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Abstract—Recent advances in sensing and computing technology have led to the proliferation of Cyber-Physical Systems (CPS) in
safety-critical domains. However, the increasing device complexity, shrinking technology sizes, and shorter time to market have
resulted in significant challenges in ensuring the reliability, safety, and security of CPS. This paper presents a hybrid knowledge and
data-driven approach for designing run-time context-aware safety monitors that can detect early signs of hazards and mitigate them in
CPS. We propose a framework for formal specification of unsafe system context using Signal Temporal Logic (STL) combined with two
optimization approaches for scenario-specific refinement and integration of STL specifications using data collected from closed-loop
CPS simulations. We demonstrate the effectiveness of our approach in simulation using an autonomous driving system (ADS) and two
closed-loop artificial pancreas systems (APS) as well as a publicly-available clinical trial dataset. The results show that a safety monitor
developed with the proposed approaches demonstrates up to 4.7 times increase in average prediction accuracy (F1 score) over
several well-designed baseline monitors while reducing both false-positive and false-negative rates in most scenarios.
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1 INTRODUCTION

RAPID advances in sensing and computing technology
have led to the proliferation of Cyber-Physical Systems

(CPS) in various safety-critical application domains like in-
telligent health care and autonomous driving. However, the
increasing device complexity, shrinking technology sizes,
and shorter time to market have resulted in significant
challenges in ensuring the reliability, safety, and security.
This is evident from the increasing number of reports
on accidental faults and malicious attacks targeting CPS
sensors, actuators, or control software that jeopardize the
system operation at run-time and lead to catastrophic con-
sequences [1]–[4].

Significant progress has been made in improving CPS re-
silience using correct-by-construction techniques like quan-
titative risk assessment [5], control-theoretic hazard analysis
[6], and model-based design [7], verification [8], and con-
trol synthesis [9] using formal and mathematical models.
However, CPS are still vulnerable to residual faults and
security vulnerabilities that might evade even the most
rigorous design and verification methods and appear at run
time [10]. Thus, run-time monitoring and anomaly detection
are essential for complementing such offline analysis and
assurance methods.

Model-based run-time monitoring approaches for CPS
rely on developing dynamic models of the physical pro-
cesses, environment, and operator behavior for combined
cyber-physical monitoring and more accurate detection of
anomalies [11], [12]. However, developing models that can
fully capture the complex system dynamics and unpre-
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dictable human behavior is challenging, and the use of
simple linear models [13] often leads to inaccuracy and false
alarms [14]. Further, most existing methods focus on detect-
ing safety violations after they occur, which is often too late
for timely recovery and mitigation [15]. On the other hand,
recent data-driven approaches to anomaly detection in CPS
use machine learning (ML) for improved detection accuracy
and latency [16]–[19]. Nevertheless, they suffer from the
common problems of ML-based systems, including limited
availability of labeled datasets, lack of model transparency,
and suboptimal performance for corner cases [20]–[23].

In this paper, we propose a hybrid model/knowledge
and data-driven approach to the design and synthesis of
context-aware safety monitors that can be integrated with
CPS control software at design time to continuously detect
and mitigate the execution of unsafe controller commands
caused by accidental faults or malicious attacks at run-time
(Fig. 1). Our approach combines the formal specification
of safety context and unsafe control commands based on
hazard analysis and domain knowledge with data-driven
optimization techniques to generate safety properties to be
checked by the run-time monitor. We use collected data from
the closed-loop CPS simulation or run-time operation to
refine the safety properties with relevant parameters or to
train ML models under the guidance of the generated safety
specifications. The monitor is synthesized as a wrapper
around the control software with only access to the input-
output interface (sensor and actuator values) to perform
real-time context inference and execution of safety specifi-
cation formulas for preemptive detection of unsafe control
commands and prediction of hazards.

The main contributions of the paper are as follows:
• Designing a framework to generate formal safety context

specifications that can predict hazards for a reasonable
time window in CPS. This framework closes the gap be-
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Fig. 1: CPS Control System with the Context-aware Safety Monitor and Fault Propagation Timeline.
tween design-time control-theoretic hazard analysis and
run-time safety monitoring (Section 3.2). The generated
signal temporal logic (STL) formulas can be used for run-
time identification of unsafe control actions that poten-
tially lead to hazards in different CPS with the same
functional specification.

• Proposing two approaches of combining domain knowl-
edge with data-driven optimization techniques for safety
context specification and learning (Section 3.4), including
(i) weakly supervised learning to optimize the scenario-
specific STL formulas for safety monitoring using both
fault-free and faulty data collected from the closed-loop
cyber-physical system; (ii) neural network models trained
using fault-free and faulty data that are regularized us-
ing a custom loss function to encourage satisfying the
scenario-specific safety specifications and improve the
transparency of the ML-based monitors.

• Developing a reaction time estimator that can predict the
maximum time budget within which the control software
should issue a mitigation action to prevent potential haz-
ards. The proposed reaction time estimator could work
together with the safety monitors to identify the recovery
action requirements and restrain false alarms (Section 3.6).

• Demonstrating the generalizability of our proposed ap-
proach by applying it to two closed-loop artificial pan-
creas systems (APS) and an autonomous driving system
(ADS) (Section 4). We evaluate the proposed context-
aware monitor in comparison to several baselines that rep-
resent state-of-the-art solutions in anomaly detection and
safety monitoring literature, including general guidelines,
model predictive control, and machine learning (ML) (Sec-
tion 5.3). Experimental results show that the safety moni-
tors developed using our approach achieve up to 4.7 times
increase in average prediction accuracy (F1 score) while
maintaining low false-positive and false-negative rates
(Section 5.4). The effectiveness of the proposed method
has also been attested to using a publicly-available dataset
from a clinical trial of 168 diabetes patients (Section 5.4.6).
Further, the developed safety monitor has the ability to
protect the target system from stealthy attacks (e.g., surge
attacks or bias attacks [14]) (Section 5.4.5).

2 PRELIMINARIES
In CPS, interconnected software and hardware components
are deeply intertwined with the physical world. The core of
CPS are controllers that keep the system robust to the unex-
pected environment by estimating the physical system state

based on sensor readings and changing the state through
sending control commands to actuators according to desired
control targets and strategies. Safety hazards and accidents
might occur as a result of unsafe commands issued by the
controller due to accidental faults or malicious attacks on the
controller (algorithm, software, or hardware), sensor data,
or actuators.

Vulnerable Controllers: Most previous research on CPS
safety and security have focused on detecting safety-critical
faults or attacks on sensor data before they reach the con-
troller by implementing redundant hardware [24] or soft-
ware [18] components, quickest change detection techniques
[14], invariant monitoring [25], [26], or ML-based anomaly
detection [16]. However, less attention has been paid to acci-
dental faults that directly compromise the control software
or hardware functionality or attacks that exhibit the mali-
cious behavior after the controller has received the sensor
data. These attacks or faults could exploit the vulnerabilities
in the communication channels [1], [27], mobile and app-
based controllers [28], and software development processes
[29], bypass the defense mechanisms mentioned above, and
expose the system and its users to potential safety hazards.

We aim to address this problem by designing a run-time
monitor that detects potentially unsafe control commands
issued by the CPS controller, regardless of their originating
causes, and stops their execution on the actuators to prevent
hazards. We focus on the faults/attacks that target the con-
troller itself [2], [27], [30], [31] or manifest on the controller
output. The proposed monitor only requires access to the
input-output interface for observing the sensor data and
actuator commands, inferring system context, and making
decisions (Fig. 1). So it can be integrated as a wrapper
with the target CPS controller without any changes to the
controller itself.

We assume the sensor data received by the monitor is
protected using the aforementioned methods in the litera-
ture. Also, the safety monitor should be designed with more
straightforward and transparent logic than the controller
to be easily verified and made tamper-proof (e.g., using
protective memories or hardware isolation [32] [33]). To
minimize the chance of being compromised by attackers and
maximize the protected area, the safety monitor should be
implemented at the latest computation stage in the control
system and as close as possible to the actuators (e.g., inside
the insulin pump for APS).

Cyber-Physical System Context: Safety, as an emergent
property of CPS, is context-dependent and should be en-
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sured by applying a set of constraints on the system’s behav-
ior and control actions given the current system state [17],
[34]–[37]. Our goal is to design a context-aware monitoring
system that (i) evaluates whether the control commands
issued by the controller given the current inferred context
might lead to any future hazards and (ii) prevents the
delivery of unsafe commands by issuing context-specific
corrective commands without introducing new hazards [38].

However, designing such a context-aware monitoring
system is challenging as it requires precise modeling and
analysis of the multi-dimensional system context, including
the physical processes, the environment, the cyber compo-
nents that affect the physical processes, and their interac-
tions in both temporal and spatial domains. Although recent
ML-based approaches attempt to address the challenges in
developing complex physical models by learning from data
[12], [27], [39], [40], they still suffer from limited generaliza-
tion and lack of transparency [21], which are essential for
ensuring user trust and successful recovery and mitigation.

To address these challenges, we combine the modeling of
domain knowledge and human expertise with data-driven
techniques to improve the monitor’s accuracy and trans-
parency. Specifically, we adopt the control-theoretic notion
of system context from the STAMP accident causality model
[34] and propose a formal framework for specification and
design of context-aware hazard detection and mitigation re-
quirements, which are further optimized with data collected
from closed-loop simulation or actual system operation. Our
proposed framework bridges the gap between the high-level
safety requirements identified from hazard analysis and the
low-level formal specification of safety properties used for
run-time monitoring.

