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A B S T R A C T   

Digital light processing (DLP) based vat photopolymerization (VPP) is an additive manufacturing (AM) tech
nology that projects sequential optical masks to selectively cure cross-sectional patterns layer by layer. DLP-VPP 
is widely used in rapid prototyping and fabrication of diverse products ranging from consumer goods to soft 
robotics. Degree of curing (DoC) is one primary performance metric for photopolymer-based AM processes due to 
its high correlation with key material properties such as density and elastic modulus. Yet there is a lack of in-situ 
monitoring approaches to understand and control the photopolymerization process and part properties. State-of- 
the-art works use in-situ Fourier-transform Infrared Spectroscopy (FT-IR) and atomic force microscopy, which 
would interfere with the process and material and can only measure DoC at one single point each time. This work 
aims to develop a cost-effective, non-interruptive, non-invasive, and full-field in-situ interferometric curing 
monitoring (ICM) method for revealing the spatiotemporally resolved curing dynamics and material evolution 
during DLP-VPP. To this end, a physics-based sensor model is derived, and machine learning-aided sensor data 
processing and analytics methods are developed to address the unique measurement challenges in DLP-VPP- 
specific ICM. Using the developed ICM model and methods, the acquired interferogram data is cleaned, classi
fied, and calculated for estimating each voxel’s refractive index, which is an indicator of optical density as well as 
physical density. Then, a DoC prediction model is created by correlating the in-situ ICM-measured refractive 
index to ex-situ FT-IR-measured DoC. Our experiment results demonstrate that the developed ICM system and 
methods are capable of measuring the geometry (e.g., lateral dimensions and shapes) of printed part as well as 
capturing the changes in curing speed, refractive index, and DoC due to the different exposure masks and in
tensities being used in DLP-VPP. It has the potential to provide real-time multi-modality measurement and enable 
closed-loop feedback control for enhancing the DLP-VPP process reproducibility and print quality.   

1. Introduction 

1.1. Vat photopolymerization (VPP) and need for advanced process 
monitoring 

Additive Manufacturing (AM) could fabricate objects with reduced 
material waste and higher efficiency compared to traditional 
manufacturing methods. Due to its high resolution and rapid production 
speed, vat photopolymerization (VPP) is one of the most commonly used 
AM technologies and widely applied to manufacture a variety of prod
ucts like flexible electronics, tissues and scaffolds [1,2]. VPP processes 
typically print layer by layer as in stereolithography (SLA) and digital 
light processing (DLP). It can also create items in a layer-less approach 

by continuous moving the print head such as continuous liquid interface 
production (CLIP) and computed axial lithography (CAL) [3,4]. The CAL 
is a volumetric VPP process, which shines varying light patterns into a 
rotating volume of resin. It can print large volume objects with higher 
speed and accuracy compared to layer-based VPP AM. Various moni
toring methods are applied to understand the process dynamics and part 
properties during these different VPP processes. For example, Li et al. 
applies a color Schlieren imaging system to reconstruct the gradient of 
refractive index of the CAL process [5]. Their in-situ refractive index 
monitoring system enables a construction of spatial and temporal 
gradient of refractive index, but the measurement range and accuracy 
are limited by non-uniform background hue and nonlinear 
hue-deflection relationship. The Schlieren-based system has also been 
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used in a SLA process to study the in-situ voxel growth dynamics [6]. In 
particular, this Schlieren system is modified with two levels of magni
fication to allow focusing on small areas (i.e. single voxel), while other 
methods like total internal reflection (TIR)-based refractive index mea
surement only measure the whole area [7]. However, the Schlieren 
method requires complex optical system that makes it difficult to be 
implemented on VPP printers and can only captures the side view of a 
printed part. Higgins et al. implements an atomic force microscopy 
(AFM) to a DLP process to measure the mechanical properties during 
polymerization process, but the cantilever tip needs to touch the liquid 
resin and the cured part [8]. Fourier-transform Infrared Spectroscopy 
(FT-IR) is also employed to estimate the conversion of relevant func
tional groups by monitoring the reduction of corresponding absorption 
peaks but only measures a single point [9,10]. Raman microscopy is 
capable of measuring the conversion of functional groups at different 
points through point, line or area scan, facing challenges in directing 
curing light to the sample under microscopy. Moreover, the scan is time 
consuming [11]. All of these state-of-the-art VPP process monitoring 
methods would interfere with the complete part formation [10,12,13]. 
Besides, they often come with limitations including high cost, limited 
view, destructiveness, and operation complexity on VPP printers. 
Overall, there is a lack of cost-efficient, non-destructive and easily 
implementable in-situ monitoring methods for characterizing curing 
kinetics and part properties during VPP processes. 

1.2. Interferometric monitoring for VPP processes 

1.2.1. Existing works 
The interferometry technique is a non-destructive and reliable 

method that has been demonstrated for being able to measure physical 
and chemical properties, such as refractive index and thickness of the 
cured part during photopolymerization processes for monitoring 
[14–16]. In [14], a low coherence interferometry is applied to simul
taneously monitor the volume shrinkage and refractive index evolution 
during a photopolymerization process with dental materials [14]. In 
their research, the reliability of the interferometry technique is validated 
by comparing its results to refractive index measurements obtained from 
a conventional refractive index characterization device, namely the 
Abbé refractometer. Some other researchers used a 
double-interferometer to monitor the refractive index and sample 
thickness by measuring the phase shift of light passing through the 
sample cell of photopolymer [17]. Zhao et al. developed an interfero
metric curing monitoring and measurement (ICM&M) method to 
monitor the cured height during a simplified DLP process named as 
exposure-controlled projection lithography (ECPL) by developing a 
multi-beam interference model and sensor data analytics method for 
estimating and integrating instantaneous frequency values [18–22]. 
Their method involves a refractive index calibration procedure to ensure 
accuracy and an online evolutionary parameter estimation algorithm to 
analyze real-time data acquired from the interferometric monitoring of 
ECPL for height measurement. 

1.2.2. Novelty of this research on interferometric monitoring of VPP 
Despite the existing monitoring capability mentioned above, there 

exists a notable omission in the oversight of a crucial metric — the 
Degree of Curing (DoC) in photopolymerization. The DoC is important in 
comprehending VPP processes as it serves as a reflection of the degree of 
crosslinking among monomers and significantly affects density and 
other properties. For example, photocured parts’ mechanical properties 
such as Young’s modulus, tensile strength, and hardness can be pre
dicted from DoC based on Yang’s studies [23]. Moreover, optical 
properties such as refractive index of the photocured composites is 
found to be related with DoC [24]. In [24] the authors prepare resins 
with different filler loadings and monitor their real-time DoC and 
refractive index during the photopolymerization process. Their results 
show that for an unfilled resin (without any fillers), there is a linear 

relationship between the refractive index and degree of conversion. 
The discernible connections between DoC, refractive index, and 

mechanical properties have motivated our new research, as outlined in 
this paper. Our focus involves expanding the ICM&M of ECPL for 
measuring DoC in the context of DLP-VPP. This extension allows for 
estimating the diverse properties of the printed components with 
enhanced accuracy and depth. 

Distinguishing itself from prior work, this research contributes in two 
main aspects. First, we advance the interferometric monitoring meth
odology to accommodate a broader scope, specifically in monitoring a 
general DPL-VPP process involving a moving build stage. This contrasts 
with the static stage employed in ECPL, which is a simplified process 
tailored for certain niche applications. Details on the challenges 
encountered and the corresponding solutions adopted are introduced in 
Section 1.3. Secondly, our work addresses a limitation in the previously 
reported ICM&M method, which solely outputs the cured height of 
printed samples for a specific DLP process (i.e., ECPL) that prints rela
tively simple geometries on a stationary build platform. In this research, 
we broaden the scope to measure not only geometrical dimensions but 
also curing dynamics, specifically focusing on the DoC. 

In summary, this work significantly contributes by establishing a 
universal ICM method applicable to common and complex DLP-based 
VPP (DLP-VPP) processes, such as CLIP, capable of printing real 3D 
parts with a moving build stage. By incorporating the developed ICM 
method into the DLP-VPP process, a comprehensive understanding of 
the complex process dynamics and material’s curing behavior as well as 
the ability to predict mechanical properties can be achieved, contrib
uting to DLP-VPP process optimization and control for printing high- 
quality 3D parts. 

