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Abstract— Real-time recognition and prediction of surgical
activities are fundamental to advancing safety and autonomy
in robot-assisted surgery. This paper presents a multimodal
transformer architecture for real-time recognition and pre-
diction of surgical gestures and trajectories based on short
segments of kinematic and video data. We conduct an ablation
study to evaluate the impact of fusing different input modalities
and their representations on gesture recognition and prediction
performance. We perform an end-to-end assessment of the
proposed architecture using the JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS) dataset. Our model out-
performs the state-of-the-art (SOTA) with 89.5% accuracy for
gesture prediction through effective fusion of kinematic features
with spatial and contextual video features. It achieves the real-
time performance of 1.1-1.3ms for processing a 1-second input
window by relying on a computationally efficient model.

I. INTRODUCTION
Surgical robots translate the intricate movements of a

surgeon’s hands, wrists, and fingers into precise actions per-
formed by miniature surgical instruments and offer many ad-
vantages, including improved visual perception, heightened
surgical dexterity, reduced incision size [1], and shortened
postoperative recovery periods [2]. Their adoption in surgical
specialties such as urology, gynecology, and general surgery
is not only enhancing surgical precision and quality, but is
also opening avenues for the development of autonomous
systems [3], [4], [5], [6], automated skill assessment [7], [8],
[9], and error detection [10], [11], [12]. However, the devel-
opment of these systems in robot-assisted minimally invasive
surgery (RMIS) requires the understanding and perception
of surgical activities carried out during surgical operations
to support lower-level analysis [13], [14] of procedures.

Multiple modalities of data are available from surgical
robots including video and kinematic data that can be used
separately or in combination for the recognition and pre-
diction of surgical gestures. Previous works have proposed
methods for the recognition of gestures based on kinematic
data from the surgical robot [15], [16], [17], [18], [19] or
video data of the surgical scene [20], [21], [22], [23]. More
recently, there have been several efforts that utilize the fusion
of kinematic and video data for gesture recognition [24],
[25]. However, most prior works have concentrated on the
recognition of gestures based on the observation of a com-
plete trial of a surgical task as opposed to short temporal
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segments observed at runtime. This limitation hinders the
practical implementation of runtime gesture recognition in
realistic environments for applications such as safety moni-
toring [10], [11], [12], training [26], autonomy [27], [28],
and teleoperation [4], [3]. Recognizing a surgical gesture
within a short temporal segment (e.g., a 1-second window)
can help with timely intervention and feedback during simu-
lated or real surgical tasks. However, window-based gesture
recognition and prediction are more challenging compared
to analyzing the entirety of a surgical trial due to the signifi-
cantly reduced availability of contextual information. To our
knowledge, fusion of multiple data modalities and the impact
of different representations of modalities for window-based
gesture recognition and prediction have not been studied
before. Moreover, the end-to-end performance evaluation of
gesture recognition and prediction, which is important for
real-time interventions in real-world deployment, has not
been explored in previous works.

To address these challenges, we propose methods that
utilize the rich information embedded in different modalities
by fusing kinematic and video data and exploring different
representations of these modalities on the end-to-end perfor-
mance of surgical activity (gesture and trajectory) prediction.

The main contributions of the paper are as follows:
• We propose a multimodal transformer model that uti-

lizes the fusion of different modalities to recognize
surgical gestures based on short temporal segments of
surgical activity data (1-second), which is then used
to predict surgical gestures and trajectories for a short
temporal segment in the future.

• We conduct an ablation study on the impact of different
modalities (including video and robot kinematics) and
different representations of certain modalities (e.g., fea-
tures extracted using ResNet50 [29], Spatial CNN [30],
and contextual representations [31] of video data) on
gesture recognition and prediction.

• We perform an end-to-end evaluation of our proposed
model on the publicly available JIGSAWS dataset and
show that our model can outperform a previous trans-
former model [15] in gesture prediction and trajectory
prediction with a prediction accuracy of 89.5% vs.
84.6%, while achieving a real-time performance of,
respectively, 1.3ms and 1.1ms for a 1-second window
in gesture recognition and prediction.

