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Abstract— The substrate such as direct bonded copper 

(DBC) in power modules needs to withstand high enough 

insulation voltages to provide isolation between semiconductor 

chips and cooling systems. Partial discharge (PD) occurs when 

the electric field exceeds the insulation material's critical 

dielectric strength and often serves as a key degradation 

indicator in power modules. To ensure free of substrate PD is 

more challenging in medium and high voltage power module 

packaging. Compared to simply increasing the thickness of a 

single substrate's insulation layer, stacking multiple substrates 

seems a promising solution to achieve high insulation voltages. 

In this paper, the PD performance of stacked substrates is 

investigated and a patterned middle-layer in the stacked 

substrate is proposed to further increase insulation voltages. 

The offsets between metallization of the stacked substrate are 

optimized to achieve a tradeoff between electric fields and 

thermal resistances. A 10 kV SiC power module is developed 

based on the middle-layer patterned stacked substrate design, 

and validated by PD tests at up to 12.8 kVrms, demonstrating a 

33% maximum electrical field reduction compared to 

conventional stacked substrates.  

Keywords—partial discharge, medium voltage, 10 kV, SiC 

MOSFET, stacked substrates, middle-layer pattern 

I. INTRODUCTION  

Medium voltage (>10 kV) to high voltage (>35 kV) 
power modules are widely applied in motor drives[1] [2], 
electric vehicle charging infrastructures[3][4], solid-state 
circuit breakers [5-7] and grid-connected converters [8-10]. 
The power modules are required to provide high insulation 
voltages and withstand the electrical strains without partial 
discharge (PD) throughout their lifetime in these 
applications. The DBC or active metal brazed (AMB) 
substrates provide isolation between power semiconductor 
chips and earthed heat sinks in MV and high voltage power 
modules. PD is one key degradation of power modules[11], 
which occurs when the electric field exceeds its critical 
dielectric strength, especially at the ceramic-metal-
encapsulant triple point of the DBC substrates[12][13].  

The DBC and AMB substrates suffer more severe PD 
challenges at MV and high voltage applications. To avoid 
PD in the power modules, one straightforward method is to 
increase the thickness of the ceramic layer in DBC 
substrates. However, it introduces two drawbacks:  

(1) The Partial Discharge Inception Voltage (PDIV) does not 
increase linearly with the ceramic thickness[14], which 
means a much thicker ceramic is needed to withstand 
high voltages.  

(2) The elevated ceramic thickness leads to higher thermal 
resistance [15], which induces further power degradation. 

Alternative ways to increase the insulation capability of 
dielectric materials include substrate stacking[16], surface 
coating [17], and non-linear encapsulant material adoption 
[18]. The other approach to avoid PD in power modules is to 
mitigate the maximum electric field,  such as varying pad 
corner curvature [19], modifying metal-ceramic interface 
geometry [20], clamping the middle layer voltage with 
through-hole DBC [21], and offsetting the top and bottom 
pad [22]. Among these methods, stacking DBC substrates 
with through-holes shows a 53% reduction of peak electric 
field strength by connecting the middle layer to half of the 
DC link voltage. But this method is costive and increases the 
risk of cracking.  

This paper proposes a middle-layer patterned DBC 
stacking structure to clamp the middle-layer voltage by 
adjusting the parasitic capacitances. A similar cavity DBCs 
concept is proposed in [23], which investigated the effect of 
varying the number of stacked layers on parasitics and 
thermal resistance. This paper designs a stacked DBC 
substrate with a patterned middle layer to meet the PD 
requirements for a 10 kV SiC power module [24]. By 
analyzing the maximum electric stress, the optimized 
middle-layer pattern in the stacked substrates is proposed in 
Section II. Compared with the conventional substrate 
designs, the proposed solution shows a higher insulation 
voltage capability under DC PD tests. Section III studies the 
tradeoff between electric field strength and thermal This work was supported by the National Science Foundation under 

Grant No. 1439700, Grid-connected Advanced Power Electronics Systems 
(GRAPES), Project GR-21-04. 
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performance with various middle layer pattern offsets. The 
PDIV of the middle-layer patterned stacked DBC is verified 
at 12.8 kVrms in section IV. 

II. REDUCED PARTIAL DISCHARGE WITH PATTERNED 

MIDDLE-LAYER IN STACKED DBC SUBSTRATES 

A. Electric Field Distribution in MV Power Module  

PD occurs when the maximum electric stress exceeds the 
dielectric strength of the insulation material. The electric 
field intensity E is determined by the applied voltage ϕ and 

the position operator ∇ , as shown in (1) [25]  
E ϕ= −∇                                (1) 

where the position vector can be defined as 

x y z
a a a

x y z
∇ ≡

∂ ∂ ∂
+ +

∂ ∂ ∂
  (2) 

where ax, ay, and az are components of position vector r = 
axx + ayy + azz.   

