
- Quaternary ammonium compounds (QACs) in wastewater influent and
- effluent throughout the COVID-19 pandemic
- 3 Anna K. Mahony, † Patrick J. McNamara, \S William A. Arnold †*
- 4 †Department of Civil, Environmental and Geo- Engineering University of Minnesota, 500
- 5 Pillsbury Dr. SE, Minneapolis, MN 55455, USA
- 6 §Department of Civil, Construction, Environmental Engineering, Marquette University, 1515
- 7 West Wisconsin Ave, Milwaukee, WI 53233 USA

8

9 *Corresponding author email <u>arnol032@umn.edu</u>

10

11 TOC Art:

- Word count: Text 6328, 2 Tables (200 words each), 3 figures (2 at 200 words, one at 600 words)
- 19 = 7728 total

Abstract

22

- 23 Quaternary ammonium compounds (QACs) are used in consumer and industrial products,
- 24 including disinfectants. Due to the COVID-19 pandemic, disinfectant use has increased,
- 25 purportedly increasing loads to wastewater treatment plants and the environment. To understand
- 26 how the increased usage has affected QAC loadings to treatment plants and to determine how
- 27 effectively plants remove QACs from liquid effluent that is discharged to surface and
- 28 groundwaters, influent and effluent wastewater samples were collected from four treatment
- 29 plants (treatment capacities <5 MGD to >100 MGD) for 21 months beginning in May 2020.
- 30 Influent QAC concentrations were hundreds of μg/L and effluent QAC concentrations were <1
- 31 μg/L, corresponding to an average removal of 98% from all four plants. The most prevalent
- 32 QACs in influent are those used most commonly in disinfectants, specifically
- benzylalkyldimethylammonium compounds (BACs) and short-chain dialkyldimethylammonium
- compounds (DADMACs), and influent levels of these compounds were correlated with QAC
- 35 sales. Prior to this study, ethylbenzylalkyldimethylammonium compounds (EtBACs) had not
- been studied, and it was found they comprised 13 ± 6 % of QACs in influent. While removal was
- 37 high at all plants, low µg/L concentrations are still continuously discharged into the environment.
- For QACs with equivalent alkyl chain lengths, those with an aromatic substituents (BACs and
- 39 EtBACs) appear to be removed more effectively than those with only alkyl chains.

40 41

- **Keywords**: wastewater treatment, COVID-19, disinfectants, benzylalkyldimethylammonium
- compounds (BACs), dialkyldimethylammonium compounds (DADMACs)
- 44 **Synopsis**: Quaternary ammonium compound (QAC) levels in wastewater influents are
- 45 proportional to sales information but not to COVID cases, while effluent data shows effective,
- 46 but not complete, removal of QACs.

47

48

Introduction

- 49 Quaternary ammonium compounds (QACs), first used in the 1930s as surfactants and
- disinfectants, are used in many consumer, agricultural, healthcare and industrial products
- 51 including fabric softeners, personal care products, disinfectants, biocides, sanitizers, and
- emulsifiers.¹⁻⁴ QACs are a class of chemicals that have a positively charged nitrogen atom with
- two methyl groups, a long alkyl chain of varying length (i.e., a homologous series) and a fourth
- side chain that varies in structure (Figure 1). DADMACs have two long alkyl chains which can
- have either the same or different chain lengths. These chemicals are designated as high
- 56 production volume chemicals, with over one million pounds manufactured or imported
- annually. 5-7 Estimated reported production values show that up to 50 million pounds of certain

QACs are produced per year dating back to 2012.⁸ Due to the COVID-19 pandemic, use of QAC containing products has increased, a trend that is expected to continue.^{4,7,9,10} Currently, over 50% of the disinfectants on EPA list N: *Disinfectants for Use against SARS-CoV-2* contain QACs as an active ingredient.^{7,11} Of those products, most contain benzylalkyldimethylammonium compounds (BACs) and/or

Ethylbenzylalkyldimethylammonium compounds (EtBACs)

Alkyltrimethylammonium compounds (ATMACs)

Figure 1. Generalized structures of the 4 classes of QACs. Each class of QAC contains a seriesof compounds with varying alkyl chain length.

65

66

67

68

69

70

dialkyldimethylammonium compounds (DADMACs) (93.5% and 49.5%, respectively). .^{7,11} Ethylbenzylalkylammonium compounds (EtBACs) are present in 34% of the disinfectants, yet this is the first study to measure this class of QACs in wastewater. Chain lengths of QACs used in disinfectants include C₈- to C₁₈-BAC, C₁₂- and C₁₄-EtBACs and C₈-, C_{8/10}-, and C₁₀-

DADMAC. Alkyltrimethylammonium compounds (ATMACs), along with other QACs such as

DADMACs (named DTDMAC in previous studies)^{2,12} are used in fabric softeners and hair products.

Previous studies have shown that removal varies between compounds due to their different structures and chain lengths, which affects the hydrophobicity and solubility of each QAC.¹³ Removal method can also vary based on structure; a more hydrophobic compound might sorb to the solids and be removed by sorption rather than biodegradation. Therefore, it is important to assess each of these QACs individually as well as cumulatively to obtain a full picture of the QAC profile in wastewater influents and effluents. Additionally, QACs have varying impacts on aquatic toxicity and microbial antibiotic resistance depending on structure, hence why many disinfectants contain multiple QACs.^{2,14}

QACs are both water soluble and strongly sorb to solids and surfaces. ^{15,16} Thus, they have been previously detected in wastewater influent and effluent, surface waters, sediments and biosolids, and household dust. ^{15,17–2223} Approximately 75% of QACs used worldwide annually end up in wastewater treatment systems, where 90% or greater are removed from the liquid phase mainly during activated sludge treatment. ^{1,16,24,25} Because QACs are highly sorptive, the main removal mechanism in wastewater treatment is sorption to activated sludge, but aerobic degradation also occurs. ^{16,25} While a large percentage of QACs are removed during treatment, these compounds are produced and used in such high volumes that the amount being released to the environment is still significant. ²⁰ In addition, QACs can be discharged to the environment through land application of biosolids.

In disinfectant products, QACs are present at high levels to inactivate viruses and kill bacteria. In the environment, however, they are typically present at much lower, sub-lethal concentrations, implying that bacteria will not be killed, but could be stressed and adapt to the

QACs. Indeed, research has shown that QACs may contribute to the global antibiotic resistance problem. ^{14,26–29} A 2022 study investigated the induction of antibiotic resistance by C₈- to C₁₈-BACs and C₁₀-DADMAC on *E coli*. ¹⁴ The rate of adaptation of bacteria was faster for BACs, as DADMACs are more effective than BACs at inactivating bacteria and viruses. ¹⁴ More gene mutations and higher resistance levels developed, however, with exposure to DADMACs over an extended period of time. ¹⁴

Before the COVID-19 pandemic, total QAC concentrations detected in effluent wastewater and surface water ranged from <1 μg/L to 4.1 μg/L, with one sample in Austrian hospital effluent containing 60 μg/L.^{2,12,20–22,30–32} A 2019 Minnesota, USA study investigated 10 wastewater plants and detected effluent concentrations ranging from 0.4 to 8.3 μg/L, with higher levels of BACs and DADMACs than ATMACs.³¹ Reported influent concentrations are up to an order of magnitude higher than the effluent concentrations, ranging from 1.4 to 170 μg/L, and similarly to effluents, concentrations of BACs and DADMACs were higher than ATMACs.^{22,30,31,33,34} No study to date has investigated EtBACs in wastewater despite their widespread use in disinfectant products.

It is important to investigate how the increased use of QAC containing products during the COVID-19 pandemic has impacted their levels in wastewater and their removal during treatment. QACs have been shown to potentially disrupt and impact both the nitrification and denitrification processes in wastewater treatment plants. ^{35,36} A study found that while QACs entering plants at continuous and low concentrations did not have a significant impact on nitrification, high influx concentrations of 2 mg/L or more could cause serious issues, inhibiting carbonaceous reactions in aerobic systems for up to 48 hours. ³⁵ Another study exclusively examined the effect of C₁₆-ATMAC on partial nitrification/anammox systems at a range of

concentrations. Experimental levels were chosen to be 0.5 mg/L and 10 mg/L (both are higher than previously detected concentrations), and it was found that both levels could inhibit the anammox (*hzsB*) gene, thus impacting nitrogen removal.³⁵

Many factors may impact removal of QACs during wastewater treatment. Operating temperature and the amount of dissolved oxygen (DO) present during activated sludge treatment could impact QAC degradation. Previous studies have shown that wastewater temperatures need to be above 12 °C with DO concentrations of at least 2 mg/L or higher for nitrification to efficiently occur in activated sludge systems.³⁷ In addition, size of treatment plant, the amount of QACs in influent, and additional treatment methods, such membrane filtration systems, could potentially impact removal of QACs.

