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Abstract. Modern network infrastructures are in a constant state of transformation, in large part due to the exponential growth of
Internet of Things (IoT) devices. The unique properties of loT-connected networks, such as heterogeneity and non-standardized
protocol, have created critical security holes and network mismanagement. In this paper we propose a new measurement tool,
Intrinsic Dimensionality (ID), to aid in analyzing and classifying network traffic. A proxy for dataset complexity, ID can be used
to understand the network as a whole, aiding in tasks such as network management and provisioning. We use ID to evaluate sev-
eral modern network datasets empirically. Showing that, for network and device-level data, generated using IoT methodologies,
the ID of the data fits into a low dimensional representation. Additionally we explore network data complexity at the sample
level using Local Intrinsic Dimensionality (LID) and propose a novel unsupervised intrusion detection technique, the Weighted
Hamming LID Estimator. We show that the algortihm performs better on IoT network datasets than the Autoencoder, KNN,
and Isolation Forests. Finally, we propose the use of synthetic data as an additional tool for both network data measurement as
well as intrusion detection. Synthetically generated data can aid in building a more robust network dataset, while also helping
in downstream tasks such as machine learning based intrusion detection models. We explore the effects of synthetic data on ID
measurements, as well as its role in intrusion detection systems.

Keywords: Intrusion detection, IoT, Internet of things, intrinsic dimensionality, data complexity, anomaly detection

1. Introduction

With people, objects, sensors, and services all connected through devices ranging from household ap-
pliances to smartphones and PCs, the Internet of Things (IoT) network infrastructure faces the challeng-
ing task of managing heterogeneous devices and their communications in the absence of standardization.
The proliferation of 10T systems has introduced new, and emerging security vulnerabilities [1,4,12,53]
which can be readily exploited to cause harm. Such vulnerabilities arise because of device manufacturers
neglecting security for performance considerations [13], end-users not updating each device regularly
[50], and a continually expanding marketplace of devices and manufacturers [12].

Further, the unique characteristics of IoT networks have introduced new complications. Notably, het-
erogeneity and non-standardized protocol of IoT networks have been posited as critical challenges for
enhancing the security of IoT systems [10,24,39] — networks with diverse devices ranging from single-
purpose machines to robust servers, each with varied communication structures, are cumbersome to
protect. Past work has proposed behavioral fingerprinting of devices [8], and further fine-tuning device-
specific anomaly detection models depending on the complexity of devices [19]. Others propose super-
vised machine learning solutions [27,43], utilizing modern network datasets such as Aposemat [oT-23
(IoT-23) [15].
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In this work, we take a different approach by first examining the supposition that benign heterogeneous
IoT networks have higher complexity than regular non-IoT datasets. We calculate ID, a property that has
been proposed to measure the complexity of a data set as a whole [54] and evaluate it on four IoT datasets
and two non-IoT datasets. We analyze the datasets from three perspectives: network level, device level,
and through sampling, and show that, despite the variability of IoT devices, the complexity of benign
network activity is low. Further, we show that at the sample-level, loT traffic can be categorized as benign
or malicious using a device-independent unsupervised model. We do this using LID, which estimates
the intrinsic dimension around an individual data point, and show that malicious activity exhibits higher
LID values than benign samples.

1.1. Problem statement

We focus on the question of heterogeneity and complexity in IoT networks and their effects on de-
tecting malicious activity via Network Intrusion Detection Systems (NIDS). Specifically, we ask the
following questions:

1. Do the properties of multi-device heterogeneous IoT networks exhibit fundamentally more com-
plex behavior?

2. What devices are harder to protect in machine learning-based NIDS frameworks?

3. Can we detect malicious activity at the IoT network level in an unsupervised manner, without the
need to label each device and attack?

4. Can the use of synthetic datasets aid NIDS in building more robust ML-based detection models?

1.2. Limitations of prior attempts

Quantifying the complexity of IoT-based network traffic can aid in tasks such as network adminis-
tration, provisioning, quality of service metrics, and security. However, current research has found that
existing network complexity metrics are insufficient [29]. Notably, Liu et al. [29] examined several clas-
sical complexity metrics such as Normalized Trace Complexity, Multiscale Sample Entropy, and Plug-in
Packet Timing Entropy, finding disagreement between the rank order results of each algorithm. In sum-
mary, they conclude that new quantitative measures are needed to incorporate the diversity of 10T traffic.

Additionally, various machine learning solutions have been proposed for NIDS in IoT networks. Such
solutions incorporate deep learning such as autoencoders and classifiers [9,40,46,47], as well as tradi-
tional machine learning algorithms [34]. While these solutions are each impactful in their own right, most
are supervised learning solutions requiring a fully annotated dataset to train — a costly, time-intensive
task. Moreover, with constantly evolving attack vectors (malicious actors acting in novel ways), su-
pervised NIDS solutions trained on datasets with particular attack types become vulnerable [35,51].
Further, IoT networks are fundamentally different from standard networks — devices will be added to the
network, and existing devices may have software/firmware updates with greater frequency. Supervised
algorithms are unable to detect new devices or updates in these situations without expensive retraining
or reconfiguration [8].

To mitigate the problems of supervised learning algorithms in IoT, Haefner and Ray [19] take the novel
approach to intrusion detection in IoT from the perspective of device traffic complexity. The authors
measure the complexity of network traffic on a per device basis to tune an (unsupervised) Isolation Forest
algorithm. They find that several single-purpose IoT devices contain simple (non-malicious) network
traffic, enabling us to assume trust of the device based on its low network packet variability. However,
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the tuning procedure used for the Isolation Forest assumes a particular contamination rate: for more
complex devices, they assume a more significant and fixed percentage of network packets are anomalies,
an assumption that could lead to false positives and not perform well in real-world scenarios.

1.3. Proposed approach

In this work, we measure the complexity of IoT network traffic using the novel perspective of ID,
testing the hypothesis that IoT networks have increased complexity as a result of their heterogeneous
behavior. We first measure ID at the network dataset level, showing that, counter to intuition, several IoT
datasets exhibit lower ID compared to non-IoT benchmarks. We expand this analysis to the IoT device
level, confirming the work by Haefner and Ray [19] that single-purpose devices have low complexity
measurements. Additionally, we show that the ID measurement used in our experiments exhibit similar
rank order complexity as [19], i.e., the complexity measurements of devices are arranged in a similar
order in both works. Finally, we find that more complex devices still exhibit low ID, which can help in
modeling and risk management of new devices in NIDS (lower ID indicates we can feasibly model these
complex devices better than previously thought).

Second, we focus on the problem of detecting malicious actors in IoT networks. We measure the
complexity of network packets using LID by formulating an entropy-weighted Hamming distance cal-
culation on top of the LID measurement to construct a novel anomaly detection algorithm. The results of
the algorithm show that benign network data in IoT datasets exhibit a lower LID measurement compared
to malicious actors, which provides us the opportunity to threshold this measurement during test time.
The unsupervised algorithm uses benign IoT network data as a training set and assumes any test sample
under threshold t is benign network behavior. If the LID estimate is above this threshold, we can flag
the example as malicious.

Finally, we assess our proposed ID and LID approaches with synthesized network data. Specifically,
we generate new synthesized benign and malicious datasets using a Variational Autoencoder (VAE).
We hypothesize that by adding new data to our experimentation we can better assess the quality of the
metrics. To begin, we assess the quality of our synthetically generated data by measuring its separa-
bility from real data. We achieve this with both the variational autoencoders reconstruction error of a
sample and additionally using the receiver operating characteristic curve of the synthetic dataset com-
pared to the real dataset. We then measure the ID of synthesized benign datasets to test whether the
metric is consistent with the real samples. Next, we test the ability of our Weighted Hamming LID
Estimator against synthesized attack data. In our final experiment, we test whether the performance of
unsupervised anomaly detection algorithms increases as a result of the newly added synthetic data. Our
experiments show that we can build a robust dataset using the synthesized data while maintaining a
similar ID measurement.

