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A B S T R A C T   

Chagas disease (CD) is a public-health concern across Latin America. It is caused by Trypanosoma cruzi, a parasite 
transmitted by blood-sucking triatomine bugs. Automated identification of triatomine bugs is a potential means 
to strengthen CD vector surveillance. To be broadly useful, however, automated systems must draw on algo
rithms capable of correctly identifying bugs from images taken with ordinary cellphone cameras at varying 
angles or positions. Here, we assess the performance of five machine-learning algorithms at identifying the main 
CD vector genera (Triatoma, Panstrongylus, and Rhodnius) based on bugs photographed at different angles/po
sitions with a 72-dpi cellphone camera. Each bug (N = 730; 13 species) was photographed at nine angles rep
resenting three positions: dorsal-flat, dorsal-oblique, and front/back-oblique. We randomly split the 6570-picture 
database into training (80%) and testing sets (20%), and then trained and tested a convolutional neural network 
(AlexNet, AN); three boosting-based classifiers (AdaBoost, AB; Gradient Boosting, GB; and Histogram-based 
Gradient Boosting, HB); and a linear discriminant model (LD). We assessed identification accuracy and speci
ficity with logit-binomial generalized linear mixed models fit in a Bayesian framework. Differences in perfor
mance across algorithms were mainly driven by AN’s essentially perfect accuracy and specificity, irrespective of 
picture angle or bug position. HB predicted accuracies ranged from ~0.987 (Panstrongylus, dorsal-oblique) to 
>0.999 (Triatoma, dorsal-flat). AB accuracy was poor for Rhodnius (~0.224–0.282) and Panstrongylus 
(~0.664–0.729), but high for Triatoma (~0.988–0.991). For Panstrongylus, LD and GB had predicted accuracies 
in the ~0.970–0.984 range. AB misclassified ~57% of Rhodnius and Panstrongylus as Triatoma, whereas speci
ficity ranged from ~0.92 to ~1.0 for the remaining algorithm-genus combinations. Dorsal-flat pictures appeared 
to improve algorithm performance slightly, but angle/position effects were overall weak-to-negligible. We 
conclude that, when high-performance algorithms such as AN are used, the angles or positions at which bugs are 
photographed seem unlikely to hinder cellphone picture-based automated identification of CD vectors, at least at 
the genus level. Future research should focus on combining mixed-quality pictures and state-of-the-art algo
rithms to (i) identify triatomine adults to the species level and (ii) distinguish triatomine nymphs (i.e., immature 
stages) from adults and from other insects.  

Abbreviations: CD, Chagas disease; AN, AlexNet; AB, AdaBoost Multi-Class Adaptive Boosting classifier; GB, Gradient Boosting classifier; HB, Histogram-based 
Gradient Boosting classifier; LD, linear discriminant model; DALY, Disability-Adjusted Life Year; GLMM, generalized linear mixed model; AICc, Akaike’s information 
criterion corrected for finite samples. 
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1. Introduction 

Pathogens transmitted by insects and other arthropods threaten 
public health globally; in 2019, an estimated ~700,000 people died and 
~ 53.2 million disability-adjusted life years (DALYs) were lost owing to 
diseases caused by insect-borne viruses (dengue, yellow fever, and Zika), 
bacteria (trachoma), or parasites (onchocerciasis, lymphatic filariasis, 
leishmaniasis, African trypanosomiasis, and Chagas disease) (GBD, 
2019). In Latin America, the highest-burden vector-borne disease is 
Chagas disease, with recent estimates suggesting that its causative 
agent, Trypanosoma cruzi, infects 5.5 to 7.3 million people and leads to 
annual losses of 169,000 to 490,000 DALYs (GBD, 2019; Rojas de Arias 
et al., 2022). Trypanosoma cruzi is a blood/tissue protozoan parasite that 
infects a wide range of mammalian hosts, including humans, and can 
cause severe heart, digestive, and (less frequently) neurological lesions 
(Jansen and Roque, 2010; Pérez-Molina and Molina, 2018; Prata, 2001). 
Trypanosoma cruzi is endemic to the Americas, where it is primarily 
transmitted by a diverse group of blood-sucking true bugs known as 
triatomines (Lent and Wygodzinsky, 1979; Monteiro et al., 2018). 

A critical requirement for effective control and surveillance of 
vector-borne diseases, including Chagas disease, is accurate vector 
identification (Monteiro et al., 2018). However, current vector- 
surveillance systems are generally weak (and often becoming even 
weaker) in Latin America and elsewhere, with expertise in disease- 
vector taxonomy overall declining (e.g., Almeida et al., 2017; Casas 
et al., 2016; Gurgel-Gonçalves, 2022; Yadon et al., 2006). Weak sur
veillance systems limit our ability to assess and stratify disease trans
mission risk, which in turns hampers the planning and deployment of 
adequate public-health responses (Gürtler and Cecere, 2021; Hashimoto 
et al., 2015; Yoshioka et al., 2017). Weaker surveillance, moreover, 
yields progressively lower-quality and sparser vector-occurrence data 
records (Abad-Franch et al., 2013, 2014). This data gap not only hinders 
research on how vector distribution patterns change over time or across 
space; worse still, it can foster the false impression that the vectors 
themselves, and not just the records of their occurrence, are becoming 
rarer. This ‘low-risk delusion’ may self-reinforce via fading priority, 
funding cuts, even sparser records, and so forth in a perverse, positive- 
feedback loop (Abad-Franch et al., 2013, 2014; Schofield et al., 2006). 