1.3. Overview of this work 

The primary goal of this work is to formulate and demonstrate a 
methodological framework for an in-situ interferometric curing moni
toring (ICM) system and method. This framework is designed to 
encompass not only geometry measurement but also the in-process 
measurement of the refractive index and prediction of the DoC for 
printed parts. This comprehensive approach is tailored specifically for a 
standard DLP-based 3D printing VPP process. 

Specifically, the DLP-VPP process monitoring via ICM faces the 
following challenges that will be addressed in this work. During the DLP- 
VPP process, light is illuminated from the bottom of resin chamber, after 
one layer of resin is cured on the print head, the stage with the print head 
where the printed part is attached will move up and another layer of 
resin will be cured beneath the previous cured layer. Therefore, the ICM 
sensor model needs to be modified. Moreover, the stage movement and 
resin flow tend to induce more noise in the interferogram images, 
necessitating a machine leaning aided sensor data processing method to 
detect good pixels with higher signal-to-noise ratio (SNR). Machine 
learning based classification method has been widely used in outlier or 
defect detections in various fields including manufacturing, healthcare, 
and financial services [25,26]. One specific signal input for machine 
learning model is the time signal. Pragmatically, different machine 
learning models targeting to process time signals are proposed to solve a 
range of well-defined problems such as signal classification, signal 
filtering, and signal forecasting. For example, the one-dimensional 
convolutional neural network (CNN) is applied to classify Electro
glottography (EGG) signal to help health care services [27]. Regarding 
the additive manufacturing industry, machine learning models are used 
to process time signals such as acoustic signals for defect detection for 
laser powder bed fusion (LPBF) process. For VPP processes, machine 
learning methods are usually applied for optimization of material pa
rameters like resin formulation and processing parameters like grayscale 
values of light masks [28,29]. In this work, the machine learning model 
is designed as the signal classification tool to reduce the effects of noise 
in the in-situ monitoring process. The developed machine learning 
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model overall enhances the accuracy of the monitoring system. 
The remainder of the paper is as follows, Section 2 discusses the VPP 

and ICM experimental setups, materials, and experiment design. Section 
3 demonstrates the ICM method, followed by the results and discussion 
in Section 4. The conclusion and future work are presented in Section 5. 

2. Experiment systems 

2.1. DLP-VPP and ICM systems 

The experimental setup of DLP-VPP system is shown in Fig. 1(a). The 
DLP-VPP printer includes one commercial DLP projector (PRO4500, 
Wintech Digital, Carlsbard, CA) with Ultraviolet(UV) light LED source 
that has a wavelength of 365 nm. In this work, UV light is used as the 
curing light according to the absorbance spectrum of used initiator. For a 
clear interference pattern, a glass slide is used as the printer head in this 
work, which is taped on a linear travel motorized stage (LTS-150, 
Thorlabs, Newton, NJ). 

Our ICM system (as shown in Fig. 1) comprises the following 

components: (1) a collimated green laser of wavelength of 532 nm 
(CPS532, Thorlabs, Newton, New Jersey); (2) a beam expander (GBE10- 
A, Thorlabs, Newton, New Jersey); (3) a 50:50 (R:T) Split Ratio beam 
splitter (BS013, Thorlabs, Newton, New Jersey); and (4) a CMOS camera 
(acA2040–120 µm, Basler, Exton, PA) with a sampling frequency of 
120 Hz. The optics and camera are fixed above the moving print stage by 
a 3D printed fixture. With the designed ICM system, interference pat
terns caused by the optical path difference through a growing part 
during the DLP-VPP process can be captured by the camera and recorded 
into an interferogram video. To obtain optimum interferograms, 
different substrate materials are tried. Compared to Poly
dimethylsiloxane (PDMS) and Teflon FEP films, quartz glass slides can 
create better interference patterns due to its smooth surface, higher 
refractive index, and rigidity. The smoother surface and more uniform 
thickness of the quartz glass slide can reduce surface irregularities, 
thereby promoting normal incidence. Also importantly, the higher 
refractive index of quartz glass can increase surface reflectivity. In 
addition, unlike elastic PDMS and Teflon films, which tend to deform 
and bend when resin is added, quartz glass slides can maintain flatness 

Fig. 1. Overview of the developed DLP-ICM system and methods. (a) Experiment setup. (b) Schematic of the optical layout. (c) Methodological framework of in-situ 
interferometric monitoring for DLP-VPP process. (d) Measurement flowchart to clarify the workflow in (c). (e) An example of the ICM data: time series of grayscale 
value of a representative pixel in one sample from Experiment Set 4 and its corresponding instantaneous frequency estimated by the methods as introduced in 
Section 2.2. 
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and create accurate and consistent interference patterns. All these 
favorable attributes of quartz glass greatly help enable the formation of 
clear and distinct interference fringes and enhance the imaging of 
resulting interferograms. Meanwhile, it is worth pointing out that quartz 
glass is also desired as the resin substrate to allow for a good trans
mission of UV light masks into the resin. Therefore, quartz glass is rec
ommended to be used as the resin chamber substrate to facilitate the 
ICM of DLP-VPP. Overall, Fig. 1 presents the experimental setup, optical 
layout, framework of data acquisition and analysis, measurement 
flowchart, and exemplary data for illustrating the developed DLP- 
specific ICM (DLP-ICM) system and methods. 

2.2. Overview of the developed methodological framework of DLP-ICM 

The overall DLP-ICM workflow is as follows.  

(1) Implement the ICM system (Section 2.1) in situ to record an 
interferogram video during a DLP-VPP process.  

(2) Characterize the refractive index of the precursor liquid resin that 
is needed to solve the ICM sensor model (elaborated in Section 
3.1).  

(3) Extract pixel-wise time series of image grayscale values from the 
sequential interferogram frames in the acquired ICM video. Pre
process all pixels’ time series of grayscale value with filters and 
implement machine learning on the filtered dataset to detect 
good pixels that exhibit distinct signals reflecting the DLP-VPP 
process characteristics (elaborated in Section 3.2).  

(4) Analyze each good pixel’s data (i.e., filtered time sequence of 
grayscale in Step (3)) to identify the characteristic stages of a 
DLP-VPP process (elaborated in Section 3.3).  

(5) Apply adaptive Fourier curve fitting (elaborated in Section 3.4) to 
the curing stage data identified in Step (4) to estimate all the 
instantaneous frequency values through a DLP-VPP process, as 
shown in Fig. 1(c).  

(6) Plug the refractive index of liquid resin from Step (2) and the 
estimated instantaneous frequency values from Step (5) into the 

Fig. 1. (continued). 
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ICM sensor model (see Section 3.1) to calculate the desired 
refractive index of VPP printed parts. In theory a 2-dimensional 
map of refractive index across the printed part can be obtained 
by analyzing all pixels’ time series of grayscales using the 
methods above excluding the machine learning aided good pixels 
detection procedure. In practice, however, for efficiency and ac
curacy only these good pixels identified in Step (3) need to be 
analyzed yielding meaningful measurement result, especially 
given noisy monitoring data.  

(7) Develop a correlation model between refractive index and DoC 
using the average of the ICM-measured refractive index values 
and the FT-IR measured average DoC. The reason for using 
average refractive index is that the FT-IR sensor size is typically 
larger than the ICM camera pixel size and thus cannot measure 
pixel-wise DoC accurately. In theory, a 2-dimenionsal profile of 
DoC can be obtained by plugging individual pixel’s refractive 
index value that is measured by ICM to the developed refractive 
index-DoC correlation model.  

(8) Use the developed DLP-ICM method and refractive index-DoC 
model as introduced above to monitor subsequent DLP-VPP 
processes and predict the resulting parts’ DoC values. The DoC 
prediction via ICM data analysis can be validated by comparing 
against FT-IR characterization. 

As a summary, Fig. 1(c) shows a schematic overview of the DLP- 
specific ICM method along with a demonstration of raw ICM data and 
the corresponding instantaneous frequency estimation result shown in 
Fig. 1(e). More results will be available in Section 4. 