1.4. Key contributions

Our contributions are as follows:

e We measure the complexity of several IoT and non-IoT datasets at both the network and device level
using ID, testing the hypothesis that IoT networks contain complex interactions. Despite being
heterogeneous in nature, we show that loT network activity has low ID measurements, with ID
values similar to device-level traffic. Low ID measurements provide strong evidence that we can
build robust and secure Machine Learning (ML) models to protect IoT networks. To the best of our
knowledge, this is the first work that analyzes IoT datasets using ID.
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e We propose a novel algorithm for unsupervised anomaly detection using a combination of Hamming
distance and the Hill Maximum Likelihood Estimator (MLE) LID, and show that the algorithm
performs competitively with several state-of-the-art algorithms.

e We measure the complexity of network traffic using synthesized datasets, showing that ID metrics
are similar across real and synthetic values. Additionally, we show the benefits of using synthesized
data for enhancing unsupervised learning algorithms.

e We find that adding synthetic data to the benign and attack datasets provides new insights into
the quality of different metrics and algorithms. In particular, adding synthetic data to the benign
datasets provides enhanced generalization capabilities in IoT datasets. Additionally, we find that
the anomaly detection algorithms studied in this paper are robust to synthetically generated attacks.

The rest of the paper is organized as follows. We first summarize related and prior work in Section 2.
We then detail ID, and LID concepts in Section 3 as well as discuss our methodology. We summarize the
datasets we used in experiments in Section 4. Next is our analysis of ID results in Section 5, followed by
device level ID estimates in Section 6. In Section 7, we present results at the algorithm level and attack
level. In Section 8 we examine the intrinsic dimensionality of synthetic datasets. Finally, we conclude
this paper with a discussion and pointers to future directions in Section 9.

2. Related work

In this section, we review Intrusion Detection Systems (IDS), IoT security research, current algorithms
for IoT intrusion detection, and finally, open problems in deep learning anomaly detection.

2.1. Intrusion detection systems

IDS can broadly be classified based on 1) where the detection is placed (network or host) and 2) the
detection method that is employed (ML anomaly-detection algorithms or traditional signature-based
detection where attack patterns are defined in a database). In this work, we concentrate on network-
based intrusion detection where anomalies are classified based on an ML algorithm. ML based NIDS
are employed in production into a key point within a network to monitor traffic to and from all devices
connected to the network. Network features are extracted from the entire subnet about the passing traffic
and scored by the ML detection algorithm. NIDS can operate on-line (real-time detection) or off-line
(batch detection). Real-time detection offers more robust security and beneficial results as long as it
does not impair the overall speed of the network. Our study aims to characterize network data in real-
time.

IoT is a rapidly evolving field, with research being done at dozens of institutions across industry
and academia [10,24,26,39]. It is postulated that IoT increases the vulnerability of networks because
the attack surface has increased, with many new entry and exit points with new devices available on
networks [32,41]. A heterogeneous IoT network is typically made up of various sub-devices within a
distributed network. It includes resource-constrained devices, such as a smart light bulb or garage door
opener, and more powerful devices such as embedded and regular computers.

Existing research notes that IoT networks and devices have multiple intrusion sources: IoT backends,
cloud services supporting an IoT device, and other hubs within the IoT system [38,49], which makes it
difficult to implement traditional intrusion detection approaches such as rule-based and signature-based
methods.
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2.2. State-of-the-art network intrusion models

Several works propose new and existing algorithms for intrusion detection on commonly used datasets.
Moustafa [34] released dataset TON_IoT (TON_IoT), including baseline results that use many su-
pervised learning algorithms. Sahu et al. [43] proposed a hybrid deep learning model which uses a
CNN/LSTM framework to achieve 96% accuracy on the IoT-23 dataset generated by [15] and outper-
formed several proposed deep learning-based attack detection. Kozik et al. [27] use hybrid time window
embeddings with a transformer neural network to classify [oT-23 data. This model achieves between
93% and 95% accuracy on attacks in IoT-23 and does better than three other proposed deep learning
models: HaddadPajouh et al. [18] use an LSTM trained on IoT devices execution operation codes (Op-
Codes), Roy and Cheung [42] use a bi-directional LSTM for detecting attacks on UNSW-NB15, and
Azmoodeh et al. [6] use OpCodes to train a deep Eigenspace model to detect attacks.

Moustafa and Slay released UNSW-NBI15 dataset [35] that was generated using IXIA Perfect-
Storm. The dataset has been widely used as a benchmark for comparison. MStream [9] is an on-
line neural network-based anomaly detection algorithm using both continuous and categorical fea-
tures. This tool achieves 0.90 AUROC on UNSW-NB15 and is considered state-of-the-art according
to PapersWithCode.com.? The Edge-detect model [47] is another neural network-based framework that
proposes a lightweight model to detect anomalies on edge and was tested on UNSW-15 and is also con-
sidered state-of-the-art. Meftah et al. [31] performed a similar approach to [22], using Recursive Feature
Elimination and Random Forests to select features, achieving up to 86% F1 accuracy. It should be noted
that UNSW-NB15 is only used in this paper to measure dataset complexity, not anomaly detection.
We specifically concentrate our anomaly detection approach on IoT datasets, especially since the high
complexity of UNSW-NB15 makes it a poor choice for our algorithm.

Several other papers are published using alternative datasets that propose different machine learning
models for intrusion detection. Rezvy et al. [40] proposed a deep learning framework for intrusion
classification and prediction in 5G and IoT networks. They propose an autoencoder neural network
for detecting intrusion or attacks in 5G and IoT networks, evaluating the model on the Aegean Wi-
Fi Intrusion dataset. Their results showed an overall detection accuracy of 99.9% for different types
of attacks. Kasongo and Sun [22] argue that feature selection is essential for the performance of ML
models in intrusion detection since model accuracy decreases with more high-dimensional datasets.
They apply a filtering technique on features and train several ML models using this technique, showing
strong performance. They relate the feature selection to IoT devices with limited capacity, showing that
less robust modeling techniques are favorable in limited-capacity systems such as small IoT devices.

2.3. Connections to deep learning

Neural networks trained with back-propagation provide diverse structures and objectives to learn from
high-dimensional data. Despite their incredible power, anomaly detection remains an open research
problem, even in state-of-the-art models. Notably, several works in computer vision have shown that
classification, generative, and unsupervised deep neural networks are all susceptible to anomalous data
[16,20,33,36,45]. For example, one common computer vision experiment involves training a deep learn-
ing model on the CIFAR-10, a dataset with 60,000 images labeled into ten classes. It is expected that
the likelihood of a CIFAR-10 test image will be higher than images from other datasets during test time.

Zhttps://paperswithcode.com/dataset/unsw-nb15
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However, several papers have shown that the examples from the dataset SVHN produces a higher like-
lihood when passed through the model trained on CIFAR-10 [33,36,45]. Recently, Serra et al. showed
that anomalous high-likelihood data could be linked to complexity [45]. They find that the simplicity
of SVHN data compared to CIFAR-10 data causes the deep learning model to exercise a higher likeli-
hood on SVHN examples than the complex CIFAR-10 data. They use image compression scores as a
complexity metric (likelihood ratio) to determine whether the high likelihood can be attributed to lower
complexity.

Interestingly, a similar complexity finding was found in a recent security paper published by Haefner
and Ray [19]. Using data from various IoT devices, they find that each device has varying complexity.
They formalize a complexity measure (IP Spread/IP Depth) per device in order to fine-tune an Isola-
tion Forest anomaly detection algorithm. Their architecture, ComplexIoT, measures network traffic on a
device level, which can be used in Host Intrusion Detection Systems.