II. PRELIMINARIES
A. Surgical Gestures and Context

Previous works have modeled surgical procedures using a
hierarchy [32] of steps, phases, tasks, gestures, and low-level
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motion primitives [31]. Gestures are defined as purposeful
actions imbued with semantic content that are specific and
often involve particular instruments or objects. [33] proposed
a framework that further decomposes surgical gestures into
a sequence of elementary instrument movements referred to
as “motion primitives”, which encompass basic actions such
as pushing, pulling, and grasping. [33] defined “context”
as a set of states that describe the status and interactions
among surgical tools, objects, and the physical environment
which can be inferred from video data [31], [34]. A change
in context happens as the result of the execution of a
motion primitive within a gesture or task [33]. In this paper,
we leverage context as an alternative representation of the
information within the video to recognize surgical activities.

B. JIGSAWS Dataset

JIGSAWS [35] is a publicly available dataset of surgical
tasks performed using the da Vinci robot [36]. It includes
synchronized kinematic, video, and gesture transcripts col-
lected from executions of three fundamental surgical tasks on
a bench-top model by eight surgeons of three expertise levels.
We evaluate our methods using 39 trials of the Suturing task.

The kinematic data in JIGSAWS captures the Cartesian
positions (p → R3), rotation matrices (R → R3→3), linear
velocities (v → R3), rotational velocities (ω → R3), and
grasper angles (ω) for left and right tools for both patient-side
manipulators (PSM) and master-side manipulators (MTM),
resulting in a total of 76 features sampled at 30Hz. The video
data is collected at 30fps from an endoscopic camera. The
dataset also contains manual annotations for gestures based
on a predefined surgical activity vocabulary (see Table 2 in
[35]), along with the skill levels of the subjects.

C. Gesture Recognition

Gesture recognition plays a vital role in identifying the
present state of surgical procedures, enabling the detection
of safety violations [10], [11], [12] and facilitating the
prediction of future surgical actions [37], [15] with enhanced
accuracy and confidence. Early research on surgical gesture
recognition relied on probabilistic graphical models like Hid-
den Markov Models [38], [13], whereas contemporary stud-
ies predominantly focus on the utilization of deep learning
(DL) techniques [20], [15] based on video [30],[23],[22],[21]
and/or kinematic [39],[17],[15], [19] data. Specifically, Tem-
poral Convolutional Networks (TCNs) [30], [20], [40] have
been shown to efficiently capture temporal information for
action segmentation based on video data from the JIGSAWS
dataset. [25] employs the TCN in a parallel two-stream
network with weighted fusion, and [24] utilizes TCN and
LSTM to leverage multimodal data in improving surgical
gesture recognition, but does not address gesture and trajec-
tory prediction. Although both works also consider real-time
implementations of their models, in general, limited attention
has been directed toward real-time recognition based on short
temporal segments through multimodal fusion. Furthermore,
a gap remains in understanding the significance of different
representations of certain modalities and their impact on

gesture recognition accuracy and real-time performance as
it is imperative for developing systems such as online safety
monitoring [11], [12] for RMIS.

D. Gesture and Trajectory Prediction

Prediction of surgical activities including gestures and tool
trajectories is an area of growing interest and applicability
such as in visual window [41], [42] and surgical instrument
[43] tracking. The precise and timely predictions of surgical
states and trajectories can improve the success rates of tele-
operated surgical procedures [44], [45] and guide the surgical
tools in real-time autonomous operations [27], [28].

While some earlier studies relied on conventional methods,
such as silhouette-based instrument tracking using Kalman
filters [43], recent research is leveraging DL techniques. For
instance, daVinciNet [37] adopts a fusion approach involving
encoded multimodal features using LSTM [46] along with
feature and temporal attention mechanisms. Similarly, [15]
proposes a pipeline of three consecutive transformer models
[47] for gesture recognition, gesture prediction and trajectory
prediction based on kinematic features.

III. METHODS

In this section, we introduce our model for gesture recog-
nition, prediction, and trajectory prediction within the context
of short temporal segments. This model is built upon an adap-
tation of the original transformer model proposed by [47]
for Natural Language Processing (NLP) and incorporates
the fusion of multimodal data. The transformer model has
proven its excellence in NLP tasks due to its capabilities of
identifying long-term patterns from historical data [48], [49],
[50], [51] as well as in the domain of sequence generation
[52], [53]. We aim to utilize the strengths of the transformer
architecture and introduce changes that can adapt to the
context of RMIS for runtime surgical gesture recognition,
prediction, and trajectory prediction. We also evaluate the
impact of different modalities and their representations on
the recognition and prediction performance.