2.3. Materials 

The resin used in this work is prepared using trimethylolpropane 
triacrylate (TMPTA) as monomer and 0.5 wt% 2,2dimethoxy-1,2-diphe
nylethan-1-one (DMPA, Irgacure-651) as an UV light photo-initiator. 
This resin recipe is adapted from [18], it is reported that this resin 
formulation can achieve more than 90% transmission in the visible 
spectrum after fully cured. All the chemicals are purchased from 
Sigma-Aldrich. All the materials are used as received without any 
additional modifications. 

3. Method of in-situ interferometric monitoring of DLP-VPP 

With the designed ICM system being deployed to monitor a typical 
DLP-VPP process, one will be able to acquire streaming interferogram 
images in a video file that provide raw ICM data. This section introduces 
the methods of processing and analyzing the ICM data to extract relevant 
DLP-VPP process signatures and measure physical quantities of refrac
tive index that will be used to further infer the DoC. 

3.1. ICM sensor modeling 

An explicit physics-based sensor model for the DLP-specific ICM 
system is developed based on multi-beam interference optics as illus
trated Fig. 2. Overall, the assumption is that the actual thickness of each 
layer is the same as the pre-determined process setting of layer thick
ness. Thus, given a layer thickness known from the process setting and 
an optical path length measured by the interferometry, one can estimate 
the effective refractive index of each layer, which depends on the 
polymerization process especially the degree of cure. 

As Fig. 2 shows, after a coherent light beam from the ICM system is 
projected upon the print head, it will go through the print head, printed 
part, liquid resin, and resin substrate. The light beam will reflect from 
and transmit through each interface during the propagation. At the end, 
these multiple reflected optical wave beams overlap above the print 
head and form an interference field, which is captured by the ICM 
camera as an interferogram image. Mathematically, the addition of the 

vectors of the light wave components as shown in Eq. (1), results the 
total wave represented in Eq. (2) [20]. 

En = Aneiϕn , n = 1, 2,…, 5 (1)  

where An is the real positive amplitude, and ∅n is the phase angle of each 
wave. 

ET =
∑5

n=1
En =

∑5

n=1
Aneiϕn (2) 

When the field is observed by a CMOS camera, the irradiance, I can 
be measured [16]. I is proportional to the squared module of the 
amplitude of the field, as shown in Eq. (3). 

I = |ET |
2

=

⃒
⃒
⃒
⃒
⃒

∑5

n=1
Aneiϕn

⃒
⃒
⃒
⃒
⃒

2

=
∑5

n=1
|An|

2
+ 2

∑5

j=1

∑5

k=1 k∕=j

AjAk cos(δjk)

(3)  

where δjk = ∅j − ∅k, represents the relative phase difference between 
two wave components, which is caused by the optical path length dif
ferences (OPLD) between different wave components, so δjk =

2πOPLDjk
λ . 

Table A-1 in the Appendix Section A-2 shows the phase difference 
components where DC means direct current signal and AC means 
alternating current signal. 

In Fig. 2, the curing front represents an imaginary interface between 
the liquid resin and the curing part. It encompasses the entire curing 
block containing intermediate phases between the liquid resin and the 
solid states. The cured height Z is the distance from the curing font to the 
top surface of the printed part, so the OPLD between E3 and E2 is 
calculated using Eq. 4, where n(0) = ns, n(Z) = ncf , nm is the mean 
refractive index of the intermediate phases. With Eq. (4), all phase dif
ferences can be analyzed. 

OPLDE3 − E2 =

∫ Z

0
n(x)dx = nmZ (4) 

In Appendix Table A-1, the oscillating phase difference values are 
caused by the changes of their corresponding OPLD which is related to 
the curing process. The camera-recorded signals, that is, the acquired 
ICM time series of data as described in Eq. 3 display components with 
varying frequency values along the DLP-VPP processing time. The 
instantaneous frequency (IF) is the rate of the phase change at the cor
responding time instant. It is a pivotal parameter in time-frequency 
analysis, enabling extract the time-varying frequency from 

Fig. 2. Schematic illustration of our DLP-specific ICM sensor modeling based 
on multi-beam interference optics. na, np, nl, ncf , ns, nh are refractive index of air, 
projection window, liquid resin, curing front, cured solid part, and print head, 
respectively. This model is adapted from [20] to incorporate the DLP-VPP 
process setup. Note that the propagation of beam is shown with an angle that 
is exaggerated for clarification purpose. In theory normal incidence should be 
used to ensure accurate measurement. In practice a good vertical alignment of 
ICM camera and optics with DLP light axis and print head is required. 
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nonstationary signals [30]. Assuming the process parameters of light 
intensity and material properties - nl, ns, ncf are momentarily invariant, 
either cured height Z or effective or mean refractive index nm change and 
are related to the IF. As illustrated in Table 1, the IF components are 
derived based on the information provided in Appendix Table A-1. 

The high frequency f1 and f2 are removed during the data pre
processing when a low pass filter is applied (see Section 3.3.1), so only 
low frequency f can provide curing information. Therefore, the CMOS 
camera measured intensity IM is modeled as the sum of the background 
intensity with low instantaneous frequency f in the multi-beam inter
ference optics model, as shown in Eq. (5), where I0 represents the 
average intensity, I1 is the superposed intensity of interference beams 
with the same instantaneous frequency f, δ is the time varying phase 
shifting, φis the superposed phase offset of interference beams with the 
same frequency, nm is the mean refractive index of the cured part and nl 
is the refractive index of the liquid resin, Z is the cured part thickness, λ 
is the green laser wavelength of 532 nm, ω is the instantaneous angular 
frequency and f is the instantaneous frequency [20]. 

IM = I0 + I1cos(δ + φ) = I0 + I1cos
(

4π(nm − nl)Z
λ

+
4πnlHC

λ
+ φ

)

(5)  

ω = 2πf =
d(δ + φ)

dt
=

dδ
dt

=
4π
λ

d((nm − nl) • Z)

dt
+

4πnl

λ
dHC

dt
(6) 

A differential form is derived from of Eq. (6). In this project, as only 
one layer is printed, the chamber height remains unchanged, indicated 
by dHC

dt = 0, resulting in Eq. (7). 

d((nm − nl) • Z)

dt
=

λω
4π =

λf
2

(7) 

To evaluate the effective refractive index nm of the cured part from 
the differential form in Eq. (7), the explicit ICM sensor model is gener
ated using Euler’s Method shown in Eq. (8) by assuming the cured height 
Z is constant: 

nm = nl +
λ

2Z

∑

i
Tifi (8)  

where Ti is the time step of integration, fi is the instantaneous fre
quency in the ith run of parameter estimation. The refractive index value 
of liquid resin nl is 1.4723 based on [18]. It is noted that the cumulative 
sum term is essentially the total phase angle that has changed during the 
curing process. 

3.2. ICM data preprocessing 

The raw ICM data refers to the directly acquired video of interfero
grams that is recorded during ICM of a VPP process. For analyzing the 
ICM data, a set of secondary ICM data is obtained by extracting each 
individual pixel’s time series of image grayscale values from the 
sequential interferogram frames in the acquired ICM video. The datasets 
of all pixels’ time series of grayscale values are preprocessed to reduce 
the noise and screen high-quality ICM dataset, i.e., a subset of good ICM 
pixels that will vividly reflect curing dynamics and allow for accurate 
process measurement. This section presents the data cleaning process 

that is important to achieve an efficient and effective ICM measurement. 
Associated experiment results and discussions are presented in Section 
4.2. 

3.2.1. Noise filtering 
During the polymerization process, the liquid resin is converted to 

solid part and thus resulting in shrinkage of the curing zone and 
movement of its surrounding liquid resin, which can induce noise in the 
ICM signal. To improve the signal-noise-ratio (SNR) of ICM time series of 
pixel grayscale data, multiple filters are used in the ICM data pre
processing. Firstly, a 5 × 5 image median filter is applied to each pixel’s 
time series of grayscale values to reduce noise by replacing each pixel 
value with the median of its neighboring 25 pixels [23]. Then a low-pass 
filter with a cutoff frequency of 10 Hz, is used to remove high frequency 
noise peaks from the data. The chosen cutoff frequency (10 Hz in this 
case) is characterized from our experiment data and found to be suffi
ciently higher than typical maximal frequency values in DLP-ICM. A 
moving mean filter in MATLAB is used to further smooth the time curve 
of grayscales for allowing a better curve fitting later. The MATLAB 
function “movmean” calculates the mean of the values within a sliding 
window size. 

