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ABSTRACT

Digital light processing (DLP) based vat photopolymerization (VPP) is an additive manufacturing (AM) tech-
nology that projects sequential optical masks to selectively cure cross-sectional patterns layer by layer. DLP-VPP
is widely used in rapid prototyping and fabrication of diverse products ranging from consumer goods to soft
robotics. Degree of curing (DoC) is one primary performance metric for photopolymer-based AM processes due to
its high correlation with key material properties such as density and elastic modulus. Yet there is a lack of in-situ
monitoring approaches to understand and control the photopolymerization process and part properties. State-of-
the-art works use in-situ Fourier-transform Infrared Spectroscopy (FT-IR) and atomic force microscopy, which
would interfere with the process and material and can only measure DoC at one single point each time. This work
aims to develop a cost-effective, non-interruptive, non-invasive, and full-field in-situ interferometric curing
monitoring (ICM) method for revealing the spatiotemporally resolved curing dynamics and material evolution
during DLP-VPP. To this end, a physics-based sensor model is derived, and machine learning-aided sensor data
processing and analytics methods are developed to address the unique measurement challenges in DLP-VPP-
specific ICM. Using the developed ICM model and methods, the acquired interferogram data is cleaned, classi-
fied, and calculated for estimating each voxel’s refractive index, which is an indicator of optical density as well as
physical density. Then, a DoC prediction model is created by correlating the in-situ ICM-measured refractive
index to ex-situ FT-IR-measured DoC. Our experiment results demonstrate that the developed ICM system and
methods are capable of measuring the geometry (e.g., lateral dimensions and shapes) of printed part as well as
capturing the changes in curing speed, refractive index, and DoC due to the different exposure masks and in-
tensities being used in DLP-VPP. It has the potential to provide real-time multi-modality measurement and enable
closed-loop feedback control for enhancing the DLP-VPP process reproducibility and print quality.

1. Introduction

1.1. Vat photopolymerization (VPP) and need for advanced process

monitoring

by continuous moving the print head such as continuous liquid interface
production (CLIP) and computed axial lithography (CAL) [3,4]. The CAL
is a volumetric VPP process, which shines varying light patterns into a
rotating volume of resin. It can print large volume objects with higher
speed and accuracy compared to layer-based VPP AM. Various moni-

Additive Manufacturing (AM) could fabricate objects with reduced
material waste and higher efficiency compared to traditional
manufacturing methods. Due to its high resolution and rapid production
speed, vat photopolymerization (VPP) is one of the most commonly used
AM technologies and widely applied to manufacture a variety of prod-
ucts like flexible electronics, tissues and scaffolds [1,2]. VPP processes
typically print layer by layer as in stereolithography (SLA) and digital
light processing (DLP). It can also create items in a layer-less approach
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toring methods are applied to understand the process dynamics and part
properties during these different VPP processes. For example, Li et al.
applies a color Schlieren imaging system to reconstruct the gradient of
refractive index of the CAL process [5]. Their in-situ refractive index
monitoring system enables a construction of spatial and temporal
gradient of refractive index, but the measurement range and accuracy
are limited by non-uniform background hue and nonlinear
hue-deflection relationship. The Schlieren-based system has also been
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used in a SLA process to study the in-situ voxel growth dynamics [6]. In
particular, this Schlieren system is modified with two levels of magni-
fication to allow focusing on small areas (i.e. single voxel), while other
methods like total internal reflection (TIR)-based refractive index mea-
surement only measure the whole area [7]. However, the Schlieren
method requires complex optical system that makes it difficult to be
implemented on VPP printers and can only captures the side view of a
printed part. Higgins et al. implements an atomic force microscopy
(AFM) to a DLP process to measure the mechanical properties during
polymerization process, but the cantilever tip needs to touch the liquid
resin and the cured part [8]. Fourier-transform Infrared Spectroscopy
(FT-IR) is also employed to estimate the conversion of relevant func-
tional groups by monitoring the reduction of corresponding absorption
peaks but only measures a single point [9,10]. Raman microscopy is
capable of measuring the conversion of functional groups at different
points through point, line or area scan, facing challenges in directing
curing light to the sample under microscopy. Moreover, the scan is time
consuming [11]. All of these state-of-the-art VPP process monitoring
methods would interfere with the complete part formation [10,12,13].
Besides, they often come with limitations including high cost, limited
view, destructiveness, and operation complexity on VPP printers.
Overall, there is a lack of cost-efficient, non-destructive and easily
implementable in-situ monitoring methods for characterizing curing
kinetics and part properties during VPP processes.

1.2. Interferometric monitoring for VPP processes

1.2.1. Existing works

The interferometry technique is a non-destructive and reliable
method that has been demonstrated for being able to measure physical
and chemical properties, such as refractive index and thickness of the
cured part during photopolymerization processes for monitoring
[14-16]. In [14], a low coherence interferometry is applied to simul-
taneously monitor the volume shrinkage and refractive index evolution
during a photopolymerization process with dental materials [14]. In
their research, the reliability of the interferometry technique is validated
by comparing its results to refractive index measurements obtained from
a conventional refractive index characterization device, namely the
Abbé  refractometer. Some  other researchers wused a
double-interferometer to monitor the refractive index and sample
thickness by measuring the phase shift of light passing through the
sample cell of photopolymer [17]. Zhao et al. developed an interfero-
metric curing monitoring and measurement (ICM&M) method to
monitor the cured height during a simplified DLP process named as
exposure-controlled projection lithography (ECPL) by developing a
multi-beam interference model and sensor data analytics method for
estimating and integrating instantaneous frequency values [18-22].
Their method involves a refractive index calibration procedure to ensure
accuracy and an online evolutionary parameter estimation algorithm to
analyze real-time data acquired from the interferometric monitoring of
ECPL for height measurement.

1.2.2. Novelty of this research on interferometric monitoring of VPP
Despite the existing monitoring capability mentioned above, there
exists a notable omission in the oversight of a crucial metric — the
Degree of Curing (DoC) in photopolymerization. The DoC is important in
comprehending VPP processes as it serves as a reflection of the degree of
crosslinking among monomers and significantly affects density and
other properties. For example, photocured parts’ mechanical properties
such as Young’s modulus, tensile strength, and hardness can be pre-
dicted from DoC based on Yang’s studies [23]. Moreover, optical
properties such as refractive index of the photocured composites is
found to be related with DoC [24]. In [24] the authors prepare resins
with different filler loadings and monitor their real-time DoC and
refractive index during the photopolymerization process. Their results
show that for an unfilled resin (without any fillers), there is a linear
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relationship between the refractive index and degree of conversion.

The discernible connections between DoC, refractive index, and
mechanical properties have motivated our new research, as outlined in
this paper. Our focus involves expanding the ICM&M of ECPL for
measuring DoC in the context of DLP-VPP. This extension allows for
estimating the diverse properties of the printed components with
enhanced accuracy and depth.

Distinguishing itself from prior work, this research contributes in two
main aspects. First, we advance the interferometric monitoring meth-
odology to accommodate a broader scope, specifically in monitoring a
general DPL-VPP process involving a moving build stage. This contrasts
with the static stage employed in ECPL, which is a simplified process
tailored for certain niche applications. Details on the challenges
encountered and the corresponding solutions adopted are introduced in
Section 1.3. Secondly, our work addresses a limitation in the previously
reported ICM&M method, which solely outputs the cured height of
printed samples for a specific DLP process (i.e., ECPL) that prints rela-
tively simple geometries on a stationary build platform. In this research,
we broaden the scope to measure not only geometrical dimensions but
also curing dynamics, specifically focusing on the DoC.