This work is similar to ComplexIoT [19] in that we propose a complexity measurement; however,
there are several key differences:

e We analyze IoT datasets both from the point of view of network-level and the device level, while
ComplexIoT only looks at device level complexity.

e ComplexloT proposes a device complexity score to moderate the contamination rate of an Isola-
tion Forest. This is problematic as it assumes x% of a device’s traffic will be malicious given a
complexity score and may lead to false positives.

e The ComplexIoT complexity score is based on IP spread and IP depth and does not consider other
network features to compute its complexity estimate.

e The efficacy of the ComplexloT approach has not been measured via binary classification metrics
on benign and malicious examples. In this paper, we measure the results of the weighted Hamming
LID estimator on common IoT network intrusion datasets.

3. Methodology

In this section we first briefly explain the concepts and the mathematics behind ID and LID. We
will later use ID to measure both network and device level IoT and non-IoT datasets, showing how this
complexity measurement is a strong tool of our ability to assess network data at multiple levels. Next, we
propose our algorithm, the Weighted Hamming Distance LID Estimator, include the algorithm details,
baseline models to compare against, and our experimental protocol.

3.1. Intrinsic dimensionality

The ID of a dataset is the minimum number of variables needed to retain a full approximation of the
data [7]. It is based on the observation that high-dimensional data can often be described by a smaller
number of variables. The utility of lower dimensional representations is apparent throughout ML re-
search, from data compression (such as autoencoders [21]) to dimensionality reduction (PCA). ID is
akin to autoencoders and PCA, however quite distinct in that its an estimate of the lowest possible di-
mension of a dataset (e.g. the lowest possible bottleneck size in an autoencoder), and not a reduction
technique in itself. ID can be thought of as a geometric property to measure complexity of a dataset as a
whole [54].
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Formally, the ID of dataset & € R™", with m samples and n features, lies on a lower dimensional
manifold .#, where ID = dim(.#), i.e. ID is the dimension of the manifold .# of the data. Usually,
the ID measurement is significantly less than extrinsic dimension n, which corresponds to the number
of features.

As an intuitive example, points x; . .. x,, exist on a piece of paper in three dimensional space. We can
describe the points relative to the three dimensional space, (d;, d,, d3), or we can describe them relative
to their position on the piece of paper, where only two variables are needed. Here, the representation of
points x; ... x,, in 3D space is the extrinsic dimension, whereas their points relative to the piece of paper
are their ID.

The main approach to estimate ID involves examining the neighborhood around a reference point x;
for each x in Z". A common equation used in existing research was proposed by Levina and Bickel [28]:

—1
) )]

where m is the number of samples, x; is a sample in the dataset, k and j are the kth and jth nearest
neighbors. T;(x;) is the distance between x; and x, similarly, 7;(x;) is the distance between x; and x;.
Intuitively, Equation (1) measures the rate that new neighbors are encountered as we move out from the
reference point x;. We use this equation for all ID estimates in Fig. 2.

Recently, ID has been gaining relevance in the machine learning community [3,5,37]. Pope et al. [37]
showed that common computer vision datasets exhibit very low intrinsic dimension relative to their
number of pixels. They also showed that the intrinsic dimension greatly impacts learning: the higher the
intrinsic dimension of a dataset, the harder it is to learn from it. In addition, they showed that the extrinsic
dimension of the dataset, i.e. the total number of pixels per image in a dataset, did not effect learning and
generalization, indicating that sample complexity only depends on the intrinsic dimension rather than
the total dimension of the dataset. Ansuini et al. [S] showed that neural networks exhibit low intrinsic
dimensionality at deep layers of neural networks. Outside of deep learning, intrinsic dimensionality has
been used in applications such as anomaly detection [48], clustering, similarity search, and deformation
in complex materials.

—1

Ty (x;
() - ( B

i=1 j=I

3.2. Local intrinsic dimensionality

In contrast to ID, LID estimates individual data samples, rather than the full dataset. It is based on the
observation that individual data points in a dataset often fit within a specific lower-dimensional structure
when only considering a subset of the nearby data. As a result, these values can vary greatly within a
dataset. Intuitively, the LID measurement can be interpreted as the dimension immediately surrounding
a data point.

LID has been proposed for anomaly/out-of-distribution detection [52] as well as detection of adver-
sarial examples in deep neural nets [30]. Theoretically, examples within a dataset should have lower LID
values than anomalous examples generated from an alternative source.

Amsaleg et al. [3] propose several estimators for the LID, though they note that these are theoretical
quantities and only estimates of the true local dimension. We use their Maximum Likelihood Estimator
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in Section 3.3. Their equation provides a strong balance between efficiency and complexity:

— 1 k ri(x) -
LID(x) = — zZlog (2)

— )

where r; is the distance of data point x to the ith closest neighbor and ry is the distance to the kth
neighbor. Additionally, it has been shown that hyperparameter k is sensitive and must be experimentally
tuned. Equation (2) is a theoretical quantity, and it should be noted that IjI\D(x) is an estimation. Further,
the dimension estimate is usually not an integer value, except in idealized distributions and datasets.

Ma et al. [30] used LID estimates to characterize adversarial subspaces in deep learning. They showed
how traditional density measures can fail to detect adversarial examples in the final layers of deep learn-
ing models, while LID measurements can better characterize these subspaces. This is because traditional
measures only measure the density of neighboring points surrounding an example, whereas LID mea-
sures the rate at which new neighbors occur.

3.3. Weighted Hamming distance LID estimator

LID is typically measured on a sample using distances from its neighbors in a dataset, and can be
thought of as the rate of growth between a point and its neighbors. In this work, we use Equation (2) for
LID estimation, using the training data 2,.;, as neighboring points.

Distance metric. For the distance metric required in Equation (2), we use Hamming Distance to com-
pute similarity between both categorical and continuous feature points. While Euclidean Distance is
typically used in Equation (2) to measure LID, Ma et al. [30] suggested not using Euclidean Distance
as the underlying distance metric. Choosing the Hamming Distance metric over Euclidean Distance for
continuous variables showed better experimental results. Effectively, this turns each pairwise feature dis-
tance into a binary metric: O for same, 1 for different. We compute Hamming Distance using the Python
SciPy library as:

Number of mismatching features
H(xi, Xj) = (3)
Total Features

Entropy. We calculate entropy of each feature and set it as the weight. In a dataset with n features, we
set weight w; for feature i to n/Entropy(i), where the entropy of a feature i is:

— Y pilogy(p)) )

j=1

and 7 is the total number of features and j are specific classes in the feature. p; is calculated by getting
the counts of each class within feature i. Equation (4) denotes the explicit form of entropy [17]. For
example, the protocol feature may have TCP and UDP classes, we compute the counts for each to
calculate entropy. We find that features with low entropy should be weighted more since they are stable
properties of benign samples. For example, if benign samples come from TCP protocol 99% of the time,
we can theorize that new samples matching the TCP protocol may be similar to a benign example.
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LID and KNN measurements in Simple 2D Example

3.0 e el e Training Example
T ; ® Benign (Test)
N ! S
55 \\\H=1 i H=0.502 X Malicious (Test)
Sso 1
b i
2.01 X
R 1.5
1.0 1 »
0.5 L H=1
__________________________ H=0.498
s H=0.498 e
0.01 o= -
T T T T T T T T T
-1.0 =05 0.0 0.5 1.0 15 2.0 2.5 3.0

Weighted Hamming KNN=0.665
® Weighted Hamming LID=1.435

Weighted Hamming KNN=0.502
X Weighted Hamming LID=1.451

687

Fig. 1. A visual explanation of how the weighted Hamming distance LID estimator can detect anomalous examples where the
traditional KNN algorithm will fail. See the end of Section 3.3 for more details.