Preemptive Hazard Detection: Previous works on
anomaly detection have mainly focused on improving the
accuracy in detecting faults/attacks, with less attention to
hazard prediction or to how detection latency can impact
recovery and hazard mitigation. Fig. 1 presents the fault
propagation timeline in a typical CPS, from which we can
observe that there is a time gap between the activation
of faults/attacks and their propagation to cause erroneous
cyber states, the generation of unsafe control commands
in the cyber layer, and finally propagation of errors to the
physical layer and occurrence of hazards. We define the time
between activation of a fault to the occurrence of a hazard
as Time-to-Hazard (TTH) and the time difference between
the detection of anomaly and the occurrence of a hazard
as Reaction Time (see Fig. 9 in Section 5.4). Reaction Time
measures the timeliness of the monitor and whether the time
left is enough to mitigate potential hazards and recover the
control system by transitioning to a safe state. It indicates
the maximum time budget for taking any mitigation actions
before the hazard occurs, with positive values representing
early detection.

Our goal is to ensure successful hazard mitigation by
maximizing reaction time and minimizing the monitor de-
tection latency. To achieve this, we focus on (i) detecting
potential unsafe control commands that indicate early signs
of impending hazards rather than detecting the hazardous
states, (ii) minimizing the complexity of run-time monitor
logic, and (iii) developing a reaction time estimator that
predicts the maximum time left to the occurrence of hazards
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Fig. 2: Framework for Design of Context-aware Monitors.

and helps with identifying potential false alarms.

3 CONTEXT-AWARE MONITOR DESIGN

Fig. 2 shows the overall framework for designing context-
aware safety monitors. Our approach starts with generating
formal safety context specifications (SCS) from hazard anal-
ysis. Experimental data from the operation/simulation of
the closed-loop system is used to refine the safety specifica-
tions with relevant parameters. The formalized safety speci-
fication is integrated into a monitor for run-time monitoring
through either a weakly supervised approach or by training
an ML model with a custom loss function. The monitor is
then synthesized as a wrapper around the controller to per-
form real-time execution of safety specification formulas for
preemptive detection of hazards. The information generated
by the safety monitor, including the predicted hazard type
and reaction time, will define the requirements for context-
specific hazard mitigation strategies.

3.1 Model of System Dynamics
In every control cycle t, the CPS controller uses the sen-
sor measurements xt = (x1t , . . . , xnt) 2 Rn to estimate
the physical system status and decide on a control ac-
tion, ut, from a finite set of high-level control actions
U = {u1, . . . , ur} (e.g., in ADS, high-level control com-
mands Acceleration and Deceleration). Each high-level control
action will be translated into the values of different low-
level control output variables (e.g., gas and brake) which
are then sent to the actuators. Upon execution of the issued
control command by the actuators, the physical system will
transition to a new state estimated by xt+1 in the state space.

3.1.1 Regions of Operation
We identify the unsafe/hazardous region Xh as the set of
system states that lead to accidents and can be further parti-
tioned into regions associated with particular safety hazard
types Hi. The safe/target region X⇤ can be defined based on
the goals and guidelines of the specific application. The set
of states not included by either of these regions is referred to
as the possibly hazardous region X⇤<h. Example regions of
operation for APS and ADS are presented in Fig. 3. The goal
of the APS controller is to keep the patient’s Blood Glucose
(BG) in the target range of 120-150 mg/dL, while the ADS
controller’s goal is to maintain a safe following distance
of 2-4 seconds to the lead vehicle [41]. The unsafe regions
for each example are indicated based on the definitions of
hazards as later described in Section 4.1.

In this paper, we define the regions of operation similar
to previous works [42], [43] but more conservatively, by
minimizing the safe region and maximizing the unsafe
region [44], so that we do not miss detecting any unsafe
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Fig. 3: Example Regions of Operation: Artificial Pancreas Sys-
tem (APS) (Left). Autonomous Driving System (ADS) (Right).

control actions. The possible overlaps between regions or
uncertain parts of the safe region are included in the poten-
tially unsafe region.

3.1.2 Unsafe Control Actions
A sequence of cyber control actions Ut = {ut�k+1, ..., ut�1,
ut} issued in k consecutive control cycles are considered
unsafe if upon their sequential execution in a given state
sequence Xt = {xt�k+1, ..., xt�1, xt}, the system will even-
tually transit to a state in Xh within the period T that Ut

can affect the state space. The length of the control action
sequence varies in different applications. For example, in a
robot control system with tight real-time constraints, only
one or a few unsafe control actions might lead to a safety
hazard [27]. In contrast, in a slower control system like APS,
a sequence of unsafe control actions may need to last for an
extended time period (e.g., 30 minutes) to result in a hazard
eventually [38].

3.2 Safety Context Specification (SCS) Framework
We propose a formal framework for the specification of
safety context, consisting of two parts: (i) the Unsafe Con-
trol Action Specification (UCAS) that describes the system
context under which specific control actions are potentially
unsafe and can be used for predicting hazards; and (ii)
the Hazard Mitigation Specification (HMS) that identifies
mitigation actions to prevent potential hazards resulting
from the unsafe control actions issued by the controller.

3.2.1 Unsafe Control Action Specification (UCAS)
To reduce the complexity in specifying the overall system
context, we define µ(xt) = (µ1(xt), . . . , µm(xt)) 2 Rm,
where µi(xt) is a transformation of xt, which could be the
polynomial, derivative, or other possible functions of xt,
modeling more complex combinations of state variables and
their rates of change. The set of all possible values of µ(xt)
is denoted by M. We describe the system context ⇢(µ(xt)) as
the subsets of M, defined by ranges of variables in µ(xt),
that can be mapped to the regions {X⇤,X⇤<h,Xh}.

We define the set of all tuples (⇢(µ(xt)), ut, Hi) as
the unsafe control action specification (UCAS) such that
(⇢(µ(xt)), ut) 7! Hi ⇢ Xh, specifying the system context
⇢(µ(xt)) under which by issuing a control action ut the
system eventually transitions to a new context within the
Hi hazard partition in the hazardous region Xh. The UCAS
can be generated using the following steps:

1) Define the set of accidents (A) and hazards (H) of in-
terest for the system using the control-theoretic hazard
analysis method.

2) Determine the targeted transformations µ(xt) and the
sets ⇢(µ(xt)) related to the hazard as thoroughly as

possible based on an observable set of variables xt.
The exact thresholds for each variable that identify each
subset do not need to be known.

3) Enumerate all the combinations of ⇢(µ(xt)) and ut 2 U .
4) Determine the combinations that might lead to transi-

tions to a hazardous region Hi ⇢ Xh, and add tuples
(⇢(µ(xt)), ut, Hi) into the UCAS set.

Steps 1 and 2 need to be defined manually based on do-
main knowledge and input from domain experts. Step 3
can be automated according to definitions in the first two
steps [45], and so can step 4 using dynamic modeling and
simulation [46].

3.2.2 Hazard Mitigation Specification (HMS)
HMS is defined as a set of tuples that have the form
(⇢(µ(xt)),u⇢), where u⇢ is the set of safe control actions
under the context ⇢(µ(xt)) that lead to the transition to
the safe region X⇤ and prevent hazards. The HMS can be
generated through the following steps:

1) For each specified context ⇢(µ(xt) in UCAS, find all the
control actions uc

t 2 U such that (⇢(µ(xt)), uc
t) 7! X⇤

and add them to u⇢, the set of safe mitigating control
actions for that context.

2) Add tuples (⇢(µ(xt)),u⇢) into the HMS set.

3.3 Formalization of SCS in Temporal Logic
To synthesize the SCS into machine-checkable lan-
guage/logic that can be used for safety monitoring, we
convert the unsafe control action specifications (UCAS) into
a set of safety properties described in STL formalism. STL is
a formal language for specifying temporal properties of con-
tinuous signals, and is widely used for rigorous specification
and run-time verification of requirements in CPS [47]. We
utilize the bounded-time variant of STL, where all temporal
operators are associated with upper and lower time bounds.

The STL formula �h for a specific UCAS
(⇢(µ(xt)), ut, Hi) is described as follows:

G[t0,te]('1(µ1(xt)) ^ . . . ^ 'm(µm(xt)) ^ ut =) F[0,T ]Hi) (1)

where, F is the eventually operator ⌃ and each 'i(µi(xt)) is
an atomic predicate representing an inequality on µi(xt) in
the form of µi(xt){<,, >,�}�i or its combinations, with
the thresholds �i defining the boundary of each dimension
⇢(µi(xt)) in the system context ⇢(µ(xt)). The formula �h

holds true globally (denoted by the G operator) between
start time t0 and end time te during the system operation.

The UCAS for a sequence of control actions Ut, issued
under a state sequence Xt = {xt�k+1, ..., xt�1, xt} over a
window of k control cycles, is formalized as �h:

G[t0,te]('1(f(µ1(Xt))) ^ . . . ^ 'm(f(µm(Xt))) ^ f(Ut) =) F[0,T ]Hi)

where, µi(Xt)
.
= {µi(xt�k+1), . . . , µi(xt)} and f(·) repre-

sents an aggregation function such as average, Euclidean
norm, or regression over k transformed measurements.
When k takes the value of 1, this equation is identical to
Eq. 1 which considers the consequences of a single control
action.

Likewise, we convert the HMS (⇢(µ(xt)), uc
t) 7! X⇤ to

G[t0,te]((F[0,ts](u
c
t))S('1(µ1(xt)) ^ . . . ^ 'm(µm(xt)))) (2)
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which requires that uc
t 2 u⇢ should be taken within period

ts since (denoted by the S operator) the system enters
context ('1(µ1(xt)) ^ . . . ^ 'm(µm(xt))). This should hold
globally during the system operation.

The time parameter ts specifies the requirement for the
latest possible time a mitigation action should be initiated
after a potential unsafe control action is detected to prevent
hazards. This time is dependent on many factors, including
the context ⇢(µ(xt)), the nature of the various safe control
actions uc

t 2 u⇢, and the CPS controller being fast or slow,
and could be specified based on the domain knowledge
and practical settings. The specifics of determining this time
requirement, in general, are beyond the scope of this paper.
The estimated time between the activation of a fault in the
system and the occurrence of a hazard (defined as Time-
to-Hazard in Section 5) can provide an upper bound for
specifying this time requirement.