In summary, this work significantly contributes by establishing a
universal ICM method applicable to common and complex DLP-based
VPP (DLP-VPP) processes, such as CLIP, capable of printing real 3D
parts with a moving build stage. By incorporating the developed ICM
method into the DLP-VPP process, a comprehensive understanding of
the complex process dynamics and material’s curing behavior as well as
the ability to predict mechanical properties can be achieved, contrib-
uting to DLP-VPP process optimization and control for printing high-
quality 3D parts.

1.3. Overview of this work

The primary goal of this work is to formulate and demonstrate a
methodological framework for an in-situ interferometric curing moni-
toring (ICM) system and method. This framework is designed to
encompass not only geometry measurement but also the in-process
measurement of the refractive index and prediction of the DoC for
printed parts. This comprehensive approach is tailored specifically for a
standard DLP-based 3D printing VPP process.

Specifically, the DLP-VPP process monitoring via ICM faces the
following challenges that will be addressed in this work. During the DLP-
VPP process, light is illuminated from the bottom of resin chamber, after
one layer of resin is cured on the print head, the stage with the print head
where the printed part is attached will move up and another layer of
resin will be cured beneath the previous cured layer. Therefore, the ICM
sensor model needs to be modified. Moreover, the stage movement and
resin flow tend to induce more noise in the interferogram images,
necessitating a machine leaning aided sensor data processing method to
detect good pixels with higher signal-to-noise ratio (SNR). Machine
learning based classification method has been widely used in outlier or
defect detections in various fields including manufacturing, healthcare,
and financial services [25,26]. One specific signal input for machine
learning model is the time signal. Pragmatically, different machine
learning models targeting to process time signals are proposed to solve a
range of well-defined problems such as signal classification, signal
filtering, and signal forecasting. For example, the one-dimensional
convolutional neural network (CNN) is applied to classify Electro-
glottography (EGG) signal to help health care services [27]. Regarding
the additive manufacturing industry, machine learning models are used
to process time signals such as acoustic signals for defect detection for
laser powder bed fusion (LPBF) process. For VPP processes, machine
learning methods are usually applied for optimization of material pa-
rameters like resin formulation and processing parameters like grayscale
values of light masks [28,29]. In this work, the machine learning model
is designed as the signal classification tool to reduce the effects of noise
in the in-situ monitoring process. The developed machine learning
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model overall enhances the accuracy of the monitoring system.

The remainder of the paper is as follows, Section 2 discusses the VPP
and ICM experimental setups, materials, and experiment design. Section
3 demonstrates the ICM method, followed by the results and discussion
in Section 4. The conclusion and future work are presented in Section 5.

2. Experiment systems
2.1. DLP-VPP and ICM systems

The experimental setup of DLP-VPP system is shown in Fig. 1(a). The
DLP-VPP printer includes one commercial DLP projector (PRO4500,
Wintech Digital, Carlsbard, CA) with Ultraviolet(UV) light LED source
that has a wavelength of 365 nm. In this work, UV light is used as the
curing light according to the absorbance spectrum of used initiator. For a
clear interference pattern, a glass slide is used as the printer head in this
work, which is taped on a linear travel motorized stage (LTS-150,
Thorlabs, Newton, NJ).

Our ICM system (as shown in Fig. 1) comprises the following
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components: (1) a collimated green laser of wavelength of 532 nm
(CPS532, Thorlabs, Newton, New Jersey); (2) a beam expander (GBE10-
A, Thorlabs, Newton, New Jersey); (3) a 50:50 (R:T) Split Ratio beam
splitter (BSO13, Thorlabs, Newton, New Jersey); and (4) a CMOS camera
(acA2040-120 um, Basler, Exton, PA) with a sampling frequency of
120 Hz. The optics and camera are fixed above the moving print stage by
a 3D printed fixture. With the designed ICM system, interference pat-
terns caused by the optical path difference through a growing part
during the DLP-VPP process can be captured by the camera and recorded
into an interferogram video. To obtain optimum interferograms,
different substrate materials are tried. Compared to Poly-
dimethylsiloxane (PDMS) and Teflon FEP films, quartz glass slides can
create better interference patterns due to its smooth surface, higher
refractive index, and rigidity. The smoother surface and more uniform
thickness of the quartz glass slide can reduce surface irregularities,
thereby promoting normal incidence. Also importantly, the higher
refractive index of quartz glass can increase surface reflectivity. In
addition, unlike elastic PDMS and Teflon films, which tend to deform
and bend when resin is added, quartz glass slides can maintain flatness
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Fig. 1. Overview of the developed DLP-ICM system and methods. (a) Experiment setup. (b) Schematic of the optical layout. (c) Methodological framework of in-situ
interferometric monitoring for DLP-VPP process. (d) Measurement flowchart to clarify the workflow in (c). (e) An example of the ICM data: time series of grayscale
value of a representative pixel in one sample from Experiment Set 4 and its corresponding instantaneous frequency estimated by the methods as introduced in

Section 2.2.
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Fig. 1. (continued).

and create accurate and consistent interference patterns. All these
favorable attributes of quartz glass greatly help enable the formation of
clear and distinct interference fringes and enhance the imaging of
resulting interferograms. Meanwhile, it is worth pointing out that quartz
glass is also desired as the resin substrate to allow for a good trans-
mission of UV light masks into the resin. Therefore, quartz glass is rec-
ommended to be used as the resin chamber substrate to facilitate the
ICM of DLP-VPP. Overall, Fig. 1 presents the experimental setup, optical
layout, framework of data acquisition and analysis, measurement
flowchart, and exemplary data for illustrating the developed DLP-
specific ICM (DLP-ICM) system and methods.

2.2. Overview of the developed methodological framework of DLP-ICM
The overall DLP-ICM workflow is as follows.

(1) Implement the ICM system (Section 2.1) in situ to record an
interferogram video during a DLP-VPP process.

(2) Characterize the refractive index of the precursor liquid resin that
is needed to solve the ICM sensor model (elaborated in Section
3.1).

(3) Extract pixel-wise time series of image grayscale values from the
sequential interferogram frames in the acquired ICM video. Pre-
process all pixels’ time series of grayscale value with filters and
implement machine learning on the filtered dataset to detect
good pixels that exhibit distinct signals reflecting the DLP-VPP
process characteristics (elaborated in Section 3.2).

(4) Analyze each good pixel’s data (i.e., filtered time sequence of
grayscale in Step (3)) to identify the characteristic stages of a
DLP-VPP process (elaborated in Section 3.3).

(5) Apply adaptive Fourier curve fitting (elaborated in Section 3.4) to
the curing stage data identified in Step (4) to estimate all the
instantaneous frequency values through a DLP-VPP process, as
shown in Fig. 1(c).

(6) Plug the refractive index of liquid resin from Step (2) and the
estimated instantaneous frequency values from Step (5) into the
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ICM sensor model (see Section 3.1) to calculate the desired
refractive index of VPP printed parts. In theory a 2-dimensional
map of refractive index across the printed part can be obtained
by analyzing all pixels’ time series of grayscales using the
methods above excluding the machine learning aided good pixels
detection procedure. In practice, however, for efficiency and ac-
curacy only these good pixels identified in Step (3) need to be
analyzed yielding meaningful measurement result, especially
given noisy monitoring data.

(7) Develop a correlation model between refractive index and DoC
using the average of the ICM-measured refractive index values
and the FT-IR measured average DoC. The reason for using
average refractive index is that the FT-IR sensor size is typically
larger than the ICM camera pixel size and thus cannot measure
pixel-wise DoC accurately. In theory, a 2-dimenionsal profile of
DoC can be obtained by plugging individual pixel’s refractive
index value that is measured by ICM to the developed refractive
index-DoC correlation model.

(8) Use the developed DLP-ICM method and refractive index-DoC
model as introduced above to monitor subsequent DLP-VPP
processes and predict the resulting parts’ DoC values. The DoC
prediction via ICM data analysis can be validated by comparing
against FT-IR characterization.