Algorithm 1 Weighted Hamming distance LID estimator

Require: 2,4y, Z1est» nearest neighbors &, threshold t
Require: 2, contains only benign examples

for x; in 2. do
{% .. %} < <%(-xi, {%min})

{4 ...} < for all distinct 5% € {7 ...}

if Oisin {7 ... 7,} then
x; is benign (exact match)
else

LID(x;) < LID({74 ... 5,}, k) (Eq. (2))

if LID(x;) < 7 then
X; is benign
else
x; 1s malicious
end if
end if
end for

After computing Hamming distance between x; and the set of 27,4z, We have a set of J4 ...,
Hamming distances the size of Z;,,;,. We filter all duplicate distances where .7 = ¢}, to include only
a single distance value for each cluster of distances, leaving a set of .77] . .. .7, distances where n < m.
In other words, when examples have the same distance .77 to a reference point x;, we filter them into a
single distance in order to gather a unique set of distances. From here, we are able to compute the final
LID score using Equation (2). Algorithm 1 details the Weighted Hamming LID estimator for anomaly

detection.

Figure 1 depicts a visual example of how the Weighted Hamming LID Estimator can classify an
anomalous example where the KNN algorithm will fail. For example, the traditional KNN algorithm
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can discriminate test examples as benign or malicious by measuring a samples average distance to K
training samples, where lower average distances indicate a benign example and higher distances indi-
cate a malicious example. Figure 1 shows how KNN can fail on a simple two dimensional problem: the
red X is closer to several training examples, however, the black dot matches the more relevant feature,
X2. We show how the LID estimate corrects this issue, yielding a lower value for the benign example
compared to the malicious example. We weight the Hamming distances in the KNN and LID estimates
with 2/Entropy of each feature. Entropy for X1 is 1.99 and 2.01 for X2. In the image, results are pre-
sented with a weighted Hamming distance, however Euclidean distance yields the same results on KNN.
K = 3. Here, the LID is calculated as —1/1n(0.502) and —1/In(0.498).

3.4. Baseline models

In the previous section, we explain our proposed Weighted Hamming Distance LID Estimator model.
We compare our proposed model with several models as baselines in the tasks of detecting attacks in the
IoT networks. These models include several modern and classic algorithms: KNN, Isolation Forest, and
Autoencoder. In the following, we briefly explain each of these models.

3.4.1. KNN algorithm

K-Nearest Neighbors (KNN) classification is an unsupervised machine learning model that measures
the distance between a sample point and its neighbors. It takes an arbitrary distance measurement and
measures the average distance between a reference point and its neighbors using this distance. In our
experiments, we take the average of these nearest neighbor distances and use them to threshold scores.
Theoretically, reference points with lower KNN averages should belong to the normal, non-malicious
examples in the dataset, and malicious examples should have higher KNN averages.

3.4.2. Isolation forest

Isolation Forest is an efficient algorithm to determine anomalies in an unsupervised manner. It does
not need a profile of what is normal and not normal and identifies anomalies independent of labels.
The algorithm relies on the tendency of anomalies to be easier to separate from the rest of the sample
compared to normal points. It recursively generates partitions on the sample by randomly selecting an
attribute and then randomly selecting a split value for the attribute between the minimum and maximum
values allowed for that attribute.

Notably, an Isolation Forest was used in [19], where they tune the contamination parameter based on
the complexity of an IoT device. They argue that devices with low complexity should have contami-
nation values close to zero because their expected network traffic should fit certain patterns, hence the
device should never receive anomalous traffic. This means that, should the device be compromised, the
algorithm would likely not classify the attack as anomalous because of the low expected contamination.
As a result, the algorithms assumption that a certain percentage of examples are contaminated makes it
vulnerable to changes in the number of contaminated records.

3.4.3. Autoencoder

Autoencoder is a neural network based model commonly used for unsupervised anomaly detection,
such as in [40]. The model compresses the training set into a bottleneck representation before recon-
structing it. We train the autoencoder on benign examples, and in theory, the reconstruction loss should
be smaller for all benign examples compared to malicious examples.
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The objective function is the reconstruction loss: given example x and continuous feature x. we use
mean-squared error:

L(xe.x) = [xe =] )

where x’ is the reconstructed output of the neural network. For discrete categorical features, we encode
the categories into embedding layers to input them into the model. The outputs of the autoencoder
for categorical variables are one-hot vectors, denoted x;, and we use cross entropy for the objective
function:.

E(xd, x;) =Xy log(x[’,) + (1 —x4) log(l — xéz) (©)

We sum the loss of the continuous and categorical variables to obtain the full reconstruction loss. We
use Adam optimization with the default learning rate.

3.5. Experimental setup

To train each model in an unsupervised manner, we first take all clean examples (Zpenign). For each
experiment, we run the algorithm on Z.,;e, using leave-one-out cross validation, i.e., calculate distances
2 from x; on each member of the training set but x;. We also pass it the entire set of malicious data,
P maticious- The result of each sample is either 0 distance, exact match, or a weighted Hamming LID
estimate. Zero’s are automatically classified as benign, while lower LID estimates are also classified as
benign.

A proper threshold 7 can be determined based on the desired accuracy rate. In other words, if it is
important to classify all malicious samples, we can set a lower t for higher detection, though this may
lead to some benign examples being classified as malicious (false positive).

To measure results, we use Area Under the Receiver Operating Characteristic curve (AUROC) and
Area Under the Precision-Recall curve (AUPR). AUROC plots the True Positive Rate (TPR) against
False Positive Rate (FPR). AUPR plots the precision versus the recall calculated by following formulas:

o True Positive
precision = — — @)
True Positive + False Positive

True Positive
recall = — - (8)
True Positive + False Negative

4. Datasets

This section summarizes the datasets we use in our experiments. We use two common non-IoT net-
work intrusion datasets, UNSW-NB15 and KDD Cup, and four IoT related datasets (TON_IoT, NetFlow
Bot-IoT (NF Bot-IoT), IoT-23, IoT Sense).

4.1. Non-IoT: UNSW-NBI15

UNSW-NB15 [35] (2015) is a standard and commonly used network intrusion dataset from the USNW
at Canberra Cyber Range lab. The dataset provides modern network traffic scenarios compared to the
KDD datasets, which are more than a decade old. There are 47 features (of which we use 42), ranging
from basic features to content and time-related features. Nine types of attacks are included in the dataset.
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4.2. Non-IoT: KDD Cup 1999

We use a variation of the KDD Cup 1999 dataset [14] located on Kaggle. The dataset consists of
13,449 benign instances and 41 features, which we use to measure ID.

4.3. TON IloT

TON_IoT [2,34], published in 2020, comprises heterogeneous IoT data across several devices. The
work uses several data source types, including sensor, raw, and log data. Additionally, it includes several
infrastructure layers in the testbed architecture, such as the edge, fog, and cloud layers with nine types of
generated attacks: Distributed Denial-of-Service (DDoS), Scanning, Ransomware, Backdoor, and Injec-
tion attacks. The dataset has 41 total features; however, the authors recommend not to use source IP/port
and destination IP/port. The dataset simulates traffic from seven IoT sensors: weather, smart garage door,
smart fridge, smart TCP/IP Modbus, GPS tracker, motion-enabled light, and a smart thermostat.

For measuring ID, we deduplicated data instances, and as a result, 61.8% of instances have been
removed. However, for the anomaly detection task in Section 7 and Table 3, we consider packets that are
duplicate of benign data as being benign.

4.4. NF Bot-IonT

NF Bot-IoT [44], published in 2020, is a dataset based on the BotNet IoT dataset [25,26]. Botnets
are an important attack vector to protect against as they have been the source of several breaches over
the past few years [25]. NF Bot-IoT converts four common network NIDS datasets into network flow
datasets using the commonly deployed NetFlow [11] protocol for network traffic collection. Authors
argue NetFlow’s features are easier to extract compared to the complex features used in the original
NIDS datasets since NetFlow’s features are usually extracted from packet headers. The dataset includes
several attacks, including DDoS, Denial-of-Service (DoS), OS and Service Scan, Keylogging, and Data
exfiltration attacks.