3.2.2. Machine learning-based outlier detection 
As those apparent and stochastic noise can be effectively filtered 

after using the methods in Section 3.3.1, there may be pixels who are 
subjected to certain systematic noise due to the DLP-VPP processing 
disturbances and the ICM camera sensing errors (see the challenges in 
Section 1.3). Especially given a large dataset of thousands of pixels’ time 
series acquired during ICM across the entire print plane, there tends to 
exist a considerable portion of such bad pixels which are corrupted 
mainly by the systematic noise and cannot exhibit any quality signals to 
reflect the printing process characteristics. Those bad pixels are 
considered as outliers which don’t carry any relevant DLP-VPP pro
cessing signatures. To clarify, the “bad pixel” or “outlier pixel” in this 
work refers to a DLP-VPP printed voxel that cannot be reliably used for 
ICM measurement purpose primarily due to the possible print process 
and sensor measurement noise including the DLP-VPP process distur
bances by resin flow perturbance and build stage movement as well as 
the ICM sensor dysfunctions caused by electronics drift and overheat. 
Note that such bad or outlier pixel doesn’t necessarily mean that the 
corresponding voxel is not adequately cured. Consequently, it is not 
worthwhile to conduct measurement analysis for these outlier pixels 
from the perspective of maintaining and enhancing data quality, 
computational efficiency, and measurement accuracy. Otherwise, such 
kind of measurements using bad pixels would require additional effort 
and resource to restore the genuine signal but still could significantly 
degrade the overall measurement performance. Overall, to ensure the 
accuracy of the estimated refractive index while saving computational 
effort, those bad pixels are marked as outliers and only those good pixels 
are used to solve the ICM sensor model for instantaneous frequency 
estimation and final calculations of refractive index and DoC. 

To distinguish between good pixels and outliers, a robust and accu
rate machine learning-assisted algorithm is developed and implemented 
for pixel classification. The algorithm relies on identifying specific pat
terns in the time series of grayscale values, reflecting characteristic 
stages of VPP processing including incubation, exposure curing, dark 
curing, and resting. Please note that in this work “incubation” is used to 
refer to the commonly known “induction” period that describes the 
initial stage of photopolymerization reaction, only to be consistent with 
prior publications related to the ICM method [20,21]. Pixels that do not 
exhibit this pattern are considered as outliers. Pixel-wise time series of 
grayscale values are used for training and testing a machine learning 
model for ICM pixels triage. And this training and testing procedure 
involves using a dataset that is manually labeled. To ensure the integrity 
of the evaluation process, the entire dataset is split into three subsets: 
60% for training, 10% for validation, and 30% for testing. This split is 

Table 1 
Instantaneous frequency (IF) of the multi-beam interference optics model in ICM 
for DLP-VPP.  

Instantaneous frequency (HZ) Corresponding phase 

f0 = 0 δ21,δ54 

f1 =
2
λ

•
d(nm•Z)

dt 
δ31,δ32 

f2 =
2nl

λ
•

dHC

dt
- 

2nl

λ
•

dZ
dt 

δ43, δ53 

f =
2
λ

•
d((nm − nl) • Z)

dt
+

2πnl

λ
•

dHC

dt  
δ41, δ51,δ42, δ52  
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performed to prevent data leakage and maintain the independence of 
the testing data, and the details of outlier detection are described in 
Section 4.2. A standard one-dimensional Residual Neural Network 
(ResNet) 18 is adopted [26], which is capable of effectively mitigating 
the vanishing gradient problem happened in deep neural network 
archetectures. By training the model using the labeled train set and 
testing its performance on the labeled unseen test data, the machine 
learning model can accurately classify pixels as either good pixel or 
outliers based on their time series grayscale values, allowing for robust 
and accurate detection of good pixels in the interferogram video and 
thus reliable ICM data analysis and measurement calculation. More 
details about the model development and results including the model 
training curve and testing confusion matrix in Section 4.2. 

3.3. DLP-VPP process stages identification via ICM data mining 

A typical DLP-VPP process comprises four stages as follows: (1) in
cubation (i.e., induction) or threshold when resin is absorbing and 
accumulating sufficient amount of light energy to commence curing; (2) 
exposure curing when the curing happens under the digital light irra
diation; (3) dark curing when curing goes on due to residual catalysts (e. 
g., free radicals) and environmental conditions (e.g., ambient light) after 
the digital light exposure is turned off; and (4) resting stage when dark 
curing is completed. Ideally the ICM pixel-wise time series of grayscale 
should reflect these four distinct stages by displaying (1) flat line rep
resenting the initial background signal during the incubation; (2) 
oscillating waves reflecting the exposure curing dynamics; (3) relatively 
slower oscillating waves caused by the dark curing behavior; and (4) 
another flat line representing the final background signal while the 
entire curing process stops. In theory only the exposure curing and dark 
curing stages should be analyzed using the ICM model (Section 3.2) as 
the incubation stage and the resting stage don’t involve any curing and 
should have zero contribution to the phase change. However, realistic 
ICM data contains various noise that present significant challenges for 
differentiating these intrinsic stages. For example, the flat segments 
during incubation and resting might exhibit noisy waves that would 
mislead one to consider it as curing waves in exposure curing or dark 
curing stage and overestimate the phase change. 

As such, it is crucial to automatically and accurately distinguish these 
characteristic stages of a DLP-VPP process by segmenting its ICM time 
series before applying the ICM sensor model to estimate the metrics of 
curing (refractive index in this case). In practice, each segment of an ICM 
pixel time series has some distinct features that can be used to assist the 
curing stage identification. For the incubation stage, the liquid resin is 
exposed to light, but the exposure energy received hasn’t reach the 
critical exposure energy for the chemical reaction to occur. In this stage, 
the ICM grayscale amplitude is relatively lower than the subsequent 
exposure curing stage, and the peak inside the incubation stage should 
not be counted for estimating refractive index. Hence, accurately 
determining the ending point of the incubation stage is crucial. During 
the exposure curing process, oscillations occur and there is a significant 
change in the grayscale values as captured by the AC component in our 
ICM model (Appendix Table A-1). The standard deviation and range of 
the data in a moving window within the curing stage should be much 
higher compared to the values in other stages. After the curing light is 
turned off, there is a period of dark curing characterized by the gradual 
widening of the oscillation peak until it reaches a certain width, indi
cating the resting stage. At the end of the dark curing phase, like the 
incubation stage, the standard deviation value and range are expected to 
decrease. 

Inaccuracies in identifying curing stages can lead to erroneous phase 
angle estimation and thus inaccurate refractive index calculation. 
Therefore, it is important to set some empirical threshold values to 
identify the start and end of an effective curing period that includes 
exposure and dark curing stages. The time points of curing start and end 
are identified using some threshold values of ICM grayscale range and 

standard deviation. For enhancing the curing end point identification 
accuracy and robustness, a threshold value of cycle width is used. An 
“empty sample” experiment is conducted to characterize this threshold 
cycle width for detecting the curing end. Specifically, an ICM video is 
acquired while “printing” an empty sample by shinning UV light to a 
liquid resin that contains no initiators but only monomer. Thus, it re
cords only the background signal due to the movement of liquid resin 
and other system noise. The average number of points for one cycle in 
this “empty sample” experiment is used as the reference value for 
marking the end of curing. When the number of points of the oscillation 
cycle exceeds the threshold number of points, the instantaneous fre
quency estimated by the ICM sensor model becomes nearly flat, indi
cating the end of curing reactions. 

After the start and end time points of an effective curing period are 
determined, the instantaneous frequency values outside the effective 
curing period are assigned to be 0 to ensure that only relevant data 
within the effective curing period is considered for refractive index 
estimation later (elaborated in next subsection). 