As a summary, Fig. 1(c) shows a schematic overview of the DLP-
specific ICM method along with a demonstration of raw ICM data and
the corresponding instantaneous frequency estimation result shown in
Fig. 1(e). More results will be available in Section 4.

2.3. Materials

The resin used in this work is prepared using trimethylolpropane
triacrylate (TMPTA) as monomer and 0.5 wt% 2,2dimethoxy-1,2-diphe-
nylethan-1-one (DMPA, Irgacure-651) as an UV light photo-initiator.
This resin recipe is adapted from [18], it is reported that this resin
formulation can achieve more than 90% transmission in the visible
spectrum after fully cured. All the chemicals are purchased from
Sigma-Aldrich. All the materials are used as received without any
additional modifications.

3. Method of in-situ interferometric monitoring of DLP-VPP

With the designed ICM system being deployed to monitor a typical
DLP-VPP process, one will be able to acquire streaming interferogram
images in a video file that provide raw ICM data. This section introduces
the methods of processing and analyzing the ICM data to extract relevant
DLP-VPP process signatures and measure physical quantities of refrac-
tive index that will be used to further infer the DoC.

3.1. ICM sensor modeling

An explicit physics-based sensor model for the DLP-specific ICM
system is developed based on multi-beam interference optics as illus-
trated Fig. 2. Overall, the assumption is that the actual thickness of each
layer is the same as the pre-determined process setting of layer thick-
ness. Thus, given a layer thickness known from the process setting and
an optical path length measured by the interferometry, one can estimate
the effective refractive index of each layer, which depends on the
polymerization process especially the degree of cure.

As Fig. 2 shows, after a coherent light beam from the ICM system is
projected upon the print head, it will go through the print head, printed
part, liquid resin, and resin substrate. The light beam will reflect from
and transmit through each interface during the propagation. At the end,
these multiple reflected optical wave beams overlap above the print
head and form an interference field, which is captured by the ICM
camera as an interferogram image. Mathematically, the addition of the
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Es E, Ej E, E; Ey(Incident Coherent Beam)
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ny ] Hp: height of print head
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H¢: chamber height
n
n, } Hp: height of projection window

Z : cured height

(Quartz glass slide)

UV curing light

Fig. 2. Schematic illustration of our DLP-specific ICM sensor modeling based
on multi-beam interference optics. ng, my, my, ns, n, ny, are refractive index of air,
projection window, liquid resin, curing front, cured solid part, and print head,
respectively. This model is adapted from [20] to incorporate the DLP-VPP
process setup. Note that the propagation of beam is shown with an angle that
is exaggerated for clarification purpose. In theory normal incidence should be
used to ensure accurate measurement. In practice a good vertical alignment of
ICM camera and optics with DLP light axis and print head is required.

vectors of the light wave components as shown in Eq. (1), results the
total wave represented in Eq. (2) [20].

E, =Ae" n=12..5 €y

where A, is the real positive amplitude, and @, is the phase angle of each
wave.

5 5
Er = Z E, = ZAne"ﬁa @)
n=1 n=1

When the field is observed by a CMOS camera, the irradiance, I can
be measured [16]. I is proportional to the squared module of the
amplitude of the field, as shown in Eq. (3).

i A, e
n=1

2 5

5 5
=Y Al +2> 0 > AAc cos(y)

n=1 =1 kel kit

1=|E[ =

3

where 63 = @ — @k, represents the relative phase difference between
two wave components, which is caused by the optical path length dif-
ferences (OPLD) between different wave components, so & = w.
Table A-1 in the Appendix Section A-2 shows the phase difference
components where DC means direct current signal and AC means
alternating current signal.

In Fig. 2, the curing front represents an imaginary interface between
the liquid resin and the curing part. It encompasses the entire curing
block containing intermediate phases between the liquid resin and the
solid states. The cured height Z is the distance from the curing font to the
top surface of the printed part, so the OPLD between E; and E; is
calculated using Eq. 4, where n(0) = ny, n(Z) = ny, ny, is the mean
refractive index of the intermediate phases. With Eq. (4), all phase dif-
ferences can be analyzed.

z
OPLDg, g, = / n(x)dx = n,Z (€))
0

In Appendix Table A-1, the oscillating phase difference values are
caused by the changes of their corresponding OPLD which is related to
the curing process. The camera-recorded signals, that is, the acquired
ICM time series of data as described in Eq. 3 display components with
varying frequency values along the DLP-VPP processing time. The
instantaneous frequency (IF) is the rate of the phase change at the cor-
responding time instant. It is a pivotal parameter in time-frequency
analysis, enabling extract the time-varying frequency from
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nonstationary signals [30]. Assuming the process parameters of light
intensity and material properties - n;, n;, ny are momentarily invariant,
either cured height Z or effective or mean refractive index n,, change and
are related to the IF. As illustrated in Table 1, the IF components are
derived based on the information provided in Appendix Table A-1.

The high frequency fi and f, are removed during the data pre-
processing when a low pass filter is applied (see Section 3.3.1), so only
low frequency f can provide curing information. Therefore, the CMOS
camera measured intensity Iy, is modeled as the sum of the background
intensity with low instantaneous frequency f in the multi-beam inter-
ference optics model, as shown in Eq. (5), where I, represents the
average intensity, I; is the superposed intensity of interference beams
with the same instantaneous frequency f, § is the time varying phase
shifting, ¢is the superposed phase offset of interference beams with the
same frequency, n, is the mean refractive index of the cured part and n;
is the refractive index of the liquid resin, Z is the cured part thickness, 1
is the green laser wavelength of 532 nm, w is the instantaneous angular
frequency and f is the instantaneous frequency [20].

4 —m)Z 4nnH,
Iy =Iy+Icos(6+¢) = Iy +Ilcos< ﬂ(n,,,l m) + m’;, C+q)> (©)
dé+¢) dé 4xd((n,—n)eZ) 4an dHc
g =0T _do_mAd\m —M)eL) T
© = 2af di a2 di 1 di ©®)

A differential form is derived from of Eq. (6). In this project, as only
one layer is printed, the chamber height remains unchanged, indicated

dH, . .
by ¢ = 0,resulting in Eq. (7).
d((ny —m)eZ) io I

dt Cdn 2 )

To evaluate the effective refractive index n,, of the cured part from
the differential form in Eq. (7), the explicit ICM sensor model is gener-
ated using Euler’s Method shown in Eq. (8) by assuming the cured height
Z is constant:

A
m=m+-—> Tf;
e =n+22) T ®)

where T; is the time step of integration, f; is the instantaneous fre-
quency in the i" run of parameter estimation. The refractive index value
of liquid resin n; is 1.4723 based on [18]. It is noted that the cumulative
sum term is essentially the total phase angle that has changed during the
curing process.

3.2. ICM data preprocessing

The raw ICM data refers to the directly acquired video of interfero-
grams that is recorded during ICM of a VPP process. For analyzing the
ICM data, a set of secondary ICM data is obtained by extracting each
individual pixel’s time series of image grayscale values from the
sequential interferogram frames in the acquired ICM video. The datasets
of all pixels’ time series of grayscale values are preprocessed to reduce
the noise and screen high-quality ICM dataset, i.e., a subset of good ICM
pixels that will vividly reflect curing dynamics and allow for accurate
process measurement. This section presents the data cleaning process

Table 1
Instantaneous frequency (IF) of the multi-beam interference optics model in ICM
for DLP-VPP.

Instantaneous frequency (HZ) Corresponding phase

fo=0 021,054
531.6:
f- g. d(nmeZ) 31,032
A dt

2n dH¢ 2 dZ
fo=—"—0—"—0o—

A dt 2 dt
fo g.d((nm —ny)eZ) X 2nny .dHC
A dt A dt

843, 053

041, 051,642, 052
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that is important to achieve an efficient and effective ICM measurement.
Associated experiment results and discussions are presented in Section
4.2.