4.5. IoT-Sense

IoT Sense [8], published in 2018, is a dataset of benign examples generated based on 14 real IoT
devices. Authors activated different functionalities of each device using controller apps and captured
packets. There are 21 features captured in the dataset, with labeled devices for each sample. We catego-
rize devices in this dataset into four categories (Light, Appliance, Hub/Outlet, Smart Controller).

Devices include TCP Light, Avox Light, Musiac Music Player, DLink Camera, iDeviceSocket, iView
Light, LutronHub, Netamo Climate, Omna camera, Phillips HUE, Tplink Light, Wemo Outlet, Wink
Hub, and Smart Things Hub. We use this dataset for both ID measurements as well as device-specific ID
measurements in Sections 5 and 6.

4.6. loT-23

[0T-23 [15] was released in 2020. The dataset has 23 different scenarios, of which three are benign
traffic scenarios captured on real IoT devices. The dataset contains almost 11 million total records;
however, with the difficulty of modeling this much data, we sample a million records with the following
logic: From the entire dataset, we sample 500K malicious records and 500K benign examples from
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Table 1

Dataset summaries including total number of samples, percentage of benign samples, percentage of malicious samples, percent
duplicates, number of features, and number of attacks

Name #To. %Ben. J%Mal. %Dup. #Fea. #ALt
UNSW-NBI15 82K 45% 55% 12.5% 42 -
KDD Cup 24K 45.8% 54.2% 0% 41 -
TON_IoT 461K 65% 35% 62% 38 9
IoT-23 IM 50% 50% 2% 19 7
IoT Sense 54K 100% 0 63% 21 -
NF Bot-IoT 599K 21.7% 78.3 0% 12 4

simulated files that contain a source IP or destination IP with an internal IP address and have at least
50 samples belonging to that specific IP address. We find that 99.99% of internal IPs have at least 50
samples. We also included all samples from three real devices (Philips HUE smart LED lamp, Amazon
Echo, and a Somfy smart door lock) with 1,634 total packets.

We categorize these devices similar to IoT-Sense as a light (Philips HUE smart LED lamp), Smart
Controller (Amazon Echo), and Appliance (Somfy smart door lock). Philips HUE light is in both datasets
so that it can be used for comparison device-specific ID measurements.

This dataset also captures 20 simulated scenarios of both benign and malicious traffic. It offers several
attack examples: DDoS, FileDownload (to infected device), HeartBeat (indicates packets sent on the
connection are used to keep track of infected host by CC server), Mirai, Torii, and Okiru BotNets (new
common attacks), and HorizontalPortScan (used to gather information for further attacks).

4.7. 10T dataset features

We use the available features for each dataset, except we exclude source and destination IP and port
as well as any ID or timestamp columns for TON_IoT and IoT-23. We include IPs and ports in NF Bot-
IoT because of its small number of available features to provide more discriminability. Features among
the datasets include protocol, source, and destination bytes, connection state, service, duration, missed
bytes, number of packets, window size, payload, entropy, DNS, SSL, and HTTP properties. A summary
of each dataset is presented in Table 1.

5. Intrinsic dimensionality of network datasets

Our first ID analysis is measuring benign networks at the full dataset level, using the approach ex-
plained in Section 3.1. We measure the ID over several K estimates (K =3, K =5, K =10, and K =
20). Results of this experiment are depicted in Fig. 2.

IoT datasets vs. non-1oT datasets. First, we look at the benign subsets of four IoT datasets (TON_IoT,
I0T-23, NF Bot-IoT, IoT-Sense). Each dataset contains an ID estimate under 2. Comparatively, the non-
IoT network datasets of UNSW-NB15 and KDD Cup ’99 have ID estimates between 3.61 and 7.1,
substanially higher than the IoT network data. The relative simplicity of IoT network data indicates it
will be easier to estimate its behavior, leading to better NID models and more robust detection of attacks.
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ID Estimates for Benign loT and Non-loT datasets at varying K's

71 71

7 6.6
5.95
6
5
4 361378377
3
2
193 146 158 14
. 1.16 117
1.03 1.02
053075 0 0.91 0.8 0.82 0.85

[ 1 | | PR

0 |

TON_loT loT-23 NF Bot-loT loT Sense UNSW-NB15 KDDCup '99
HK=3 mK=5 K=10 K=20

[

Fig. 2. ID measurement for six different datasets. The four left datasets are IoT datasets and the two right datasets are non-IoT
datasets. This figure also depicts different K values for ID.

Effects of K value. One other observation is related to K values. Several works note that the ID es-
timate is sensitive to K [3,37], so estimating ID values over several K’s gives us a robust picture. As
Fig. 2 shows, rank order of each dataset does not change substantially given the choice of K. Hamming
Distance is used for all distance computations as described in Section 3.3.

Effects of number of features. Another notable finding across all datasets is that the extrinsic dimen-
sionality, or number of features in the datasets, does not appear to be correlated with its intrinsic di-
mensionality. For example, TON _IoT contains almost as many features as UNSW-NB15 and KDD Cup
1999, however, its ID estimates are substantially lower than each. This indicates that the features of IoT
network data are more simplistic in nature than both non-IoT datasets.

IoT vs. computer vision datasets. Finally, we can compare these values to more difficult modeling
on common computer vision datasets. Pope et al. [37] show that MNIST has the lowest ID, estimated
between 7 and 13, with the state-of-the-art accuracy of 99.84%. In contrast, ImageNet has an ID between
26 and 43 with a state-of-the-art accuracy of 88.5%, indicating that datasets with a higher ID may be
difficult to model. This is further examined in [37]. Relating these values to ID estimates on network
data, we see that UNSW-NB15 has a similar ID to MNIST. While this indicates that UNSW-NB15
can still be modeled with very high accuracy, its ID is substantially higher than IoT network datasets,
indicating IoT networks may be easier to model.

Potential applications. As noted by Liu et al. [29], a common complexity metric has use in several
network-related tasks. For example, network management and provisioning, quality of service metrics,
and security can each benefit from a metric to understand the complexity of the network.

In our results above, we show that non-IoT datasets have low ID values. Evidence suggests that such
observations can lead to more robust and reliable modeling and quantification [37]. We explore this
observation more in the following sections.
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Fig. 3. Intrinsic dimensionality of specific devices for each dataset. We use 14 devices from IoT sense dataset plus the 3 real
devices from [0T-23 to measure ID. We categorize each value into low (up to 0.5), medium (0.5 to 0.7), and high ID (0.7+).
The x-axis represents the three categories (low, medium, high) while the y-axis denotes the exact numbers for each device.

6. Intrinsic dimensionality of IoT devices

In this section, we analyze benign IoT traffic for specific devices. The purpose of this analysis is to
compare device-specific complexity via ID in order (i) verify the behavior of various devices as described
in [19] and (ii) reason about the ID values across different IoT devices. We present the results in Fig. 3.

We hypothesize that [oT datasets have lower complexity because the networks contain devices with
simplistic behavior compared to non-IoT datasets. For example, devices such as lights and appliances
are likely to have more straightforward network interactions compared to devices such as laptops and
televisions.

6.1. Category-based results

For this task, we need to have the labeled devices in each dataset; however, not all IoT datasets labeled
their devices or used simulated devices like I0T-23 for attack data. Consequently, we excluded those
from this experiment. We were able to find three real [oT devices in [0oT-23 and 14 other real devices from
IoT-Sense dataset. We categorized devices into four categories of Lights, Appliances, Hubs/Outlets, and
Smart Controller. In total, we have 17 labeled devices with benign traffic, with one device (Phillips HUE
Light) in both [0T-23 and IoT Sense. Table 2 reports results of this experiment.