This study was undertaken to determine the temporal loading and removal of of C₆-C₁₈-BACs, C₈-C₁₈-DADMACs, C₁₂-C₁₄-EtBACs and C₁₀-C₁₈-ATMACs in wastewater during the COVID-19 pandemic. Trends in the homologs present and concentrations over the course of the pandemic were also evaluated. No study to date has collected monthly QAC influent and effluent samples over a period of more than a year or analyzed a broad range of these compounds over time. QAC influent and effluent levels of four plants with a range of treatment capacities and treatment trains (see Table S1) were monitored from May 2020 to January 2022 to quantify QAC inputs and removal. Disinfectant sales data for the state of Minnesota and the formulations of QACs used in disinfectants on EPA List N were compared to the QAC concentrations in influents to assess the impact of disinfectant usage on the wastewater load. Trends during the pandemic for both total QAC concentrations ([QAC]_{Total}, the sum of target BACs, EtBACs, DADMACs, and ATMACs), or a subset of these compounds used in disinfectants,

[QAC]_{disinfectants}, and individual compounds were evaluated to assess any potential drivers that affected QAC use and presence in wastewater.

Materials and Methods

A list of all chemicals used is given in the Supporting Information (SI). All abbreviations of QACs are listed in Table S2, as are vendors for all QAC standards, internal standards and surrogate standards. There were seven BACs, five ATMACs, two EtBACs and seven DADMACs that were monitored. The alkyl chain length of each compound is denoted by C_x with x representing the number of carbons. For example, the compound dioctyldimethylammonium chloride is denoted as C_8 -DADMAC. Ultrapure water (18.2 M Ω •cm at 25 °C) from a Milli-Q® system was used for sample blanks and water used in solid phase extraction. Tetraalkylammonium (TAA) compounds were used as internal standards (ISTDs).

Wastewater sample collection

Composite (24 hour) wastewater effluent and influent samples were collected monthly in 1-L polycarbonate bottles from May 2020 to May 2021 from four wastewater treatment plants (WWTPs) in the state of Minnesota, USA. Bottles were soaked in Alconox® (which is QACfree) overnight, rinsed with deionized water then soaked in an acid bath (1 M HCl) overnight. After rinsing with ultrapure water, they were autoclaved for 30 minutes prior to sample collection. Samples were collected by plant personnel as part of their routine water quality analyses. After this period, quarterly samples from plants A, B and C were collected in July 2021, October 2021, and January 2022, while monthly samples from Plant D continued to be collected. The details of the WWTPs, including size and treatment methods, are listed in Table

S1. The approximate volume of each sample collected was 1 L, and due to limitations on laboratory activities at the initiation of the project due to the COVID-19 pandemic, the samples were frozen at -20 °C in the collection bottles. All samples, no matter when collected, were frozen for consistency. When extraction commenced, the samples were defrosted overnight and extracted the following morning. This allowed the samples to reach room temperature and large particulate matter to settle.

Wastewater QAC extraction method

A method was adopted that combined the water extraction method of Pati and Arnold³¹ and the dust extraction method of Zheng,^{23,31} because there was particulate matter in the samples even after settling which clogged solid phase extraction (SPE) cartridges. For each sample, two sub-samples were processed (one spiked with QACs to assess recovery and one unspiked). Each sample (250 g for effluent, 50 g for influent) was weighed into a combusted glass flask. Spiked effluent samples were amended with 200 μL of a 500 μg/L QAC stock solution of all target compounds in acetonitrile (ACN). All effluent samples (spiked and unspiked) were amended with 350 ng/L C₁₀-ATMAC-d₉ and C₁₄-BAC-d₇ as surrogates to test extraction efficiency. The spiked influent samples were amended with 400 μL of the 500 μg/L QAC solution, and 700 ng/L of the surrogates was added to all influent samples.

A ceramic Buchner funnel with combusted (500 °C, 4 hours) glass fiber filters (47 mm, Pall corporation) were used to filter the samples. After filtering, the filters were placed in a centrifuge tube, amended with 4 mL ACN, sonicated for an hour at room temperature and then centrifuged for 5 min at 1107 RCF.²³ After this, the ACN was carefully decanted into a

combusted glass centrifuge tube, and the extraction steps were performed twice more for a total filter extraction volume of 12 mL ACN.

SPE of the filtered water was performed with 6 mL Oasis WCX cartridges (150 mg, 30 μm, Waters Corporation). Cartridges were first conditioned with 5 mL methanol (MeOH) and 5 mL ultrapure water. The filtered water was then loaded at a rate of approximately 5 mL/min. After the samples had been fully loaded, cartridges were washed with 5 mL ultrapure water and 5 mL MeOH, and then samples were eluted with 9 mL of ACN with 2% formic acid. The combined filter and SPE extracts were then evaporated to dryness under N₂ gas in a water bath at 40 °C. The extracts were reconstituted in 500 μL of ACN and filtered through a 0.2 μm PTFE filter (to protect the HPLC from any precipitates formed during the solvent evaporation that did not re-dissolve), before adding 450 μL of ultrapure water to the sample vials, and 50 μL of a 2000 μg/L internal standard (ISTD) solution was added for a total volume of 1 mL. Extracts were frozen at -20 °C until analysis.

Large particles settled out prior to filtration, but the filters captured some suspended particles, so the final reported concentrations represent "total dissolved QAC", defined as the sum of dissolved QACs, any QACs associated with dissolved organic matter, and QACs bound to small suspended, particles captured by the filter. Effluent samples from March and April 2021 were processed without the filter extraction step, because the SPE clogging issue was not noticed prior to extracting these two samples.

Sample and data analysis

Samples were analyzed by liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS), and the details, including a chromatogram showing all analytes, are in the SI.

Most QACs were target compounds for which authentic standards were used, but non-target analytes included C₆- and C₈- BAC, C₁₆-ATMAC and C₁₄-DADMAC. To calculate the concentrations of these analytes, the calibration curve of QAC that was most similar in structure and instrumental retention time was used to calculate the concentrations of the non-targets (C₁₀-BAC was used to calculate [C₆₋₈-BAC], C₁₄-ATMAC for [C₁₆-ATMAC] and C₁₂-DADMAC for [C₁₄-DADMAC]).²⁷ To correct for QAC losses during extraction, all analyzed concentrations were corrected for the relative recovery of the respective spiked sample, and these calculations are provided in the SI.²⁷ Due to low recoveries, some concentrations of long chain DADMACs, as well as C₁₈-ATMAC and C₁₈-BAC were corrected with a different process (see SI) that provides a conservative concentration value.

Data Sources and Analysis

The formulations of QAC-containing disinfectant products with respect to the ratio of BACs, EtBACs, and DADMACs were obtained from ref. ¹¹ Daily influent and effluent temperatures and aeration basin DO were provided by all four plants over the sampling period. These variables were compared to concentrations and removals of QACs by averaging the daily temperature and DO values from the week prior to sample collection. Prior week averages were used (rather than single day data from the same date as sampling occurred) because same day data would likely not have impacted the composite wastewater samples that were analyzed. SARS-CoV-2 RNA (wastewater-based epidemiology) data from Plant D influent was obtained, starting in October 2020, and reported COVID-19 cases in Minnesota were compared to the QACs detected in influents using Pearson and Spearman correlations. ³⁸ To compare daily COVID-19 cases to influent QAC levels, the average 7-day COVID-19 cases for the week prior

to sample collection for Plants A-C, and average 7-day viral load for Plant D. In addition, averages of the month, two months, and 30-60 days prior were used, as consumer trends in disinfectant use might have a lag when compared to the COVID-19 curve. Viral RNA data may not match reported cases and are a more accurate measure of the amount of the SARS-CoV-2 virus in Plant D's sewershed.