3.2.1. Noise filtering

During the polymerization process, the liquid resin is converted to
solid part and thus resulting in shrinkage of the curing zone and
movement of its surrounding liquid resin, which can induce noise in the
ICM signal. To improve the signal-noise-ratio (SNR) of ICM time series of
pixel grayscale data, multiple filters are used in the ICM data pre-
processing. Firstly, a 5 x 5 image median filter is applied to each pixel’s
time series of grayscale values to reduce noise by replacing each pixel
value with the median of its neighboring 25 pixels [23]. Then a low-pass
filter with a cutoff frequency of 10 Hz, is used to remove high frequency
noise peaks from the data. The chosen cutoff frequency (10 Hz in this
case) is characterized from our experiment data and found to be sulffi-
ciently higher than typical maximal frequency values in DLP-ICM. A
moving mean filter in MATLAB is used to further smooth the time curve
of grayscales for allowing a better curve fitting later. The MATLAB
function “movmean” calculates the mean of the values within a sliding
window size.

3.2.2. Machine learning-based outlier detection

As those apparent and stochastic noise can be effectively filtered
after using the methods in Section 3.3.1, there may be pixels who are
subjected to certain systematic noise due to the DLP-VPP processing
disturbances and the ICM camera sensing errors (see the challenges in
Section 1.3). Especially given a large dataset of thousands of pixels’ time
series acquired during ICM across the entire print plane, there tends to
exist a considerable portion of such bad pixels which are corrupted
mainly by the systematic noise and cannot exhibit any quality signals to
reflect the printing process characteristics. Those bad pixels are
considered as outliers which don’t carry any relevant DLP-VPP pro-
cessing signatures. To clarify, the “bad pixel” or “outlier pixel” in this
work refers to a DLP-VPP printed voxel that cannot be reliably used for
ICM measurement purpose primarily due to the possible print process
and sensor measurement noise including the DLP-VPP process distur-
bances by resin flow perturbance and build stage movement as well as
the ICM sensor dysfunctions caused by electronics drift and overheat.
Note that such bad or outlier pixel doesn’t necessarily mean that the
corresponding voxel is not adequately cured. Consequently, it is not
worthwhile to conduct measurement analysis for these outlier pixels
from the perspective of maintaining and enhancing data quality,
computational efficiency, and measurement accuracy. Otherwise, such
kind of measurements using bad pixels would require additional effort
and resource to restore the genuine signal but still could significantly
degrade the overall measurement performance. Overall, to ensure the
accuracy of the estimated refractive index while saving computational
effort, those bad pixels are marked as outliers and only those good pixels
are used to solve the ICM sensor model for instantaneous frequency
estimation and final calculations of refractive index and DoC.

To distinguish between good pixels and outliers, a robust and accu-
rate machine learning-assisted algorithm is developed and implemented
for pixel classification. The algorithm relies on identifying specific pat-
terns in the time series of grayscale values, reflecting characteristic
stages of VPP processing including incubation, exposure curing, dark
curing, and resting. Please note that in this work “incubation” is used to
refer to the commonly known “induction” period that describes the
initial stage of photopolymerization reaction, only to be consistent with
prior publications related to the ICM method [20,21]. Pixels that do not
exhibit this pattern are considered as outliers. Pixel-wise time series of
grayscale values are used for training and testing a machine learning
model for ICM pixels triage. And this training and testing procedure
involves using a dataset that is manually labeled. To ensure the integrity
of the evaluation process, the entire dataset is split into three subsets:
60% for training, 10% for validation, and 30% for testing. This split is
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performed to prevent data leakage and maintain the independence of
the testing data, and the details of outlier detection are described in
Section 4.2. A standard one-dimensional Residual Neural Network
(ResNet) 18 is adopted [26], which is capable of effectively mitigating
the vanishing gradient problem happened in deep neural network
archetectures. By training the model using the labeled train set and
testing its performance on the labeled unseen test data, the machine
learning model can accurately classify pixels as either good pixel or
outliers based on their time series grayscale values, allowing for robust
and accurate detection of good pixels in the interferogram video and
thus reliable ICM data analysis and measurement calculation. More
details about the model development and results including the model
training curve and testing confusion matrix in Section 4.2.

3.3. DLP-VPP process stages identification via ICM data mining

A typical DLP-VPP process comprises four stages as follows: (1) in-
cubation (i.e., induction) or threshold when resin is absorbing and
accumulating sufficient amount of light energy to commence curing; (2)
exposure curing when the curing happens under the digital light irra-
diation; (3) dark curing when curing goes on due to residual catalysts (e.
g., free radicals) and environmental conditions (e.g., ambient light) after
the digital light exposure is turned off; and (4) resting stage when dark
curing is completed. Ideally the ICM pixel-wise time series of grayscale
should reflect these four distinct stages by displaying (1) flat line rep-
resenting the initial background signal during the incubation; (2)
oscillating waves reflecting the exposure curing dynamics; (3) relatively
slower oscillating waves caused by the dark curing behavior; and (4)
another flat line representing the final background signal while the
entire curing process stops. In theory only the exposure curing and dark
curing stages should be analyzed using the ICM model (Section 3.2) as
the incubation stage and the resting stage don’t involve any curing and
should have zero contribution to the phase change. However, realistic
ICM data contains various noise that present significant challenges for
differentiating these intrinsic stages. For example, the flat segments
during incubation and resting might exhibit noisy waves that would
mislead one to consider it as curing waves in exposure curing or dark
curing stage and overestimate the phase change.

As such, it is crucial to automatically and accurately distinguish these
characteristic stages of a DLP-VPP process by segmenting its ICM time
series before applying the ICM sensor model to estimate the metrics of
curing (refractive index in this case). In practice, each segment of an ICM
pixel time series has some distinct features that can be used to assist the
curing stage identification. For the incubation stage, the liquid resin is
exposed to light, but the exposure energy received hasn’t reach the
critical exposure energy for the chemical reaction to occur. In this stage,
the ICM grayscale amplitude is relatively lower than the subsequent
exposure curing stage, and the peak inside the incubation stage should
not be counted for estimating refractive index. Hence, accurately
determining the ending point of the incubation stage is crucial. During
the exposure curing process, oscillations occur and there is a significant
change in the grayscale values as captured by the AC component in our
ICM model (Appendix Table A-1). The standard deviation and range of
the data in a moving window within the curing stage should be much
higher compared to the values in other stages. After the curing light is
turned off, there is a period of dark curing characterized by the gradual
widening of the oscillation peak until it reaches a certain width, indi-
cating the resting stage. At the end of the dark curing phase, like the
incubation stage, the standard deviation value and range are expected to
decrease.

Inaccuracies in identifying curing stages can lead to erroneous phase
angle estimation and thus inaccurate refractive index calculation.
Therefore, it is important to set some empirical threshold values to
identify the start and end of an effective curing period that includes
exposure and dark curing stages. The time points of curing start and end
are identified using some threshold values of ICM grayscale range and
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standard deviation. For enhancing the curing end point identification
accuracy and robustness, a threshold value of cycle width is used. An
“empty sample” experiment is conducted to characterize this threshold
cycle width for detecting the curing end. Specifically, an ICM video is
acquired while “printing” an empty sample by shinning UV light to a
liquid resin that contains no initiators but only monomer. Thus, it re-
cords only the background signal due to the movement of liquid resin
and other system noise. The average number of points for one cycle in
this “empty sample” experiment is used as the reference value for
marking the end of curing. When the number of points of the oscillation
cycle exceeds the threshold number of points, the instantaneous fre-
quency estimated by the ICM sensor model becomes nearly flat, indi-
cating the end of curing reactions.