In this context of ever-weakening surveillance systems, researchers 
and public-health officials have insisted on the need to develop and test 
new tools and strategies to strengthen Chagas disease vector surveil
lance (e.g., Abad-Franch et al., 2011, 2014; Dias et al., 2016; Gurgel- 
Gonçalves, 2022; Gürtler and Cecere, 2021; Schofield et al., 2006; WHO, 
2002, 2017). Efforts in that direction have addressed several sides of 
surveillance, including, e.g., improving vector-detection probabilities 
(Abad-Franch et al., 2011; Gürtler and Cecere, 2021); promoting in
struction in medical entomology (Casas et al., 2016; Gurgel-Gonçalves, 
2022); devising entomological-risk scoring/stratification systems that 
do not rely entirely on actual vector-occurrence records (e.g., Ribeiro-Jr 
et al., 2021); or developing electronic, easy-to-use vector identification 
keys (Gurgel-Gonçalves et al., 2021; Oliveira et al., 2017). 

An approach that has gained traction in recent years is using machine 
learning-based systems for the automated identification of triatomine 
bugs (Abdelghani et al., 2021; Cochero et al., 2022; Cruz et al., 2020, 
2021; Gurgel-Gonçalves et al., 2017; Khalighifar et al., 2019; Parsons 
and Banitaan, 2021). In these systems, machine-learning algorithms are 
trained, and then tested, on collections of digital pictures featuring bugs 
of known taxonomic identity. This ‘ground-truth’ picture set is usually 
composed of relatively high-quality, standardized digital pictures dis
playing the full dorsal aspect of the bugs (e.g., Abdelghani et al., 2021; 
Cruz et al., 2021; Gurgel-Gonçalves et al., 2017; Khalighifar et al., 
2019). To be broadly useful, however, automated systems must be 
capable of correctly identifying bugs photographed with ordinary digital 
cameras at varying angles or positions – i.e., the kind of information that 
surveillance staff or citizens in general will likely generate and feed into 
real-world, ‘extended’ vector-surveillance systems (Cochero et al., 2022; 

see also, e.g., Motta et al., 2019; Park et al., 2020; Terry et al., 2020; 
Justen et al., 2021; Pataki et al., 2021). 

Here, we assess the performance of five machine-learning algorithms 
at identifying Chagas disease vectors based on bugs photographed at 
different angles or positions with an ordinary cellphone camera. Our 
assessment of algorithm performance builds upon statistical models that 
formally account for the non-independence of results (i.e., correct vs. 
incorrect identifications) stemming from the same individual picture, 
from pictures featuring the same individual specimen, and from 
(pseudo-)replicate training-testing runs in which all algorithms used the 
same training and testing picture sets (see below). As such, model-based 
algorithm performance estimates and their associated measures of un
certainty take data dependencies into account (Bolker et al., 2009; 
Harrison et al., 2018; see also Gurgel-Gonçalves et al., 2021). Although 
we built a unique collection of 6570 digital pictures of 730 individual 
specimens, our species-level coverage was still limited; therefore, we 
focus on algorithm performance at the genus level, for which we were 
able to gather large enough samples of specimens and pictures. We 
follow the currently accepted systematic arrangement for the Tri
atominae (Monteiro et al., 2018), with all our bugs falling into one of the 
three genera to which the main vectors of human Chagas disease, from 
the USA to Argentina, all belong – Triatoma, Panstrongylus, and Rhodnius 
(WHO, 2002). Our assessment shows that convolutional neural net
works can identify these major triatomine genera with very high accu
racy using low-resolution pictures taken with ordinary cellphone 
cameras, irrespective of the angles or positions at which the bugs were 
photographed. This result paves the way for ‘hybrid’ entomological 
surveillance systems combining human taxonomic expertise with ma
chine learning-based, automated vector identification. 

2. Methods 

2.1. Bug-picture database 

We worked with a sample of 730 adult, dried, pinned triatomines 
belonging to 13 species within three genera: Triatoma (400 specimens), 
Panstrongylus (110 specimens), and Rhodnius (220 specimens) (Table 1). 
RG-G and VLdM completed ‘ground-truth’ species-level identifications 
using printed keys and descriptions (Lent and Wygodzinsky, 1979; 
Galvão, 2014), the electronic TRIATODEX key (Gurgel-Gonçalves et al., 
2021), and information on the geographic origin of the specimens. After 
removing the entomological pin, we placed each bug on a white, 
rotating circular base and photographed it nine times, one at each of 
nine different angles representing three positions – dorsal-flat, dorsal- 
oblique, and front/back-oblique (Fig. 1). All pictures were taken using 
the same Moto G6 Play cellphone (Motorola Mobility LLC, Chicago, IL), 
which was mounted on a tripod and positioned above the bug as shown 
in Fig. 1; we used neither the flash nor the zoom functions of the cell
phone camera. We saved the pictures in red-green-blue (RGB) format at 
72-dpi resolution, and cropped them to a square format (see Fig. 1). 
Overall, our dataset thus includes 6570 unique pictures featuring 730 
individual bugs (Table 1). The pictures are available on figshare 
(Miranda et al., 2023), and the full raw dataset, including picture met
adata, is provided in Supplementary Dataset S1. 

2.2. Algorithms 

We used five machine-learning algorithms based on three different 
principles: a pre-trained convolutional neural network (AlexNet); three 
boosting-based classifiers (AdaBoost Adaptive Boosting, Gradient 
Boosting, and Histogram-based Gradient Boosting); and a linear 
discriminant model. Here, we briefly describe the characteristics of 
these algorithms and the inputs that they require; further details can be 
found in the references provided below. 