Data were analyzed to assess if removal of QACs correlated to their individual differences in hydrophobicity. Octanol-water partition coefficients (logK_{ow}) of the QACs were obtained from or calculated using the methodology in Tezel.³⁹ Disinfectant sales data were acquired from the Minnesota Department of Agriculture's Pesticide Sales Database. 40-43 The 2020 and 2021 data for disinfectant QACs were compared to the average influent concentration of the same QACs over the respective years in wastewater influent from the same plants. All data were analyzed using the statistical tools in Microsoft Excel[®], R⁴⁴, and R Studio. Spearman and Pearson correlations were calculated to assess relationships between QAC concentrations and removals to parameters including reported COVID-19 cases, SARS-CoV-2 RNA data, DO concentrations, influent temperatures and hydrophobicity. A Pearson test was used when the two parameters were expected to have direct proportionality and the measurements were on a numeric or interval scale (e.g., disinfectant sales vs. influent concentration). When the two parameters were not expected to be linearly correlated but could still show a relationship or one of the two parameters had low variation (e.g., DO), the rank order of the variables was determined and a Spearman test was performed. Correlation coefficients (r) with degrees of freedom and p-values are reported for all correlations (α =0.05).

Results

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

QACs in Wastewater Influent

Detailed water quality, temperature, and COVID-19 data are in the SI, as are details for QAC extraction efficiency (average relative recoveries ranged from 20 to 140%). The influent $[QAC]_{Total}$ concentrations ranged from 4 to 174 μ g/L (Figure 2). The reported concentrations in influents and effluents are the sum of the QACs from the extracted filter (non-settled solids) and dissolved in water. BACs were the group present in the highest concentrations in influent samples from Plants B, followed by DADMACs. Plant D had very similar concentrations of BACs and DADMACs, with slightly higher DADMAC concentrations on average. Plants A and C had a higher concentration of DADMACs than BACs. EtBAC levels were similar across plants and ATMACs were the class of QACs present in the lowest concentrations in influents from all four plants.

Each plant showed variations in concentrations over time. Plant A influent samples (Figure 2A) ranged in [QAC]_{Total} from 4.1 to 33.8 μg/L until June 2021 when [QAC]_{Total} increased, ranging from 44.8 to 100.3 μg/L from June 2021 to January 2022. Influents from Plant B (Figure 2B) had [QAC]_{Total} ranging from 18.6 μg/L to 71.4 μg/L with the exception of three samples; April 2021, July 2021 and October 2021 which had a [QAC]_{Total} of 173.8, 137.8 and 88.0 μg/L, respectively. Plant C influent (Figure 2C) samples all had concentrations ranging from 26.9 μg/L to 80.9 μg/L, except for the September 2020 sample, which had a [QAC]_{Total} of 168.8 μg/L. Plant D (Figure 2D) influent had fluctuating QAC concentrations, ranging from 12.8 μg/L to 129.8 μg/L. For Plant D, [QAC]_{Total} was higher than 120 μg/L in three samples; December 2021, June 2021 and October 2021.

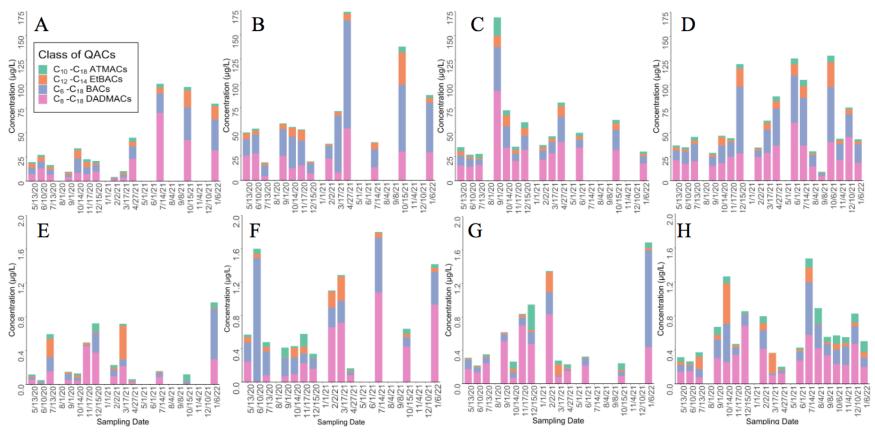
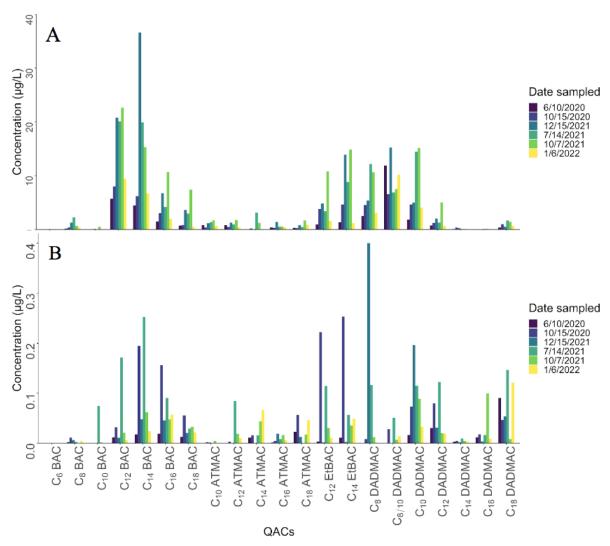



Figure 2. Panels A-D show concentrations in μ g/L of the four classes of QACs in influent samples from Plants A, B, C and D from May 2020-January 2022, and panels E-H show the corresponding effluent measurements in μ g/L. Note the change in y-axis scales. Dates where no data are shown indicate that no samples were collected that month. There were no samples in which no QACs were detected.

Figure 3. Individual QAC concentrations over time in influents (A) and effluents (B) from Plant D for 5 months between July 2020 and January 2021.

Individual QAC concentrations from Plant D across samples from six selected months (June, October and December 2020, July and October 2021 and January 2022), are shown in Figure 3A, and QACs present in the highest concentrations on average in the samples from each plant are listed in Table 1. There are high levels of C₁₂- to C₁₆-BACs, C₈- and C₁₀-DADMACs, and C₁₂- and C₁₄-EtBAC, which are all QACs used in disinfectants. Shorter chain BACs, longer chain DADMACs, and ATMACs are consistently lower in concentration than the QACs used in disinfectants. Longer chain QACs may have greater association with the settled solids, limiting their concentrations in the liquid samples. As shown in Table 1, all QACs present in the highest

average concentration for all four plants were disinfectant QACs, with the exception of C₈-BAC in Plant B (see Table 1 footnote). [QAC]_{disinfectant} refers to the total concentration of QACs used as active ingredients in disinfectants, C₈- to C₁₈-BAC, C₁₂- and C₁₄-EtBACs and C₈-, C_{8/10}-, and C₁₀-DADMAC. All QAC data for Plants A-D are in Tables S8-S15 and individual QAC concentration graphs for the same months are shown in Figures S5A–S7A.

Table 1. Individual QACs in influent (top) and effluent (bottom) displayed in order of the top eight QACs on average in Plant D. The bottom two QACs in the effluent table are those that were present in high concentrations on average in the other three plants. Reported errors are standard deviations (n=14 for Plants A-C, n=18 for Plant D). Note the different concentration units.

	Wastewater Influents							
	Plant A		Plant B ^a		Plant C		Plant D	
	Avg. (μg/L)	Max (μg/L)	Avg. (μg/L)	Max (μg/L)	Avg. (μg/L)	Max (μg/L)	Avg. (μg/L)	Max (μg/L)
C _{8/10} DADMAC	10 ± 14	49.2	8 ± 7	18.1	5 ± 3	12.5	13 ± 7	27.4
C_{14} BAC	4 ± 5	16.2	5 ± 4	15.0	6 ± 4	15.2	10 ± 9	36.6
$C_{12} BAC$ $C_{10} DADMAC$	$\begin{array}{c} 4\pm 4 \\ 3\pm 3 \end{array}$	11.0 11.7	5 ± 5 9 ± 6	16.3 24.3	6 ± 6 11 ± 9	23.0 37.5	10 ± 7 6 ± 5	22.6 16.4
C ₈ DADMAC	2 ± 1	3.8	2 ± 3	10.6	5 ± 3	12.5	6 ± 4	12.2
C ₁₄ EtBAC	3 ± 3	12.4	4 ± 6	22.5	3 ± 2	6.6	4 ± 4	14.9
C_{16} BAC	2 ± 2	5.3	2 ± 2	6.2	2 ± 1	4.9	3 ± 4	13.0
C ₁₂ EtBAC	2 ± 2	5.7	3 ± 3	10.9	3 ± 2	6.3	3 ± 2	10.8