After the start and end time points of an effective curing period are
determined, the instantaneous frequency values outside the effective
curing period are assigned to be O to ensure that only relevant data
within the effective curing period is considered for refractive index
estimation later (elaborated in next subsection).

3.4. Solving the ICM sensor model with adaptive Fourier curve fitting of
the effective curing period data

For each identified good pixel (Section 3.3), the segment of data
series of the identified effective curing period (Section 3.4) is used to
solve the sensor model as shown in Eq. 8, for evaluating the value of
mean (i.e., effective) refractive index ny, at the corresponding pixel. The
instantaneous frequency f; for each time step is calculated using a one-
term Fourier curve fitting algorithm with an exponentially weighted
moving horizon window, as depicted in Eq. (9), where t is time, w; is the
instantaneous angular frequency of iy, time step.

y = ag+a; e cos(w;t) + by e sin(w;t) = ag + \/a;2 + b, e cos(w;t + 0)w;

=2xf;,0 = tan"(fz—:)

)

The instantaneous frequency is estimated for every 10 frames of an
ICM video. As such, each time step in Eq. (9) involves 10 grayscale data
points, which is 0.083 s given the sampling frequency of the camera of
120 Hz. After estimating the instantaneous frequency for each time step,
numerical integration of the time sequence of instantaneous frequency is
performed throughout the curing process to obtain the total phase angle
change during the print.

As can be seen from the overall method above, it is important to
ensure an accurate and robust estimation of each time step’s instanta-
neous frequency. This is accomplished by using a moving window with
weights exponentially decreasing from current to past time points. The
initial window size, i.e., moving horizon length (MHL), is set to be 30
frames based on our initial runs of experiment data analysis. Exponen-
tially decreasing weighting is applied to the data within each moving
window with a parameter of “half-life”, which is the width of data
segment where the weight is decaying to one half. The half-life serves as
a forgetting factor for the Fourier curve fitting to focus on the most
recent data in order to accurately estimate the current instantaneous
frequency. The choices of MHL and half-life depend on the VPP process
speed and the ICM data acquisition rate and can use empirical values
from prior experiment. Due to the distinct curing rates through a VPP
process an adaptive WHL is developed to avoid improper MHL that
could bring aliasing errors. Specifically, several candidate MHL values
are used in the curve fitting and the fitting that results in the highest R-
squared value is taken as the best fit. To save computational time, one
can also apply the adaptive curve fitting only when the initial curve
fitting results in a R-squared value less than certain threshold. In this
work, when the R-squared value of the first run of curve fitting using a
specified MHL is below 0.9, a while loop will be applied to change the
window size to MHL* 0.5, MHL* 1, MHL* 1.5, MHL* 2 and MHL* 3
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until find the curve fitting results with a R> > 0.9.

3.5. Correlation of the relationship between refractive index and degree of
curing

The DoC measures the extent of the conversion of Carbon-Carbon
double bonds (C=C) in the liquid monomer into Carbon-Carbon single
bonds (C-C) in the cured polymer. As previously mentioned, since DoC
exhibits a direct correlation with the refractive index of the as-printed
parts, a correlation model between refractive index and DoC can be
created to infer the DoC of DLP-VPP printed parts from the refractive
index measured during the process by the ICM. To this end, the DoC
values of printed samples should be characterized to train a good cor-
relation model. In this work, a Fourier-transform infrared spectroscopy
(FT-IR) (Vertex-70LS, Bruker, Billerica, MA) is used. The measurements
are conducted using an attenuated total reflection (ATR) mode. In this
mode, a total of 16 scans are performed with a resolution of 4 cm™!, and
the average of these scans is utilized to obtain the absorption spectrum.
The DoC is determined by estimating the reduction in the absorbance
peak area of the C=C bond peak at 1620cm 'and 1635cm~!. To
normalize the peak absorbance value, the stable C=0 stretching vi-

bration peak at 1725 cm~'is employed as an internal standard. The DoC
is calculated using the Eq. (10).

[(Alszouwl A 6350m1 )]
DoC =1— Armasem=1

[(Alszourl A | 635em~1 )]
Aasen-1

polymer

(10)

resin

where A1620em-1,A1635cm-1 @and A;795.,1 are the absorbance peak area at
1620cm™1, 1635cm™! and 1725cm™t,

[MLA”;W"‘)] is the peak area ratio of sample and
1725cm
[(AIGZOEm’l +A 1 6350m1 )]
1725cm—1
The FT-IR-measured DoC and ICM-measured refractive index data
are used to fit a regression model as shown in Eq. (11), which is the
desired correlation model between the refractive index and DoC for the

unfilled liquid resin [24].

respectively.

[polymer

resin 15 the peak area ratio of unreacted resin.

DoC = aen,, +b an
4. Results and discussion
4.1. Experiment design

Toward the goal of using the ICM method to measure DoC, a series of
experiment is needed to gather sufficient data for creating a meaningful
correlation model between DoC and refractive index. As such, a variety
of samples are printed with different light intensities using our in-house
DLP-VPP system and the corresponding print processes are monitored
using our experimental ICM setup (see Section 2.2). The light mask for
each sample is designed as a circle shape with a diameter of 2.5 mm. A
single layer is printed with a layer thickness of 0.12 mm. The current
ICM system can measure a sample thickness in the range of 0.01 mm to
0.18 mm. The maximum measurable sample thickness is limited by the
power and coherent length of the green laser, which are described in
Appendix Section A-1. Thicker samples tend to attenuate the ICM light
resulting in weaker signals in ICM data. Thinner samples are easily
broken during the post-build FTIR measurement. Therefore, the sample
thickness is chosen to be 0.12 mm for this study. The light exposure time
for each specimen is 5 s

Five sets of samples are printed on quartz glass slides using these
different levels of light intensity as shown in Table 2. Three replications
are conducted in each set for deriving a statistically significant refractive
index-DoC correlation model as well as for evaluating the repeatability
of the DLP process and the ICM measurement. Photos of representative
printed samples are shown in Appendix Figure A-3. The power of the
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Table 2
DLP-VPP process setting.
Sample Sample NO. UV Light Mask Printing Exposure
Set No. (R: intensity Image Substrate time (s)
Replication) (mW/ Grayscale
cm’2)
1 S1R1, S1R2, 15 255 Quartz 5
S1R3 glass slide
2 S2R1,S2R2, 11.63 195
S2R3
3 S3R1,S3R2, 849 125
S3R3
4 S4R1,S4R2, 5.77 63
S4R3
5 S5R1,S5R2, 5.08 50
S5R3

light mask is measured via an optical power meter (PM400, Thorlabs,
NJ, USA) directly on the build platform with a projection window (Quart
glass slide). The area of the projected light masks on the platform is
measured by a digital caliper with a resolution of 0.01 mm. The light
intensity is calculated by dividing the light power value over the light
mask area. Note that the light intensity is modulated by changing the
grayscale values of the 8-bit optical mask images from 0 to 255 of pixel,
where 0 corresponds to a dark black pixel and 255 corresponds to a
bright white pixel.

4.2. ICM data acquisition and preprocessing

During the DLP-VPP processing of each sample as designed in Section
4.1, an ICM video of 1500 frames of interferogram is acquired with each
frame having a resolution of 720 x 480 pixels (pixel size: 9.4 um as
calibrated in Table A-2 in Appendix Section A-3). Note the frame
number of each ICM video might vary due to the manual operation of
cameras. In this work, the region of interest (ROI) in each frame of
interferogram contains about 90,000 pixels, resulting in 1.35x108 data
points of timed grayscale value that need to be processed for a full-field
pixel-wise time-resolved measurement analysis. This ICM data size can
be even bigger while printing larger parts and using higher ICM frame
rates. The ICM data can also be noisy, necessitating preprocessing for
cleaning the data and enhancing the calculation efficiency and accuracy.