The architecture of AlexNet (‘AN’ hereafter), which includes five 
convolutional layers and three fully-connected layers, has 60 million 
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parameters; AN uses RGB images, 227 × 227 pixels in size, as input. AN 
was pre-trained on 1.2 million images of varying resolution and repre
senting 1000 classes (i.e., different objects, animals, plants, etc.) from 
the ImageNet database (Krizhevsky et al., 2012). We note that, although 
AN is more complex than the other algorithms that we tested (see 
below), much of its extra computational cost is associated with pre- 
training on ImageNet data. 

We also tested four ‘classical’ machine-learning algorithms: Ada
Boost Multi-Class Adaptive Boosting (‘AB’ hereafter), Gradient Boosting 
(‘GB’ hereafter), Histogram-based Gradient Boosting (‘HB’ hereafter), 
and a linear discriminant model (‘LD’ hereafter). Instead of directly 
taking pictures as input, these algorithms use numerical ‘features’ 
extracted from, and representing attributes of, those pictures. We used 
Inovtaxon (Bambil et al., 2020) to extract 226 picture features (namely, 
36 colour features, 135 shape features, and 55 texture features) that 
were used as input to feed the algorithms (see Bambil et al., 2020 and htt 
ps://github.com/DeborahBambil/Inovtaxon for details; see also Hu, 
1962; Zhao and Pietikainen, 2007; Flusser et al., 2009; Deniz et al., 
2011; Nascimento et al., 2023). 

AB combines multiple weak classifiers into a strong classifier capable 
of handling multi-class problems; at each training iteration, AB uses 
weights to ‘tag’ misidentified samples so that later iterations can ‘learn’ 
these mistakes, thus improving overall accuracy (Freund and Schapire, 
1997). GB sequentially combines multiple decision trees, with iterative 
adjustment (‘learning’) based on the residual errors of previous models 
and minimization based on gradient descent (Friedman, 2001). HB is a 
fast, computationally efficient approach to gradient boosting in which 
continuous input variables (‘features’) are discretized into bins and then 
arranged as histograms; model training is thus much faster and memory 
efficient, allowing the use of gradient boosting with large datasets (Dalal 
and Triggs, 2005). Finally, LD is a classical dimension-reduction pro
cedure in which linear functions of input values are computed that 
maximize among-class relative to within-class variance, thus maxi
mizing class discrimination (Fisher, 1936). In the context of machine 
learning, these ‘linear discriminant functions’ are computed during 
training and then used to assign test instances to their most likely class 
(Tharwat et al., 2017). 

2.3. Algorithm training and testing 

We trained all algorithms on a random subset of 5256 pictures (80% 

of the 6570-picture dataset). To gauge performance consistency, the 
training-testing process was repeated 10 times for each algorithm; in 
each of these (pseudo-)replicate runs, all five algorithms used the same 
training and testing picture subsets. 

AN was implemented in MATLAB (www.mathworks.com). For 
training, we used the stochastic gradient descent with momentum 
optimizer with default settings except for the initial learning rate (which 
we set to 0.001) and the maximum number of epochs (which we set to 15 
after preliminary tests). The ‘classical’ machine-learning algorithms 
(AB, GB, HB, and LD) were run in Python (www.python.org) using the 
scikit-learn toolbox (Pedregosa et al., 2011). We left hyperparameters at 
scikit-learn default values, except for the learning rate of GB and HB 
(which we set to 0.15) and the tolerance threshold value for LD (set to 1 
× 10−5). 

In each of the 10 (pseudo-)replicate runs, all algorithms were tested 
on the same subset of 1314 ‘problem pictures’ – for each of which we 
scored whether the class label predicted by the algorithm did or did not 
match the ‘ground-truth’ label. These correct or incorrect binary pre
dictions were used as outcome variables in downstream analyses. 

2.4. Data analysis: assessing algorithm performance 

We analyzed the outcome of our 50 testing runs (10 per algorithm) 
using R 4.2.1 (R Core Team, 2022) and the RStudio 2023.03.1.446 
interface (Posit Software, 2022). We first summarized our data in 
descriptive tables, including cross-classification or ‘confusion’ matrices, 
calculated Cohen’s κ agreement scores (Cohen, 1960), and ran simple 
exploratory analyses by calculating and graphing frequencies and pro
portions. Proportions and their Wilson ‘score’ 95% confidence intervals 
(CIs) (Newcombe, 1998) were computed using the Hmisc R package 
(Harrel and Dupont, 2023). 

Next, we used generalized linear mixed models (GLMMs; Bolker 
et al., 2009; Harrison et al., 2018) with binomial error distribution and 
logit link-function to investigate (i) whether and to what extent two key 
identification-performance metrics, accuracy and specificity, varied 
across algorithms (‘algorithm’ predictor, a five-level factor) and bug 
genera (‘genus’ predictor, a three-level factor); and (ii) the effects of 
cellphone-picture characteristics (picture ‘angle’, a nine-level factor; or 
bug ‘position’, a three-level factor; see Fig. 1) on algorithm performance. 
Covariates ‘angle’ and ‘position’, which are correlated by construction, 
did not appear together in any model. Initially, all models included a 
‘picture-within-bug’ nested random effect to account for the non- 
independence of results arising from the same picture and from pic
tures of the same specimen. In some cases, however, this model speci
fication led to convergence issues, so the models were simplified (see 
Specificity below). Because in each (pseudo-)replicate run all algorithms 
ran on the same data (i.e., picture) subsets, we also included a ‘replicate’ 
random effect in the models. 