3.4 Knowledge and Data-Driven SCS Learning
The STL formulas generated for SCS can be further inte-
grated with the data collected from the closed-loop cyber-
physical system to design the monitor logic. In this section,
we present two different methods based on STL parameter
optimization and machine learning with customized loss
functions that enable the integration of data with knowledge
for monitoring safety properties.

3.4.1 Optimization of STL Formulas
We develop an approach for learning the unknown bound-
ary parameters �i in the STL formulas (Eq. 1) using actual
or simulated data collected from the system using ML
methods [48] [49]. Then the final STL formulas with the
estimated parameters will be synthesized into logic for run-
time monitoring. Specifically, we use software fault injection
(FI) on a closed-loop CPS to generate example hazardous
data traces that satisfy the STL formulas for UCAS and
use them for learning unknown STL parameters and for
adversarial training of the monitor. As shown in Fig. 2, data
traces from real system operation can also be used for the
development of simulation models and faulty data traces
and/or for active learning and updating of the monitor at
run-time in an actual application.

We solve the problem of learning unknown thresholds
�i from a set of data traces D by formulating the following
optimization problem:

minimize
X

H

loss(r); s.t. (3)

r = µi(d(t))� �i > 0, 8d 2 H : d |= �h

If the STL formula �h (Eq. 1) is satisfied (denoted by |=
operator that takes a binary value from {True, False})
by a subset of hazardous traces H ⇢ D, the degree of
satisfiability of �h for a data trace d 2 H at time t can
be measured by a robustness metric r = µi(d(t)) � �i

(for predicate µi(xt) � �i). The goal of optimization is to
minimize the absolute value of r as a loss function over all
traces in H to achieve tight properties [50]. In this paper,
we designed a Tight Mean Exponential Error (TMEE) loss
function, as shown below:

loss(r) = E[e�r + r �
1

r + e�2r
], r = µi(d(t))� �i (4)

which learns tight thresholds while ensuring that the faulty
data traces satisfy the UCAS STL formulas. We adopted a
quasi-Newton optimization method, called L-BFGS-B [51],
for learning the unknown thresholds. This algorithm uses
the gradient of the proposed loss function (Eq. 4) and the
estimated inverse Hessian matrix, which is calculated using
two-loop recursion [52], to guide the optimization.

Although our STL learning approach is similar to a
previous work TeLEx [50], the proposed TMEE loss function
achieves a faster convergence in learning unknown thresh-
olds for the STL formulas. Specifically, our preliminary
experiments involving 50 simulation runs of APS controller
with the data from a simulated diabetic patient showed that,
on average, our optimization method could lead to conver-
gence within a very short time (0.02s vs. 21.79s) with a much
smaller loss value (1.15 compared to �100) compared to
TeLEX, leading to learning tighter thresholds. Further, the
safety monitor synthesized based on the tight thresholds
learned using our approach had a higher accuracy than the
monitor rules learned using TeLEx (F1-score of 0.94 vs. 0.60).

3.4.2 ML Optimization with Customized Loss Functions
Another data-driven approach to integrating the SCS STL
formulas into the safety monitor is to train an ML model
using data traces collected from the cyber-physical system
and guide the learning process using a custom loss function
[53]. Specifically, we model the task of detecting an unsafe
control action as a context-specific conditional event, as
shown below:

yt = p(9t0 2 [t, t+ T ] : xt0 2 Xh|f(Xt), f(Ut)) (5)

Given the control action sequence Ut executed under
the system state sequence Xt, the ML model outputs a
binary yt that classifies Ut to safe or unsafe. Section 5.3.3
will present different neural-network architectures for im-
plementing such ML-based monitor.

We encode the STL formulas generated for UCAS as a
custom loss function that penalizes the ML model during
the training process if the prediction does not match the
specified safety properties:

loss = lossex+w

������
yt � I

0

@
_

�h2UCAS

f(µ(Xt)) |= �h

1

A

������
(6)

where, lossex is the baseline ML model loss function (e.g.,
cross-entropy loss), w is a weight parameter, yt is the output
prediction of the ML model, and I(·) is an indicator function
indicating whether the aggregated values of the estimated
state variables for a measurement window, f(µ(Xt)), satisfy
any of the UCAS STL formulas �h (with unrefined thresh-
olds). The specific value of weight parameter w depends on
the design requirements and system scenarios. The larger
the weight parameter is, the more the system context and
safety specification would interfere with the training pro-
cess. In this work, we choose a value so that the additional
loss is comparable to the original loss of the output layer of
the ML model.

3.5 Run-time Cyber-Physical Context Inference
The SCS STL formulas for the synthesis of the monitor are
described in terms of high-level and human-interpretable
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Fig. 4: (a) Artificial Pancreas System and a Typical APS Controller; (b) Autonomous Driving System and a Typical ADS Controller.

estimated states (e.g., Headway Time (HWT)) and control
actions (e.g., acceleration in ADS) and might be different
from the low-level sensor measurements (e.g., RADAR data)
and output control commands (e.g., the amount of gas or
brake) executed on the actuators.

In order to close the semantic gap between human-
interpretable safety requirements and low-level measure-
ments observed by the safety monitor and map the system’s
state to the STL formulas, the monitor needs to be equipped
with capabilities for run-time inference of the cyber and
physical states. Specifically, the monitor will infer the high-
level control actions issued by the control software based
on the low-level control commands sent to the actuators
and the non-observable physical states used by the control
algorithm based on the sensor measurements. This can
be considered a partial replication of the controller’s state
estimation and control algorithms inside the monitor.

3.6 Reaction Time Estimation
For further evaluation of the quality of predictions made
by the monitor and synthesis of a context-aware mitigation
mechanism based on the HMS (Equation (2)), we need
to identify the unknown time parameter ts in addition to
safety thresholds �i. This time is bounded by the maximum
reaction time and is dependent on many factors, including
the context ⇢(µ(xt)) and the nature of the various safe
control actions uc

t 2 u⇢. In this work, we develop a reaction
time estimator using a two-layer stacked LSTM model that
could predict the latest possible time a mitigation action
should be initiated (after a potential unsafe control action
is detected) to prevent hazards.

4 CASE STUDIES

To demonstrate the generalization and effectiveness of our
approach, we evaluated our methodology for run-time mon-
itoring in two different case studies of Artificial Pancreas
Systems (APS) and Autonomous Driving Systems (ADS).

The APS controller (Fig. 4a) estimates the current patient
status (BG value and Insulin on Board (IOB)) based on
Continuous Glucose Monitor (CGM) readings and injects
the proper amount of insulin into the patient through a
pump. The ADS Adaptive Cruise Control (ACC) system
(Fig. 4b) measures relative distance and relative speed to the
lead vehicle based on the RADAR and car sensors readings,
estimates the steering angle and brake status based on the

measurements of car sensors, and maintains a target follow-
ing distance with the lead vehicle by issuing acceleration or
deceleration control actions and outputting the appropriate
amount of gas and brake pressure.

The following subsections present the process for gen-
erating SCS, labeling data for SCS learning, and cyber-
physical context inference for mapping measurements to
SCS formulas for these two case studies.

4.1 SCS Generation

Step 1: We first identified the set of accidents and the
hazardous system states as the result of potential unsafe
control actions issued by the controller that could lead to
accidents.

For the APS, the set of accidents (A) and hazards (H) of
interest include:

• A1: Complications from hypoglycemia, including
seizure, loss of consciousness, and death.

• A2: Complications from hyperglycemia, including tis-
sue damage and morbidities such as retinopathy and in
extreme cases, death [54].

• H1: Too much insulin is infused, which will reduce the
BG and might lead to A1.

• H2: Too little insulin is infused, which will cause the BG
to increase and might lead to A2.

For the ADS, the following set of possible accidents and
hazards were considered:

• A3: Forward collision with the lead vehicle.
• A4: Collision with the trailing vehicle or causing traffic

congestion.
• H3: Autonomous vehicle violates maintaining safety

distance with the lead vehicle, which may result in A3.
• H4: Autonomous vehicle decelerates to a complete stop

without a lead vehicle, which may lead to A4.
Step 2: We then identified the transformations of in-

terest (µ(xt)) for specifying system context. For example,
for APS with sensor measurements xt = (BGt, IOBt) we
define µ(xt)=(BGt, dBGt/dt, IOBt, dIOBt/dt), including
the state variable BGt and IOB and their rates of change.