As described in Section 3.3, a machine learning model is used to
detect outliers and only good pixels are used to do the parameter esti-
mation to provide information about refractive index. To provide a
sufficient dataset for training and testing the machine learning model,
good pixels and bad pixels are manually labelled based on both theory
and experimental observations that good pixels should exhibit distinct
features in their time series of intensity values that can reflect vividly the
characteristic stages of a DLP-VPP process as introduced in Section 3.4.
Fig. 3 shows some representative good pixels and bad pixels from S5 R3
(Replication 3). Good pixels are expected to exhibit a high SNR as shown
in Fig. 3 (bottom), starting with a relatively flat line during the induction
time, followed by oscillating cycles that gradually become wider until
they eventually flatten out corresponding to the curing period. However,
bad pixels as shown in Fig. 3 (top) exhibit a lower value of SNR, causing
difficulty to identify the start point and end point of the curing period.
The amplitude in the bad pixels is relatively small compared to the
filtered grayscale values of the good pixels and cannot provide useful
information about the process dynamics.

A total of 946 pixels selected from Sample Sets 1-5 are manually
labelled and used as the dataset to train and test a machine learning
model. As mentioned in 3.3.2, 60% of the dataset is used for training,
10% for validation, and 30% for testing. Thus, 567 pixels are used for
training, 95 pixels are used for validation, and the remaining 284 pixels
are used as the unseen test data set. Cross entropy loss function is used
with the adaptive moment estimation algorithm (ADAM) for optimiza-
tion. Table 3 shows the confusion matrix of the developed machine
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Fig. 3. Representative raw data and filtered time series of grayscale value for a
bad pixel (top) and a good pixel (bottom) in Sample Set 5 Replication 3.

learning model, which presentss the performance of the classification
model on the unseen dataset. Within the confusion matrix, True Positive
(TP) represents the accurate classification of good pixels as good by the
ML model, False Positive (FP) signifies the erroneous identification of
bad pixels as good pixels by the ML model, False Negative (FN) indicates
the misclassification of good pixels as outliers by the ML model, and
True Negative (TN) stands for the precise identification of outliers as
such by the ML model. The evaluation is conducted on the unseen
dataset including 284 pixels, consisting of 177 good pixels and 107 bad
pixels (outliers). Out of the 177 good pixels, the model correctly clas-
sified 173 as good and misclassified 4 as bad. For the 107 outliers, the
model classified all of them correctly with bad pixel label.

Using these results, we can further evaluate other model perfor-
mance metrics such as accuracy, precision, recall and F1 score.

TN + TP

A = = .
couracy = oo TP+ FN £ FP 98.59%
TP
Precision = ——— = 100.00%
recision TP+ FP o
Recall = T =97.74%
TTP+EN T
Fl — score — 2 % Precision x recall — 98.86%

precision + recall

Before the outlier detection, the ROI for each sample is selected

Table 3

Additive Manufacturing 81 (2024) 104001

according to the location of cured sample shown on the recorded ICM
video. Then the developed machine learning mode is used to classify all
the pixels throughout the entire ROI. The identified good pixels are used
for estimating the effective refractive index within that ROI. The outlier
detection results are shown in Fig. 4. For each sample, it becomes
evident that the peripheral region of the cured area exhibits more good
pixels compared to the central region. This observed phenomenon can
be attributed to the fact that voxels within the central region are covered
by a relatively higher volume of liquid resin in contrast to those situated
at the periphery. This is because we print the samples using droplets of
resins on the build platform. As a result, the increased presence of liquid
resin leads to greater attenuation of the green laser, consequently
yielding a weaker interference signal. This issue of non-uniform ICM
signal may be mitigated in practical DLP-VPP processes where a vat of
resin is used. Besides, most of the samples display a clear circular pattern
of good pixels indicating that the ICM system can capture the shape
(circle as used in this work) of curing area well. It shows that ICM can be
used to measure the geometry including lateral dimensions and cross-
sectional shape of an in-process part. Although this work is focused on
measuring refractive index and DoC, additional investigation on the
geometry measurement capability of ICM is still conducted to show its
versatility. For more details, please refer to Appendix Section A-3, where
the scaling factor between the ICM image pixel size and the printed part
pixel size is characterized. Both dimensions and angles are measured
using the in-situ ICM and compared to ex-situ measurement results,
showing a good agreement.

4.3. DLP-VPP process stages identification

To identify curing stages, the standard deviation and range are
estimated for every 10 frames of ICM camera data and compared with
empirical critical values. Distinct critical values are utilized, as samples
from Experiment Sets 1, 2 and 3 exhibit higher amplitude than samples
from Sets 4 and 5. For samples in Sets 1, 2, and 3, the critical standard
deviation is set to be 5 and the critical range is 10. For samples in Sets 4
and 5, the critical standard deviation is set to be 3 and the critical range
is 5. To enhance the robustness of identifying the endpoint of the curing
periods, a critical cycle width is used. This critical value is determined
through the “empty sample” experiment as described in Section 3.3,
where the reference background signal is characterized to be 200 points
per cycle corresponding to a time duration of 1.667 s. With all the
characterized critical values, the curing start and end time points are
labeled for each good pixel’s time sequence of grayscale values.

The Fig. 5 shows representative pixels from each sample set as
designed in Section 4.1. The developed stage identification method is
utilized to determine the start point and end point of the curing stage.
The curing start point also indicates the end of the induction stage,
signifying the moment when the transition from liquid resin to solid

Confusion matrix of the machine learning model for identifying good pixels and outliers.
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Fig. 4. Results of the machine learning-based outlier detection at a region of interest for each sample (“Sample 1-2" means the sample from Sample Set 1 Replication
2, etc.). Yellow color shows good pixels and blue color shows bad pixels. From top to bottom, the light intensity gradually decreases. For each light intensity, three
replicates are printed (for details, see the experiment design in Section 4.1).
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Fig. 5. Representative results of identifying the effective curing, i.e., the start of exposure curing and the end of dark curing for Samples 1-5 cured in the designed
Experiment Sets 1-5, respectively. From top to bottom, the decreasing amplitude of ICM signal (i.e., pixel grayscale value) well reflects the fact that the DLP-VPP
processing light intensity is decreasing in the different sets of experiment.

polymer becomes observable by the ICM. The curing end point is the corresponding incubation time is increased.

termination of dark curing, after which the curing signal is like a Table 4 shows a statistic of the average value of curing start point and
background signal and cannot provide useful information about curing. end point for each experiment set. As expected, an increase in DLP-VPP
From top to bottom plots, light intensity is decreasing and the processing light intensity correlates to a reduction in the required
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induction time. Furthermore, the result reveals that a higher light in-
tensity is associated with a prolonged dark curing stage. This phenom-
enon can be attributed to the fact that elevated light intensity results in
accumulation of more light exposure energy within the same exposure
duration, thereby extending the duration of the dark curing stage. Our
ICM observations conform to the intuitive understanding about the DLP-
VPP mechanisms, enhancing the confidence of using ICM to accurately
measure the curing process dynamics. Herein, we demonstrate a suc-
cessful identification of effective curing stages using the method devel-
oped in Section 3.4. This greatly helps guarantee an accurate solution of
the ICM model evaluation in next subsection.

4.4. Estimating the effective refractive index of DLP-VP printed parts via
ICM sensor data analytics

The adaptive curve fitting method as introduced in Section 3.5 is
used to calculate the time-varying instantaneous frequency out of the
identified curing period’s time series of grayscale value for each detec-
ted good pixel.

Fig. 6(a) shows the representative results of a sample pixel’s time
curve of estimated instantaneous frequency and corresponding curve
fitting results of time series grayscale from each sample set that uses
different levels of exposure light intensity. Fig. 6(b) displays the
evolving refractive index during the printing process. It clearly shows
that a higher exposure intensity used in the DLP-VPP process would lead
to a shorter induction time, a higher instantaneous frequency that in-
dicates faster curing during the curing period, and a longer dark curing.
This result also proves that ICM data and results can reveal the actual
process dynamics of DLP-VPP, which are not attainable by current
means.