We fit our GLMMs in a Bayesian framework using the blme R pack
age, with weak, normal (μ = 0, σ2 = 9) fixed-effect priors and flat 
covariance priors (Bolker, 2018; Chung et al., 2013, 2015; Dorie et al., 
2022). Relative model performance was evaluated based on sample-size 
corrected Akaike’s information criterion (AICc) scores and related 
metrics (Burnham and Anderson, 2002) computed with the bbmle R 
package (Bolker et al., 2022). AICc calculations used the number of 
unique specimens in each dataset/subset (see below) as the sample size. 
For inference, we focused on the top-ranking (smallest-AICc) model in 
each model set (accuracy plus genus-specific specificity; see below) 
(Burnham and Anderson, 2002). 

Accuracy. Accuracy analyses made use of the full, 65,700-observa
tion dataset. The binary dependent variable specified whether each 
picture was (coded 1) or was not (coded 0) correctly identified in each 
identification task. Note that stratification by genus (i.e., inclusion of the 
‘genus’ fixed effect in a model) implies conditioning on bug genus, so 
that genus-specific accuracy estimates can be interpreted as estimates of 
sensitivity, defined as the probability of getting a correct answer, 

Table 1 
Cellphone picture-based automated identification of Chagas disease vectors: 
summary of triatomine bugs and pictures used in the study.  

Genus Species Bug position in picture* Total   

A B C  

Triatoma Triatoma brasiliensis 130 780 260 1170  
Triatoma costalimai 40 240 80 360  
Triatoma infestans 60 360 120 540  
Triatoma lenti 40 240 80 360  
Triatoma melanocephala 20 120 40 180  
Triatoma rubrovaria 30 180 60 270  
Triatoma sherlocki 30 180 60 270  
Triatoma sordida 30 180 60 270  
Triatoma vitticeps 20 120 40 180  
Subtotal 400 2400 800 3600 

Panstrongylus Panstrongylus lutzi 20 120 40 180  
Panstrongylus megistus 90 540 180 810  
Subtotal 110 660 220 990 

Rhodnius Rhodnius neglectus 200 1200 400 1800  
Rhodnius pictipes 20 120 40 180  
Subtotal 220 1320 440 1980 

Grand total  730 4380 1460 6570  

* Bugs were photographed at nine angles representing three positions: dorsal- 
flat (A; one picture per bug, so that figures in this column also indicate the 
number of unique specimens in each class); dorsal-oblique (B; six pictures per 
bug); and front/back-oblique (C; two pictures per bug); see Fig. 1. 
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conditioned on genus identity. We fitted (1) an intercept-only model; (2) 
four bivariate models, each including one of the variables of interest 
(‘algorithm’; bug ‘genus’; picture ‘angle’; bug ‘position’); (3) five addi
tive models including ‘algorithm’ and combinations of the other pre
dictors; and (4) five interaction models including ‘algorithm × genus’; 
‘algorithm × position’; and ‘genus × position’ interaction terms (see 
Table 2). We initially also considered (i) two-way interactions involving 
the nine-level ‘angle’ covariate, and (ii) three-way (‘algorithm × genus 
× position’) interactions; these highly complex models, however, often 
showed signs of convergence issues, and we did not consider them 
further. 

Specificity. For a given bug genus, specificity analyses were based on 
the subset of data corresponding to bugs not belonging in that genus. The 
binary dependent variable specified whether the bug in each picture was 
(coded 1) or was not (coded 0) correctly identified as not belonging in 
the focal genus, conditional on the picture featuring a bug indeed not 
belonging in that genus. Some of the specificity models had clear signs of 
convergence issues, most likely because correct-identification fre
quencies were high across data subsets and, within them, across strata. 
We therefore simplified the structure of our specificity models by 
dropping the ‘angle’ fixed effect, interaction terms, and the ‘picture- 
within-bug’ random effect. Note that this simplification means that (i) 
subtler patterns of variation in specificity may exist that our models do 
not capture, and (ii) uncertainty around model coefficients (and, hence, 
around model predictions) may be underestimated. For each genus, the 
specificity-analysis model set thus included (1) an intercept-only model; 
(2) three bivariate models (‘algorithm’; ‘genus’; bug ‘position’); and (3) 

three additive models (‘algorithm’ + ‘genus’; ‘algorithm’ + ‘position’; 
and ‘algorithm’ + ‘genus’ + ‘position’) (see Table 3). 

3. Results 

3.1. Accuracy 

Fig. 2 summarizes the main results of the full set of 50 testing runs. 
The pre-trained convolutional neural network, AN, correctly identified 
the genus of the specimen featured in every one of the 5896 unique 
pictures on which it was tested across the 10 (pseudo-)replicate runs. In 
contrast, AB overall accuracy was only ~0.692, with (pseudo-)replicate 
run-specific values ranging from 0.595 to 0.760. Accuracy was high 
(~0.976 overall) for HB, and was also above 95% for GB (~0.965) and 
LD (~0.959); variation across (pseudo-)replicate runs was small for 
these three algorithms (Fig. 2). On average, genus-level identification 
was more accurate for pictures featuring Triatoma specimens (observed 
sensitivity 0.967) than for those featuring bugs in Panstrongylus (0.855) 
or Rhodnius (0.918) (Fig. 2). Finally, overall accuracy did not change 
much across picture angles or bug positions (Fig. 2). Detailed numerical 
results for these exploratory analyses of observed accuracy are provided 
in Supplementary Tables S1–S6, and the full raw data are available in 
Supplementary Dataset S1. 