Steps 3-4: Then, the list of potential UCAS for each
system was generated by identifying the combinations of
specific ranges in µ(xt) and control actions (e.g., ut 2

{u1, u2, u3, u4} that can potentially be hazardous and lead
to accidents of interest (see Table 1)).
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TABLE 1: STL Safety Context Specifications for APS and ADS

CPS Rule STL Description of Safety Context Implied
No. Hazard Type

APS

1 G[t0,te]((BG > BGT ^BG0 > 0) ^ (IOB0 < 0 ^ IOB < �1) ^ u1 =) F[0,T ]H2)
2 G[t0,te]((BG > BGT ^BG0 > 0) ^ (IOB0 = 0 ^ IOB < �2) ^ u1 =) F[0,T ]H2)
3 G[t0,te]((BG > BGT ^BG0 < 0) ^ (IOB0 > 0 ^ IOB < �3) ^ u1 =) F[0,T ]H2)
4 G[t0,te]((BG > BGT ^BG0 < 0) ^ (IOB0 < 0 ^ IOB < �4) ^ u1 =) F[0,T ]H2)
5 G[t0,te]((BG > BGT ^BG0 < 0) ^ (IOB0 = 0 ^ IOB < �5) ^ u1 =) F[0,T ]H2)
6 G[t0,te]((BG < BGT ^BG0 < 0) ^ (IOB0 > 0 ^ IOB > �6) ^ u2 =) F[0,T ]H1)
7 G[t0,te]((BG < BGT ^BG0 < 0) ^ (IOB0 < 0 ^ IOB > �7) ^ u2 =) F[0,T ]H1)
8 G[t0,te]((BG < BGT ^BG0 < 0) ^ (IOB0 = 0 ^ IOB > �8) ^ u2 =) F[0,T ]H1)
9 G[t0,te]((BG > BGT ^ IOB < �9) ^ u3 =) F[0,T ]H2)

10 G[t0,te]((BG < �12) ^ ¬u3 =) F[0,T ]H1)
11 G[t0,te]((BG > BGT ^BG0 > 0) ^ (IOB0 <= 0 ^ IOB < �10) ^ u4 =) F[0,T ]H2)
12 G[t0,te]((BG < BGT ^BG0 < 0) ^ (IOB0 >= 0 ^ IOB > �11) ^ u4 =) F[0,T ]H1)

ADS

1 G[t0,te]((HWT < �21) ^ (RS > 0 ^RS0 > 0) ^ ¬u22 =) F[0,T ]H3)
2 G[t0,te]((HWT < �22) ^ (RS > 0 ^RS0 = 0) ^ ¬u22 =) F[0,T ]H3)
3 G[t0,te]((HWT < �23) ^ (RS > 0 ^RS0 < 0) ^ u21 =) F[0,T ]H3)
4 G[t0,te]((HWT > �24) ^ (RS < 0 ^RS0 > 0) ^ ¬u21 =) F[0,T ]H4)
5 G[t0,te]((HWT > �25) ^ (RS < 0 ^RS0 = 0) ^ ¬u21 =) F[0,T ]H4)
6 G[t0,te]((HWT > �26) ^ (RS < 0 ^RS0 < 0) ^ u22 =) F[0,T ]H4)

* BGT: BG target value; BG0 = dBG/dt, IOB0 = dIOB/dt;
* HWT: Headway Time = Relative Distance/Current Speed [55]; RS: Relative Speed = Current Speed - Lead

Speed; RS0 = dRS/dt;
* u1,2,3,4 :decrease_insulin, increase_insulin, stop_insulin, keep_insulin;
* u21,22 : Acceleration, Deceleration; t0, te: start time and end time of the simulation.

Table 1 shows the final safety specifications described
in STL formalism for both APS and ADS. For example,
the last row for APS is the formal representation of a
UCAS, (⇢(µ(xt)) = (BG < BGT , BG0 < 0, IOB0 > 0,
IOB > �11), u4, H1), specifying that under the system
context where the BG is less than the target and has been
decreasing and IOB is more than a certain threshold �11

and keeps increasing, the control action u4 (keep_insulin) is
unsafe and will most likely result in an H1 hazard if issued
by the controller. This is an example of a safety rule that
can be identified or verified in consultation with domain
experts. Further, these rules can be synthesized as monitor
logic and applied to different implementations of the CPS
controllers (e.g., different APS or ADS controllers) with the
same functional specifications.

4.2 Hazard Labeling for SCS Learning
For data-driven refinement and adversarial training of SCS,
we need examples of faulty data traces collected from
closed-loop cyber-physical system simulations or actual op-
erations. This data should include the time-series sensor
measurements as well as the control actions issued by the
controller and be labeled with the time instances when
the system is in a hazardous state. Note that the goal of
the monitor is to detect unsafe control actions and predict
these hazardous states ahead of time, so the method used
for labeling the hazards cannot be used by the monitor. In
this paper, we label the data automatically using common
objective metrics introduced and the guidelines used by the
research community and in practice, as described next.

For APS, we utilized the notion of the Risk Index (RI)
[56], [57] that captures both the glucose variability and its
associated risks for hypo- and hyperglycemia to label the
data. We calculated low (LBGI) and high (HBGI) BG risk for
a data-trace D of BG readings using the following equations:

risk(BG) = 10 ⇤ (1.509 ⇤ [(ln(BG))1.084 � 5.381])2 (7)

LBGI = 1/n
X

D

risk(BG);for each BG < 112.517

HBGI = 1/n
X

D

risk(BG);for each BG > 112.517

We identified a window (e.g., one hour) of BG read-
ings as hazardous if the risk indices exceeded a high-risk

threshold (e.g., LBGI > 5 and HBGI > 9 as defined by
previous works [57], [58]) and kept increasing, indicating a
high chance of hypo- or hyperglycemia.

For ADS, we label the data points as hazardous if the
relative distance between the autonomous vehicle and the
leading vehicle is non-positive or the autonomous vehicle
decelerates to a complete stop with a considerable relative
distance (e.g., greater than 100 meters [59] that is the range
of a medium-range radar [60]) to the leading vehicle, which
might lead to a potential collision with the trailing vehicle
or causing congestion.

4.3 Context Inference for SCS Matching
For APS, the state variable, Insulin On Board (IOB), might
not be observable directly by the safety monitor. Therefore,
we need to derive its value from a sequence of insulin rate
history. After insulin is injected into a patient’s body, the
IOB will gradually increase and reach the maximum level at
tpeak (e.g., 75 minutes) and then start to decrease to zero. We
calculated the IOB before the peak time using the equation
[61]:

IOB(t) = I(t0) ⇤ [�k1(0.2(t� t0) + 1)2 + k1(0.2(t� t0) + 1) + 1] (8)

and derived the IOB between peak time and the end of the
duration of insulin action using the following equation:

IOB(t) = I(t0) ⇤ [k2(t� t0 � tpeak)2 � k3(t� t0 � tpeak) + 0.55556] (9)

where ki are coefficients. The accumulated IOB under the
effect of an insulin rate sequence is the integral of IOB
calculated using the above equations.

For ADS, we estimate the high-level state variables head-
way time and relative speed based on the current speed of
the autonomous vehicle and relative distance between the
autonomous vehicle and the leading vehicle measured by
low-level car sensors like GPS and Radar.

In both case studies, the monitor maps the low-level
control commands issued by the controller into the high-
level control actions described in SCS by calculating the
rate of change in a window of measurements. For example,
an increase_insulin or decrease_insulin control action will be
detected by calculating the slope of insulin samples.

5 EXPERIMENTAL EVALUATION

This section presents our experiments and results on the
evaluation and comparison of the proposed context-aware
monitors designed using two SCS learning approaches pre-
sented in Section 3.4: (i) the STL optimization with threshold
learning (referred to as CAWT, short for Context-Aware With
refined Thresholds) and (ii) ML optimization with customized
loss functions (referred to as ML-Custom).

We developed an open-source simulation environment
(see Fig. 5) that integrated the closed-loop simulation of two
example APS and ADS control systems with a software FI
engine to evaluate different safety monitors.

For APS, we integrated two widely-used APS controllers
(OpenAPS [61] and Basal-Bolus [62]) with two different
patient glucose simulators, including Glucosym [63] and
UVA-Padova Type 1 Diabetes Simulator [64]. The Glucosym
simulator contains models of 10 actual Type I diabetes
patients aged 42.5 ± 11.5 years [65]. The state-of-the-art
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UVA-Padova Type 1 Diabetes Simulator S2013 (T1DS2013)
contains 30 virtual patients, which were demonstrated to
be representative of the T1DM population observed in a
clinical trial [66], and has been approved by the FDA for
pre-clinical testing of APS [64], [67]. This closed-loop testbed
was also validated using actual data from a clinical trial, and
the simulated data was shown to satisfy the requirements
of relevance, completeness, accuracy, and balance [68] for
developing ML models [69].

For ADS, we used OpenPilot [70], an open-source alpha
quality driving agent introduced by Comma.ai which has
been used in actual cars on the road by over 1,500 monthly
active users. OpenPilot controller provides the adaptive
cruise control (ACC) and automated lane centering (ALC)
capabilities to over 150 supported car makes and models
(e.g., Honda Civic 2016-2020, Acura RDX 2016-2021, Toyota
RAV4 2016-2021) using an additional hardware EON Dash-
cam DevKit [71] that can control the gas, brake, and steering.

We ran the experiments with both APS controllers and
simulators as well as OpenPilot (v.0.4.2) on an x86_64 PC
with an Intel Core i9 CPU @ 3.50GHz and 32GB RAM
running Linux Ubuntu LTS. We used TensorFlow v.2.5.0 to
train our ML models.

5.1 Scenario Simulations
For APS simulations, we ran the experiments with initial
BG values ranging from 80 to 200 mg/dL for 150 iterations
(representing 12.5 hours in an actual APS control system)

without add-on meals, imitating a patient eating dinner,
going to sleep, and having the next meal the following day
after our simulation period. In addition, we evaluated our
approaches on 20 different patient profiles (10 patients in
the Glucosym simulator and 10 in the T1DS2013 simulator)
to consider possible inter-patient variability.

For ADS, we ran the OpenPilot simulator and controller
for 150 iterations, with each iteration simulating 200ms
of real road driving. We simulated four driving scenarios
that are considered high-risk in the pre-collision scenario
topology report by the National Highway Traffic Safety
Administration (NHTSA) [81]:

• The lead vehicle is driving at a constant speed (40mph).
• The lead vehicle accelerates and then slows down.
• The lead vehicle slows down and then accelerates.
• The lead vehicle slows down to a complete stop.

5.2 Fault Injection Experiments

We collected experimental data from closed-loop CPS sim-
ulations with FI for adversarial training and testing of the
proposed safety monitor and other baseline monitors.

Threat Model: We assume that both accidental faults
or malicious attacks, similar to those reported for CPS can
target the CPS controller and, once activated, can manifest
as errors in inputs, outputs, and the internal state variables
of the CPS control software and result in the hazards defined
in Section 4.1 and adverse events. For malicious attacks, we
assume attackers have acquired unauthorized remote access
[82] to a CPS control system through stolen credentials
[30], exploiting vulnerable services [83], or insider attacks
by penetrating the network [27], [84] that the target CPS
controller connects to. Even for a CPS control system with
no network connectivity, the attacker can exploit a USB
port or Bluetooth connection to get access to the target
device and deploy malware. Table 2 shows examples of
such fault/attack scenarios and vulnerabilities in the control
system that led to real recalls and possible adverse events.