Our proposed model is structured as a three-part pipeline,
including the stages for Feature Extraction and Transforma-
tion, Gesture Recognition, and Gesture/Trajectory Prediction,
as illustrated in Figure 1. More specifically, we process the
input data features for an observation window, spanning from
t+ 1 to t+Wobs, recognize the gesture(s) being performed
in that window, and use this output along with other features
to predict future gesture(s) and trajectory coordinates for a
prediction window t+Wobs + 1 to t+Wobs +Wpred.

The Gesture Recognition stage consists of a transformer
encoder whose output is fed as input to another transformer
model, separately trained for Gesture/Trajectory Prediction.
We utilize multi-task learning to train a single transformer
model to simultaneously predict both gestures and trajecto-
ries for a prediction window Wpred. This unified end-to-end
model architecture is different from previous works [15] and
[37], and particularly well-suited for real-time tasks, such as
error detection and recovery [11], where timely response and
reduced computational complexity are needed.
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Fig. 1: Overall Architecture for End-to-End Real-Time Surgical Activity Recognition and Prediction

A. Feature Extraction and Transformation

The first stage of the pipeline transforms the multimodal
input data into features representing the rich information
embedded in the data. Of the 76 kinematic features in
the JIGSAWS dataset, we explore using subsets of features
including just the 38 kinematic features from the PSM side
(K38) and only the 14 kinematic features representing the
position, velocity, and gripper angles from PSM (K14).

In transfer learning, pre-trained CNNs are widely used
to extract latent features from raw images as input for
downstream tasks. We utilize different SOTA methods to ex-
tract feature representations from video data, including VRes

extracted using pre-trained ResNet50 [29], VSpatial extracted
using a Spatial CNN proposed for action segmentation [30],
and VSeg surgical instrument and object segmentation masks
extracted using memory networks, which have been shown
to be effective in capturing interactions between instruments
and objects [34]. Since the raw image features of the segmen-
tation masks are high dimensional and the actual objects only
occupy a relatively small area of the image, we first resize
each segmentation frame by a factor of ten and then apply
Principal Component Analysis (PCA) [54] to the resized
images to extract a more compact representation of each
frame. We also use the surgical context [33] defined as a
state vector C representing the interactions between surgical
instruments (e.g., graspers, scissors) and objects (e.g., needle,
thread) in the surgical scene, which has been proposed as
a fine-grained representation of surgical activity [33], [31].
and can be inferred from video data using a combination of
knowledge and data-driven methods [34], [31].

We perform an ablation study on the above set of features
to assess the effects of different modalities and their respec-
tive representations on gesture recognition and prediction.
This study aims to determine the most suitable fusion of
features for the subsequent feature transformation stage.

We draw upon the insights presented in [20] for the
transformation of selected features from the kinematic and
video data, which are then given as input to our model. We

adopt the encoder component of the TCN model in [40] to
efficiently capture features from the fused inputs as shown in
Figure 1. The TCN encoder employs a stack of hierarchical
Nconv = 3 temporal convolutional layers, pooling, and non-
linear activations which effectively capture robust temporal
relationships while enhancing computational efficiency, as
shown in [40]. We modify the final convolutional filter to
output a feature vector of dimension dmodel that is subse-
quently fed into the encoder component of the transformer
model for gesture recognition. During gesture and trajectory
prediction, the feature transformation stage is skipped, and
input features are directly fed into the encoder.

B. Gesture Recognition

For runtime gesture recognition, we leverage the en-
coder component derived from the transformer encoder-
decoder [47] architecture. In NLP, the encoder module of
the transformer architecture performs the comprehension and
extraction of information embedded within the input text
[51] and is mainly used for classification tasks. We regard
the recognition of surgical gestures based on time series
data as an adaptation of transformers for the time series
classification, as evident in [50] and [49]. We also employ
the decoder module of the transformer architecture to predict
gestures and trajectories, as these tasks entail generative
aspects that align well with the decoder’s capabilities.