In Fig. 3, we present a set of confusion matrices summarizing pat
terns of correct and incorrect identification of bug pictures across al
gorithms and genera and over the 10 (pseudo-)replicate runs that each 
algorithm completed. AB had a strong tendency to misidentify Rhodnius 

Fig. 1. Photographing bugs at different angles. Left panel: a tripod-mounted cellphone is positioned over a circular, rotating white base where the bug to be 
photographed (arrow) is placed. Right panels: each bug (here, a Triatoma brasiliensis specimen) was photographed at nine angles (0–8) representing three positions 
(colored letters and picture outlines): A–red, dorsal-flat (picture 0); B–blue, dorsal-oblique (pictures 2–4 and 6–8); and C–green, front/back-oblique (pictures 1 and 
5). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 
Accuracy model set. All models included a picture-within-bug nested random effect and a (pseudo-)replicate run random effect. 

AICc, sample size-corrected Akaike’s information criterion; ΔAICc, AICc difference with the top-ranking (lowest-AICc) model; 
k, number of parameters; Weight, Akaike weight. 
Shaded cells indicate that the term was included (as a fixed effect) in the model; the ‘×’ symbol indicates which terms are 
involved in an interaction. 

Table 3 
Specificity model sets. All models included a (pseudo-)replicate random effect. Note that there is one model set for each genus. 

Genus Model AICc ΔAICc k Weight Terms (fixed effects) 
      Algorithm Genus Position 
Triatoma T A+G+P 14221.9 0.0 9 0.529    
 T A+G 14223.7 1.8 7 0.220    
 T A+P 14224.1 2.2 8 0.177    
 T A 14225.8 3.9 6 0.074    
 T G 23904.8 9682.9 3 <0.001    
 T Null 23905.3 9683.4 2 <0.001    
 T P 23905.8 9683.9 4 <0.001    
Panstrongylus P A+G+P 7592.5 0.0 9 0.830    
 P A+G 7595.8 3.2 7 0.170    
 P A+P 8477.6 885.1 8 <0.001    
 P A 8482.1 889.6 6 <0.001    
 P G 8778.5 1186.0 3 <0.001    
 P P 9643.5 2051.0 4 <0.001    
 P Null 9647.8 2055.3 2 <0.001    
Rhodnius R A+G+P 2327.2 0.0 9 0.992    
 R A+G 2336.9 9.7 7 0.008    
 R A+P 2419.6 92.4 8 <0.001    
 R G 2429.1 101.9 3 <0.001    
 R A 2429.4 102.2 6 <0.001    
 R P 2511.5 184.3 4 <0.001    
 R Null 2521.5 194.3 2 <0.001    

AICc, sample size-corrected Akaike’s information criterion; ΔAICc, AICc difference with the top-ranking (lowest-AICc) model; 
k, number of parameters; Weight, Akaike weight. 
Shaded cells indicate that the term was included (as a fixed effect) in the model; all models are additive. 
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as Triatoma, and confusion between Triatoma and Panstrongylus was also 
evident. Although GB, HB, and especially LD also struggled somewhat to 
tell Triatoma from Panstrongylus, they did so to a much lesser extent than 
AB. On the other hand, we found no instances of confusion between 
Panstrongylus and Rhodnius (Fig. 3). 

The top-performing accuracy GLMM had strong relative support 
from the data, with an AICc score 3.8 units smaller than that of the 
second-ranking model and an Akaike weight of 0.87 (Table 2). This top- 
ranking model includes an ‘algorithm × genus’ interaction term and an 
additive bug ‘position’ term as fixed effects. In Fig. 4, we provide a plot 
of model predictions for each genus, algorithm, and bug position (see 
Supplementary Table S7 for numerical model output). The model cap
tures the essentially perfect accuracy of AN, and suggests that variation 
across algorithms was contingent on bug genus – with, e.g., AB per
forming fairly well with Triatoma, yet poorly with Rhodnius and Pan
strongylus, and both GB and LD struggling somewhat with Panstrongylus 
(Fig. 4, Supplementary Table S7). In contrast, bug position effects were 
minor; if anything, dorsal-flat pictures improved accuracy, albeit only 
slightly, relative to dorsal-oblique pictures (Fig. 4). The top-ranking 
model estimated a much smaller random-effect variance for the 
(pseudo-)replicate grouping factor (σ2 = 0.065) than for the specimen 
(σ2 = 3.683) or picture (σ2 = 2.546) grouping factors (Supplementary 
Table S7). The second-ranking model (Akaike weight = 0.13; Table 2) 
did not include the bug ‘position’ covariate – whose effect, therefore, 
this model estimated as effectively zero. Other models, including the 
‘null’ model, had no support from the data (Table 2). We finally note that 
models including the nine-level ‘angle’ covariate performed consistently 
worse (i.e., had larger AICc scores) than their counterparts including the 
simpler, four-level ‘position’ covariate (Table 2). In line with the 
stratification-by-angle results shown in Fig. 2 and Supplementary Table 
S3, this result suggests that picture angle had negligible effects on 
accuracy. 