6.2. Complexity-based results
Haefner and Ray [19] defined a spectrum for the complexity for IoT devices, starting with simple

devices such as single-purpose machines with low variability in their network interactions to complex
devices (like Amazon Echo) with high variability in their network interactions. Similarly, and to simplify



694 M. Gorbett et al. / The intrinsic dimensionality of network datasets and its applications

Table 2
Results for LID experiments for 17 different devices on [0T-23 and IoT-sense
Category Device Dataset ID
Light TCP light IoTSense 0.787
Light iView Light IoTSense 0.543
Light AWOX Light IoTSense 0.845
Light Phillips Hue IoTSense 0.796
Light TP-Link Light IoTSense 0.55
Light Phillips Hue [0T-23 0.73
Appliance Musiac Music player IoTSense 0.866
Appliance D-Link Camera IoTSense 0.595
Appliance Omna Camera IoTSense 0.323
Appliance Netamo Climate IoTSense 0.439
Appliance Somfy Door Lock IoT-23 0.81
Hub/Outlet iDevice Socket IoTSense 0.474
Hub/Outlet WEMO Outlet IoTSense 0.483
Hub/Outlet Lutron Hub IoTSense 0.447
Hub/Outlet Wink Hub IoTSense 0.881
Hub/Outlet Smart Things Hub IoTSense 0.353
Smart Controller Amazon Echo I0T-23 1.14

understanding of our results, we split ID measures into three categories: Low (0 to 0.5), Medium (0.5 to
0.7), and High ID (more than 0.74).

In our datasets, 6 of these devices (Omna Camera, Smart Things huB, Netmao Climate, Lutron Hub,
Wemo Outlet, and iDevice Socket) are labeled as low complexity devices. Three devices of iView Light,
TP-Link Light, and D-Link Camera are labeled as medium complexity. Seven devices are classified with
high complexity measures (Wink Hub, Philips HUE light, Door Lock, Musiac Music, AWOX light, and
Amazon Echo). Multiple observations can be made here.

First, Amazon Echo has the highest ID value among all devices, which makes sense. In addition, while
Haefner and Ray [19] do not measure Amazon Echo directly, they measured a similar device in Alexa.
Their results confirmed that Amazon Alexa had a high complexity measure, which matches our findings.
Further, the rank order of ComplexIoT is similar to ours: both sets had TP-Link Light, Philips HUE,
Smart Hub, and Alexa/Echo devices. ComplexIoT measured TP-Link as the lowest complexity, followed
by the HUE, Smart Things Hub, and Alexa. Our measurements indicated that the Smart Things Hub had
the lowest complexity, followed by the TP-Link Light, HUE, and Echo. The only inconsistency in the
ranks was the Smart Things Hub, where Complex loT measured a higher complexity value. Otherwise,
the order of complexities of each device was the same. The Smart Things Hub could have yielded
different measurements between the two results because of varying network captures between the two
datasets.

All devices in the low-complexity range are aligned with our understanding of the simple-
functionalities of these devices, except the Omna Camera. Like a camera with a high volume of sending
and receiving data, we expect it will fall in the medium complexity range, similar to the D-Link Camera.
One reason could be that the camera uses a specific protocol for sending images/videos (like UDP) that
are not captured in the dataset we had, and only command packets have been captured. Consequently,
the LID model does not give it a high value.
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In our experiment, we had six lights, and all of them fell into medium and high complexity, a consistent
result among them. We had two instances of the same device (Philips Hue light) in two datasets with
different sets of features. The results of these two devices are very close to each other, 0.796 and 0.73
for IoT-Sense and IoT-23 datasets, respectively. This shows that regardless of the different features in
the two datasets, our proposed approach consistently evaluated the same device, which is promising.

7. Anomaly detection results

In this section, we extend our findings of ID measurements on IoT networks to the sample level,
showing that we can use the localized complexity measurement of LID to detect anomalous behavior.

7.1. Algorithm comparison results

We show that all IoT network datasets exhibit low complexity in Section 5. However, benign samples
individually fit this same pattern, while malicious activity exhibit’s higher LID measurements when
measuring it against a benign baseline. We use this finding to the task of anomaly detection, using three
public IoT datasets with benign and malicious examples. Results are compared against each other in
Table 3.

Table 3 reports results of our proposed Weighted Hamming LID versus other baseline models of
KNN and Weighted Hamming KNN, Isolation Forest, and Autoencoder. We run experiments with four
different K values of 3, 5, 10, and 20. Our algorithm outperforms the Isolation Forest in every dataset,
the weighted Hamming KNN and Autoencoder in four out of five datasets, and the standard KNN in
three out of five datasets. Overall, the algorithm showed the best results in three out of five datasets,
which is a significant result.

The most notable result was with the TON_IloT dataset, where the algorithm outperformed other un-
supervised learning algorithms by a large margin. Figure 4 shows the distinct advantage of using the
weighted Hamming algorithm over both the KNN and weighted KNN algorithms, with an ROC score
more than 0.08 higher than the KNN algorithm and a PR score almost 0.12 above the KNN.

Algorithms that performed distance computations to their closest neighbors exhibited the best re-
sults (KNN, weighted Hamming KNN, and LID algorithms). Isolation Forest had low results for both
TON_IoT and 10T-23. The Autoencoder did well on four out of five datasets, but had nearly random
results on TON_IoT.

Table 3

Results for our model and 4 baseline models. We experiment with K values of 3,5,10, and 20 for the KNN, KNN (weighted
Hamming), and weighted Hamming LID estimators, but report best results for each K in each dataset. We choose the K with the
best results in the results. K =5, 10, and 3 give best results for three datasets of NF Bot-IoT, TON_IoT, and 10T-23 respectively.
The best ROC and PR for each dataset is in bold

Test type NF Bot-loT Ton-loT 10T-23

ROC PR ROC PR ROC PR
Isolation Forest 0.957 0.999 0.574 0.442 0.492 0.594
KNN 0.961 0.999 0.834 0.716 0.990 0.970
Weighted Hamming KNN 0.955 0.998 0.804 0.612 0.990 0918
Autoencoder 0.919 0.998 0.622 0.789 0.572 0.860

Weighted Hamming LID (Ours) 0.970 0.999 0.917 0.831 0.998 0.994
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Fig. 4. The ROC and PR curves for KNN, weighted Hamming KNN, and weighted Hamming LID on TON_IoT dataset.

Table 4

Results of unsupervised anomaly detection algorithms on non-IoT datasets. Results indicate that the weighted Hamming LID
estimator is correlated with the ID estimate of the dataset: for a higher ID, such as the UNSW-NB15, the algorithm performs
poorly, while the more moderate ID of Kaggle NID performs better. These values indicate we can use ID as a gauge for how
well the weighted Hamming LID anomaly detection will perform. These results also indicate that more complex datasets are
better handled by deep learning methods (autoencoder)

Test type UNSW-NBI15 Kaggle NID

ROC PR ROC PR
Isolation Forest 0.779 0.896 0.2288 0.324
KNN 0.206 0.514 0.956 0.936
Weighted Hamming KNN 0.279 0.542 0.951 0.907
Autoencoder 0.829 0.902 0.974 0.981
Weighted Hamming Lid 0.4 0.615 0.86 0.784

Overall, results indicate the Weighted Hamming LID estimator is a strong alternative to classic
anomaly detection algorithms such as the Autoencoder, Isolation Forest, and K-nearest neighbors for
IoT datasets. The algorithm shows strong results across three different IoT datasets, indicating it gener-
alizes well to several types of attacks and network datasets.