In the classical transformer implementation [47], an em-
bedding layer transforms the input data into sequential token
embeddings before sending it to the encoder. This step is not
needed in surgical gesture recognition where numerical data
is used instead of textual input. Our encoder uses a multi-
headed attention mechanism to generate a feature vector of
dimension dmodel. A fully connected layer FCdim = 10 is
appended to the output of the encoder as depicted in Figure 1
to attain the desired dimension for the gesture output vector
Oenc, representing each gesture class.

Real-time gesture recognition is achieved by using an
observation window Wobs with a duration of 30 samples
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Fig. 2: A sample timeline of a Suturing trial, illustrating the gestures executed throughout the trial. Top Row: Actual gestures,
Middle Row: Predicted gestures, Bottom Row: Error intervals (often occurring when transitioning to the next gestures).

(corresponding to 1s) representing a short temporal segment
as the input to the model. The output consists of gesture
labels at runtime of length Wobs (see Figure 2). A tumbling
window approach [55], instead of a sliding window, is used
to decrease computational overhead.

C. Gesture and Trajectory Prediction

Our integrated framework for simultaneous gesture and
trajectory prediction hinges on the recognition module’s out-
put to accurately generate gesture labels for the observation
window Wobs. These labels, coupled with the encoder’s
output, and the original input features prior to the feature
extraction stage, form the input to the transformer decoder.
The decoder comprises Ndec layers, with each layer utilizing
Hdec attention heads. This design allows the model to
effectively consider various aspects of the input data and
observed gestures when predicting the correct gesture at each
time step. The hidden dimensions of both the transformer
encoder and decoder are identical.

The decoder’s output undergoes two linear transformations
to produce the final outputs. One transformation maps the
output to a set of probability weights for the gesture predic-
tion task, while the other maps the output to the 3D Carte-
sian trajectory coordinates of the two robot end-effectors,
represented by six real-valued numbers (X,Y, Z coordinates
for each end-effector). We adopted a cumulative L2 function
over the prediction window to compute the regression loss
for trajectory prediction. This loss is calculated based on the
differences between the ground truth and predicted trajectory
variables. We employed categorical cross-entropy over the
prediction window for our classification loss which measures
the disparity between the ground truth and predicted gesture
labels. The ultimate loss function is a weighted combination
of these two terms. The weights are hyper-parameters that are
fine-tuned to achieve optimal model performance between
trajectory prediction and gesture prediction.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

The experiments were done on a PC with an Intel Core
i9-12900K 3.20GHz, 32GB RAM, and an NVIDIA GeForce
RTX 3080 Ti 12GB GPU running Ubuntu 20.04.6 LTS.

We used the Leave-One-User-Out (LOUO) [56] cross-
validation strategy to evaluate the model performance and
to conduct the ablation study of the impact of different
modalities and their representations. For surgical gesture
recognition, we used the original sampling rate of data at

30Hz with Wobs = 30 samples which is equivalent to 1s.
For gesture prediction and trajectory prediction, we used the
same temporal window length of 1 second, but downsampled
the data from 30Hz to 10Hz, thus having Wpred = 10.

Across all input configurations, for gesture recognition we
maintained model hyper-parameters at Nenc = 3, Henc =
2, and dmodel = 60, whereas for gesture and trajectory
prediction we maintained Ndec = 2 and Hdec = 4. Model
training was done using the Adam optimizer [57] with a
dynamic learning rate, as outlined in [47]. The training
duration spanned 20 epochs with a batch size of 10.

B. Metrics

We evaluate the performance of each module and the
overall end-to-end pipeline using the following metrics.

Gesture Recognition and Prediction: We use the stan-
dard accuracy and edit score metrics [58] to compare the
recognized/predicted gestures to the ground truth labels. We
evaluate the window-based classification using the F1@X
metric [40], which defines recognized/predicted windows
that overlap with actual windows by more than “X” percent
as true positives and those with less overlap as false positives.

Trajectory Prediction: In order to assess the performance
of the trajectory prediction module, we analyze the difference
between the ground truth and predicted left and right end-
effector trajectories within the Cartesian endoscopic refer-
ence frame using the standard metrics of Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE).

Inference Time: We report the inference times for differ-
ent stages of the pipeline to assess the impact of different fea-
ture representations on real-time performance. The inference
times are measured for a 1-second window, averaged across
trials and subjects. The inference time for gesture recognition
encompasses both feature extraction and recognition.