We developed a source-level FI engine that directly per-
turbs the values of the controller’s state variables within
their acceptable ranges over a random period of time to
simulate the effect of such fault and attack scenarios. We
assume that errors are transient and only occur once for a
specific duration per simulation. For each FI scenario shown
in Table 2, the FI engine determines (i) the target state
variable, (ii) the error value to inject, (iii) the trigger con-
dition of the error, and (iv) the duration of the injected fault.
We randomly chose from several different start times and
durations to inject the fault, resulting in a total of 882 and
1200 fault injections for each patient and driving scenario,
which translated into a total number of 2,646,000 simulation

TABLE 2: Simulated Fault and Attack Scenarios
Type Approach Simulated Scenario Representative FDA Recalls Possible Adverse Events
Truncate Change output variables to zero value [72] [73] Availability attack [74] Z-1074-2013, Z-1034-20151 Device Malfunction/
Hold Stop refreshing selected input/output variables DoS attack [75] [76] Z-1359-2012, Z-0929-2020 Hypoglycemia/

[14] [73] Hyperglycemia/
Max/Min Change the value of targeted variables to their Integrity attack [72]/ Z-1562-2020, Z-2165-2020

maximum or minimum allowed values [14] [77] Injury [78]/
Add/Sub Add or subtract an arbitrary or particular value Memory fault Death [79]

to or from a targeted variable [14] [80]
1 Recall IDs assigned by FDA which can be searched for on https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm.

https://github.com/UVA-DSA/CPS-Runtime-Monitor
https://github.com/UVA-DSA/CPS-Runtime-Monitor
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm
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samples used for training and testing different monitors. We
used a 4-fold cross-validation setup for threshold learning
and evaluation of our context-aware safety monitors as well
as model training and testing of the baseline ML monitors.

To evaluate the performance of the safety monitor
against adaptive adversaries, we also consider a more pow-
erful attacker with all the required knowledge about the tar-
get controller and safety monitor to launch certain types of
stealthy attacks (Section 5.4.5). However, a comprehensive
evaluation of the proposed approach against all possible
stealthy attacks (e.g., replay, zero-dynamics, pole-dynamics,
and covert attacks [85], [86]) is beyond this paper’s scope.

5.3 Baseline Monitors

To evaluate and compare the performance of the proposed
context-aware monitors, CAWT and ML-Custom (e.g., MLP-
Custom, LSTM-Custom), in accurate and timely prediction
of hazards, we developed several baseline monitors repre-
sentative of the existing state-of-the-art safety monitoring
and defense approaches for CPS.

5.3.1 Medical Guidelines Monitor
We designed a baseline safety monitor (referred to as Guide-
line) according to generic medical guidelines proposed in
[87] without considering the patient characteristics or con-
trol software. The Guideline monitor generates alerts when
the BG value is beyond a normal range [70, 180] mg/dL, has
a sharp change, or stays lower than its tenth percentile �10

or higher than its ninetieth percentile �90 for more than a
safe period (e.g., 30 minutes).

5.3.2 Model Predictive Control Monitor
We developed two Model Predictive Control (MPC) [88],
[89] baseline monitors for APS and ADS as an example of
the widely used technique in process control systems.

For APS, the MPC monitor estimates the possible BG
value (BGt+1) after executing the pump’s command (It) on
the patient’s current state (BGt) using Bergman & Sherwin
model [65] :

dBG(t)/dt = �(GEZI + IEFF ) ⇤BG(t) + EPG+RA(t) (10)

where, GEZI, IEFF , EPG are patient-specific parameters,
and RA(t) is glucose appearance rate. An alarm will be gen-
erated if the predicted BG value goes beyond the patient’s
normal range (same as the medical guidelines).

For ADS, we used the following dynamic model of the
vehicle to develop the MPC monitor [90]:

dv(t)/dt = 3.33 ⇤Gas(t) ⇤ Ppeak/m/v(t)� 3 ⇤Bk(t)

� (0.01g + 0.15v2(t))�GD + CRP (t)
(11)

where, v(t) is the current speed of the vehicle; m, Gas(t)
and Bk(t) represent the vehicle mass, output of the gas
and brake, respectively; Ppeak is the peak power, g is the
gravity of earth, GD describes the road grade, and CRP (t)
characterizes the impact of creep force that is a function
of v(t). The baseline monitor issues an alert if the vehicle
would brake with a deceleration of 3 m/s2 for at least one
second [91].

5.3.3 ML-based Monitors
Similar to the ML-based monitors previously proposed in
[17], [38], we trained two baseline monitors using the state-
of-the-art ML approaches, Multi-layer Perceptron (MLP)
and Long-Short Term Memory (LSTM).

For MLP, we modeled the task of detecting an unsafe
control action as a context-specific conditional event, as
shown below:

yt = p(9t0 2 [t, t+ T ] : xt0 2 Xh|X̄t, Ūt) (12)

Given an issued control action Ūt at current system state
X̄t, which are the average values of Ut and Xt, respectively,
the ML model outputs a binary yt that classifies Ut to safe or
unsafe. We used a fully connected two-layer MLP, compris-
ing 256 and 128 neurons, followed by a fully connected layer
with ReLU activation and a final softmax layer to obtain the
hazard probabilities.

During the training process, we marked yt as positive
if any hazard occurred within a time window (e.g., the
duration of insulin action for APS) after sequential execution
of Ut. We labeled a simulation data trace as hazardous
if any sample within it was unsafe. For a specific patient
or autonomous vehicle, we trained the model on eighty
percent of the data traces while keeping the time sequence
of samples within the data trace, with a validation split rate
of 0.1, and kept the remaining twenty percent of the data
set untouched for testing. We used 4-fold cross-validation to
evaluate the overall performance of the final ML model.

Furthermore, considering its advantage in capturing
the temporal connection of time-series data, we trained
an LSTM model as a baseline monitor using input data
Xt = {xt�k+1, ..., xt�1, xt} and Ut = {ut�k+1, ..., ut�1, ut}

with a sliding time-window of k:

yt = p(9t0 2 [t, t+ T ] : xt0 2 Xh|Xt, Ut) (13)

We explored different model architectures, and the best
model we obtained was a two-layer (128-64 units) stacked
LSTM with input time steps of 30 minutes and 1 second for
APS and ADS, respectively. We trained both the LSTM and
MLP models using the Adam [92] optimizer with the sparse
categorical cross-entropy loss function and a learning rate of
0.001. We also added a dropout layer and early stopping on
a held-out validation set to avoid over-fitting.

5.3.4 Other Baseline Monitors
In order to evaluate the impact of scenario-specific adversar-
ial training of the monitor, we also designed three context-
aware baseline monitors that implemented the generated
SCS STL logic (same logic used for the proposed context-
aware monitors), but: (1) without refining the thresholds
(referred to as the CAWOT monitor), (2) with the thresh-
olds learned from the fault-free data set, and (3) with the
thresholds learned from all the populations’ faulty data.

5.4 Results
5.4.1 Resilience of Baseline Systems without Monitors
We first analyzed the resilience of the baseline OpenPilot
and OpenAPS control software, which are already designed
with safety features (e.g., forward collision warning [91] or a
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Fig. 6: (a) Hazard Coverage of Each Hazard Type for APS; (b)
Hazard Coverage of Each Patient.

maximum threshold and an auto-adjusted control algorithm
[93]), in the presence of faults without any safety monitors.

Effectiveness of FI: We defined Hazard Coverage as the
conditional probability that a given safety-critical fault in-
jected into the system leads to an unsafe system state or
a hazard. Experimental results showed that our FI could
achieve an overall 33.9% hazard coverage on the Glucosym
simulator, 39.3% on the T1DS2013 simulator, and 39.9% on
the OpenPilot, which reflects our FI engine’s efficiency in
introducing faulty data for adversarial training as well as
the inadequacy of the control software in tolerating safety-
critical faults and attacks. Fig. 6 shows that FI covered all the
hazard types, however, the majority of FI experiments in the
Glucosym simulator led to the hazard type H1, increasing
the risk of hypoglycemia. Also, the hazard coverage was
quite different across different patient profiles, ranging from
6.7% to 92.4% across ten patients, suggesting that it may be
essential to specify patient-specific and context-dependent
safety requirements when designing monitors.

System Resilience: We evaluated the resilience of Open-
Pilot and OpenAPS using the Time-to-Hazard (TTH) metric
that measures the time between the activation of a fault
and the occurrence of a hazard (Fig. 7) to help specify time
requirements for hazard prediction and mitigation.

Fig. 7 shows an average TTH of about 3 hours based
on all the simulation data from OpenAPS. It should be
noted that the human body has a considerable lag and is
a slow dynamic system, so it usually takes hours for the
BG to transmit into the vessel and for insulin to take effect.
Moreover, 7.1% of hazardous simulations had TTH less than
zero, which means that the hazards happened even before
the injection of any faults to the controller, indicating the
inadequacy of the APS control algorithm.

On the other hand, OpenPilot is a much faster control
system with an average TTH of 6.4 seconds. So, a different
length of control action sequence should be considered for
safety monitoring. We do not observe as many simulations
with negative TTH as in the APS case study. Comparatively,
the APS has a stricter hazard labeling method due to the
complexity and dynamics of patient bodies. We further
analyzed the relationship between TTH and the start time

Fig. 7: Time to Hazard (TTH) Distribution.