Wastewater Effluents

	Avg. (ng/L)	Max (ng/L)	Avg. (ng/L)	Max (ng/L)	Avg. (ng/L)	Max (ng/L)	Avg. (ng/L)	Max (ng/L)
C ₈ DADMAC	30 ± 60	229	20 ± 20	82	30 ± 30	100	70 ± 110	400
C_{18} DADMAC	60 ± 105	371	110 ± 220	705	120 ± 180	582	70 ± 70	209
C_{14} BAC	30 ± 40	120	60 ± 70	225	50 ± 60	204	70 ± 60	253
C_{16} BAC	10 ± 20	65	50 ± 40	160	20 ± 10	45	60 ± 40	156
$C_{10}DADMAC$	20 ± 40	140	80 ± 120	399	70 ± 80	257	50 ± 50	196
$C_{12} DADMAC$	10 ± 20	140	100 ± 120	419	40 ± 50	169	50 ± 40	122
C ₁₄ EtBAC	30 ± 60	204	30 ± 20	71	60 ± 70	230	50 ± 60	253
C ₁₂ EtBAC	30 ± 50	194	20 ± 20	88	20 ± 20	64	40 ± 60	222
C_{18} BAC	3 ± 6	21	30 ± 60	217	12 ± 16	48	30 ± 20	62
C ₁₂ BAC	50 ± 130	459	20 ± 20	88	88 ± 250	876	20 ± 40	171

 a C₈ BAC was the highest concentration in Plant B influent (average=21 ± 23 μg/L, maximum of 80.3 μg/L). It was not present at this level in the other four plants so it is not included in this table.

Disinfectant sales data for the state of Minnesota showed that 300 metric tons of QACs (C₈–C₁₈-BACs, C₁₂-C₁₄-EtBACs, C₈, C_{8/10}, C₁₀ and C₁₈-DADMAC) were sold in 2021, of which 270 metric tons were sold specifically for disinfectants. ^{40,42,43} In 2020, 313 metric tons of these same OACs were sold, 280 metric tons of which were sold for disinfectant use. 40,42 This is higher than the amount of QACs sold for disinfectants the previous three years: 254 metric tons were sold in 2019, 266 metric tons in 2018, and 218 metric tons in 2017. 40-43 Of the 280 metric tons sold in 2020 as disinfectants, 25% was C₁₂-BAC, 18% was C₁₀-DADMAC and 17% was C₁₄-BAC. 40,42 These are the most common QACs used in disinfectant products, and they were the three most common QACs sold as disinfectants in 2021 as well. Overall, 90% and 89% of all non-pesticide QACs sold in the state of Minnesota in 2021 and 2020, respectively, were for disinfectant use. There are other uses, such as fabric softeners and personal care products, that contain QACs. While data are not available for individual products, this database also had information on non-disinfectant QAC products used in households. In 2021, only 0.46 tons of QACs were sold for household purposes other than disinfectants, and thus most QACs sold for non-pesticide use in the state were for disinfectants.⁴⁰ *QACs in Wastewater Effluents*

321

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

322

323

324

325

326

The [QAC]_{Total} profile in effluents was slightly different than that in influents (Figure 2 panels E-H), with DADMACs again present in higher concentrations than BACs in effluents from all plants. BACs in effluents from Plant B were only slightly lower than DADMACs, and plants A, B and D all had higher concentrations of EtBACs than ATMACs, like in influents, while Plant C had higher concentrations of ATMACs.

All samples from Plant A (Figure 2E) had $[QAC]_{Total}$ less than 1 $\mu g/L$. The highest $[QAC]_{Total}$ detected was 0.97 $\mu g/L$ in the January 2022 sample, and on average the $[QAC]_{Total}$ was at least half of that in the other plants' effluents. $[QAC]_{Total}$ in Plant B effluents (Figure 2F) varied substantially from month to month, with the three highest concentrations observed in June 2020, July 2021 and January 2022, with $[QAC]_{Total}$ of 1.6, 1.8 and 1.4 $\mu g/L$, respectively. While these samples had similar $[QAC]_{Total}$ concentrations, they were not comprised of the same classes; the June 2020 sample contained primarily BACs while the June 2021 and January 2022 samples contained primarily DADMACs along with higher levels of BACs and ATMACs. This plant had five months with $[QAC]_{Total}$ greater than 1 $\mu g/L$, more than any other plant. Most Plant C samples ranged in concentration from 0.22 – 0.95 $\mu g/L$, with two samples with a $[QAC]_{Total}$ greater than 1 $\mu g/L$: February 2021 (1.35 $\mu g/L$) and January 2021 (1.69 $\mu g/L$) (Figure 1G). Effluents from Plant D (Figure 2H) had the highest observed QAC concentrations in October 2020 and July 2021, with $[QAC]_{Total}$ equal to 1.27 $\mu g/L$ and 1.48 $\mu g/L$, respectively.

Aside from the prevalence of long chain DADMACs in effluents, the QACs present in the highest concentrations in the effluent of Plant D were those present in influents and disinfectants (Figure 3B). Table 1 shows the highest concentration QACs in the effluent at all four plants. The individual QAC data from Plant D (Figure 3A & B) show the differences in trends between influent and effluent more closely. Graphs of individual QACs in effluents for the other three plants are in Figures S5B-7B. BACs and short chain DADMACs were clearly present in the highest amounts in influents, all fluctuating over time, while BACs were generally less prevalent and DADMACs were more prevalent in effluents for the same sampling months.

Removal of QACs during treatment

On average, all four plants removed at least 98% of the QACs present in influent from the liquid effluent, regardless of differences in plant size and treatment methods (Table 2). This does not mean that OACs were 98% removed from the total effluent, which includes biosolids. QACs have been shown to strongly sorb to solids, and while biosolids were not measured in the present study, some portion of the removed QACs likely adsorbed to biosolids. The samples collected were 24-hour composite samples. While the samples collected were not offset by the hydraulic retention time (i.e. they were collected at similar times), the composited samples should give a good approximation of removal. While pre-pandemic data is available from the same plants, only effluent data is available and only for one sampling date in November 2018, and those concentrations are similar to those measured in this study. While sales data and influent concentrations show increasing use, we cannot confidently state that levels in influent are higher than pre-pandemic levels. If levels have increased, there may be increased amounts of QACs present in biosolids, given the similar concentrations in effluents. This assumes that a large portion of QACs are removed through sorption to activated sludge, and therefore QAC levels in biosolids merit investigation.

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Table 2. Summary of QAC influent, effluent, and removal for each wastewater treatment plant.

Plant	Key features	Avg. influent [QAC] _{Tot} $(\mu g/L)$	Avg. effluent $[QAC]_{Tot} (\mu g/L)$	Avg. percent removal (%) ^a	Removal range (%)
Plant A	Membrane filtration & UV disinfection	40 ± 30	0.4 ± 0.3	98 ± 2	93.1 - 99.9
Plant B	UV disinfection	60 ± 40	0.8 ± 0.5	98 ± 1	95.4 - 99.9
Plant C	Aeration polishing pond & chlorination	60 ± 40	0.6 ± 0.5	99 ± 2	99.7 – 94.4

Plant D Seasonal chlorination 60 ± 40 0.6 ± 0.3 99 ± 1 94.0 - 99.8

^{a31}Average percent removal was determined by averaging each month's total QAC removal as recommended by the U.S. EPA. ⁴⁵ Error limits are used to show the reproducibility, and as the ranges show, no removals were >100%.

Short chain ATMACs were regularly the class of QACs that were most successfully removed and DADMACs were least removed (Table S16). For example, C_{10} -ATMAC was $99 \pm 1\%$, $95 \pm 2\%$, $100 \pm 0.1\%$ and $100 \pm 1\%$ removed for Plants A-D, respectively. C_{18} -DADMAC had much lower removal in Plants A-D, with $89 \pm 13\%$, $80 \pm 30\%$, $92 \pm 11\%$, $84 \pm 15\%$ removed, respectively. There were higher levels of ATMACs in effluents from Plant C than EtBACs, and there were very similar concentrations of the two classes in Plant D effluents. Effluents from Plants A and B contained more EtBACs than ATMACs. The individual QACs remaining varied from plant to plant, although all had substantial amounts of long chain DADMACs ($C_{14} - C_{18}$) remaining. In all four plants' effluents the most prevalent class was DADMACs, followed by BACs.