C. Results

1) Gesture Recognition: Table I shows the results of the
ablation study on the impact of different modalities and
their representations on the performance of runtime gesture
recognition for the Suturing task. We observe that utilizing
a subset of kinematic features, K14, yields superior results
compared to utilizing all 38 kinematic features, K38. Thus,
K14 represents the essential characteristics [13] of a surgical
gesture while omitting non-significant kinematic variables
that are typically associated with the Suturing task. These
results suggest that utilizing a refined subset of kinematic



TABLE I: Performance of gesture recognition in the ablation study of input features for Suturing task: K38 = 38 Kinematic
features, K14 = 14 Kinematic features, C = Surgical Context features [33], VSpatial = Video features from Spatial CNN
[30], VRes = Video features from ResNet50 [29], VSeg = Video features from Tool Segmentation Masks [34]

Input
Features Accuracy (%) Edit

Score (%) F1@10 (%) F1@25 (%) F1@50 (%) Inference
Time (ms)

K38 71.1 66.8 69.0 68.0 60.4 0.60
K14 74.8 72.3 72.5 71.3 64.6 0.55
C 74.3 71.3 75.6 74.2 65.6 0.57
VSpatial 80.7 81.2 82.0 80.8 72.3 1.52
VRes 69.8 66.6 70.5 68.8 58.9 1.67
VSeg 47.7 45.2 47.6 44.5 33.6 1.45

K14 + C 78.6 76.2 77.8 76.5 70.0 0.58
K14 +VSpatial 83.5 84.0 86.3 85.8 79.0 1.14
K14 + VRes 76.2 71.4 76.1 75.0 66.8 1.64
K14 + VSeg 57.5 55.0 59.0 57.8 46.8 1.14
C + VSpatial 84.4 83.4 86.5 86.1 80.6 1.24

K14+ C + VSpatial 87.1 83.9 87.3 86.5 81.1 1.32
K14 + VSeg + C 71.3 69.3 73.4 72.3 65.4 1.33
K14 + VSeg + C + VSpatial 71.5 69.1 72.7 71.8 64.9 1.31

TABLE II: Performance of gesture prediction in the ablation study of input features for Suturing task: G = Surgical Gestures
for the observation window. Other notations are the same as Table I.

Input
Features

Ground truth Gestures Recognized Gestures Inference
Time (ms)Accuracy (%) Edit Score (%) F1 @ 10,25,50 (%) Accuracy (%) Edit Score (%) F1 @ 10,25,50 (%)

K14 + G 85.4 87.0 81.3, 81.1, 78.5 80.1 82.8 78.1, 77.8, 77.1 0.49
K14 + G + C 88.8 90.4 85.0, 83.9, 77.8 85.5 87.2 84.7, 84.4, 82.9 0.89
K14 + G + VSpatial 89.5 91.3 87.8, 84.4, 80.3 86.0 88.2 86.2, 84.2, 80.5 1.08
K14 + G + VSpatial + C 87.1 90.7 86.6, 85.3, 82.6 86.5 89.8 85.3, 82.3, 81.7 1.30
K14 + G + VSeg 86.6 88.8 81.1, 78.3, 77.0 83.3 84.9 80.3, 78.2, 74.0 1.19

daVinciNet [37] 84.3 - - - - - -
Transformer (MTMs) [15] 84.6 - - - - - -
Transformer (PSMs) [15] 84.0 - - - - - -

TABLE III: Performance of trajectory prediction in the end-
to-end study of input features for Suturing task. RMSE and
MAE are expressed in millimeters (mm):

Input Features Metric x1 y1 z1 x2 y2 z2

K14 + G
RMSE 5.3 4.5 5.9 6.16 6.37 6.74
MAE 4.79 4.1 4.87 5.75 6.04 6.09

MAPE 11 9.7 10.23 12.68 13.2 13.72

K14 + G + C
RMSE 5.11 4.32 5.8 5.34 5.56 5.65
MAE 4.43 3.77 4.68 4.23 4.34 4.45

MAPE 10.3 9.1 10.03 10.66 10.69 11.26

K14 + G + VSpatial

RMSE 4.8 4.09 5.23 4.57 4.44 4.37
MAE 4.13 3.55 4.19 3.77 3.29 3.02

MAPE 7.6 8.4 9.45 8.52 9.06 9.74

K14 + G + VSpatial + C
RMSE 4.75 4.14 5.17 5.2 4.6 4.41
MAE 3.91 3.6 3.99 3.8 3.73 4.1