3.4. Solving the ICM sensor model with adaptive Fourier curve fitting of 
the effective curing period data 

For each identified good pixel (Section 3.3), the segment of data 
series of the identified effective curing period (Section 3.4) is used to 
solve the sensor model as shown in Eq. 8, for evaluating the value of 
mean (i.e., effective) refractive index nm at the corresponding pixel. The 
instantaneous frequency fi for each time step is calculated using a one- 
term Fourier curve fitting algorithm with an exponentially weighted 
moving horizon window, as depicted in Eq. (9), where t is time, ωi is the 
instantaneous angular frequency of ith time step. 

y = a0 + a1 • cos(ωit) + b1 • sin(ωit) = a0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a1
2 + b1

2
√

• cos(ωit + θ)ωi

= 2πfi, θ = tan− 1( −
b1

a1
)

(9) 

The instantaneous frequency is estimated for every 10 frames of an 
ICM video. As such, each time step in Eq. (9) involves 10 grayscale data 
points, which is 0.083 s given the sampling frequency of the camera of 
120 Hz. After estimating the instantaneous frequency for each time step, 
numerical integration of the time sequence of instantaneous frequency is 
performed throughout the curing process to obtain the total phase angle 
change during the print. 

As can be seen from the overall method above, it is important to 
ensure an accurate and robust estimation of each time step’s instanta
neous frequency. This is accomplished by using a moving window with 
weights exponentially decreasing from current to past time points. The 
initial window size, i.e., moving horizon length (MHL), is set to be 30 
frames based on our initial runs of experiment data analysis. Exponen
tially decreasing weighting is applied to the data within each moving 
window with a parameter of “half-life”, which is the width of data 
segment where the weight is decaying to one half. The half-life serves as 
a forgetting factor for the Fourier curve fitting to focus on the most 
recent data in order to accurately estimate the current instantaneous 
frequency. The choices of MHL and half-life depend on the VPP process 
speed and the ICM data acquisition rate and can use empirical values 
from prior experiment. Due to the distinct curing rates through a VPP 
process an adaptive WHL is developed to avoid improper MHL that 
could bring aliasing errors. Specifically, several candidate MHL values 
are used in the curve fitting and the fitting that results in the highest R- 
squared value is taken as the best fit. To save computational time, one 
can also apply the adaptive curve fitting only when the initial curve 
fitting results in a R-squared value less than certain threshold. In this 
work, when the R-squared value of the first run of curve fitting using a 
specified MHL is below 0.9, a while loop will be applied to change the 
window size to MHL* 0.5, MHL* 1, MHL* 1.5, MHL* 2 and MHL* 3 
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until find the curve fitting results with a R2 > 0.9. 

3.5. Correlation of the relationship between refractive index and degree of 
curing 

The DoC measures the extent of the conversion of Carbon-Carbon 
double bonds (C––C) in the liquid monomer into Carbon-Carbon single 
bonds (C-C) in the cured polymer. As previously mentioned, since DoC 
exhibits a direct correlation with the refractive index of the as-printed 
parts, a correlation model between refractive index and DoC can be 
created to infer the DoC of DLP-VPP printed parts from the refractive 
index measured during the process by the ICM. To this end, the DoC 
values of printed samples should be characterized to train a good cor
relation model. In this work, a Fourier-transform infrared spectroscopy 
(FT-IR) (Vertex-70LS, Bruker, Billerica, MA) is used. The measurements 
are conducted using an attenuated total reflection (ATR) mode. In this 
mode, a total of 16 scans are performed with a resolution of 4 cm− 1, and 
the average of these scans is utilized to obtain the absorption spectrum. 
The DoC is determined by estimating the reduction in the absorbance 
peak area of the C––C bond peak at 1620cm− 1and 1635cm− 1. To 
normalize the peak absorbance value, the stable C––O stretching vi
bration peak at 1725 cm− 1is employed as an internal standard. The DoC 
is calculated using the Eq. (10). 

DoC = 1 −
[
(A1620cm− 1 +A1635cm− 1 )

A1725cm− 1
]polymer

[
(A1620cm− 1 +A1635cm− 1 )

A1725cm− 1
]resin

(10)  

where A1620cm− 1 ,A1635cm− 1 and A1725cm− 1 are the absorbance peak area at 
1620cm− 1, 1635cm− 1 and 1725cm− 1, respectively. 
[
(A1620cm− 1 +A1635cm− 1 )

A1725cm− 1
]polymer is the peak area ratio of sample and 

[
(A1620cm− 1 +A1635cm− 1 )

A1725cm− 1
]resin is the peak area ratio of unreacted resin. 

The FT-IR-measured DoC and ICM-measured refractive index data 
are used to fit a regression model as shown in Eq. (11), which is the 
desired correlation model between the refractive index and DoC for the 
unfilled liquid resin [24]. 

DoC = a•nm + b (11)  

4. Results and discussion 

4.1. Experiment design 

Toward the goal of using the ICM method to measure DoC, a series of 
experiment is needed to gather sufficient data for creating a meaningful 
correlation model between DoC and refractive index. As such, a variety 
of samples are printed with different light intensities using our in-house 
DLP-VPP system and the corresponding print processes are monitored 
using our experimental ICM setup (see Section 2.2). The light mask for 
each sample is designed as a circle shape with a diameter of 2.5 mm. A 
single layer is printed with a layer thickness of 0.12 mm. The current 
ICM system can measure a sample thickness in the range of 0.01 mm to 
0.18 mm. The maximum measurable sample thickness is limited by the 
power and coherent length of the green laser, which are described in 
Appendix Section A-1. Thicker samples tend to attenuate the ICM light 
resulting in weaker signals in ICM data. Thinner samples are easily 
broken during the post-build FTIR measurement. Therefore, the sample 
thickness is chosen to be 0.12 mm for this study. The light exposure time 
for each specimen is 5 s 

Five sets of samples are printed on quartz glass slides using these 
different levels of light intensity as shown in Table 2. Three replications 
are conducted in each set for deriving a statistically significant refractive 
index-DoC correlation model as well as for evaluating the repeatability 
of the DLP process and the ICM measurement. Photos of representative 
printed samples are shown in Appendix Figure A-3. The power of the 

light mask is measured via an optical power meter (PM400, Thorlabs, 
NJ, USA) directly on the build platform with a projection window (Quart 
glass slide). The area of the projected light masks on the platform is 
measured by a digital caliper with a resolution of 0.01 mm. The light 
intensity is calculated by dividing the light power value over the light 
mask area. Note that the light intensity is modulated by changing the 
grayscale values of the 8-bit optical mask images from 0 to 255 of pixel, 
where 0 corresponds to a dark black pixel and 255 corresponds to a 
bright white pixel. 

4.2. ICM data acquisition and preprocessing 

During the DLP-VPP processing of each sample as designed in Section 
4.1, an ICM video of 1500 frames of interferogram is acquired with each 
frame having a resolution of 720 × 480 pixels (pixel size: 9.4 µm as 
calibrated in Table A-2 in Appendix Section A-3). Note the frame 
number of each ICM video might vary due to the manual operation of 
cameras. In this work, the region of interest (ROI) in each frame of 
interferogram contains about 90,000 pixels, resulting in 1.35×108 data 
points of timed grayscale value that need to be processed for a full-field 
pixel-wise time-resolved measurement analysis. This ICM data size can 
be even bigger while printing larger parts and using higher ICM frame 
rates. The ICM data can also be noisy, necessitating preprocessing for 
cleaning the data and enhancing the calculation efficiency and accuracy. 

As described in Section 3.3, a machine learning model is used to 
detect outliers and only good pixels are used to do the parameter esti
mation to provide information about refractive index. To provide a 
sufficient dataset for training and testing the machine learning model, 
good pixels and bad pixels are manually labelled based on both theory 
and experimental observations that good pixels should exhibit distinct 
features in their time series of intensity values that can reflect vividly the 
characteristic stages of a DLP-VPP process as introduced in Section 3.4.  
Fig. 3 shows some representative good pixels and bad pixels from S5 R3 
(Replication 3). Good pixels are expected to exhibit a high SNR as shown 
in Fig. 3 (bottom), starting with a relatively flat line during the induction 
time, followed by oscillating cycles that gradually become wider until 
they eventually flatten out corresponding to the curing period. However, 
bad pixels as shown in Fig. 3 (top) exhibit a lower value of SNR, causing 
difficulty to identify the start point and end point of the curing period. 
The amplitude in the bad pixels is relatively small compared to the 
filtered grayscale values of the good pixels and cannot provide useful 
information about the process dynamics. 