Discussion

Comparison to previous measurements of OACs in wastewater influents and effluents

Studies in Austria, China, Spain, Sweden and the United States have quantified QACs in influent and/or effluent (Table S17). $^{20-22,31,33,34,46-48}$ No studies were found that measured EtBACs. Influent individual QAC levels ranged from <LOD to 170 μ g/L in other studies, 20,22,33,34,47,48 a similar range to that observed in the present study, in which influent individual QAC concentrations ranged from <LOD to 80.3 μ g/L and total QACs from 0.43 to 313.4 μ g/L. Martinez-Caraballo et al. measured BACs, DADMACs and ATMACs and found that BACs were present in the highest concentrations (0.068-170 μ g/L), and ATMACs were

present in the lowest (0.049-0.95 μ g/L), with the exception of one sample that had 9.1 μ g/L of C₁₆-ATMAC.²⁰ C₁₂, C₁₄-BAC and C₁₂, C₁₆, C₁₈-DADMAC were all present, with highs of 170, 77, 7.2, 9.9 and 5.9 μ g/L, respectively.²⁰ These results are consistent with the present study, implying QAC usage by chemical type is similar between Minnesota and Austria, and potentially other locations.

In effluents, the study by Martinez-Carballo et al. showed a similar trend to the effluents from Plants A-D; 20 similar concentrations of BACs and DADMACs were found (0.026 – 2.1 µg/L and 0.012 – 0.85 µg/L, respectively), and very little ATMACs were detected (n.d. – 0.40 µg/L). 20 Individual QAC concentrations in this study ranged from non-detect to 2.1 µg/L, and in all studies effluent values ranged from non-detect to 4.1 µg/L while total QACs ranged from 0.01 to 8.27 µg/L. $^{20,21,31,33,46-48}$ Again, these ranges are similar to the range of QACs detected in effluent from Plants A-D, in which concentrations ranged from <LOD to 1.80 µg/L. Pati et al. showed that, on average, C_{18} -DADMAC had the highest concentration in effluents (1.03 µg/L), followed by C_{14} to C_{18} -BACs (0.22, 0.28, 0.11 µg/L, respectively), and C_{10} - C_{14} -DADMAC (0.20, 0.12, 0.12 µg/L, respectively). 31 ATMACs were detected in the lowest concentrations, all <0.01 µg/L. 31 These data are similar to the effluent data presented herein.

In dust particles collected in Indiana homes before and during the COVID-19 pandemic, the three QACs detected regularly in the highest concentrations of QACs measured (C₁₂, C₁₄-BAC and C₁₀-DADMAC) are the three QACs most commonly used in disinfectants (Table S18), which implies that disinfectants were the largest source of household QACs.²³ BACs were present in the highest concentrations in dust particles, a result that is also seen in Plant A, B, and D influents.²³ Neither this study, nor any others, investigated C_{8/10}-DADMAC, a common disinfectant QAC, and that is likely why the present study detected more DADMACs. Overall,

the percent of QAC classes detected for all plants are similar to these dust particle results, which supports the interpretation that use of QACs as disinfectants is leading to their detection in wastewater influents.²³

Of all QACs measured, C_8 -BAC was present in the highest concentrations in Plant B influents and effluents, on average $21 \pm 23 \,\mu\text{g/L}$ and $0.7 \pm 0.4 \,\mu\text{g/L}$ respectively, but it was not observed in high concentrations in any of the other plants (averages ranged from ~0.16-0.75 $\,\mu\text{g/L}$ in influents and 0.005– $0.008 \,\mu\text{g/L}$ in effluents). This QAC is used much less frequently in products than the other BACs, EtBACs and DADMACs, and thus these are surprising results. It is present in disinfectants in the same proportion as C_{10} -BAC, which was not detected in high concentrations in any of the samples from Plant B. It is unlikely that homologues would degrade to C_8 -BAC, as alkyl chains are known to degrade via oxygenases, and BACs also undergo degradation at the ring. ⁴⁹ This presents a research gap on the importance of biodegradation pathways of QACs. One possible explanation is that there is an industrial source contributing a large amount of this QAC to the plant that is not present in the other sewersheds. There are a number of businesses in the Plant B sewershed (hospital, breweries, hair salons, funeral homes) that could be potential sources.

Factors Affecting Influent QAC Concentrations

There are five mixtures of BACs, one mixture of EtBACs and three mixtures of DADMACs commonly used in disinfectant products (Table S19-S20).¹¹ In three of the mixtures, C₁₄-BAC is present in the highest proportion, and in the other two C₁₂-BAC is highest.

Spearman correlations were used to compare percentages in disinfectant mixtures to average percent of BACs in influents from each plant. When comparing the ranking of mixture 4 (Table S19) to the average BACs in influents, there were significant correlations found for all four

plants (Table S22), with the same significance for Plants A and B ($\rho(4)=0.880$, p=0.021) and the same for Plants C and D ($\rho(4)=0.941$, p=0.005). There are also mixtures that contain BACs and DADMACs. Plotting the influent concentrations with these mix formations (Figure S8) demonstrates that the patterns are largely similar, with the key exception that influents are skewed towards C₁₂-BAC compared to the marketed mixtures. This provides additional evidence that disinfectant usage is driving the presence of QACs in wastewater. When all BAC mixtures were compared to percentages of each BAC in influent (for example, [C₁₂-BAC]/[BAC]_{TOTAL}), statistically significant correlations were observed for all plants; Plants B-D had the same relationship ($\rho(4)=0.943$, p=0.005) and Plant A had the strongest possible correlation $(\rho(4)=1.000, p=<0.0001)$. When all mixtures were averaged together for the percentages of BACs, EtBACs and DADMACs used in disinfectants (Table S22) and compared to the same QACs in influents, Plants A ($\rho(9)=0.791$, p=0.004), B ($\rho(9)=0.873$, p=0.0005) and C $(\rho(9)=0.818, r=0.002)$ and D $(\rho(9)=0.782, p=0.004)$ had significant correlations at the 95% CI. The 2020 sales data for individual QACs was strongly correlated to the influent concentrations of individual [QAC]_{disinfectants}, with Plants C (r(10)=0.789, p=0.002) and D (r(9)=0.792, p=0.002) having the strongest Pearson correlations (Figure S9) Plants A (r(10)=0.792, p=0.002)0.582, p = 0.047) and Plant B (r(10) = 0.702, p = 0.016) were significant at the 95% confidence interval as well. The four plants (Plant A (r(10) = 0.783, p = 0.004), Plant B (r(9)=0.835,p=0.010), Plant C (r(10) = 0.609, p = 0.036) and D (r(10)=0.882, p=0.0002)) all had significant correlations at the 95% confidence interval with the 2021 disinfectant sales data as well (Figure S9). Information about all Pearson and Spearman correlations performed is presented in

Tables S21-S22. One potential driver of QAC influent concentration is statewide reported

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

COVID-19 cases and/or SARS-CoV-2 RNA data. For Plant D, SARS-CoV-2 RNA data were available, which is more reliable than daily COVID-19 cases as it directly measures the amount of virus in the region served by the wastewater treatment plant, whereas statewide reported COVID-19 cases may be inaccurate due to lack of self-reporting or testing, especially as at-home testing became popular. There were no significant correlations calculated using the Pearson or Spearman methods between the reported COVID-19 cases (one month, two months, or 30-60 days prior) and monthly [QAC]_{Total} in influent samples. Similarly, viral loads and monthly [QAC]_{Total} were not correlated either. The top 5 highest concentration QACs (Table S22) for each plant were compared to the COVID-19 related data as well, and again, no correlations were found.

The lack of correlations with COVID-19 cases does not necessarily mean that the COVID-19 pandemic is not influencing disinfectant use, especially because the sales data indicates increasing use. 4,7,9,10 Disinfectant usage likely does not align perfectly with COVID-19 cases; more disinfection might have occurred in the first several months of the pandemic when disinfection of every surface was highly encouraged, which is not when cases were the highest in Minnesota. In addition, industrial and commercial applications of disinfectants likely regularly occur due to more rigid cleaning practices (e.g., in food production) and might not have fluctuated drastically throughout the pandemic. Lastly, another potential reason for the lack of correlations is that samples were only taken once a month at most and continuous data would be better for assessing these correlations. Nonetheless, there is consistent input of QACs to wastewater treatment plants.