3.2. Specificity 

Specificity measures the complement of the false-positive rate, 
providing insight into misclassification probabilities. As noted above, 
AN consistently identified all bugs in their correct genus, so specificity 
was also essentially perfect (Fig. 5; see also Fig. 3). On the other extreme, 
most of the bugs identified as ‘Triatoma’ by AB were not Triatoma, 
yielding a low observed specificity of ~0.431 (Fig. 5; see also Fig. 3 and 
Supplementary Table S9). Identifications of ‘Triatoma’ by GB, HB, and 
LD were overall more reliable, yet observed specificities were modest, 
from ~0.945 for LD to ~0.965 for HB (Figs. 3 and 5; Supplementary 
Table S9). Except for AB (observed specificity ~0.944), non-Pan
strongylus bugs were rarely confused with Panstrongylus by the remain
ing algorithms (Figs. 3 and 5). Finally, only a small fraction of pictures 
featuring non-Rhodnius bugs were misidentified as featuring a Rhodnius 
specimen, with specificities consistently above 99% (Figs. 3 and 5; 
Supplementary Table S9). 

Table 3 summarizes the structure and relative performance of the 
seven models in each of the three model sets we fit to assess specificity. 
In all cases, the top-ranking model was the ‘full’ additive model 
including the three covariates we considered (‘algorithm’, ‘genus’, and 
‘position’), and all data-supported models consistently included the 
‘algorithm’ covariate (Table 3). For Triatoma, the second- and third- 
ranking models had also some support from the data (Table 3); they 
differed from the top-ranking model in that they lacked, respectively, 
the ‘position’ and ‘genus’ covariates, suggesting that their effects were 
likely small. The numerical output of the top-ranking model confirmed 
this, with absolute values of coefficient estimates ranging from 0.096 to 
0.168 (Supplementary Table S10). Similarly, the second-ranking Pan
strongylus specificity model lacked the ‘position’ covariate, again indi
cating that it had, if anything, small effects; in the top-ranking model, 
the coefficients were small and their 95% CIs included 0 (see Table 3 and 
Supplementary Table S11). In contrast, the top-ranking Rhodnius model 

Fig. 2. Cellphone picture-based automated identification of Chagas disease vectors: observed accuracy, measured as the proportion of pictures that were correctly 
identified (blue bars) to the genus level. Left: results by algorithm (AN, AlexNet; AB, AdaBoost Adaptive Boosting; GB, Gradient Boosting; HB, Histogram-based 
Gradient Boosting; and LD, linear discriminant model). Right top: results stratified by (i) triatomine bug genus (i.e., the probability of correct identification, 
conditioned on genus, which can be interpreted as sensitivity); (ii) the nine angles at which bugs were photographed (see Fig. 1); and (iii) bug position (A, dorsal-flat; 
B, dorsal-oblique; C, front/back-oblique; see Fig. 1). Bottom right: results for each of the 10 (pseudo-)replicate runs completed by each algorithm. The data un
derlying these graphs, along with score 95% confidence intervals for each proportion, are provided in Supplementary Tables S1–S5. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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was strongly supported (Akaike weight = 0.99; Table 3), and its nu
merical output suggested a clearer negative effect of dorsal-oblique 
pictures on specificity (βPosition B = −0.594, SE 0.277; Supplementary 
Table S12). 

In Fig. 6, we present the predictions of the three top-ranking speci
ficity models. The graphs highlight (i) the essentially perfect perfor
mance of AN; (ii) the poor performance of AB with non-Triatoma bug 
pictures; and (iii) the overall high to very high, often close to 100%, 
specificity of all algorithms with non-Panstrongylus and non-Rhodnius 
bugs (Fig. 6; see also Supplementary Tables S13– S15). We note, how
ever, that these models did not include picture or specimen random 
effects (which led to convergence issues); in interpreting model-based 
estimates and predictions, therefore, it is important to keep in mind 
that their associated measures of uncertainty may be smaller than they 
should be. 

4. Discussion 

In this study we show that deep-learning algorithms can use low- 
resolution pictures taken at varying angles with ordinary cellphone 

cameras to identify Chagas disease vectors reliably at the genus level. 
This key result brings us a step closer to the broader aim of developing 
automated vector-identification tools that, by leveraging information 
from potentially large, geographically diffuse networks of cellphone 
users (including vector control-surveillance staff and citizens in gen
eral), can help to strengthen real-world vector-surveillance systems in 
the present context of dwindling taxonomic expertise (Gurgel-Gon
çalves, 2022). More generally, our results contribute to continuing ef
forts towards structuring ‘extended’ surveillance systems in which 
classical and novel approaches to vector detection, identification, 
reporting, and mapping can be integrated into more effective, flexible 
tools for risk assessment and decision-making (e.g., Abad-Franch, 2016; 
Abad-Franch et al., 2009, 2011, 2013, 2014; Abdelghani et al., 2021; 
Bender et al., 2020; Ceccarelli et al., 2018, 2020, 2022; Cochero et al., 
2022; Cruz et al., 2020, 2021; Curtis-Robles et al., 2015; Delgado- 
Noguera et al., 2022; Gorla, 2002; Gurgel-Gonçalves et al., 2012, 2017, 
2021; Gürtler and Cecere, 2021; Hamer et al., 2018; Khalighifar et al., 
2019; Leite et al., 2011; Marsden, 1984; Oliveira et al., 2017; Parsons 
and Banitaan, 2021; Ribeiro-Jr et al., 2021; Silveira et al., 1984; Vinhaes 
et al., 2014). 