Fig. 8: (a) TTH vs. Start Time of Faults; (b) Relation between
Fault Duration and Hazard Coverage of Different Scenar-
ios/Fault Types. (Dotted line in the graph represents the best
fit line of each situation).

of the faults and presented an example for APS in Fig. 8a.
We see that, in general, TTH decreased with the delay of
fault activation time. In addition, the fault being activated
in the middle of the simulation did not have any hazardous
impacts since the system might have entered a stable state.
We also observe that the TTH increased with the delay of
the fault start time in some cases. This might be because the
insulin rate dropped with time and needed to accumulate
before becoming hazardous to cause a hazard. Activating
faults at the end of a simulation may cause hazards for
some patients since the BG values were low after sleeping
at night. Although we activated the faults randomly in
our experiments, further exploration of the period of time
needed to activate a fault could improve the effectiveness of
fault injection.

Fault Duration: For APS, we also analyzed the relation-
ship between the overall hazard coverage (averaged across
all the patients) and fault types and fault duration in Fig.
8b. We observe that the hazard coverage increases with the
increase in fault duration for most fault types, indicating
that the faults need to persist for a period of time to cause
hazards. This motivated us to refine the design of the safety
monitor based on a sequence of control actions. In contrast,
the hazard coverage for the fault type max_glucose was al-
ways high regardless of increasing the fault duration, which
might be due to having reached the maximum glucose
value. We also observe a drop in hazard coverage with the
increase in fault duration for the fault type of bitflip_decrate
that led to hazard in only one patient. This patient had an
even more significant number of hazards without any fault
injections, which indicates that decreasing insulin might be
helpful to prevent hazards for this patient.

5.4.2 Monitor Prediction Accuracy
To evaluate the performance of different monitors in ac-
curate prediction of hazards, we used false-positive rate
(FPR), false-negative rate (FNR), accuracy (ACC), and F1
score metrics, calculated using two modified approaches
appropriate for prediction based on sequential data, in-
cluding Sample Level with Tolerance Window and Simulation
Level with Two Regions [38]. Using the Sample Level with
Tolerance Window approach, any alarms generated within
a time window � before the start time of hazard (th) are
considered to be true positive (TP) (Fig. 9), because it is
desirable that the monitor generates alerts before a hazard
happens. Using the Simulation Level with Two Regions metric
[38], we consider the whole data trace of a simulation as a
single case, divide the data trace into two regions based on
the time of activation of a fault (tf ) ([0, tf ] and [tf , te] in Fig.
9), and then calculate the classification metrics separately for
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Fig. 9: Hazard Prediction Accuracy with Tolerance Window �
Marked with Green Area (with tf , td, Th representing the time
when a fault/attack is activated, is detected by the monitor, and
leads to an hazard, respectively).

each region. A TP is declared whenever an alert is generated
during a hazardous data trace, regardless of when hazards
happen for both regions.

Context-Aware Monitors vs. Non-ML Monitors: Table
3 presents the average performance of the CAWT monitor
over all the patients/fault scenarios in comparison to the
non-ML-based baseline monitors, Guidelines and MPC.

For APS, the CAWT monitor achieved the best perfor-
mance in both Glucosym and T1DS2013 simulators. Al-
though the Guideline monitor had a slightly lower FNR
than the CAWT monitor in the T1DS2013 simulator, it gen-
erated more false alarms and had a 22.7% lower F1 score.

For ADS, the MPC monitor failed to generate alerts for
90% of the hazards, showing the weakness of the integrated
FCW safety mechanism to attacks. On the other hand, the
CAWT monitor still held a stable performance in accurately
predicting hazards with up to 4.7 times improvement in
average F1 score.

Context-Aware Monitors vs. Baseline ML Monitors:
The overall performance of the Context-Aware monitors
compared to two ML-based monitors in faulty scenarios
(8820 simulations on each of the APS simulators and 4800 on
the OpenPilot simulator) is shown in Table 4. For developing
the ML-Custom monitors, the baseline LSTM and MLP
monitors were upgraded with the proposed custom loss
function (shown in Eq. 6).

For ADS, the LSTM monitor outperformed both the
MLP and the Context-Aware monitors. However, the CAWT
monitor demonstrated a comparable F1 score (using Simu-
lation Level with Two Regions metric) to the LSTM monitor
through a more straightforward and transparent model.
Additionally, by adjusting the length of the control action
sequence considered at each time step, the CAWT monitor
can achieve even a higher F1 score and accuracy than the
LSTM monitor. We will discuss this further in Section 6.3.

For two case studies of APS, we observe that the CAWT
monitor outperformed other baseline ML monitors in the
Glucosym and T1DS simulators using both sample level and

TABLE 3: Performance of CAWT Monitor vs. Non-ML Monitors
Simulator Monitor No. Sim. Hazard% FPR FNR ACC F1 Score

Glucosym

Guideline 8820 33.9% 0.02 0.32 0.95 0.72
MPC 8820 33.9% 0.02 0.34 0.95 0.71
CAWOT 8820 33.9% 0.01 0.30 0.96 0.81
CAWT 8820 33.9% 0.01 0.02 0.99 0.96

T1DS2013

Guideline 8820 39.3% 0.07 <0.01 0.93 0.75
MPC 8820 39.3% <0.01 0.02 1.00 0.96
CAWOT 8820 39.3% 0.02 0.04 0.98 0.89
CAWT 8820 39.3% <0.01 0.03 1.00 0.97

OpenPilot
MPC 4800 39.9% 0.01 0.90 0.79 0.17
CAWOT 4800 39.9% 0.29 0.12 0.76 0.66
CAWT 4800 39.9% <0.01 0.05 0.99 0.97

simulation level metrics with a 7.9%-36.6% improvement
in F1 score while keeping both FNR and FPR low. Also,
the ML-Custom monitors performed the best using the
Simulation Level with Two Regions metric.

The MLP-Custom monitor achieved a 1.9% and 16.2%
improvement in F1 score and 28.6% and 38.6% reduction
in FNR while keeping FPR low for the Glucosym and
T1DS2013 simulators, respectively. We observed a similar
improvement in the overall performance of the upgraded
LSTM monitors (LSTM-Custom) for both the Glucosym and
T1DS2013 simulators using at least one prediction accuracy
metric. For the OpenPilot case study, we did not observe
a similar improvement in the overall performance of both
newly designed ML-Custom monitors. This is because the
unrefined safety specifications did not do well in inferring
the unknown system context. Nevertheless, the SCS STL
formulas improved the transparency of the black-box ML
models and can serve as a way to verify the learned neural
network models.

Overall, the context-aware monitors achieve better per-
formance than the baseline ML monitors, indicating the
advantage of combining domain knowledge with machine
learning for designing safety monitors. CAWT monitors
achieve higher F1 scores using sample level metrics, while
ML-Custom monitors perform better based on simulation
level metrics. A more detailed discussion and comparison
of these methods are provided in Section 6.2.

Context-Aware Monitors vs. Other Baselines: We fur-
ther evaluated the CAWT monitor’s performance without
refining thresholds (CAWOT), with the thresholds learned
from all the patients’ data traces with and without fault in-
jection, the patient-specific thresholds learned from each pa-
tient’s faulty data traces, and the population-based thresh-
olds learned from all the patients’ erroneous data. For the
population-based model, we learned the thresholds from
the data of seventy percent of patients randomly selected
from the population and tested the model on the data from
the remaining thirty percent of the patients.

Table 3 shows that without learning the refined threshold
of SCS rules, the CAWOT monitor suffered an 8.2%-32.0%
drop in F1 score, reflecting the importance of optimizing
safety requirements. But it still outperformed the MPC and
Guideline monitors in the Glucosym simulator, demonstrat-
ing the benefit of context-awareness.

As shown in Table 5, using the thresholds learned from
fault-free data, the context-aware monitor detected the un-
safe control actions before the hazard happened 95.1% of

TABLE 4: Performance of Context-Aware (CAWT and ML-
Custom) Monitors vs. ML-based Monitors

Simu
lator

Metric Sample Level (Tolerance Window) Simulation Level (Two Regions)
Monitor FPR FNR ACC F1 Score FPR FNR ACC F1 Score

Gluc
osym

MLP 0.02 0.07 0.97 0.89 0.13 0.06 0.89 0.79
LSTM 0.04 0.06 0.96 0.81 0.16 0.06 0.87 0.78
CAWT 0.01 0.02 0.99 0.96 0.10 0.01 0.92 0.86
MLP-Custom 0.02 0.05 0.98 0.91 0.12 0.05 0.90 0.81
LSTM-Custom 0.00 0.23 0.97 0.86 0.03 0.15 0.94 0.87

T1DS
2013

MLP <0.01 0.56 0.94 0.71 0.05 0.28 0.90 0.78
LSTM <0.01 0.06 0.99 0.95 0.08 0.06 0.93 0.87
CAWT <0.01 0.03 1.00 0.97 0.06 0.02 0.95 0.91
MLP-Custom 0.01 0.27 0.96 0.82 0.10 0.18 0.88 0.78
LSTM-Custom 0.00 0.17 0.98 0.90 0.02 0.10 0.96 0.92

Open
Pilot

MLP 0.01 0.11 0.97 0.93 0.06 0.09 0.94 0.88
LSTM 0.01 <0.01 1.0 0.99 0.05 <0.01 0.96 0.93
CAWT <0.01 0.05 0.99 0.97 0.04 0.05 0.96 0.93
MLP-Custom 0.01 0.19 0.96 0.88 0.06 0.15 0.91 0.84
LSTM-Custom 0.03 0.00 0.98 0.95 0.18 0.00 0.87 0.80
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TABLE 5: Performance of Context-aware Monitor Using
Thresholds Learned from Different Data Traces in APS

Threshold FPR FNR ACC F1 Score EDR

Fault-free 0.01 0.27 0.96 0.83 95.1%
Faulty 0.01 0.02 0.99 0.96 99.2%

Population-based 0.08 0.08 0.92 0.89 92.2%
Patient-specific 0.01 0.00 0.99 0.96 100.0%

the time (for the true-positive cases) and failed to generate
an alert for a hazardous situation in 27% of the simulations.
Adversarial training and refinement of SCS formulas with
the faulty data improved the monitor’s performance with
4.1% in early detection rate (EDR) and 15.7% in F1 score.

