and Moradkhani 2020, Perkins-Kirkpatrick
and Lewis 2020, Rogers ef al 2021, Wanyama et al
2023), increased summertime ridging over western
states (Dong et al 2021), and the ‘warming hole’ in
summer and winter over the southeastern and mid-
western U.S., partly driven by anthropogenic aero-
sols, agricultural intensification, and natural climate
variability (Leibensperger et al 2012, Banerjee et al
2017, Mascioli et al 2017, Vose et al 2017, Partridge
et al 2018, Coffel et al 2022)

Next, we examine the association between wide-
spread extremes and four known modes of natural
climate variability that represent potential sources of
predictability—AQO, NAO, ENSO, and PNA (figures 5
and S3). All modes significantly influence the fre-
quency, extent, or intensity of widespread cold
extremes in at least one region (figure 5). La Nina
and negative PNA conditions favor more frequent
widespread cold extremes across WECC and negat-
ive NAO conditions favor more frequent widespread
cold extremes across MRO (figure 5(a)). Widespread
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cold extremes are significantly more intense and lar-
ger over WECC during positive AO and negative PNA
conditions, over MRO during negative PNA condi-
tions, and over SERC and TRE during La Nina and
negative PNA conditions (figures 5(b) and (c)). In
addition, negative AO and NAO conditions are asso-
ciated with significantly larger cold extremes over
NPCC.

Compared to cold extremes, fewer regions exhibit
robust relationships between the characteristics of
widespread hot extremes and the concurrent phase
of climate modes (figure S4). The frequency of wide-
spread hot extremes was significantly higher than
normal during positive NAO conditions over WECC,
negative NAO conditions over SERC, and positive
PNA conditions over RFC. Positive AO, NAO, and
PNA conditions favor significantly larger extremes
across WECC. In addition, negative PNA condi-
tions favor significantly larger and more intense heat
extremes across RFC, but positive PNA favors an
increase in the frequency of events. La Nina and



10P Publishing

Environ. Res. Lett. 19 (2024) 044018

negative AO conditions were also associated with
significantly larger and more intense heat extremes
over SERC. These relationships between natural
climate variability modes and widespread hot and
cold extremes are largely consistent with the pre-
viously identified influence of modes on the pat-
tern of temperature extremes across parts of the U.S.
(e.g. (Westby et al 2013, Loikith and Broccoli 2014,
Grotjahn et al 2016, Yu et al 2019, Shi et al 2021).

4, Conclusions

Temperature extremes pose substantial health risks to
the U.S. and global population (Ebi et al 2021). For
most communities, the ability to cope with extreme
temperatures depends on reliable access to electri-
city or natural gas for cooling or heating. Local elec-
tricity grids are often connected to adjacent grids
to ensure stability and reliability during periods of
elevated energy demand or reductions in supply.
Despite these interconnections, widespread extremes
can stress regional and national electricity grids. In
recent years, every NERC region has experienced per-
sistent and severe widespread hot and cold extremes
that have strained this infrastructure, causing power
disruptions at times when electricity access is critical
to human health (Hansen 2021, Lee and Dessler 2022,
Flores et al 2023, Zamuda et al 2023). The risk of such
widespread hot extremes has doubled in WECC and
TRE over the past four decades. The risk of wide-
spread cold extremes has decreased in most regions
by >36%, although these decreases are only signific-
ant over TRE and NPCC, suggesting that such events
continue to pose a risk.