MAPE 7.4 8.7 8.78 9.35 9.2 9.11

K14 + G + VSeg

RMSE 4.92 4.49 5.76 5.4 4.9 4.55
MAE 4.3 4.02 4.61 4.16 3.96 4.12

MAPE 8.84 9.5 9.7 9.45 9.79 9.36

daVinciNet [37] RMSE 2.53 1.89 2.96 3.15 3.5 3.91
MAE 2.07 1.51 2.46 2.78 3.06 3.50

MAPE 6.43 4.72 6.35 6.13 6.11 6.67

Transformer [15] RMSE 3.15 3.03 3.30 3.93 4.21 4.22
MAE 2.86 2.85 3.00 3.60 3.88 3.84

TABLE IV: Gesture recognition accuracy compared with
related work for Suturing task under LOUO cross-validation

Data Sources Trial (%) 1s Window (%)

Transformer [15] PSM 89.2
Fusion-KVE [24] PSM + Video 86.3

MA-TCN [25] PSM + Video 83.4
TCN [20] Video 81.4
Our model PSM + Video + Context 86.1 87.3

features can lead to more precise and effective surgical
gesture recognition with decreased computational overhead.

Notably, the method of feature extraction from video as
well as the fusion of video and kinematic features affect ges-
ture recognition performance as shown in Table I. VSpatial

extracted using Spatial CNN [30] contributes to significant
improvements compared to using features extracted using
ResNet50 [29] due to the inherent capability of capturing
spatio-temporal information from a video. Surgical context C
improves performance by 5% due to the ability of capturing
contextual features highly specific for robotic surgery [33]
which signifies the temporal relationships of gesture se-
quences and transitions defined in a surgical process. We also
observe that certain input feature combinations, such as K14

+ VSeg + C + VSpatial, can result in overfitting and ultimately
lead to decreased performance of the model. We also observe
that the expertise level of the subjects and the different
approaches taken by the subjects to perform the same task
impacts the recognition accuracy. Moreover, certain expert
subjects maintain similar movements over multiple trials and
novice subjects exhibit inconsistent movements. This also
impacts the model’s gesture recognition performance.

As shown in Table IV, our model achieves comparable
performance to SOTA gesture recognition models by demon-
strating an accuracy of 87.3% for a 30-sample window (1s),
while maintaining a low inference time of just 1.3ms. This



enables real-time performance by meeting the constraint of
performing inference faster than the input data acquisition
rate of 30Hz (33.33ms) [59]. We note that the SOTA model
presented by [15] attains a slightly higher accuracy of 89.3%
for gesture recognition. The source code for [15] was not
available, so we were unable to reproduce their results.

2) Gesture Prediction: Table II shows the results from our
ablation and end-to-end experiments, which investigate the
impact of different video feature representations on gesture
prediction performance. When employing solely K14 + G
as features, our results show agreement with prior works
[37], [15]. Notably, introducing context C as an additional
feature led to major enhancements in performance, yielding
an improvement of nearly 3% in accuracy and edit score.
This underscores the significance of context features in en-
hancing the predictive capacity for future surgical activities.
Furthermore, the inclusion of VSpatial as a video data rep-
resentation results in substantial performance improvements,
leading to the combination K14+G+VSpatial outperforming
the state-of-the-art with an accuracy of 89.5% and an edit
score of 91.3%. Similar to gesture recognition, integrating
both kinematic and video features yields superior prediction
results. Although the utilization of VSeg as a complement to
kinematic features did yield improvements compared to base-
line kinematic inputs, its impact was not as substantial as the
spatio-temporal features or context variables. Additionally,
the combination of three inputs K14 +G+VSpatial +C did
not demonstrate significant performance enhancements and
only increased the inference time of the prediction model.
In summary, K14 +G+ VSpatial is the most effective set of
features, providing the best performance while maintaining
reasonable inference times. Figure 2 shows the output of the
gesture prediction over a sample suturing trial, using our top
performing feature configuration.