We also observe that the context-aware monitor with
patient-specific thresholds held an advantage over a
population-based monitor with a 7.6% and 7.8% increase
in accuracy and EDR, respectively. Moreover, the patient-
specific context-aware monitor kept both FPR and FNR low,
and therefore, achieved a 7.9% higher F1 score.

5.4.3 Monitor Timeliness
Fig. 10 shows the reaction time (defined in Section 2 and Fig.
9) for each monitor. We observe that:

• The CAWT monitor consistently performed well on
ensuring safe reaction time for all the simulators. For
APS, we have an average reaction time of about 100
minutes, which is larger than insulin activity peaks
between 60 and 90 minutes [94]. For ADS, the average
reaction time matches the safe headway time of 2 to 3
seconds [55].

• The non-ML baselines had the worst performance in
timely detection of unsafe control actions. This might
be because the baseline monitors were designed with
fixed thresholds and could not do well across different
patients/scenarios. Moreover, the MPC monitor could
only predict hazards in a short window ahead of time
in the Glucosym and T1DS2013 simulators and had a
negative average reaction time in the OpenPilot, which
indicates late detection and no possibility of stopping
the potential hazards.

• Benefiting from a large amount of collected data and
scenario-specific models, the baseline ML monitors per-
formed better than the Guideline and MPC monitors.
However, the performance of the baseline ML monitors
varied a lot (with large standard deviations) and was
not as stable as the CAWT monitor.

• The ML-Custom monitors achieved more stable perfor-
mance, indicating the advantage of combining safety
context with ML models. However, these ML-based
monitors still have a more complex architecture than
the CAWT monitor.

Fig. 10: Average Reaction Time for Each Monitor.

TABLE 6: Summary of Reaction Time Estimator Performance

Application Predict Error
(Avg ± Std)

Predict Error
(Minimum)

Accuracy⇤

(Percentage)
FPR Reduction of

CAWT Monitor

APS 45.3 ± 23.6 min 1.7 min 74.5% 61.8%
ADS 0.12 ± 0.05 s 0.036 s 88.1% 61.3%

* calculated using 1� |t̂rt � trt| ⇤ 100%/trt and then averaged over all the samples,
where t̂rt/trt is the predicted/actual reaction time.

5.4.4 Reaction Time Estimator
We evaluated the performance of the reaction time estimator
by comparing its predictions with the ground truth reaction
times calculated from the labeled data. Table 6 shows that
for ADS the reaction time predictor achieved an average
prediction error of 0.12 seconds and a minimum error of 35.6
ms. For APS, the minimum prediction error was 1.7 minutes,
with an average of 45.3 minutes across all the patients. We
can see that the reaction time estimator performed worse in
APS than ADS, which might be due to the complex physi-
ological dynamics and the patients’ unpredictable behavior.
However, in both case studies, it offered an estimation of
the maximum time within which a recovery action has to be
issued to prevent potential hazards.

The reaction time estimator predicts the time left until
the occurrence of a future hazard when the safety monitor
generates an alert. So, it could work together with the
safety monitor to identify the recovery requirements and
detect any potential false alarms. For example, experimental
results show that after filtering the alarms with estimated
reaction times that exceeded a threshold (e.g., mean TTH),
the CAWT monitor achieves better performance with 44.3%,
61.8%, and 61.3% reduction of FPR for T1DS2013, Glucosym,
and OpenPilot, respectively.

5.4.5 Adaptive Adversaries
A common challenge in anomaly detection is the existence
of adaptive adversaries that use the knowledge of the ex-
isting safety mechanisms to adjust the attack parameters to
evade detection and cause adverse events [85], [86], [95].
To test the efficiency of our proposed safety monitoring
approach against such stealthy attacks, we consider a very
powerful attacker with the knowledge of (1) the logic of our
safety monitor, (2) the parameters (e.g., �i in Table 1), and
(3) the control command format.

In our implementation, to evade detection, the stealthy
attacks are only launched when the target monitor is not
triggered to check the possibility of unsafe control actions.
More specifically, the malicious changes to the controller
state variables are still injected at random start times, but
only remain active when none of the safety context condi-
tions specified for the monitor (in the third column of Table
1) are held true. For example, to cause a forward collision
with the lead vehicle, the attacker can keep accelerating the
Ego vehicle until Headway Time (HWT) reaches an unsafe
threshold. To avoid being detected by the context-aware
monitor, the Ego vehicle is required to decelerate until HWT
goes back to a safe range (e.g., �21-�26 in Table 1) or until
the ego vehicle is slower than the lead vehicle (e.g., RS<0 ),
which will not trigger the context condition for the monitor.

Our experiments cover three types of stealthy attacks
[14] by injecting the attack scenarios in Table 2 as follows:
(1) surge attacks that maximize the attack impact as soon as
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possible by maximizing the attack value (scenario Max), (2)
bias attacks that maximize the time for the attack remaining
undetected by minimizing the attack value (scenario Min),
and (3) random attacks that randomly select attack value
(scenario Add/Sub). We tested these scenarios with, respec-
tively, 8820, 8820, and 4800 simulations in Glucosym, T1DS,
and OpenPilot simulators. Experimental results show that
the stealthy attacks targeted at the context-aware monitors
with refined thresholds (CAWT) do not cause any hazards
because of not triggering any of the safety context condi-
tions.

However, the success of the stealthy attacks in causing
hazards and the efficiency of the CAWT monitor against
adaptive adversaries depends on the completeness and ac-
curacy of the generated SCS and the monitor parameters
(further discussed in Section 7). Taking ADS as an example,
Fig. 11 shows the effect of thresholds used for the CAWT
monitor on the success rate of the stealthy attacks. Specifi-
cally, we see the percentage of simulations across different
types of stealthy attacks in which a hazard happened while
remaining undetected by the monitor for different values
of the safety thresholds (�21-�26 in Table 1) for parameter
HWT. The attack success rate decreases with the increase
of HWT thresholds, and no hazard happens anymore when
the thresholds are larger than 1 second (the thresholds we
learned for HWT to develop CAWT monitors are between
2-3 seconds). The same effect might be observed, if the at-
tacker can identify any additional safety context conditions
under which hazards can happen (additional rows in Table
1) but were not used in the design of the target monitor.

5.4.6 Evaluation on a Clinical Trial Dataset
To further evaluate the effectiveness of the proposed safety
monitor in real applications with realistic data, we tested
the performance of the proposed monitors using one
of the largest publicly-available diabetic datasets, called
DCLP3 [96]. This dataset was collected from a clinical trial
of the only FDA-approved closed-loop APS, t:slim X2 with
Control-IQ Technology, for the six-month treatment of 168
diabetic patients aged 14 to 71 years old. We break down
each patient’s data into 180 days and use 150 iterations of
the glucose readings and insulin records each day, resulting
in 30,240 days of data and 4,536,00 samples (30,240 *150)
in total. We labeled the hazard events in the dataset using
the same risk index approach shown in Section 4.2. For a
specific patient, we train the model or learn STL parameters
on eighty percent of the data traces while keeping the
time sequence of samples within the data trace (with a

Fig. 11: Stealthy attack success rate for different settings of
the thresholds (�21-�26 in Table 1) for the monitor parameter
Headway Time (HWT).

validation split rate of 0.1 for ML model training) and keep
the remaining twenty percent of the data set untouched
for testing. We used 4-fold cross-validation to evaluate the
overall performance of the final safety monitor. Experimen-
tal results show that the context-aware monitors developed
using either the CAWT or ML-Custom methods achieve F1
scores of 0.86 and 0.85, respectively. In addition, our context-
aware monitors can predict the actual adverse events seen in
the data, including both the CGM-measured hyperglycemic
events1 and the CGM-measured hypoglycemic events2 [96],
with a success rate of 99.5%.

5.4.7 Resource Utilization
We ran the simulations with the different safety monitors
and without any monitors a thousand times and calculated
the average time overhead for each safety monitor. Results
showed that the CAWT monitor has the lowest average
time overhead of 15.8 µs and 2.6 µs for APS and ADS,
respectively, among all the safety monitors. In contrast, the
Guideline monitor’s time overhead was 3.1 ms, and the
time overhead for the MPC monitor, the MLP monitor, and
the LSTM monitor was 104.4 µs/25.1 µs, 15.9 ms/15.7 ms,
and 18.1 ms/18.2 ms for APS/ADS, respectively. Since the
ML-Custom monitors have the same architecture as the
MLP and LSTM monitors and only use a different offline
training procedure, they do not add any additional run-time
overhead compared to the MLP and LSTM monitors.

6 DISCUSSION

Our experiments provided the following key insights.

6.1 Both the OpenPilot and OpenAPS control software
cannot tolerate safety-critical faults.
Although OpenPilot is an advanced control system widely
used in actual road driving and has an integrated forward
collision warning function, and OpenAPS is a fully auto-
mated system already equipped with some safety features,
they failed to tolerate the simulated attacks and faults.
In 13.8% of the APS simulations, patients were predicted
to suffer from severe hypoglycemia. Also, in 81% of the
simulated driving scenarios, OpenPilot failed to generate
alerts before a collision occurred. Furthermore, some haz-
ards occurred even without any fault injections.

6.2 Hybrid knowledge and data-driven context-aware
monitors outperform solely knowledge-based and ML-
based monitors.
We proposed two approaches to integrating domain knowl-
edge into a safety monitor by either (1) optimizing STL
safety specifications with data traces collected from the
closed-loop cyber-physical system (CAWT), or (2) training
an ML model under the guidance of a custom loss function
(ML-Custom) (see Eq. 6) that enforces satisfying the SCS STL
formulas.