A key finding of our study is that nearly all
regions experience increases in solar or wind potential
during widespread temperature extremes. Further,
our study provides the first systematic quantifica-
tion of the characteristics of widespread temperat-
ure extremes across the six NERC regions in the
summer and winter seasons and their influence on
energy demand, power outages, and renewable energy
supply, making the following four unique contribu-
tions. First, WECC experiences the highest frequency
and cumulative intensity of widespread hot and cold
extremes, and TRE and NPCC experience the largest
events relative to their regional extent. Second, wide-
spread cold extremes typically impacted a larger frac-
tion of the affected regions and had a higher cumu-
lative intensity than widespread hot extremes in all
regions. Consequently, cold extremes were associ-
ated with relatively larger increases in energy demand
than were hot extremes, as measured by degree days.
Third, widespread extremes over the past decade have
been associated with several power outages in each
NERC region. SERC experienced the highest abso-
lute number of power outages during widespread
winter cold extremes and and RFC experienced the
highest absolute number of power outages during
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widespread summer hot extremes. Finally, all six
regions experience increased solar or wind potential
during hot extremes and increases in solar poten-
tial during winter cold extremes. These increases dur-
ing widespread hot extremes are greatest over TRE,
a region with the largest percent increase in the fre-
quency of widespread hot extremes.

We note several caveats to our analysis. Our ana-
lysis focuses solely on analyzing theoretical power
generation potential from two renewable sources con-
current with temperature extremes, but energy reli-
ability depends on resilience throughout the grid
including of the generation, transmission, and dis-
tribution infrastructure (Zamuda et al 2023). Energy
generation capacity from these resources, as with
other energy sources, can be impacted due to mech-
anical or infrastructure-related issues such as ice
build-up on wind turbine blades or snow cover on
solar panels or because of damage to transmission
lines (Gao and Hu 2021, Jackson and Gunda 2021).
For instance, 23% of the generation outage in Texas
and South-Central U.S. during the February 2021
winter storm was in wind generation systems that
experienced outages early during the event, almost
entirely due to blade icing or freezing issues (figures
30 and 90 in FERC, NERC and Regional Entities
2021). Solar energy generating systems also exper-
ienced outages due to freezing or mechanical and
electrical issues caused by ice and freezing temper-
atures (figure 126 in FERC, NERC and Regional
Entities 2021). In addition, high temperatures dur-
ing heatwaves or accumulation of snow and ice dur-
ing cold extremes can cause sagging of powerlines and
high temperatures can reduce efficiency of electricity
transmission, contributing to reductions in power
availability or outages at times when electricity access
is critical. Further, we evaluate energy potential across
the NERC region without considering the location of
existing or planned renewable energy projects, and do
not consider factors such as whether energy produc-
tion is centralized or decentralized. However, renew-
able energy production is more conducive to decent-
ralization that could reduce the risk of outages due
to transmission failures and offers opportunities for
advancing energy justice and equity (Jenkins et al
2016, Zamuda et al 2023). Ensuring energy access and
reliability in a changing climate requires modeling the
impacts of extreme events on the complete intercon-
nected energy systems to identify vulnerability, mod-
eling costs from production to delivery, and evalu-
ating justice considerations such as access for over-
burdened communities and decentralized solutions
for storage such as microgrids (Zamuda et al 2023).

Transitioning to zero-carbon energy production
requires increasing our fraction of energy supply
from renewable sources (Lecocq et al 2022, Jay et al
2023). Our analysis suggests that in addition to the
benefits of reducing greenhouse gas emissions to
limit future warming and co-benefits of reduced
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air pollution (Davis 2023), increasing electricity
production capacity from solar and wind could help
meet the higher energy demand and strengthen
grid resilience during widespread extreme temperat-
ure events. Hot extremes and their associated cool-
ing demand are projected to increase with contin-
ued warming, and while cold extremes are generally
decreasing with warming, they remain a risk to power
grids in several regions within the U.S. (e.g.(Lyon
etal 2019, Seneviratne et al 2021, Bartusek et al 2022,
Marvel et al 2023)). In the long-term, infrastruc-
ture design, planning, and preparedness that accounts
for projected changes in such spatial and temporal
characteristics of temperature extremes is crucial to
maintain the reliability of the electrical grid. In the
short-term, the relationships we identified between
modes of natural climate variability and the char-
acteristics of widespread temperature extremes can
be leveraged for forecasting energy demand and sup-
ply and inform resource allocation in preparation for
such events. Ensuring energy reliability and advan-
cing energy justice is critical for minimizing impacts
of extremes, particularly on overburdened and low-
income communities that are often the most vulner-
able (Chen et al 2022, Stephens 2022).
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