Fig. 3. Cellphone picture-based automated identification of Chagas disease vectors: confusion (cross-classification) matrices across algorithms (with Cohen’s κ 
agreement scores) and bug genera. The numbers of pictures correctly and incorrectly identified at the genus level are in blue and red cells, respectively. Note that, for 
each algorithm, the results arise from 10 (pseudo-)replicate runs; in each run, all algorithms were trained and tested on the same picture subsets, which were 
randomly drawn from the full 6570-picture dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Our comparative assessment singled out the pre-trained, convolu
tional neural network, AlexNet (Krizhevsky et al., 2012), as clearly the 
best-performing algorithm among the five we tested (Figs. 2–6). This 

result is in line with previous work showing that artificial neural net
works can accurately identify disease vectors (Cochero et al., 2022; 
Motta et al., 2019; Park et al., 2020; Pataki et al., 2021) and other insects 

Fig. 4. Cellphone picture-based automated identification of Chagas disease vectors: predictions (with 95% confidence intervals) of the top-ranking generalized linear 
mixed model for accuracy (see Table 2 and Supplementary Table S7). Accuracy predictions are presented for five algorithms (AN, AlexNet; AB, AdaBoost Adaptive 
Boosting; GB, Gradient Boosting; HB Histogram-based Gradient Boosting; and LD, linear discriminant model), three triatomine-bug genera (Triatoma, Panstrongylus, 
and Rhodnius), and three bug positions (see legend and Fig. 1). The top-right panel is a zoom-in view of the region highlighted by a dashed-orange box in the main 
graph. The data underlying this figure are provided in Supplementary Table S8. 

Fig. 5. Cellphone picture-based automated identification of Chagas disease vectors: observed specificity, measured as the proportion of pictures that were correctly 
identified (blue bars) as not belonging in the genus given above each graph. Note that, in this case, red bars represent the false-positive rate. For each genus, results 
were stratified by algorithm (AN, AlexNet; AB, AdaBoost Adaptive Boosting; GB, Gradient Boosting; HB, Histogram-based Gradient Boosting; and LD, linear 
discriminant model). The data underlying these graphs, along with score 95% confidence intervals for each proportion, are provided in Supplementary Table S9. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(e.g., Terry et al., 2020) when trained and tested on non-standardized 
pictures sourced from field research or citizen-science initiatives. 
When trained and tested on better-quality pictures (e.g., high-resolution 
pictures of well-lit whole specimens), artificial neural networks can be 
even more accurate at identifying, for example, triatomine bugs 
(Abdelghani et al., 2021; Gurgel-Gonçalves et al., 2017; Khalighifar 
et al., 2019), mosquitoes (Motta et al., 2020), or ticks (Justen et al., 
2021). Because real-world ‘extended’ (or ‘hybrid’) surveillance systems 
will have to rely on pictures of varying quality, most likely taken with 
cellphone cameras, automated-identification systems that perform well 
when trained and tested on low-resolution, non-standardized pictures 
will be critical to advancing the field; our results lend further support to 
the view that pre-trained artificial neural networks are strong candidates 
for the role (Cochero et al., 2022; Justen et al., 2021; Motta et al., 2019; 
Pataki et al., 2021). 

It is important to note that the excellent performance of AN that we 
report (Figs. 2, 3; Supplementary Tables S1, S5, and S6) refers to a 
relatively simple, three-class (i.e., three-genus) problem. For any given 
algorithm and picture quality, identification tends to become more 
challenging as the number of classes increases – e.g., when the task in
volves many classes (e.g., Khalighifar et al., 2019) instead of just two (e. 
g., Cochero et al., 2022) or three classes (e.g., Cruz et al., 2021 and this 
report). In our previous work, the accuracy of two artificial neural 
networks rose from ~80–87% to ~96–99% when the number of classes 
was reduced from 12–39 species to subsets of 2–12 candidate species, 
with subsetting based on distributional patterns (Khalighifar et al., 
2019). While this ‘faunal subsetting’ approach may help improve the 
accuracy of automated-identification systems, defining subsets based on 
known or modeled distributions of species is not without potential pit
falls. Most obviously, species-occurrence records are incomplete and 
may be biased because of, e.g., uneven sampling effort or false-positive 
records (Ceccarelli et al., 2018, 2022; Johnston et al., 2023). Perhaps 
less obviously, methodological challenges inherent in modeling pres
ence records mean that model-predicted distributional summaries 
should be approached with caution (Araujo et al., 2019; Elith et al., 

2006; Hallgren et al., 2019; Owens et al., 2013; Valavi et al., 2022). 
Also importantly, humans have historically introduced several tri

atomine species well outside of their natural ranges (Monteiro et al., 
2018). Because introductions may go undetected for long periods, 
particularly when surveillance is weak (Abad-Franch et al., 2014), 
defining a realistic subset of the triatomine fauna likely to be present at 
any given location and time-point may not be easy; notably, the pro
cedure will by default exclude non-native species, which are often those 
better adapted to living in human habitats and, hence, the most 
dangerous vectors of human Chagas disease and top priority for control 
and surveillance (Abad-Franch, 2016; Gürtler et al., 2021). Careful 
‘faunal subsetting’, in any case, clearly has a major role to play in both 
‘classical’ (e.g., Ribeiro-Jr et al., 2021) and ‘extended’ vector surveil
lance, in which accurate automated identification of the 150+ known 
triatomine-bug species, including some cryptic and some highly variable 
taxa (Monteiro et al., 2018), may well prove unfeasible without some 
kind of subsetting (Khalighifar et al., 2019). In general, reliable 
specimen-specific metadata (on, e.g., collection sites and dates) can be 
expected to improve the accuracy of automated identification systems 
(Terry et al., 2020). 