Table 4 shows the poor results of the Weighted Hamming LID algorithm on the non-IoT datasets.
Both non-IoT datasets have a higher complexity, which is reflected in their individual samples being
closer to zero. As a result, the Weighted Hamming LID algorithm has a harder time distinguishing
benign examples from malicious examples. For example, it is harder to distinguish between benign and
malicious examples if a device is performing many complex interactions on a network compared to a
network full of devices which only do simple things.

7.2. Attacks specific results
In this experiment, we break down our results by attack in each IoT dataset using the Weighted Ham-

ming Distance LID estimator. We group some [oT-23 attacks based on their broad category; for example,
we group File Download and Heartbeat attacks as C&C, because these attacks both come from a known
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Table 5

Anomaly detection results for specific attack types available in each dataset. Varied results in individual datasets indicate
networks may be more prone to specific attacks in IoT networks

Dataset Attack Sample size ROC PR
IoT-23 Horiz.PortScan 199,283 0.998 0.989
DDoS 54,750 0.999 0.892
Okiru 53,959 0.999 0.701
C&C 271 0.999 0.632
NF Bot-IoT Theft 1,909 0.990 0.902
DDoS 56,844 0.999 0.999
DoS 56,833 0.998 0.999
Recon. 470,655 0.963 0.999
TON_IoT Scanning 19,995 0.946 0.343
DoS 19,994 0.900 0.374
Injection 19,930 0.991 0.895
DDoS 19,790 0.934 0.612
Password 17,428 0.970 0.794
XSS 8,914 0.972 0.670
Ransomware 7,221 0.886 0.088
Backdoor 19,908 0.756 0.110
MITM 1,041 0.971 0.182

C&C server and they have a small overall sample size. The results of this experiment is reported in
Table 5,

Results are varied for IoT-23 and TON_IoT; stronger results for NF Bot-IoT. While some attacks
are easily recognizable by our algorithm, such as Distributed Denial-of-Service (DDoS) and DoS at-
tacks, others do very poorly, such as TON_IoT’s Ransomware, Backdoor, and Man-in-the-middle attack
(MITM) attacks, with Precision-Recall (PR) scores under 0.2 in each case.

The first two datasets in Table 5, IoT-23 and NF Bot-IoT, performed well on all ROC metrics for each
attack. Precision-Recall metrics performed slightly worse than ROC in IoT-23, with lower values for
Okiru and C&C attacks. We found that both attacks had network packets that were largely indistinguish-
able from benign network. For example, Okiru attacks were generally TCP protocol with packet count
of 1 and low byte count, similar to many benign network packets.

While the results of attack detection using the Weighted Hamming Distance LID estimator are stronger
than other algorithms, results on specific attack types show that [oT networks may still be vulnerable in
certain cases. In particular, TON_IoT performed poorly on most attacks, leading us to further analyze
the data. We found that of 300K benign examples, 61.8% were packets with an exact match with another
benign packet, i.e., all 38 features had the same value. Further, more than 26K malicious examples
had an exact match with at least one benign sample. These factors indicate that the data generated for
TON_IoT has low discriminability when excluding source and destination IPs and ports, as we did. We
note in Section 4.7 that the authors of the original papers [2,34] performed supervised classification on
TON_IoT, yielding high accuracy using both source and destination IPs and ports. They recommended
removing source and destination IPs and ports for further experimentation, however, the remaining 38
features contained identical or close to identical values for benign and malicious examples.



698 M. Gorbett et al. / The intrinsic dimensionality of network datasets and its applications
8. Intrinsic dimensionality of sythesized datasets

In this section, we provide additional analysis of ID and the Weighted Hamming LID estimator using
synthesized data. We hypothesize that adding synthetic data to the benign and attack datasets can provide
new insights into the quality of different metrics and algorithms used in this paper.

We use a VAE [23] to generate new synthesized data for both benign and attack sets. VAE’s are gener-
ative models with a similar structure to the autoencoder, which additionally have the ability to regularize
the latent space (bottleneck) of the autoencoder in order to generate new samples. In particular, the
VAE encodes a distribution of a point over the latent space, with the goal of maximizing the likelihood
that data point x belongs to a Gaussian distribution — N (x|, o). We denote this p(x|6). In addition
to Equations (5) and (6), the VAE subtracts an additional term (the Kullback-Leibler divergence) to
the autoencoder loss function, which minimizes the distance between the encoder g4 and the Gaussian
distribution for latent variable z:

Dy = q4(z]x) || po(z]x) (€))

The resulting model enables us to sample from a Gaussian distribution, which the encoder has fit our
dataset to, and produce new synthetic examples produced from the decoder part of the model.

We produce synthesized data for both benign and malicious sets of each dataset independently. To
ensure the synthetic data is in alignment with real data, for continuously valued features we map the
synthetic feature values to the closest point-wise features in a randomly 2,500 samples from the original
dataset. This additional step ensures our model is producing features which have been observed by the
network.

To assess the ability of anomaly detection algorithms on synthetic data, we ask the following research
questions:

Q1. How robust are the anomaly detection algorithms studied in this paper to synthetically generated
attacks?

Q2. Can we create a more robust unsupervised learning algorithm by including additional synthetically-
generated benign samples?

To address Q1, we assess each anomaly detection algorithm against a new synthetically generated
attack dataset. Each algorithm uses the benign example set as the training set plus a new synthetically
generated benign set, and we measure the ability of the anomaly detection algorithm to detect new
synthetically generated attacks. To be consistent with previous sections, our synthetic datasets are the
same size as the real attack data.

To address Q2, we create new benign examples using a VAE. We add these new samples to the training
dataset along with the real samples, and test the models’ ability to detect attacks given the enhanced
training set. We hypothesize that each algorithm will be more robust to attacks with the enhanced dataset.

8.1. Quality of synthetic data

Before addressing Q1 and Q2, we first measure the quality of the synthesized datasets. Ensuring our
data fits the underlying properties of the original dataset is crucial for success in downstream tasks.
To ensure quality, we analyze two properties of the new synthetic dataset, which we denote X’. First,

we measure the X, enign 1D for each dataset to ensure it is similar to the original values. Since our synthetic
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Table 6

Data quality tests. We test our synthetic datasets by comparing ID between real data (first row) and synthetic data (second
row), finding that ID estimates are similar in IoT datasets and slightly higher in non-IoT datasets. Our second test, X vs. X’
ROC, yields almost random results, indicating the synthetic datasets are indistinguishable from real datasets

Test type Dataset NF Bot-IoT TON_IoT [0T-23 UNSW-NB15 Kaggle NID
ID (K =10) X 1.17 1.46 1.02 6.6 3.77

ID (K =10) X’ 2.04 1.62 0.31 10.6 8.71
ROC X, X' 0.509 0.499 0.541 0.523 0.507

datasets produce the same number samples and features as the original datasets, we expect the ID to be
similar.

Additionally, we measure each synthetic datasets ROC compared to its real counterpart using the
evidence lower bound (ELBO) from the VAE. For example, when generating synthetic samples from
the VAE, we pass the examples through the full model to obtain the ELBO. The ELBO can be obtained
through the full error function of the model:

Z(xc, xé) + g(xd, x(’j) — Dgy1, (10)

After obtaining the ELBO for both real samples and synthetic samples from the benign dataset passed
through the VAE, we pass the values through the ROC calculation, with 0’s being real values and 1’s
being synthetic values. If the ROC diverges significantly from 0.5, we can consider synthesized dataset
as considerably different from the real dataset.

Results for both tests are depicted in Table 6. In the first two rows, we show the ID for the real dataset
(row 1) and the synthetic dataset (row 2). We find similar results between real and synthetic datasets for
IoT datasets, and higher results for synthetic ID on non-IoT datasets. We conjecture that higher results
on non-IoT datasets are a result of higher ID on the original data, leading to the VAE having a more
difficult time learning the complexities of the data. For example, VAE’s do very well with simple image
datasets such as MNIST, while struggling more on complex colored images such as ImageNet.