Factors affecting QAC removal

The wastewater for this study was collected from four plants with differing sizes and treatment methods. Despite differences in treatment trains and sizes, 98% of QACs were removed from the liquid effluent in all plants, showing that, even in systems without specialized treatment (such as membrane filtration) or in large capacity systems (such as Plant D), QACs are being successfully removed from liquid. In comparing the average effluent values in Table 2 or the values in in Nov. 2020 (0.49, 0.57, 0.83, and 0.47 μ g/L, for plants A-D respectively) to those measured in Nov. 2018 (0, 0.5, 0.1, and 0.5 μ g/L), there is not a clear difference in what is being discharged to the environment, but it not possible to be certain given only one sample point prior to the COVID-19 pandemic from these plants.

QACs are removed in wastewater treatment by a combination of aerobic biodegradation and sorption to the activated sludge. ^{13,16,39} Certainly, a portion of the removal observed is merely phase transfer, and future evaluation of concentrations in biosolids is needed. Overall, all BACs, ATMACs and EtBACs were removed more successfully than long chain DADMACs. While no studies to date have investigated the degradation of EtBACs, a few studies have compared degradation of BACs and ATMACs with equivalent alkyl chain lengths. Overall, these studies found that biodegradability decreases with increasing alkyl chain length, and further decreases when a benzyl group is substituted in place of a methyl group. ^{2,16,50–53} In one study, the degradation rate of C₁₄-ATMAC was five times faster that of C₁₄-BAC. ⁵³ Another study found that DADMACs, with two alkyl chains, degrade five times slower than ATMACs. Overall, ATMACs have been shown to aerobically degrade the fastest. Because EtBACs are structurally similar to BACs, it would be likely based on this information that their biodegradation would be slower than ATMACs too. ⁵³ This potentially explains why long chain DADMACs appear to

have very low removal compared to the other compounds; their degradation is much slower and thus the retention times of the plants may not be long enough for these compounds to degrade.

 K_{ow} values (Tables S23-24) were used to quantify whether hydrophobicity correlated to QAC removal during treatment. Correlations were used to determine 1) how hydrophobicity of the different classes affected removals and 2) whether chain length impacts removal within QAC classes. When log K_{ow} values were compared to percent of QACs removed during treatment for 11 QACs in all four plants, significant, yet negative, Pearson and Spearman correlations resulted (Figure S9). For these correlations only removal data for C_{12} and C_{16} -ATMAC, C_{12} - C_{16} -BACs and C_{8} - C_{10} , C_{14} - C_{16} DADMACs were used. The strongest Pearson correlations occurred for the percent removed from Plants C (r(10)=0.901, p=<0.001) and D (r(10)=0.927, p=<0.0001) (Figure S9). QACs that are removed by sorption are removed from the liquid effluent, but are not removed from the total outlows from the plant because any QACs sorbed to biosolids are leaving the treatment plant.

When looking specifically at removal based on chain length in specific classes, there were no observed Pearson or Spearman correlations for ATMACs from any plants. The increasing chain length of BACs was only correlated with percent removal from Plant B at the 90% CI (r(5)=0.751, p=0.052). Increasing chain length of DADMACs was negatively correlated with removal from all plants (Plant A: r(5)=0.784, p=0.037, Plant B: r(5)=.885, p=0.008, Plant C: r(5)=0.921, p=0.003, Plant D: r(5)=0.892, p=0.007), all at the 95% confidence interval.

The negative correlations observed contradict previous data from papers showing that the more hydrophobic a QAC is, the more easily it is removed by sorption to activated sludge. ¹³ A study by Ismail et al. investigated sorption of four QACs (C₁₂-ATMAC, C₁₆-ATMAC, C₁₂-BAC and C₁₆-BAC) to four different types of sludges and found that the longer the chain length, the

higher the extent of sorption.¹³ The type of sludge did not matter as much as the structure of the QACs. While this study did not investigate as many QACs and did not investigate any DADMACs, the results imply that higher chain length compounds should be better removed by sorption. This is not what our Pearson or Spearman correlation coefficients indicate for all groups except BACs in Plant A wastewater. One potential reason for this is that shorter chain QACs have been shown to be more biodegradable, leading to better removal than longer chain QACs. ⁵³ The negative correlations all mean that as chain length increases, percent remaining in effluent increases, which potentially implies that as chain length increases, removal decreases at these plants. While K_{ow} may predict sorption to sludge, these results show that it does not necessarily predict overall removal, which is a combination of biodegradation and sorption.

Environmental Significance

This study was the first to collect influent and effluent samples from a set of wastewater treatment plants over an extended time period, and the first to report EtBAC concentrations. EtBACs are ingredients in many widely used products and these results indicate that EtBACs should be evaluated when studying environmental QACs because they make up more than 10% of the QAC load. Toxicity and impacts on antibiotic resistance from environmental levels of EtBACs should be studied along with the more common BACs and DADMACs. Thus, it is important to study their presence and removal in wastewater. The QACs detected in the highest concentrations were almost all QACs used in disinfectants, and sales data correlated to levels in influent, indicating use of QACs as disinfectants are driving inputs to wastewater treatment plants. If sales continue to increase, it is likely loads to the plants will as well. While COVID-19 cases/SARS-CoV-2 RNA data were not a direct indicator of QAC concentrations, increased

549 use/sales of QACs for disinfectants driven by the COVID-19 pandemic appears to be an 550 important factor in loadings. While most QACs are being successfully removed (~98% for all 551 plants) despite varying unit operations, the balance of sorption to biosolids and biodegradation 552 needs further study. Over half of the biosolids in the United States are land applied, thus 553 providing another potential pathway for QACs into the environment. Even with effective 554 removal, levels in the range of 1-2 μg/L total QACs are still being released into the environment 555 which is higher than many other classes of emerging contaminants present in wastewater 556 effluent. Because QACs have been linked to antibiotic resistance, further study of QACs and 557 associated resistance genes in surface waters receiving effluents is warranted. 558 559 **Author Contact Information** 560 Anna K. Mahony Department of Civil, Environmental, and Geo-Engineering University of Minnesota, 500 561 Pillsbury Dr. SE, Minneapolis, MN 55455, USA; mahon445@umn.edu 562 563 564 Patrick J. McNamara 565 Department of Civil, Construction, Environmental Engineering, Marquette University, 1515 566 West Wisconsin Ave, Milwaukee, WI 53233 USA; patrick.mcnamara@marquette.edu 567 568 William A. Arnold 569 Department of Civil, Environmental, and Geo-Engineering University of Minnesota, 500 570 Pillsbury Dr. SE, Minneapolis, MN 55455, USA; arnol032@umn.edu 571 572 **Supporting Information** 573 List of chemicals, detailed experimental procedures, analytical procedure, LC-MS/MS 574 parameters, statistical correlations, water quality data, COVID-19 data and influent and effluent 575 QAC concentrations for all compounds tested. This information is available at 576 http://pubs.acs.org.

577

Acknowledgements

- 579 Funding for this project was provided by the National Science Foundation (CBET 2051313 and
- 580 2051336) and a graduate fellowship to A.M. from the University of Minnesota Department of
- 581 Civil, Environmental, and Geo- Engineering, Thanks to Sydney Olson, Ari Pouchak and Nam
- Anh Nguyen for help with extractions. We especially thank the personnel at the participating
- wastewater treatment plants for their help in collecting samples and providing information and
- data about plant operations.