Our report also illustrates a mixed model-based approach to evalu
ating the performance of automated identification systems while taking 
data dependencies into account (Bolker et al., 2009; Harrison et al., 
2018; see also Gurgel-Gonçalves et al., 2021). In our case and in many 
similar studies, a large number of observations (here, individual out
comes of 65,700 identification tasks) arose from repeatedly using a 
much smaller number of unique pictures (here, 6570) featuring a much 
smaller number of unique specimens (here, 730 individual bugs), often 
across multiple training-testing runs (here, 10 runs) completed by 
several algorithms (here, five algorithms). Thus, for example, we used 
picture ‘Plutzix10y0’ (a dorsal-flat picture of a Panstrongylus lutzi spec
imen) 15 times (in three (pseudo-)replicate runs), and the bug featured 
in that picture (‘Plutzi_10’) contributed 85 observations (over all 
(pseudo-)replicates) to the full dataset (see Supplementary Dataset S1). 
Those 85 results are not mutually independent, and the random-effects 

Fig. 6. Cellphone picture-based automated identification of Chagas disease vectors: predictions (with 95% confidence intervals) of the top-ranking generalized linear 
mixed models for specificity (see Table 3 and Supplementary Tables S10–S12). Predictions are presented for three triatomine bug genera (Triatoma, Panstrongylus, 
and Rhodnius), five algorithms (AN, AlexNet; AB, AdaBoost Adaptive Boosting; GB, Gradient Boosting; HB, Histogram-based Gradient Boosting; and LD, linear 
discriminant model), and three bug positions (A, dorsal-flat; B, dorsal-oblique; C, front/back oblique; see Fig. 1). The orange boxes and arrows highlight the different 
scales of the y-axes (starting at 0.85 instead of at 0.00) in the center and right panels. The data underlying this figure are provided in Supplementary Tables S13–S15. 
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structure of our accuracy models takes these underlying dependencies 
into account (Harrison et al., 2018). GLMMs also provide insight into the 
magnitude of random variation across grouping factors; in our case, for 
example, accuracy was much more consistent across (pseudo-)replicate 
runs than it was across specimens or pictures (see Supplementary Table 
S9). While this analytical approach is a strength of our report, it also 
highlights a limitation of some of our models. In particular, convergence 
issues (likely related to high correct-identification frequencies across 
strata) forced us to drop the ‘picture-within-bug’ nested random effect in 
specificity models (see Table 3, Fig. 5, and Supplementary Table S9). As 
explained in the Methods section and mentioned in the Results section, 
this simplification means that the output of those models must be 
interpreted with some caution. 

Finally, we note that our Bayesian approach to model fitting relied 
on choosing what we regard as reasonable prior distributions for model 
parameters: weakly informative N(0, 9) priors for the fixed effects and 
flat covariance priors for the random effects (Bolker, 2018; Dorie et al., 
2022). To check whether our conclusions were robust to these prior 
choices, we refit each of the four top-ranking models (Tables 2 and 3, 
Figs. 4 and 6, and Supplementary Tables S7, S8, and S10–S15) with the 
following alternative prior specifications: (i) fixed effects: N(0, 14) and 
N(0, 2.5); and (ii) random effects: Wishart (the default in blme; Dorie 
et al., 2022; see also Chung et al., 2015), gamma(shape = 2.5, rate = 0) 
(the default gamma specification in blme; Dorie et al., 2022), and gamma 
(shape = 2.5, rate = 0.5). The results were closely similar to those re
ported above and highly robust, with only slight numerical differences, 
across all comparisons (see Supplementary Figs. S1–S4). 

5. Conclusions and outlook 

Automated identification of Chagas disease vectors has the potential 
to strengthen entomological surveillance systems – which are currently 
weak, and overall getting weaker, across Latin America. To realize such 
potential fully, automated identification algorithms should be capable of 
working accurately with pictures of uneven, possibly low quality/reso
lution taken with ordinary cellphone cameras. Our results suggest that 
convolutional neural networks may indeed have that capacity, and, 
hence, that human expertise and artificial intelligence could team up to 
provide fast, reliable taxonomic support to ‘extended’ (or ‘hybrid’), 
participatory surveillance systems with broad geographic-ecological 
scope. However, not all triatomine bug species have the same public- 
health relevance, so future research should focus on combining mixed- 
quality pictures and pre-trained neural networks to identify adult tri
atomine bugs to the species level reliably. Developing automated sys
tems capable of differentiating triatomine nymphs (i.e., immature bug 
stages, whose presence in or around houses often signals higher risk of 
disease transmission) from triatomine adults and from other arthropods, 
including non-blood-feeding bugs, should be seen as another priority. It 
seems likely that state-of-the-art deep-learning algorithms, such as 
YOLO (Jiang et al., 2022) and YOLO-based variants (e.g., Roy et al., 
2023), will be needed to tackle these more challenging problems, but 
this remains to be tested empirically. A crucial standing challenge to 
advancement of these prospects is the need to build ‘ground-truth’ pic
ture datasets with adequate taxonomic coverage and enough individual 
specimens (nymphs and adults) to train, validate, and test candidate 
algorithms robustly. We anticipate that, when fully functional, 
‘extended’ surveillance networks in which well-trained professional 
staff, mindful citizens, and efficient artificial-intelligence systems all 
contribute to vector detection, identification, reporting, and mapping, 
will play critical roles in the sustainable, long-term control of vector- 
borne diseases including Chagas disease. 
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