End-to-end gesture prediction results are shown in Table II
where the output of the recognition model is used instead of
the ground truth gesture labels from the observation window.
Our best model outperforms previous work by about 2.5% in
accuracy, and using K14+G+VSpatial+C seems to be more
robust to inaccuracies in the gesture recognition outputs.

3) Trajectory Prediction and End-to-End Evaluation: Ta-
ble III shows end-to-end results for our trajectory prediction
module. We ran the full model without the use of ground
truth observation gestures (similar to the second column
of the Table II) and computed RMSE, MAE and MAPE
metrics for Cartesian coordinates of each robot end-effector.
In terms of the effectiveness of each input feature/video rep-
resentation configuration in predicting accurate trajectories,
the results are almost the same as gesture prediction. The
K14 +G+VSpatial +C configuration still performs best on
average, although K14+G+VSpatial+C also appears to be
comparable (e.g. for x1 and z1 coordinates). The inference
times are also the same as gesture prediction since both
predictions are generated simultaneously at the output of the
transformer decoder. Figure 3 shows the predicted x and z
trajectories for the right patient-side grasper during a trial
using our top performing feature configuration. The Funda-
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Fig. 3: Trajectory Prediction results for X-axis and Z-axis
position of the right instrument for a subject in the Suturing
task

mentals of Laparoscopic Surgery guidelines [60] recommend
a tool trajectory error of up to 1 mm in Suturing. However,
this is not achieved by SOTA, including the daVinciNet
model [37]. Our approach using K14 + G + VSpatial + C
as input is not the most accurate, but it provides the best
trade-off between accuracy and inference time. We observe
performance fluctuations among different subjects, which
appears to be a function of their level of expertise. The
subjects with higher expertise have a better economy of
motion and smoother trajectories than others. When learning
on novices and intermediates and predicting for experts, we
observe signs of over-compensation by the prediction model.

V. CONCLUSIONS

We presented a multimodal transformer architecture for
real-time surgical gesture and trajectory prediction toward
improving safety and autonomy in RMIS. This architecture
outperforms the SOTA gesture prediction models by utilizing
advanced video feature extraction techniques and achieves
real-time performance by relying on a single transformer
model. We evaluated the efficacy of multiple input feature
configurations for both the recognition and prediction tasks
and the end-to-end pipeline. Our results indicate that the
fusion of kinematic data with spatial and contextual video
features consistently yields the best performance. Future
work will focus on validating our proposed method using
data collected from a wider range of surgical tasks, partic-
ipants with a variety of surgical skills, and actual surgical
procedures and on applying it to real-time safety monitoring.
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Lin, L. Tao, L. Zappella, B. Béjar, D. D. Yuh et al., “Jhu-isi gesture
and skill assessment working set (jigsaws): A surgical activity dataset
for human motion modeling,” in MICCAI workshop: M2cai, vol. 3,
no. 3, 2014.

https://doi.org/10.1038/s41551-017-0132-7
https://doi.org/10.1109/tase.2022.3171795


[36] S. DiMaio, M. Hanuschik, and U. Kreaden, “The da vinci surgical
system,” Surgical robotics: systems applications and visions, pp. 199–
217, 2011.

[37] Y. Qin, S. F. Feyzabadi, M. Allan, J. W. Burdick, and M. Azizian,
“davincinet: Joint prediction of motion and surgical state in robot-
assisted surgery,” 2020.

[38] T. E. Murphy, “Towards objective surgical skill evaluation with hidden
markov model-based motion recognition,” 2004.

[39] I. Gurcan and H. Van Nguyen, “Surgical activities recognition using
multi-scale recurrent networks,” in ICASSP 2019-2019 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2019, pp. 2887–2891.
[40] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal

convolutional networks for action segmentation and detection,” in
proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 156–165.
[41] Z. Wang, B. Zi, H. Ding, W. You, and L. Yu, “Hybrid grey

prediction model-based autotracking algorithm for the laparoscopic
visual window of surgical robot,” Mechanism and Machine Theory,
vol. 123, pp. 107–123, 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0094114X18300107

[42] Y. Sun, B. Pan, Y. Fu, and G. Niu, “Visual-based autonomous
field of view control of laparoscope with safety-RCM constraints
for semi-autonomous surgery,” The International Journal of Medical