585 586

578

References

- Boethling, R. S. Environmental Fate and Toxicity in Wastewater Treatment of Quaternary Ammonium Surfactants. *Water Res.* **1984**, *18* (9), 1061–1076.
- Zhang, C.; Cui, F.; Zeng, G.; Jiang, M.; Yang, Z.; Yu, Z.; Zhu, M.; Shen, L. Quaternary Ammonium Compounds (QACs): A Review on Occurrence, Fate and Toxicity in the Environment. *Sci. Total Environ.* **2015**, *518–519*, 352–362. https://doi.org/10.1016/j.scitotenv.2015.03.007.
- 593 (3) Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence 594 of Resistance to Antibacterial Agents: The Role of Quaternary Ammonium Compounds -595 A Critical Review. *Int. J. Antimicrob. Agents* **2012**, *39* (5), 381–389. 596 https://doi.org/10.1016/j.ijantimicag.2012.01.011.
- Arnold, W. A.; Blum, A.; Branyan, J.; Bruton, T. A.; Carignan, C. C.; Cortopassi, G.;
 Datta, S.; DeWitt, J.; Doherty, A.-C.; Halden, R. U.; Harari, H.; Hartmann, E. M.; Hrubec,
 T. C.; Iyer, S.; Kwiatkowski, C. F.; LaPier, J.; Li, D.; Li, L.; Muñiz Ortiz, J. G.; Salamova,
 A.; Schettler, T.; Seguin, R. P.; Soehl, A.; Sutton, R.; Xu, L.; Zheng, G. Quaternary
 Ammonium Compounds: A Chemical Class of Emerging Concern. *Environ. Sci. Technol.*2023, 57 (20), 7645–7665. https://doi.org/10.1021/acs.est.2c08244.
- United States Environmental Protection Agency. *Chemical Data Reporting*. epa.gov. https://www.epa.gov/chemical-data-reporting/access-cdr-data (accessed 2023-10-1).
- 605 (6) Barber, O. W.; Hartmann, E. M. Benzalkonium Chloride: A Systematic Review of Its Environmental Entry through Wastewater Treatment, Potential Impact, and Mitigation Strategies. *Crit. Rev. Environ. Sci. Technol.* **2022**, *52* (15), 2691–2719. https://doi.org/10.1080/10643389.2021.1889284.
- Hora, P. I.; Pati, S. G.; McNamara, P. J.; Arnold, W. A. Increased Use of Quaternary
 Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration
 of Environmental Implications. *Environ. Sci. Technol. Lett.* **2020**, 7 (9), 622–631.
 https://doi.org/10.1021/acs.estlett.0c00437.
- 613 (8) United States Environmental Protection Agency. Chemical Data Reporting under the
 614 Toxic Substances Control Act. https://www.epa.gov/chemical-data-reporting (Accessed
 615 2023-10-1).

- Ohama, K.; Kumar Patel, S.; Kumar, R.; Masand, R.; Rana, J.; Iqbal Yatoo, Mohd.;
 Tiwari, R.; Sharun, K.; Mohapatra, R. K.; Natesan, S.; Dhawan, M.; Ahmad, T.; Bin
 Emran, T.; Singh Malik, Y.; Harapan, H. The Role of Disinfectants and Sanitizers during
 COVID-19 Pandemic: Advantages and Deleterious Effects on Humans and the
 Environment. *Environ. Sci. Pollut. Res.* 2021, 28, 34211–34228.
 https://doi.org/10.1007/s11356-021-14429-w/Published.
- 622 (10) Eldeirawi, K.; Huntington-Moskos, L.; Nyenhuis, S. M.; Polivka, B. Increased 623 Disinfectant Use among Adults with Asthma in the Era of COVID-19. *J. Allerg. Cl. Imm-*624 *Pract.* **2021**, *9* (3), 1378-1380.e2. https://doi.org/10.1016/j.jaip.2020.12.038.
- 625 (11) United States Environmental Production Agency. *About List N: Disinfectants for Coronavirus (COVID-19)*. epa.gov. https://www.epa.gov/coronavirus/about-list-n-disinfectants-coronavirus-covid-19-0 (accessed 2023-01-03).
- 628 (12) Versteeg, D. J.; Feijtel, T. C. J.; Cowan, C. E.; Ward, T. E.; Rapaport, R. A. An
 629 Environmental Risk Assessment for DTDMAC in the Netherlands. *Chemosphere* **1992**, *24*630 (5), 641–662.
- 631 (13) Ismail, Z. Z.; Tezel, U.; Pavlostathis, S. G. Sorption of Quaternary Ammonium 632 Compounds to Municipal Sludge. *Water Res.* **2010**, *44* (7), 2303–2313. 633 https://doi.org/10.1016/j.watres.2009.12.029.
- 634 (14) Jia, Y.; Lu, H.; Zhu, L. Molecular Mechanism of Antibiotic Resistance Induced by Mono-635 and Twin-Chained Quaternary Ammonium Compounds. *Sci. Total Environ.* **2022**, *832*, 636 155090 https://doi.org/10.1016/j.scitotenv.2022.155090.
- (15) Martínez-Carballo, E.; González-Barreiro, C.; Sitka, A.; Kreuzinger, N.; Scharf, S.; Gans,
 638 O. Determination of Selected Quaternary Ammonium Compounds by Liquid
 639 Chromatography with Mass Spectrometry. Part II. Application to Sediment and Sludge
 640 Samples in Austria. *Environ. Pollut.* 2007, 146 (2), 543–547.
 641 https://doi.org/10.1016/j.envpol.2006.07.016.
- 642 (16) Ren, R.; Li, K.; Zhang, C.; Liu, D.; Sun, J. Biosorption of Tetradecyl Benzyl Dimethyl 643 Ammonium Chloride on Activated Sludge: Kinetic, Thermodynamic and Reaction 644 Mechanisms. *Bioresour. Technol.* **2011**, *102* (4), 3799–3804. 645 https://doi.org/10.1016/j.biortech.2010.12.032.
- Chiaia-Hernandez, A. C.; Krauss, M.; Hollender, J. Screening of Lake Sediments for Emerging Contaminants by Liquid Chromatography Atmospheric Pressure
 Photoionization and Electrospray Ionization Coupled to High Resolution Mass
 Spectrometry. *Environ. Sci. Technol.* 2013, 47 (2), 976–986.
 https://doi.org/10.1021/es303888v.
- 651 (18) Ruan, T.; Song, S.; Wang, T.; Liu, R.; Lin, Y.; Jiang, G. Identification and Composition of Emerging Quaternary Ammonium Compounds in Municipal Sewage Sludge in China.

 653 Environ. Sci. Technol. 2014, 48 (8), 4289–4297. https://doi.org/10.1021/es4050314.
- Li, X.; Brownawell, B. J. Analysis of Quaternary Ammonium Compounds in Estuarine
 Sediments by LC-ToF-MS: Very High Positive Mass Defects of Alkylamine Ions as
 Powerful Diagnostic Tools for Identification and Structural Elucidation. *Anal. Chem.* 2009, 81 (19), 7926–7935. https://doi.org/10.1021/ac900900y.
- (20) Martínez-Carballo, E.; Sitka, A.; González-Barreiro, C.; Kreuzinger, N.; Fürhacker, M.;
 Scharf, S.; Gans, O. Determination of Selected Quaternary Ammonium Compounds by
 Liquid Chromatography with Mass Spectrometry. Part I. Application to Surface, Waste

- and Indirect Discharge Water Samples in Austria. *Environ. Pollut.* **2007**, *145* (2), 489–496. https://doi.org/10.1016/j.envpol.2006.04.033.
- 663 (21) Clara, M.; Scharf, S.; Scheffknecht, C.; Gans, O. Occurrence of Selected Surfactants in Untreated and Treated Sewage. *Water Res* **2007**, *41* (19), 4339–4348. https://doi.org/10.1016/j.watres.2007.06.027.
- (22) Ferrer, I.; Furlong, E. T. Identification of Alkyl Dimethylbenzylammonium Surfactants in
 Water Samples by Solid-Phase Extraction Followed by Ion Trap LC/MS and LC/MS/MS.
 Environ. Sci. Technol. 2001, 35 (12), 2583–2588. https://doi.org/10.1021/es001742v.
- Zheng, G.; Filippelli, G. M.; Salamova, A. Increased Indoor Exposure to Commonly Used
 Disinfectants during the COVID-19 Pandemic. *Environ. Sci. Technol. Lett.* 2020, 7 (10),
 760–765. https://doi.org/10.1021/acs.estlett.0c00587.
- 672 (24) Tandukar, M.; Oh, S.; Tezel, U.; Konstantinidis, K. T.; Pavlostathis, S. G. *The Role of Quaternary Ammonium Compounds on Antimicrobial Resistance*.
- 674 (25) Games, L. M.; King, J. E.; Larson, R. J. Fate and Distribution of a Quaternary Ammonium 675 Surfactant, Octadecyltrimethylammonium Chloride (OTAC), in Wastewater Treatment. 676 Environ. Sci. Technol. 1982, 16, 483–488.
- 677 (26) Amos, G. C. A.; Ploumakis, S.; Zhang, L.; Hawkey, P. M.; Gaze, W. H.; Wellington, E.
 678 M. H. The Widespread Dissemination of Integrons throughout Bacterial Communities in a
 679 Riverine System. *ISME J.* **2018**, *12* (3), 681–691. https://doi.org/10.1038/s41396-017680 0030-8.
- 681 (27) Gillings, M. R. Integrons: Past, Present, and Future. *Microbiol. Mol. Biol. Rev.* **2014**, 78 (2), 257–277. https://doi.org/10.1128/mmbr.00056-13.
- Gillings, M. R.; Xuejun, D.; Hardwick, S. A.; Holley, M. P.; Stokes, H. W. Gene
 Cassettes Encoding Resistance to Quaternary Ammonium Compounds: A Role in the
 Origin of Clinical Class 1 Integrons? *ISME J.* 2009, 3 (2), 209–215.
 https://doi.org/10.1038/ismej.2008.98.
- Gillings, M. R.; Holley, M. P.; Stokes, H. W. Evidence for Dynamic Exchange of Qac
 Gene Cassettes between Class 1 Integrons and Other Integrons in Freshwater Biofilms.
 FEMS Microbiol. Lett. 2009, 296 (2), 282–288. https://doi.org/10.1111/j.1574-6968.2009.01646.x.
- (30) Ding, W. H.; Liao, Y. H. Determination of Alkylbenzyldimethylammonium Chlorides in
 River Water and Sewage Effluent by Solid-Phase Extraction and Gas
 Chromatography/Mass Spectrometry. *Anal. Chem.* 2001, 73 (1), 36–40.
 https://doi.org/10.1021/ac000655i.
- 695 (31) Pati, S. G.; Arnold, W. A. Comprehensive Screening of Quaternary Ammonium 696 Surfactants and Ionic Liquids in Wastewater Effluents and Lake Sediments. *Environ. Sci.:* 697 *Processes and Impacts* **2020**, *22* (2), 430–441. https://doi.org/10.1039/c9em00554d.
- 698 (32) Tezel, U.; Pavlostathis, S. Role of Quaternary Ammonium Compounds on Antimicrobial Resistance in the Environment. . *Antimicrob. Resist. Environ.* **2011**, 349–387.
- Östman, M.; Lindberg, R. H.; Fick, J.; Björn, E.; Tysklind, M. Screening of Biocides,
 Metals and Antibiotics in Swedish Sewage Sludge and Wastewater. Water Res. 2017, 115,
 318–328. https://doi.org/10.1016/j.watres.2017.03.011.
- 703 (34) Zhu, F. J.; Ma, W. L.; Xu, T. F.; Ding, Y.; Zhao, X.; Li, W. L.; Liu, L. Y.; Song, W. W.; Li, Y. F.; Zhang, Z. F. Removal Characteristic of Surfactants in Typical Industrial and Domestic Wastewater Treatment Plants in Northeast China. *Ecotoxicol. Environ. Saf.* 2018, 153, 84–90. https://doi.org/10.1016/j.ecoenv.2018.02.001.