The refractive index values are calculated by plugging the estimated
instantaneous frequency values into the ICM sensor model (Section 3.2).
The results for Sample Sets 1-5 are summarized in Appendix Table A-3.
Several statistical measures have been estimated including the mean,
median, standard deviation, range (maximum - minimum), and the
robust mean and robust sigma. The robust method is using “robustcov”
command in MATLAB to estimate the mean and covariance values while
reducing the effects of outliers on the average. According to Appendix
Table A-3, the average value estimated by the robust method is lower
than the mean values calculated by the traditional method for each
sample, and the median value is closer to the robust mean value than the
traditional mean results. It can be observed that Sample Set 1 have
higher refractive index values than other samples sets, showing that
increasing light intensity results in higher values of refractive index. On
the other hand, Sample Sets 1,2, and 3 have larger range values than
Sample Set 4 and 5. The reason for this phenomenon can be attributed to
more diffusion of generated radicals to unexposed area during the curing
process and the consequential more over-curing in those unexposed
regions. This curing process variation is manifested by the distinct
refractive index values, validating that the developed ICM method is
capable of capturing the spatial distribution of process dynamics.
However, ex-situ quantitative characterization of the refractive index of
cured sample can be performed using standard reflectometry to directly
validate the ICM-estimated refractive index in the future.

Table 4
Curing stage identification results: average duration of induction and dark
curing for each sample set (exposure time: 5 s).

Sample Set  DLP-VPP Processing Light Average Average dark
No. Intensity (mW/cm"2) induction time curing time (s)
(s)

1 15.00 0.49 4.23

2 11.63 0.81 4.21

3 8.49 2.03 3.26

4 5.77 2.99 2.80

5 5.08 3.53 1.53
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Fig. 7 shows the boxplot of all good pixels identified in all the five
samples sets that are measured using the ICM method, allowing for a
comprehensive comparison of the refractive index measurement results.
Meanwhile, the left-side vertical axis shows the robust mean value of
each sample set, and the right-side vertical axis shows the average DoC
of each sample set. The blue star marker denotes the mean value of the
average refractive index of each replication for Sample set 1-5. The
trend is that higher ICM measured refractive index correlates to a higher
DoC. This relationship is further investigated in the next subsection.

4.5. Inferring the degree of curing of DLP-VPP printed parts using
refractive index measured by ICM

Table A-4 in Appendix Section A-5 presents the ICM-measured
refractive index and FTIR-measured DoC for each sample. It indicates
a positive correlation between DoC and refractive index, where a higher
degree of cure results in a higher refractive index. A refractive index-
DoC correlation model is developed by curve fitting of Eq. (11) using
the DoC and refractive index values of the first two replications in each
sample set, as shown in Fig. 8. The fitted correlation model is DoC
=16.934 en,,- 24.963, and the R? of the curve fitting is 0.8523. The
estimated correlation model is tested on all the unseen data — the third
replication in each sample set. Table A-5 in Appendix Section A-5 shows
the performance of the developed correlation model on predicting DoC
of printed parts in Replication 3 for each sample set. The prediction error
is calculated as the absolute value of (predicted DoC — FTIR measured
DoC) / FTIR measured DoC. The average error for all 5 samples is 16.2%.
In this work, the correlation model is established using a linear model, as
per Howard’s work [24]. In Fig. 8, it’s observed that once the DoC
reaches 50%, the change in refractive index with the increasing DoC
becomes relatively minor. On one hand, it is worth noting that the
limited sample number could significantly affect the model development
and accuracy. On the other hand, the observation from Fig. 8 seems to be
consistent with Aloui’s work, which investigates the evolution of
refractive index in a set of commercial acrylic resins during photo-
polymerization [31]. Their results indicate that refractive index would
linearly increase with DoC when the material is not in the glassy state
and remain constant above a certain DoC threshold even as the reaction
continues. This phenomenon might be attributed to the heavy depen-
dence of refractive index on material density, which however tends to be
constant after the material reaches a certain DoC value [14,31,32]. To
conclude, while a simple linear model proves to be reasonably effective
for a specified range of DoC, its applicability is constrained by specific
limits determined by the nuanced relationship with the material’s
density, refractive index, and other properties such as molecular-level
structures. In the future, more experiment data and machine learning
models can be used to comprehend and capture the intricate relation-
ships between the refractive index and DoC, thereby enhancing the
model prediction accuracy.

With the developed correlation model, the DoC of each voxel can be
predicted via the ICM estimated refractive index with a decent accuracy.
The time-varying DoC values of representative pixels from each sample
set are shown in Fig. 9. It vividly reveals that increasing curing light
intensity (from S5 to S1) leads to less incubation time and higher DoC at
the same exposure time. The prediction accuracy can be further
improved by developing an enhanced correlation model as discussed
above Fig. 8.

5. Conclusion

In this work, we develop a cost-effective, non-destructive, full-field,
multi-modality, and real-time in-situ interferometric curing monitoring
(ICM) system for spatiotemporally characterizing the process dynamics
and material properties during the DLP-based VPP (DLP-VPP) processes
with a focus on measuring the refractive index and estimating the degree
of curing. While the results may appear preliminary due to the
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Fig. 6. (a) Representative curve fitting results of time series of grayscale value (left) and corresponding instantaneous frequency (right) estimated for a typical
sample in Experiment Sets 1-5, respectively. (b) Representative time curves of evolving refractive index for these samples.

constraints of a limited experiment, it is crucial to emphasize the sig- The significant outcomes are summarized as follows.

nificant development, articulation, and establishment of the overall

methodological framework for DLP-specific ICM. This framework has e First, an explicit, physics ICM sensor model is derived based on
been meticulously laid out, and a proof of concept has been successfully multi-beam optical interference in the context of general DLP-VPP
demonstrated towards achieving the intended goals of understanding, that involves a moving building stage and print head, which affects
controlling, and enhancing general DLP-VPP processes. ICM optical sensing path.
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Fig. 9. Predicted DoC evolution during the DLP printing of the representative
samples in Experiment Sets 1-5, respectively.

e Second, machine learning-aided sensor data processing and analytics
methods are developed to address the unique challenge in DLP-VPP-
specific ICM. Especially, this ICM approach is sensitive to the inter-
ferogram image noise which are worsened by the possible optics
misalignment, limited light transmission, resin flow, and process

13
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disturbance in the scenario of DLP-VPP. A machine learning-based
outlier detection method is developed using our manually labeled
pixels based on our substantial analysis of ICM image pixels’ time
sequences of intensity values. The trained model can successfully
identify good pixels that have high signal-to-noise ratio and thus can
be used for accurately estimating refractive index and DoC.

The developed ICM system and methods are demonstrated to be able

to reflect the curing process dynamics (i.e., time-curve of instanta-

neous frequency that indicates the curing speed through the print
process) and capture the material properties changes (i.e., time-
curves of refractive index and DoC of as-printed parts) in response
to the different DLP-VPP process settings (i.e., changes in the expo-

sure intensity). Meanwhile, ICM can also measure the geometry (e.g.,

lateral dimensions and shapes) of printed parts during the process,

making it a versatile method for full-field and multi-modality
monitoring of a DLP-VPP process and its product properties.

e It is worth noting that the methods developed above are readily
applicable to measuring the DLP-VPP process and part properties in
real time with online data analytics capability as demonstrated in the
previous work of Zhao et al. [22]. Therefore, the developed corre-
lation model can estimate the DoC of an as-printed part not only after
a DLP-VPP process as demonstrated in this work but also during the
process in real time by analyzing online the associated ICM data via
implementing the developed methodological framework.