Robotics and Computer Assisted Surgery, vol. 16, no. 2, Feb. 2020.
[Online]. Available: https://doi.org/10.1002/rcs.2079

[43] C. Staub, C. Lenz, G. Panin, A. Knoll, and R. Bauernschmitt,
“Contour-based surgical instrument tracking supported by kinematic
prediction,” in 2010 3rd IEEE RAS & EMBS International Conference

on Biomedical Robotics and Biomechatronics, 2010, pp. 746–752.
[44] M. M. Rahman, M. V. Balakuntala, G. Gonzalez, M. Agarwal,

U. Kaur, V. L. N. Venkatesh, N. Sanchez-Tamayo, Y. Xue, R. M.
Voyles, V. Aggarwal, and J. Wachs, “Sartres: a semi-autonomous
robot teleoperation environment for surgery,” Computer Methods in

Biomechanics and Biomedical Engineering: Imaging & Visualization,
vol. 9, no. 4, pp. 376–383, 2021.

[45] S. Bonne, W. Panitch, K. Dharmarajan, K. Srinivas, J.-L. Kincade,
T. Low, B. Knoth, C. Cowan, D. Fer, B. Thananjeyan, J. Kerr, J. Ich-
nowski, and K. Goldberg, “A digital twin framework for telesurgery
in the presence of varying network quality of service,” in 2022 IEEE

18th International Conference on Automation Science and Engineering

(CASE), 2022, pp. 1325–1332.
[46] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, !. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[48] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and
L. Sun, “Transformers in time series: A survey,” arXiv preprint

arXiv:2202.07125, 2022.
[49] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff,

“A transformer-based framework for multivariate time series represen-
tation learning,” in Proceedings of the 27th ACM SIGKDD conference

on knowledge discovery & data mining, 2021, pp. 2114–2124.
[50] M. Liu, S. Ren, S. Ma, J. Jiao, Y. Chen, Z. Wang, and W. Song, “Gated

transformer networks for multivariate time series classification,” arXiv

preprint arXiv:2103.14438, 2021.
[51] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” arXiv

preprint arXiv:1810.04805, 2018.
[52] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,

“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of the AAAI conference on artificial

intelligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.
[53] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improv-

ing language understanding by generative pre-training,” 2018.
[54] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of

points in space,” The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.
[55] K. Patroumpas and T. Sellis, “Window specification over data streams,”

in International Conference on Extending Database Technology.
Springer, 2006, pp. 445–464.

[56] N. Ahmidi, L. Tao, S. Sefati, Y. Gao, C. Lea, B. B. Haro, L. Zappella,
S. Khudanpur, R. Vidal, and G. D. Hager, “A dataset and benchmarks
for segmentation and recognition of gestures in robotic surgery,” IEEE

Transactions on Biomedical Engineering, vol. 64, no. 9, pp. 2025–
2041, 2017.

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[58] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE

transactions on pattern analysis and machine intelligence, vol. 29,
no. 6, pp. 1091–1095, 2007.

[59] G. Quellec, K. Charrière, M. Lamard, Z. Droueche, C. Roux, B. Coch-
ener, and G. Cazuguel, “Real-time recognition of surgical tasks in eye
surgery videos,” Medical image analysis, vol. 18, no. 3, pp. 579–590,
2014.

[60] S. F. committee. (2019) Fundamentals of laparo-
scopic surgery. [Online]. Available: https://www.flsprogram.org/
technical-skills-training-curriculum/

https://www.sciencedirect.com/science/article/pii/S0094114X18300107
https://www.sciencedirect.com/science/article/pii/S0094114X18300107
https://doi.org/10.1002/rcs.2079
https://www.flsprogram.org/technical-skills-training-curriculum/
https://www.flsprogram.org/technical-skills-training-curriculum/

	INTRODUCTION
	PRELIMINARIES
	Surgical Gestures and Context
	JIGSAWS Dataset
	Gesture Recognition
	Gesture and Trajectory Prediction

	METHODS
	Feature Extraction and Transformation
	Gesture Recognition
	Gesture and Trajectory Prediction

	EXPERIMENTAL EVALUATION
	Experimental Setup
	Metrics
	Results
	Gesture Recognition
	Gesture Prediction
	Trajectory Prediction and End-to-End Evaluation


	CONCLUSIONS
	References