- (35) Li, D.; Gao, J.; Dai, H.; Wang, Z.; Cui, Y.; Zhao, Y.; Zhou, Z. Fates of Quaternary
 Ammonium Compound Resistance Genes and the Corresponding Resistant Strain in
 Partial Nitrification/Anammox System under Pressure of Hexadecyl Trimethyl
 Ammonium Chloride. *Water Res.* 2022, 217, 118395.
 https://doi.org/10.1016/j.watres.2022.118395.
- 712 (36) Yang, J.; Tezel, U.; Li, K.; Pavlostathis, S. G. Prolonged Exposure of Mixed Aerobic Cultures to Low Temperature and Benzalkonium Chloride Affect the Rate and Extent of Nitrification. *Bioresour. Technol.* **2015**, *179*, 193–201. https://doi.org/10.1016/j.biortech.2014.12.030.
- Kim, T.; Hite, M.; Rogacki, L.; Sealock, A. W.; Sprouse, G.; Novak, P. J.; LaPara, T. M.
 Dissolved Oxygen Concentrations Affect the Function but Not the Relative Abundance of
 Nitrifying Bacterial Populations in Full-Scale Municipal Wastewater Treatment
 Bioreactors during Cold Weather. Sci. Total. Environ. 2021, 781, 146719.
 https://doi.org/10.1016/j.scitotenv.2021.146719.
- 721 (38) Minnesota COVID-19 Response. *Data and Statistics on COVID-19 in Minnesota*. mn.gov. https://mn.gov/covid19/data/index.jsp (accessed 2023-01-03).
- 723 (39) Tezel, U. Fate and Effect of Quaternary Ammonium Compounds in Biological Systems.
 724 Doctor of Philosophy, Georgia Institute of Technology, 2009.
- 725 (40) MN Department of Agriculture. *MINNESOTA PESTICIDE SALES INFORMATION*.
 726 mda.state.mn.us. https://www.mda.state.mn.us/pesticide-fertilizer/pesticide-use-sales-data (accessed 2023-01-03).
- 728 (41) Breuning, D. *Non-Agricultural Pesticide Sales 2019*. MN Department of Agriculture. 729 https://www.mda.state.mn.us/sites/default/files/docs/2022-10/nonagpesticidesales2019.pdf 730 (accessed 2023-10-1).
- 731 (42) Breuning, D. *Non-Agricultural Pesticide Sales 2020*. MN Department of Agriculture.
 732 https://www.mda.state.mn.us/sites/default/files/docs/2022-10/nonagpesticidesales2020.pdf
 733 (accessed 2023-10-1).
- 734 (43) Breuning, D. *Non-Agricultural Pesticide Sales 2021*. MN Department of Agriculture.
 735 https://www.mda.state.mn.us/sites/default/files/docs/2022-10/nonagpesticidesales2021.pdf
 736 (accessed 2023-10-1).
- 737 (44) R Core Team. R: A Language and Environment for Statistical Computing. R Foundation 738 for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (accessed 2023-06-739 01).
- 740 (45) U.S. EPA. Local Limits Development Guidance; 2004. EPA 833-R-04-002A.
 741 https://www3.epa.gov/npdes/pubs/final_local_limits_guidance.pdf (Accessed 2023-10-1).
- 742 (46) Peng, X. T.; Shi, Z. G.; Feng, Y. Q. Rapid and High-Throughput Determination of
 743 Cationic Surfactants in Environmental Water Samples by Automated on-Line Polymer
 744 Monolith Microextraction Coupled to High Performance Liquid Chromatography-Mass
 745 Spectrometry. *J. Chromatogr. A* **2011**, *1218* (23), 3588–3594.
 746 https://doi.org/10.1016/j.chroma.2011.04.009.
- 747 (47) Merino, F.; Rubio, S.; Pérez-Bendito, D. Solid-Phase Extraction of Amphiphiles Based on 748 Mixed Hemimicelle/Admicelle Formation: Application to the Concentration of 749 Benzalkonium Surfactants in Sewage and River Water. *Anal. Chem.* **2003**, *75* (24), 6799– 750 6806. https://doi.org/10.1021/ac030224a.
- 751 (48) Li, W. L.; Zhang, Z. F.; Sparham, C.; Li, Y. F. Validation of Sampling Techniques and SPE-UPLC/MS/MS for Home and Personal Care Chemicals in the Songhua Catchment,

753 Northeast China. *Sci. Total Environ.* **2020**, *707*, 136038. 754 https://doi.org/10.1016/j.scitotenv.2019.136038.

- (49) Wu, Q.; Zhao, L.; Song, R.; Ma, A. Research Progress of Surfactant Biodegradation. In
 IOP C. Ser. Earth Env.; Institute of Physics Publishing, 2019; Vol. 227, 052023.
 https://doi.org/10.1088/1755-1315/227/5/052023.
- 758 (50) Nishiyama, N.; Nishihara, T. Biodegradation of Dodecyltrimethylammonium Bromide by 759 Pseudomonas Fluorescens F7 and F2 Isolated from Activated Sludge. *Microbes Environ* 760 **2002**, *17* (4), 164–169.
- 761 (51) Nishihara, T.; Okamoto, T.; Nishiyama, N. Biodegradation of Didecyldimethylammonium
 762 Chloride by Pseudomonas Fluorescens TN4 Isolated from Activated Sludge. *J. Appl.* 763 *Microbiol.* 2000, 88, 641–647.
- 764 (52) García, M. T.; Ribosa, I.; Guindulain, T.; Sánchez-Leal, J.; Vives-Rego, J. Fate and Effect
 765 of Monoalkyl Quaternary Ammonium Surfactants in the Aquatic Environment. *Environ. Pollut.* 2001, 111, 169–175.
- 767 (53) Tezel, U.; Tandukar, M.; Martinez, R. J.; Sobecky, P. A.; Pavlostathis, S. G. Aerobic
 768 Biotransformation of N-Tetradecylbenzyldimethylammonium Chloride by an Enriched
 769 Pseudomonas Spp. Community. *Environ. Sci. Technol.* 2012, 46 (16), 8714–8722.
 770 https://doi.org/10.1021/es300518c.