In the future, ex-situ characterization of printed parts’ refractive
index will be conducted to directly validate the ICM-measured refractive
index. More experiment data will be collected to enhance the trans-
ferability and prediction accuracy of the refractive index-DoC correla-
tion model. Moreover, a real-time ICM of various DLP-VPP processes and
print properties will be demonstrated. A close-loop feedback control of
the photopolymerization process will be developed, thereby improving
the accuracy and reproducibility of DLP-VPP processes.
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Section A-1: Coherent length calculation

VPP setup.
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pixels with high signal-to-noise ratio. The authors would like to thank
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To determine the range of the thickness of the cured sample, the coherence length is calculated based on the wavelength spectrum of green laser, as

shown in Figure A-1.
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Fig. A-1. Wavelength of green laser (obtained from Throlbas.).

Typical Spectrum of the CPS532

)

Wavelength (nm)

More challenges arise from the fact that the coherent length of a CIM light source could become short as the part grows thicker especially in the case
of printing macroscopic parts. The coherent length (L) of the ICM light beam is estimated using Eq. (A-1), where 1 is the center of the range of
wavelength of the green laser and A1 is the total range of the wavelength. The limited L.will lead to complex signals that cofound signatures from the

entire part whose optical length tends to be larger than L,

as time-windowed frequency-domain method.

532nm)’
L =) A/lz(7~:188
: / 2 (0.75nm) un

Section A-2: ICM sensor modeling
Table A-1

Phase difference component analysis of the multi-beam interference optics model in DLP-VPP ICM.

and the fresh layers that are within L. This will require more complex signal analysis such

(A-1)

No. Phase difference Source beams Role in the ICM time series data
1 81 = 47”“h H, Ey,Ep Constant DC term
2 831 = 47”,,"[ Z+ 6m Ey,E3 Oscillating AC term
& S = 47”(,1"1 —m)Z + 47”ch+ o1 Ey,E4 Oscillating AC term
4 Ss1 = %(flm —m)Z + %HIHCJF o1 *%"pHp Ey,Es Oscillating AC term
5 S32 = %ﬂm VA Ey,E3 Oscillating AC term
6 S4p = %(nm —n)Z+ ﬂnl He E3,E4 Oscillating AC term
7 P - %(nm —m)Z + %anC + %anp E;,Es Oscillating AC term
8 Sa3 = 7%nlz+ %HIHC E3,E4 Oscillating AC term
9 Ss3 = — %“1Z+47”“1Hc+47ﬂanp E3,Es Oscillating AC term
10 E4,Es Constant DC term

4
OS54 = THPHP

14
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Section A-3: Calibration of scaling factor between pixel and physical printed part (lateral dimensional size of pixel)

To obtain the actual lateral voxel size, calibration is conducted. Three samples with different shapes and sizes are used to minimize the error. All
the patterns are cut by black tape and the dimensions are measured by caliper. The pattern is placed at the same projection window and the print head
is placed at same initial position as resin printing, then the recorded interference pattern is analyzed. The pixel number and angle are calculated based
on the horizontal and vertical pixel numbers. Figure A-2 shows the designed calibration pattern as well as the captured interference pattern. The
calibration results are summarized in the table below. According to the calibration results, the deformation in the angle shift between the actual
sample and the ICM-captured interference pattern is small.

d3'='429 pixels * ¢ d3 =3.75 mm

Fig. A-2. Left: ICM recorded interferogram of (a) triangle, (b) rectangle, (c) trapezoidal. Right: photo of actual object of (a) triangle, (b) rectangle, (c) trapezoidal.

The table below shows the results of calculated pixel size and angle distortion. The relative ICM angle error in the unit of percentage is calculated
by the ratio of absolute value of (actual angle — ICM measured angle) over actual angle.

15
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Table A-2
Calibration results (Note: ICM angle error unit is percentage).

Label  Caliper measured size ICM measured pixel um/ Actual angle ICM measured angle ICM angle
(mm) number pixel (degrees) (degrees) error
Triangle left dl 2.98 330 9.04 70 76 8.85
right d2 3.32 366 9.07 51 48 5.96
bottom  d3 3.75 429 8.74 59 56 5.28
Rectangle left dl 2.22 235 9.45 91 87.5 3.69
top d2 3.1 334 9.28 89 90 1.01
right d3 2.2 236 9.34 90 90 0.32
bottom  d4 3.08 344 8.94 90 92 2.5
Trapezoid left dl 2.54 258 9.85 51 58 12.78
top d2 1.07 115 9.28 89 81 8.27
right d3 1.89 170 11.09 90 89 1.08
bottom d4 2.71 283 9.57 130 132 2.07
Average 9.42 4.71
Standard 0.6 3.76

Deviation

Section A-4: Sample photos and estimated refractive index results

Fig. A-3. Representative samples from the five experiment sets as shown in Table 1, respectively. (From left to right: Sample 1, Sample 2, Sample 3, Sample 4,
Sample 5).

Table A-3
Effective refractive index of DLP-VPP printed parts estimated using the developed ICM method.

Sample Set Robust mean Robust sigma Mean Standard deviation Median Range
1 R1 1.5082 4.1827E-04 1.5091 0.0202 1.5075 0.1028
R2 1.5088 5.3327E-05 1.5092 0.0074 1.5089 0.0538
R3 1.5033 6.4755E-05 1.5036 0.0081 1.5032 0.0654
2 R1 1.5050 5.7014E-05 1.5054 0.0081 1.5050 0.0695
R2 1.5062 4.3046E-05 1.5066 0.0066 1.5063 0.0447
R3 1.5063 6.1305E-05 1.5071 0.0079 1.5065 0.0523
3 R1 1.5042 4.0533E-05 1.5046 0.0064 1.5042 0.0491
R2 1.5029 4.1947E-05 1.5037 0.0066 1.5030 0.0499
R3 1.5029 4.0197E-05 1.5036 0.0064 1.5028 0.0477
4 R1 1.4866 1.2467E-05 1.4867 0.0042 1.4865 0.0309
R2 1.4931 3.2842E-05 1.4931 0.0059 1.4931 0.0421
R3 1.4869 5.0112E-06 1.4866 0.0035 1.4868 0.0301
5 R1 1.4826 1.2194E-05 1.4833 0.0038 1.4827 0.0272
R2 1.4849 2.0932E-05 1.4856 0.0047 1.4850 0.0314
R3 1.4866 9.2690E-06 1.4869 0.0042 1.4866 0.0406

Section A-5: Estimating the degree of curing using the ICM-measured refractive index

Table A-4
Comparison of ICM-estimated refractive index and FTIR-measured DoC.

Sample Set NO. Sample NO. ICM-measured refractive index (Robust mean) FTIR-measured DoC
1 S1R1 1.5082 0.693
S1 R2 1.5088 0.672
S1R3 1.5033 0.555
2 S2R1 1.505 0.488
S2 R2 1.5062 0.544
S2 R3 1.5063 0.534
3 S3R1 1.5042 0.399
S3 R2 1.5029 0.387
S3 R3 1.5029 0.375
4 S4 R1 1.4866 0.263
S4 R2 1.4931 0.295
S4 R3 1.4869 0.28
5 S5 R1 1.4826 0.15
S5 R2 1.4849 0.191
S5 R3 1.4866 0.248
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Table A-5
Prediction results of the correlation model.

Additive Manufacturing 81 (2024) 104001

Sample NO. ICM measured refractive index FTIR measured DoC ICM Predicted DoC Prediction Error %
S1R3 1.5033 0.555 0.494 10.991
S2 R3 1.5063 0.534 0.545 -2.060
S3 R3 1.5029 0.375 0.487 -29.867
S4 R3 1.4869 0.280 0.216 22.857
S5R3 1.4866 0.248 0.211 14.919
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