A total of 946 pixels selected from Sample Sets 1–5 are manually 
labelled and used as the dataset to train and test a machine learning 
model. As mentioned in 3.3.2, 60% of the dataset is used for training, 
10% for validation, and 30% for testing. Thus, 567 pixels are used for 
training, 95 pixels are used for validation, and the remaining 284 pixels 
are used as the unseen test data set. Cross entropy loss function is used 
with the adaptive moment estimation algorithm (ADAM) for optimiza
tion. Table 3 shows the confusion matrix of the developed machine 

Table 2 
DLP-VPP process setting.  

Sample 
Set No. 

Sample NO. 
(R: 
Replication) 

UV Light 
intensity 
(mW/ 
cm^2) 

Mask 
Image 
Grayscale 

Printing 
Substrate 

Exposure 
time (s) 

1 S1 R1, S1 R2, 
S1 R3 

15 255 Quartz 
glass slide 

5 

2 S2 R1, S2 R2, 
S2 R3 

11.63 195 

3 S3 R1, S3 R2, 
S3 R3 

8.49 125 

4 S4 R1, S4 R2, 
S4 R3 

5.77 63 

5 S5 R1, S5 R2, 
S5 R3 

5.08 50  
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learning model, which presentss the performance of the classification 
model on the unseen dataset. Within the confusion matrix, True Positive 
(TP) represents the accurate classification of good pixels as good by the 
ML model, False Positive (FP) signifies the erroneous identification of 
bad pixels as good pixels by the ML model, False Negative (FN) indicates 
the misclassification of good pixels as outliers by the ML model, and 
True Negative (TN) stands for the precise identification of outliers as 
such by the ML model. The evaluation is conducted on the unseen 
dataset including 284 pixels, consisting of 177 good pixels and 107 bad 
pixels (outliers). Out of the 177 good pixels, the model correctly clas
sified 173 as good and misclassified 4 as bad. For the 107 outliers, the 
model classified all of them correctly with bad pixel label. 

Using these results, we can further evaluate other model perfor
mance metrics such as accuracy, precision, recall and F1 score. 

Accuracy =
TN + TP

TN + TP + FN + FP
= 98.59%  

Precision =
TP

TP + FP
= 100.00%  

Recall =
TP

TP + FN
= 97.74%  

F1 − score = 2 ∗
Precision ∗ recall
precision + recall

= 98.86% 

Before the outlier detection, the ROI for each sample is selected 

according to the location of cured sample shown on the recorded ICM 
video. Then the developed machine learning mode is used to classify all 
the pixels throughout the entire ROI. The identified good pixels are used 
for estimating the effective refractive index within that ROI. The outlier 
detection results are shown in Fig. 4. For each sample, it becomes 
evident that the peripheral region of the cured area exhibits more good 
pixels compared to the central region. This observed phenomenon can 
be attributed to the fact that voxels within the central region are covered 
by a relatively higher volume of liquid resin in contrast to those situated 
at the periphery. This is because we print the samples using droplets of 
resins on the build platform. As a result, the increased presence of liquid 
resin leads to greater attenuation of the green laser, consequently 
yielding a weaker interference signal. This issue of non-uniform ICM 
signal may be mitigated in practical DLP-VPP processes where a vat of 
resin is used. Besides, most of the samples display a clear circular pattern 
of good pixels indicating that the ICM system can capture the shape 
(circle as used in this work) of curing area well. It shows that ICM can be 
used to measure the geometry including lateral dimensions and cross- 
sectional shape of an in-process part. Although this work is focused on 
measuring refractive index and DoC, additional investigation on the 
geometry measurement capability of ICM is still conducted to show its 
versatility. For more details, please refer to Appendix Section A-3, where 
the scaling factor between the ICM image pixel size and the printed part 
pixel size is characterized. Both dimensions and angles are measured 
using the in-situ ICM and compared to ex-situ measurement results, 
showing a good agreement. 

4.3. DLP-VPP process stages identification 

To identify curing stages, the standard deviation and range are 
estimated for every 10 frames of ICM camera data and compared with 
empirical critical values. Distinct critical values are utilized, as samples 
from Experiment Sets 1, 2 and 3 exhibit higher amplitude than samples 
from Sets 4 and 5. For samples in Sets 1, 2, and 3, the critical standard 
deviation is set to be 5 and the critical range is 10. For samples in Sets 4 
and 5, the critical standard deviation is set to be 3 and the critical range 
is 5. To enhance the robustness of identifying the endpoint of the curing 
periods, a critical cycle width is used. This critical value is determined 
through the “empty sample” experiment as described in Section 3.3, 
where the reference background signal is characterized to be 200 points 
per cycle corresponding to a time duration of 1.667 s. With all the 
characterized critical values, the curing start and end time points are 
labeled for each good pixel’s time sequence of grayscale values. 

The Fig. 5 shows representative pixels from each sample set as 
designed in Section 4.1. The developed stage identification method is 
utilized to determine the start point and end point of the curing stage. 
The curing start point also indicates the end of the induction stage, 
signifying the moment when the transition from liquid resin to solid 

Fig. 3. Representative raw data and filtered time series of grayscale value for a 
bad pixel (top) and a good pixel (bottom) in Sample Set 5 Replication 3. 

Table 3 
Confusion matrix of the machine learning model for identifying good pixels and outliers.  
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polymer becomes observable by the ICM. The curing end point is the 
termination of dark curing, after which the curing signal is like a 
background signal and cannot provide useful information about curing. 
From top to bottom plots, light intensity is decreasing and the 

corresponding incubation time is increased. 
Table 4 shows a statistic of the average value of curing start point and 

end point for each experiment set. As expected, an increase in DLP-VPP 
processing light intensity correlates to a reduction in the required 

Fig. 4. Results of the machine learning-based outlier detection at a region of interest for each sample (“Sample 1–2″ means the sample from Sample Set 1 Replication 
2, etc.). Yellow color shows good pixels and blue color shows bad pixels. From top to bottom, the light intensity gradually decreases. For each light intensity, three 
replicates are printed (for details, see the experiment design in Section 4.1). 

Fig. 5. Representative results of identifying the effective curing, i.e., the start of exposure curing and the end of dark curing for Samples 1–5 cured in the designed 
Experiment Sets 1–5, respectively. From top to bottom, the decreasing amplitude of ICM signal (i.e., pixel grayscale value) well reflects the fact that the DLP-VPP 
processing light intensity is decreasing in the different sets of experiment. 
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induction time. Furthermore, the result reveals that a higher light in
tensity is associated with a prolonged dark curing stage. This phenom
enon can be attributed to the fact that elevated light intensity results in 
accumulation of more light exposure energy within the same exposure 
duration, thereby extending the duration of the dark curing stage. Our 
ICM observations conform to the intuitive understanding about the DLP- 
VPP mechanisms, enhancing the confidence of using ICM to accurately 
measure the curing process dynamics. Herein, we demonstrate a suc
cessful identification of effective curing stages using the method devel
oped in Section 3.4. This greatly helps guarantee an accurate solution of 
the ICM model evaluation in next subsection. 

4.4. Estimating the effective refractive index of DLP-VP printed parts via 
ICM sensor data analytics 

The adaptive curve fitting method as introduced in Section 3.5 is 
used to calculate the time-varying instantaneous frequency out of the 
identified curing period’s time series of grayscale value for each detec
ted good pixel. 