Our second data quality test yields affirmative results as to the quality of our synthetic data. ROC
scores between X and X’ are between 0.499 and 0.541, which provide confidence that our synthetic
examples are indistinguishable from real samples.

8.2. Results: Synthetic attacks

Our first experiment involves testing various unsupervised anomaly detection algorithms on synthet-
ically generated attacks. Our goal is to test whether new attacks can bypass the various algorithms, in
particular the Weighted Hamming LID. To generate new attacks, we train malicious examples on a VAE
model, sampling from the latent Gaussian distribution upon completion of training.

In Table 7, we find that the synthetic attacks are more easily detectable than the real attacks across
all datasets. For the Isolation Forest, performance improvements are marginal, however for all other
anomaly detection algorithms we experience a substantial improvement. In a real world context this
has two implications: 1) Attacks similar to those provided in each of the five datasets (i.e. from the
same distribution) will be reasonable to detect at the rates observed by each algorithm, and 2) Attackers
attempting to maneuver around NIDS systems via synthetically generated attacks may have less success
than by using their original approach.
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Table 7

Synthetic attacks. We find that each unsupervised anomaly detection algorithm is robust to new synthetically generated attacks.
Performance improvements are substantial for all algorithms except for the isolation forest

Test type Dataset
NF Bot-IoT TON_IoT IoT-23 UNSW-NB15 Kaggle NID
ROC PR ROC PR ROC PR ROC PR ROC PR
Iso.Forest 0.958 0.998 0.584 0.453 0.493 0.594 0.830 0.946 0.229 0.324
KNN 0.997 0.999 0.943 0.889 0.988 0.959 0.594 0.703 0.993 0.989
W.H. KNN 0.996 0.99 0914 0.792 0.994 0.946 0.902 0.935 0.966 0.922
Autoencoder 0.995 0.999 0.711 0.528 0.604 0.682 0.718 0.838 0.975 0.987
W.H. LID 0.998 0.999 0.953 0.892 0.999 0.993 0.865 0.877 0.845 0.784
Table 8

IoT datasets enhanced with synthesized samples. We highlight the performance improvements achieved by using syntheti-
cally generated benign samples to enhance the unsupervised anomaly detection algorithms. Top: the new ROC/PR scores for
each algorithm. Bottom: the performance improvement achieved by using real samples plus synthetically generated samples
against using only real samples

Test type Dataset
NF Bot-IoT TON_IoT IoT-23
ROC PR ROC PR ROC PR
Isolation Forest 0.958 0.999 0.542 0.35 0.431 0.565
KNN 0.974 0.999 0.945 0.901 0.988 0.949
Weighted Hamming KNN 0.971 0.999 0.908 0.796 0.987 0.916
Autoencoder 0.908 0.998 0.884 0.844 0.715 0.828
Weighted Hamming LID 0.975 0.999 0.943 0.865 0.998 0.988
Improvement Against Baseline (only real samples)

Isolation Forest +0.001 0 —0.032 —0.092 —0.061 —0.029
KNN +0.013 0 +0.111 +0.185 —0.002 —0.021
Weighted Hamming KNN +0.016 +0.001 +0.104 +0.184 —0.003 —0.002
Autoencoder —0.011 0 +0.262 40.055 +0.144 —0.032
Weighted Hamming LID +0.005 0 +0.026 +0.034 0 —0.006

8.3. Results: Synthetically-generated benign examples

Our second experiment involves testing whether unsupervised anomaly detection algorithms can be
more robust given new synthetically generated benign examples. We enhance each unsupervised algo-
rithm by appending synthetically generated benign samples onto the real benign sample set. We hypoth-
esize that: 1) A more robust training set will provide better coverage of benign samples compared to
the baseline training set, and 2) The enhanced training set will better distinguish benign samples from
malicious samples because of this enhanced coverage. For this experiment, our test set consists of the
real set of benign samples and the real set of malicious samples.

Results in Tables 8 and 9 show the increased performance of using the enhanced training set across
each algorithm. For example, in Table 8, the Weighted Hamming LID estimator improves by 0.026
ROC and 0.034 PR for the TON_IoT dataset. Despite this, the KNN improves even more, with perfor-
mance improvements of 0.111 ROC and 0.185 PR. In Table 9, we find that the non-IoT datasets achieve
even greater performance improvements using the enhanced datasets, with improvements up to 0.469
(Weighted Hamming LID, UNSW NB15) ROC and 0.420 (KNN, UNSW NB15) PR, respectively.
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Table 9

Non-IoT datasets enhanced with synthesized samples. Non-IoT datasets see a more substantial improvement compared to
IoT datasets. We conjecture that this is because the datasets have more potential for improvement because of increased ID
values

Test type Dataset
UNSW NB15 Kaggle NID
ROC PR ROC PR
Isolation Forest 0.808 0.939 0.188 0.314
KNN 0.63 0.934 0.986 0.981
Weighted Hamming KNN 0.921 0.947 0.958 0.918
Autoencoder 0.938 0.954 0.995 0.997
Weighted Hamming LID 0.869 0.863 0.922 0.869
Improvement Against Baseline (only real samples)
Isolation Forest +0.029 +0.043 —0.0408 —0.01
KNN +0.424 +0.420 +0.030 +0.045
Weighted Hamming KNN +0.642 +0.405 +0.007 +0.011
Autoencoder +0.109 +0.052 +0.021 +0.016
Weighted Hamming LID +0.469 +0.248 +0.062 +0.085

The second part of each Table denotes the performance improvements for each algorithm compared
to only using the real data as the training set. While some datasets and algorithms performance dropped
marginally, we found that most algorithms achieved improved performance with the synthetic additions
to the training set.

9. Conclusion

In this work, we view several network datasets through the lens of complexity and show that IoT
datasets exhibit a lower ID complexity estimate than standard network collections. This finding extends
to the point-wise estimation of complexity, where individual samples in (benign) IoT datasets contain
low LID measures. We show that benign examples can be identified by either 1) exactly matching the
features of a training set sample or 2) by a low LID estimate. We propose a novel algorithm for detecting
malicious actors in an unsupervised manner, providing the ability to deploy a model into production
with only two hyperparameters needed (k value for distance measurements, and threshold value ¢). The
algorithm is based on the theoretical LID estimation using the Hill MLE estimator, using an entropy
weighted Hamming distance for measuring distances between points and features. In addition, we show
the benefits of using synthetically generated data to enhance our training set, reporting increased per-
formance across by IoT and non-IoT datasets. Finally, we find that synthetically-generated attacks are
easily detectable by various unsupervised learning algorithms.

One potential pitfall of the Weighted Hamming LID algorithm is that it is an expensive computation,
requiring distance calculations between a reference point and each point of the training set. Similar
to KNN, this calculation can be computationally expensive, and further experimentation is required to
measure the performance of such a system in practice. However, state-of-the-art models such as deep
networks share this same deficiency: large and typically expensive to run. Further experimentation could
provide a thorough comparison of the two.

Another caveat to the algorithm is obtaining a clean dataset. While the unsupervised learning assump-
tion holds when the model is trained with a training set of benign examples, obtaining a reliable benign
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dataset in an arbitrary IoT network may be problematic in practice since it can be hard to ascertain
whether a collection of network packets contains 100% clean data. However, we show the potential to
circumvent this issue by creating synthetic examples.

Despite these potential downfalls, our complexity analysis and algorithmic approach provide a novel
mathematical look into the details surrounding several IoT network datasets. We show the relative sim-
plicity of these network collections through ID estimates. Additionally, we make connections between
complexity in IoT security and open problems in deep learning, such as the difficulty in modeling in-
creasingly complex data such as large images. Connecting the dots between security and anomaly detec-
tion in machine learning remains an essential facet of developing secure systems, and we hope this paper
can provide researchers with a unique perspective towards building more robust and secure frameworks.
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