Our experimental evaluation of the context-aware safety
monitors (in Section 5.4) showed the benefit of integrating

1. A period of at least 15 consecutive minutes with BG < 54 mg/dL
2. A period of at least 120 consecutive minutes with BG > 300 mg/dL
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domain knowledge with data-driven techniques with better
performance than several baselines designed with the state-
of-the-art techniques using solely the domain knowledge
(including medical guidelines and dynamic models) or data
(ML optimization) in most situations.

The advantages of the STL learning method over the
ML optimization with custom loss function include: (1) it
can also work well with an unbalanced dataset or when
negative examples are unavailable or expensive to collect,
(2) it requires less computational resources at run-time,
and (3) it can be easily verified because of having a more
transparent architecture and less overhead. However, its
performance heavily relies on the complete generation of
SCS rules, which might be challenging to achieve for more
complex case studies. Therefore, this method is suggested
for situations where negative examples are unavailable, or
there are strict requirements for transparency, safety, or run-
time resources.

On the other hand, the ML optimization method can
achieve about the same performance as the baseline ML
monitors even without the complete specification of SCS
rules and is easier to implement. It also achieves slightly
better performance than the monitor developed using the
STL optimization method (see APS study case in Table
4) but requires a relatively balanced dataset for training
and more computational resources at run-time. Therefore,
it is preferred to use this method when there are enough
balanced training datasets and resources available.

6.3 By considering the sequence of control actions, the
CAWT monitors can generate more accurate alerts.
Fig. 12 presents the performance of the CAWT and MLP
monitors that considered either a sequence of control ac-
tions or a single control action in comparison to the LSTM
monitor. Both the MLP and CAWT monitors that take into
account a sequence of control actions achieved a lower FPR
and a higher F1 score, with a slightly higher FNR, than the
same monitors that used only a single control action for both
the Glucosym and T1DS2013 simulators. Additionally, after
considering a sequence of control actions, the MLP monitor
achieved a slightly better performance than the LSTM mon-
itor in the Glucosym simulator and reduced the difference
in performance with the LSTM monitor in the T1DS2013
simulator. However, for ADS, which is a much faster control
system than APS, the CAWT monitor based on a single
control action achieved better performance, indicating that
control action sequence length is an important consideration
in designing safety monitors for different CPS.
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6.4 Adversarial training using scenario-specific data
improves the performance of CAWT monitors.
As shown in Section 5.4.2 the CAWT monitor with thresh-
olds learned from faulty data of a specific patient outper-
formed other context-aware monitors that were designed
with the exact SCS logic but with different thresholds. These
results reconfirm that adversarial training and refinement
of SCS formulas using the faulty data is important in im-
proving the CAWT monitor’s performance. Furthermore,
each patient has different biomedical characteristics and
tolerance levels to the injected insulin amounts. Thus, the
safety monitor logic needs to be refined for each patient or
scenario.

7 THREATS TO VALIDITY

Sensor Perturbations: This paper mainly focuses on the
faults and attacks targeting the control software of safety-
critical CPS. Any perturbations in the sensor data will poten-
tially affect both the controller and the safety monitor’s be-
havior. However, several existing methods in the literature
[14], [17], [80], [97] can be integrated with our safety monitor
to protect the sensor data and actuator commands observed
by the monitor. Furthermore, slight disturbances in sensor
data brought by environment noise can be constrained by
the typical robustness features of the control system (e.g.,
use of PID algorithm) to not comprise the control actions.
Also, combing domain knowledge with data could improve
the monitor’s robustness against small accidental or mali-
cious perturbations in the input data [98].

Data Impact: The performance degradation in predicting
unseen data/scenarios or corner cases is a common problem
for data-driven methods. We try to address this problem
by integrating domain knowledge with data and using
adversarial training. The integrated domain knowledge is
extracted based on a high-level control-theoretic hazard
analysis method which is independent of the attack types.
However, the tightness of the learned thresholds may be
affected by the variances in the data. Adversarial training is
one of the most effective approaches to defending against
adversarial examples in machine learning. However, it is
essential to include adversarial examples produced by all
known attack scenarios for anomaly detection [99]. We
tried to include the most common types of attack scenarios
reported in the literature and real databases for adversarial
training. Besides, online learning or transfer learning tech-
niques could be utilized to apply the models trained us-
ing simulated fault/attack scenarios to real-world systems.
However, transferring patient-specific models from simula-
tion to reality might be challenging in the case of MCPS.
Potential solutions might include either estimating the tar-
get individual patient profile for model training through a
system identification method or physical exams or relying
on fault-free clinical or synthetic data. Our experiments (see
Table 5) show that population-based fault-free models can
achieve reasonable performance but are not comparable to
patient-specific models trained with both faulty and fault-
free data.

SCS Completeness: The proposed monitor’s perfor-
mance heavily relies on the accuracy and completeness of
the generated SCSs, which might not be easy to derive for
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highly complex systems. However, our method only uses a
subset of state variables that can fully represent the system’s
dynamics. In addition, inaccurate or incomplete specifica-
tion is a common problem in the design and verification
of any controller/monitor. We try to reduce such manual
errors by proposing a formal framework for designers, in
collaboration with domain experts, to generate safety con-
text specifications (SCS).

False Alarms: Both false negative and false positive
detections by the monitor might impose additional risks.
In case of false positives (although as low as 1% as shown in
the results), the follow-up mitigation actions, depending on
whether manual or automated, might lead to new types of
hazards and potential accidents. In this paper, we assume
that the monitor generates an alert to warn the system
users to manually suspend the potential unsafe control
commands. For example, in the APS, the patient will be
required to check the control commands after an alert, and
in the ADS, the driver will be warned to take over control of
the vehicle. So the false positives will not cause any hazards
themselves but may bother the system users.

Sim-to-Real Gap: The use of simulation is essential
for enabling research progress at an accelerated rate while
avoiding/reducing unnecessary risks of testing in the ac-
tual operating environments and harming real patients,
drivers, and pedestrians. However, the differences between
the simulation and the actual implementation in the real
world might threaten the validity of the proposed method.
For example, in the APS simulations, we only simulate a
patient going to sleep after dinner without considering other
physical activities or multiple meal consumption. We try to
reduce the sim-to-real gap by using real control software
(used with actual diabetic patients [100], [101] or on actual
vehicles [70]) and real patient simulators that are either
approved by the FDA for clinical testing or use actual
patient profiles [64], [65] as well as realistic high-risk driving
scenarios defined by NHTSA. Furthermore, a test using a
publicly-available dataset collected from a clinical trial [96]
is conducted to attest to the effectiveness/validity of the
proposed approach [69].

8 RELATED WORK

8.1 Anomaly Detection in CPS

Previous efforts on anomaly detection mainly focused on
safety-critical attacks targeting sensor data [14], [18], [102],
[103]. Less attention has been paid to detecting attacks
that compromise the controller functionality by directly ma-
nipulating the controller internal logic and variables [104].
Further, the existing methods either rely on simple linear
models of physical systems which cannot fully capture
system dynamics [11], [12] or the black-box ML models
[16], [17] that suffer from a lack of generalization and trans-
parency. Our work distinguishes from these previous works
by detecting the faults/attacks that affect the controller
internal variables and output and introducing the notion
of preemptive detection of early signs of hazards instead of
detecting them after they have occurred, which might be too
late for successful mitigation and recovery.

8.2 Run-time Safety Assurance
Recent works on run-time safety assurance have focused
on protecting CPS against catastrophic failures by checking
predefined set of safety properties (or contracts) and instan-
taneous reaction [105]–[107] and developing ML-based [19],
[108] or linear approximation methods [13] for automated
recovery. Others proposed techniques for switching to al-
ternative controllers when the original controller is compro-
mised but with the limitations of either sacrificing overall
performance [109] or not being suitable for embedded sys-
tems with limited resources [18]. In this work, we propose a
formal framework and a hybrid knowledge and data-driven
approach for the synthesis of monitor logic that is simple
and transparent and can be integrated with an existing
controller interface for hazard prediction and mitigation.

8.3 Knowledge and Data Integration
Several studies have focused on integrating knowledge with
data using STL learning. [47] provided efficient methods
for automatically mining and learning STL properties from
measured data. [110] presented an approach for learning
optimized STL properties using positive examples. [111]
applied STL learning and monitoring to anomaly detection
in CPS. However, most existing works rely on the ad-
hoc specification of STL properties rather than principled
methods. Others have proposed adding constraints or us-
ing customized policies during the ML training process to
achieve better performance. [53] designed a semantic loss
function for deep learning with symbolic knowledge. [112]
presented a technique for embedding a set of logic rules into
the Recurrent Neural Networks using feedback masks. [113]
proposed a method for using the policy of a reinforcement
learning agent to train smaller and more efficient networks
with improved performance. Our previous work [38] pro-
posed a formal framework for the design and synthesis
of safety monitors in APS based on STL learning and
control-theoretic hazard analysis. This paper extends [38]
by (i) combining STL safety requirements with customized
optimization and machine learning to design and synthesize
context-aware safety monitors that predict hazards and (ii)
generalizing the proposed approach to other CPS by adding
a case study of ADS.

9 CONCLUSION

This paper presented a formal framework for the hybrid
knowledge and data-driven design of context-aware safety
monitors that can predict and mitigate hazards in CPS.
We evaluated the performance of the proposed method
using two simulated closed-loop CPS for diabetics treat-
ment (APS) and autonomous driving (ADS) as well as a
clinical trial dataset. Experimental results demonstrate that
the proposed context-aware monitors outperform several
baselines developed using medical guidelines, MPC, and
ML in the accurate prediction of hazards while ensuring
sufficient reaction time for potential hazard mitigation. The
stable and improved performance of the context-aware
monitors in two different CPS case studies indicates the
generalizability of our proposed approach. Future work
will focus on extending the proposed approach to context-
specific mitigation and recovery.
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