Fig. 6(a) shows the representative results of a sample pixel’s time 
curve of estimated instantaneous frequency and corresponding curve 
fitting results of time series grayscale from each sample set that uses 
different levels of exposure light intensity. Fig. 6(b) displays the 
evolving refractive index during the printing process. It clearly shows 
that a higher exposure intensity used in the DLP-VPP process would lead 
to a shorter induction time, a higher instantaneous frequency that in
dicates faster curing during the curing period, and a longer dark curing. 
This result also proves that ICM data and results can reveal the actual 
process dynamics of DLP-VPP, which are not attainable by current 
means. 

The refractive index values are calculated by plugging the estimated 
instantaneous frequency values into the ICM sensor model (Section 3.2). 
The results for Sample Sets 1–5 are summarized in Appendix Table A-3. 
Several statistical measures have been estimated including the mean, 
median, standard deviation, range (maximum - minimum), and the 
robust mean and robust sigma. The robust method is using “robustcov” 
command in MATLAB to estimate the mean and covariance values while 
reducing the effects of outliers on the average. According to Appendix 
Table A-3, the average value estimated by the robust method is lower 
than the mean values calculated by the traditional method for each 
sample, and the median value is closer to the robust mean value than the 
traditional mean results. It can be observed that Sample Set 1 have 
higher refractive index values than other samples sets, showing that 
increasing light intensity results in higher values of refractive index. On 
the other hand, Sample Sets 1,2, and 3 have larger range values than 
Sample Set 4 and 5. The reason for this phenomenon can be attributed to 
more diffusion of generated radicals to unexposed area during the curing 
process and the consequential more over-curing in those unexposed 
regions. This curing process variation is manifested by the distinct 
refractive index values, validating that the developed ICM method is 
capable of capturing the spatial distribution of process dynamics. 
However, ex-situ quantitative characterization of the refractive index of 
cured sample can be performed using standard reflectometry to directly 
validate the ICM-estimated refractive index in the future. 

Fig. 7 shows the boxplot of all good pixels identified in all the five 
samples sets that are measured using the ICM method, allowing for a 
comprehensive comparison of the refractive index measurement results. 
Meanwhile, the left-side vertical axis shows the robust mean value of 
each sample set, and the right-side vertical axis shows the average DoC 
of each sample set. The blue star marker denotes the mean value of the 
average refractive index of each replication for Sample set 1–5. The 
trend is that higher ICM measured refractive index correlates to a higher 
DoC. This relationship is further investigated in the next subsection. 

4.5. Inferring the degree of curing of DLP-VPP printed parts using 
refractive index measured by ICM 

Table A-4 in Appendix Section A-5 presents the ICM-measured 
refractive index and FTIR-measured DoC for each sample. It indicates 
a positive correlation between DoC and refractive index, where a higher 
degree of cure results in a higher refractive index. A refractive index- 
DoC correlation model is developed by curve fitting of Eq. (11) using 
the DoC and refractive index values of the first two replications in each 
sample set, as shown in Fig. 8. The fitted correlation model is DoC 
= 16.934 •nm- 24.963, and the R2 of the curve fitting is 0.8523. The 
estimated correlation model is tested on all the unseen data – the third 
replication in each sample set. Table A-5 in Appendix Section A-5 shows 
the performance of the developed correlation model on predicting DoC 
of printed parts in Replication 3 for each sample set. The prediction error 
is calculated as the absolute value of (predicted DoC – FTIR measured 
DoC) / FTIR measured DoC. The average error for all 5 samples is 16.2%. 
In this work, the correlation model is established using a linear model, as 
per Howard’s work [24]. In Fig. 8, it’s observed that once the DoC 
reaches 50%, the change in refractive index with the increasing DoC 
becomes relatively minor. On one hand, it is worth noting that the 
limited sample number could significantly affect the model development 
and accuracy. On the other hand, the observation from Fig. 8 seems to be 
consistent with Aloui’s work, which investigates the evolution of 
refractive index in a set of commercial acrylic resins during photo
polymerization [31]. Their results indicate that refractive index would 
linearly increase with DoC when the material is not in the glassy state 
and remain constant above a certain DoC threshold even as the reaction 
continues. This phenomenon might be attributed to the heavy depen
dence of refractive index on material density, which however tends to be 
constant after the material reaches a certain DoC value [14,31,32]. To 
conclude, while a simple linear model proves to be reasonably effective 
for a specified range of DoC, its applicability is constrained by specific 
limits determined by the nuanced relationship with the material’s 
density, refractive index, and other properties such as molecular-level 
structures. In the future, more experiment data and machine learning 
models can be used to comprehend and capture the intricate relation
ships between the refractive index and DoC, thereby enhancing the 
model prediction accuracy. 

With the developed correlation model, the DoC of each voxel can be 
predicted via the ICM estimated refractive index with a decent accuracy. 
The time-varying DoC values of representative pixels from each sample 
set are shown in Fig. 9. It vividly reveals that increasing curing light 
intensity (from S5 to S1) leads to less incubation time and higher DoC at 
the same exposure time. The prediction accuracy can be further 
improved by developing an enhanced correlation model as discussed 
above Fig. 8. 

5. Conclusion 

In this work, we develop a cost-effective, non-destructive, full-field, 
multi-modality, and real-time in-situ interferometric curing monitoring 
(ICM) system for spatiotemporally characterizing the process dynamics 
and material properties during the DLP-based VPP (DLP-VPP) processes 
with a focus on measuring the refractive index and estimating the degree 
of curing. While the results may appear preliminary due to the 

Table 4 
Curing stage identification results: average duration of induction and dark 
curing for each sample set (exposure time: 5 s).  

Sample Set 
No. 

DLP-VPP Processing Light 
Intensity (mW/cm^2) 

Average 
induction time 
(s) 

Average dark 
curing time (s) 

1 15.00 0.49 4.23 
2 11.63 0.81 4.21 
3 8.49 2.03 3.26 
4 5.77 2.99 2.80 
5 5.08 3.53 1.53  
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constraints of a limited experiment, it is crucial to emphasize the sig
nificant development, articulation, and establishment of the overall 
methodological framework for DLP-specific ICM. This framework has 
been meticulously laid out, and a proof of concept has been successfully 
demonstrated towards achieving the intended goals of understanding, 
controlling, and enhancing general DLP-VPP processes. 

The significant outcomes are summarized as follows.  

• First, an explicit, physics ICM sensor model is derived based on 
multi-beam optical interference in the context of general DLP-VPP 
that involves a moving building stage and print head, which affects 
ICM optical sensing path. 

Fig. 6. (a) Representative curve fitting results of time series of grayscale value (left) and corresponding instantaneous frequency (right) estimated for a typical 
sample in Experiment Sets 1–5, respectively. (b) Representative time curves of evolving refractive index for these samples. 
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• Second, machine learning-aided sensor data processing and analytics 
methods are developed to address the unique challenge in DLP-VPP- 
specific ICM. Especially, this ICM approach is sensitive to the inter
ferogram image noise which are worsened by the possible optics 
misalignment, limited light transmission, resin flow, and process 

disturbance in the scenario of DLP-VPP. A machine learning-based 
outlier detection method is developed using our manually labeled 
pixels based on our substantial analysis of ICM image pixels’ time 
sequences of intensity values. The trained model can successfully 
identify good pixels that have high signal-to-noise ratio and thus can 
be used for accurately estimating refractive index and DoC.  

• The developed ICM system and methods are demonstrated to be able 
to reflect the curing process dynamics (i.e., time-curve of instanta
neous frequency that indicates the curing speed through the print 
process) and capture the material properties changes (i.e., time- 
curves of refractive index and DoC of as-printed parts) in response 
to the different DLP-VPP process settings (i.e., changes in the expo
sure intensity). Meanwhile, ICM can also measure the geometry (e.g., 
lateral dimensions and shapes) of printed parts during the process, 
making it a versatile method for full-field and multi-modality 
monitoring of a DLP-VPP process and its product properties.  

• It is worth noting that the methods developed above are readily 
applicable to measuring the DLP-VPP process and part properties in 
real time with online data analytics capability as demonstrated in the 
previous work of Zhao et al. [22]. Therefore, the developed corre
lation model can estimate the DoC of an as-printed part not only after 
a DLP-VPP process as demonstrated in this work but also during the 
process in real time by analyzing online the associated ICM data via 
implementing the developed methodological framework. 

In the future, ex-situ characterization of printed parts’ refractive 
index will be conducted to directly validate the ICM-measured refractive 
index. More experiment data will be collected to enhance the trans
ferability and prediction accuracy of the refractive index-DoC correla
tion model. Moreover, a real-time ICM of various DLP-VPP processes and 
print properties will be demonstrated. A close-loop feedback control of 
the photopolymerization process will be developed, thereby improving 
the accuracy and reproducibility of DLP-VPP processes. 
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Appendix 

Section A-1: Coherent length calculation 

To determine the range of the thickness of the cured sample, the coherence length is calculated based on the wavelength spectrum of green laser, as 
shown in Figure A-1.

Fig. A-1. Wavelength of green laser (obtained from Throlbas.).  

. 
More challenges arise from the fact that the coherent length of a CIM light source could become short as the part grows thicker especially in the case 

of printing macroscopic parts. The coherent length (Lc) of the ICM light beam is estimated using Eq. (A-1), where λ is the center of the range of 
wavelength of the green laser and Δλ is the total range of the wavelength. The limited Lcwill lead to complex signals that cofound signatures from the 
entire part whose optical length tends to be larger than Lc and the fresh layers that are within Lc. This will require more complex signal analysis such 
as time-windowed frequency-domain method. 

Lc = λ2

/

Δλ ≈
(532nm)

2

2 • (0.75nm)
∼= 188um (A-1)  

Section A-2: ICM sensor modeling  

Table A-1 
Phase difference component analysis of the multi-beam interference optics model in DLP-VPP ICM.  

No. Phase difference Source beams Role in the ICM time series data 

1 δ21 =
4π
λ

nhHh 
E1,E2 Constant DC term 

2 δ31 =
4π
λ

nmZ+ δ21 
E1,E3 Oscillating AC term 

3 δ41 =
4π
λ

(nm − nl)Z +
4π
λ

nlHC+ δ21 
E1,E4 Oscillating AC term 

4 δ51 =
4π
λ

(nm − nl)Z +
4π
λ

nlHC+ δ21+
4π
λ

npHp 
E1,E5 Oscillating AC term 

5 δ32 =
4π
λ

nmZ E2,E3 Oscillating AC term 

6 δ42 =
4π
λ

(nm − nl)Z +
4π
λ

nlHC 
E2,E4 Oscillating AC term 

7 δ52 =
4π
λ

(nm − nl)Z +
4π
λ

nlHC +
4π
λ

npHp 
E2,E5 Oscillating AC term 

8 δ43 = −
4π
λ

nlZ +
4π
λ

nlHC 
E3,E4 Oscillating AC term 

9 δ53 = −
4π
λ

nlZ+
4π
λ

nlHC+
4π
λ

npHp 
E3,E5 Oscillating AC term 

10 δ54 =
4π
λ

npHp  
E4,E5 Constant DC term  
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Section A-3: Calibration of scaling factor between pixel and physical printed part (lateral dimensional size of pixel) 

To obtain the actual lateral voxel size, calibration is conducted. Three samples with different shapes and sizes are used to minimize the error. All 
the patterns are cut by black tape and the dimensions are measured by caliper. The pattern is placed at the same projection window and the print head 
is placed at same initial position as resin printing, then the recorded interference pattern is analyzed. The pixel number and angle are calculated based 
on the horizontal and vertical pixel numbers. Figure A-2 shows the designed calibration pattern as well as the captured interference pattern. The 
calibration results are summarized in the table below. According to the calibration results, the deformation in the angle shift between the actual 
sample and the ICM-captured interference pattern is small.

Fig. A-2. Left: ICM recorded interferogram of (a) triangle, (b) rectangle, (c) trapezoidal. Right: photo of actual object of (a) triangle, (b) rectangle, (c) trapezoidal.  

. 
The table below shows the results of calculated pixel size and angle distortion. The relative ICM angle error in the unit of percentage is calculated 

by the ratio of absolute value of (actual angle – ICM measured angle) over actual angle.  
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Table A-2 
Calibration results (Note: ICM angle error unit is percentage).    

Label Caliper measured size 
(mm) 

ICM measured pixel 
number 

um/ 
pixel 

Actual angle 
(degrees) 

ICM measured angle 
(degrees) 

ICM angle 
error 

Triangle left d1 2.98 330 9.04 70 76 8.85 
right d2 3.32 366 9.07 51 48 5.96 
bottom d3 3.75 429 8.74 59 56 5.28 

Rectangle left d1 2.22 235 9.45 91 87.5 3.69 
top d2 3.1 334 9.28 89 90 1.01 
right d3 2.2 236 9.34 90 90 0.32 
bottom d4 3.08 344 8.94 90 92 2.5 

Trapezoid left d1 2.54 258 9.85 51 58 12.78 
top d2 1.07 115 9.28 89 81 8.27 
right d3 1.89 170 11.09 90 89 1.08 
bottom d4 2.71 283 9.57 130 132 2.07 

Average     9.42   4.71 
Standard 

Deviation     
0.6   3.76  

Section A-4: Sample photos and estimated refractive index results

Fig. A-3. Representative samples from the five experiment sets as shown in Table 1, respectively. (From left to right: Sample 1, Sample 2, Sample 3, Sample 4, 
Sample 5). 
.  Table A-3 
Effective refractive index of DLP-VPP printed parts estimated using the developed ICM method.  

Sample Set Robust mean Robust sigma Mean Standard deviation Median Range 

1 R1 1.5082 4.1827E-04 1.5091 0.0202 1.5075 0.1028 
R2 1.5088 5.3327E-05 1.5092 0.0074 1.5089 0.0538 
R3 1.5033 6.4755E-05 1.5036 0.0081 1.5032 0.0654 

2 R1 1.5050 5.7014E-05 1.5054 0.0081 1.5050 0.0695 
R2 1.5062 4.3046E-05 1.5066 0.0066 1.5063 0.0447 
R3 1.5063 6.1305E-05 1.5071 0.0079 1.5065 0.0523 

3 R1 1.5042 4.0533E-05 1.5046 0.0064 1.5042 0.0491 
R2 1.5029 4.1947E-05 1.5037 0.0066 1.5030 0.0499 
R3 1.5029 4.0197E-05 1.5036 0.0064 1.5028 0.0477 

4 R1 1.4866 1.2467E-05 1.4867 0.0042 1.4865 0.0309 
R2 1.4931 3.2842E-05 1.4931 0.0059 1.4931 0.0421 
R3 1.4869 5.0112E-06 1.4866 0.0035 1.4868 0.0301 

5 R1 1.4826 1.2194E-05 1.4833 0.0038 1.4827 0.0272 
R2 1.4849 2.0932E-05 1.4856 0.0047 1.4850 0.0314 
R3 1.4866 9.2690E-06 1.4869 0.0042 1.4866 0.0406  

Section A-5: Estimating the degree of curing using the ICM-measured refractive index  

Table A-4 
Comparison of ICM-estimated refractive index and FTIR-measured DoC.  

Sample Set NO. Sample NO. ICM-measured refractive index (Robust mean) FTIR-measured DoC 

1 S1 R1 1.5082 0.693  
S1 R2 1.5088 0.672  
S1 R3 1.5033 0.555 

2 S2 R1 1.505 0.488  
S2 R2 1.5062 0.544  
S2 R3 1.5063 0.534 

3 S3 R1 1.5042 0.399  
S3 R2 1.5029 0.387  
S3 R3 1.5029 0.375 

4 S4 R1 1.4866 0.263  
S4 R2 1.4931 0.295  
S4 R3 1.4869 0.28 

5 S5 R1 1.4826 0.15  
S5 R2 1.4849 0.191  
S5 R3 1.4866 0.248   
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Table A-5 
Prediction results of the correlation model.  

Sample NO. ICM measured refractive index FTIR measured DoC ICM Predicted DoC Prediction Error % 

S1 R3 1.5033 0.555 0.494 10.991 
S2 R3 1.5063 0.534 0.545 -2.060 
S3 R3 1.5029 0.375 0.487 -29.867 
S4 R3 1.4869 0.280 0.216 22.857 
S5 R3 1.4866 0.248 0.211 14.919  
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