For the electric field of more than one dielectric material, 
the tangential components of the electric field for each 
material at the boundary should be equal, which should 
satisfy the boundary conditions in (3)  

1 1 2 2 3 3n n n
E E Eε ε ε= =    (3) 

where En1, En2 and En3 are the normal components of the 
electric field, ε1, ε2, ε3 are the permittivity of the dielectrics 
at the boundary. In this case, the maximum electric field 
intensity is at the position meeting two conditions, the 
highest electrical potential in (2) and the high dielectric 
permittivity ratio of metal and dielectric materials in (3),  
which is at the triple point of the ceramic-metal-gel 
interface, as shown in Fig. 1. 
 

 

Fig. 1. Electric field intensity in a power module. 

B. Impedance Determination for Voltage Sharing 

The isolated voltage between the device and the earthed 
baseplate is withstood by the substrate. The voltage sharing 
is determined by the substrate impedance, which is 
equivalent to the ceramic resistance and the parasitic 
capacitance in parallel, as shown in Fig. 2. The resistance 
and capacitance are deceived by the material properties, 
copper layer dimensions, and voltage frequency, as shown in 
(4) and (5). 

 

 
Fig. 2. Substrate impedance: ceramic resistance and parasitic capacitor in 

parallel.  

1 2

R
Z

jR fCπ
=

+
   (4) 

r

A
C

d
ε=     (5) 

where εr is the relative permittivity of ceramic, d is the 
ceramic thickness, and A is the effective capacitance area 
determined by the smallest of the two copper pads in parallel.  

For the stacked DBCs, the electrical potential follows the 
voltage sharing in stacked DBC substrates. For the traditional 
stacked substrates, the voltage sharing between the top and 
bottom substrates is inversely proportional to their pad size, 
resulting in significantly higher voltage stress for the top 
layer. In certain cases, the top substrate needs to withstand 
2× the voltage of the bottom one (7 kV v.s. 3 kV), as shown 
in Fig. 3. 

   

Fig. 3. Voltage sharing in the traditional stacked substrates: 7 kV v.s. 3 kV 
for the top and bottom layers. 

Understanding this, the ratio of top and middle layer pad 
size plays a decisive role in voltage distribution, which 
inspires the idea of dividing the middle layer pad into small 
sections in the stacked substrate design, as shown in Fig.4. A 
balanced voltage sharing of each substrate layer is preferred 
to fully utilize its insulation capability. For the situation 
where the top and middle pad size is the same, the voltage 
sharing of each layer is half of the DC link voltage. 

 

Fig. 4. Voltage sharing in the middle-layer patterned stacked substrates: 5 
kV v.s. 5 kV for the top and bottom layers. 
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C. Middle-layer Offsets Optimization towards Reduced 

Electric Field  

To reduce the maximum electric field stress at the triple 
point and balance the voltage sharing between the stacked 
substrate, the effective capacitance area A should be 
optimized. The stacked substrates with and without the 
middle-layer patterns are shown in Fig. 5. The 3D finite 
element model is based on a 10 kV/60 A SiC power module 
with low parasitic inductance and a friendly laminated 
busbar interface [24].  

 
(a) Traditional stacked substrates       (b) Middle-layer patterned substrates 

Fig. 5. Comparison of the traditional stacked substrate and the middle 
layer stacked substrates.  

The relationship of recession offsetting between the top 
and bottom pads is evaluated in Table. I. Compared to the 
traditional staked substrates, the middle-layer pattern can 
reduce the maximum electric field strength, regardless of the 
size of the offsets. For various offsets between the top and 
middle layer substrates, the maximum electric field strength 
decreases as the middle layer pattern size decreases for a 
constant top layer pattern size. A 33% reduction in the 
maximum electric field strength is achieved if the edge of 
the top layer pattern is 1.5 mm larger than the bottom one. 

TABLE I.  RELATIONSHIP OF MAXIMUM ELECTRIC FIELD AND OFFSET 
BETWEEN TOP AND BOTTOM LAYER.  

Sample 
Middle-layer 

pattern offsets 

Maximum electric field strength 

Electric field 

value 

Patterned / 

traditional % 

Traditional 
stacked 

substrates 
- 19.0 kV/mm 100% 

Top < 
 middle 

-1.4 mm 15.8 kV/mm 83% 

-1.0 mm 14.4 kV/mm 76% 

-0.5 mm 13.9 kV/mm 73% 

Top = 

middle 
0 mm 13.8 kV/mm 72% 

Top > 
middle 

0.5 mm 13.5 kV/mm 71% 

1.0 mm 13.1 kV/mm 69% 

1.5 mm 12.7 kV/mm 67% 

D. DC Partial Discharge Test  

To verify the middle-layer pattern influence on the 
PDIV, two samples with and without the middle-layer 
pattern are fabricated, as shown in Fig. 6. Each layer of the 
stacked substrates are 1 mm AlN substrates with 0.3 mm 
copper metallizations on the top and bottom side. The 
stacked substrates are soldered on a cooper baseplate as the 
test samples. The samples are immersed in the dielectric 
liquid FC-72 with a relative permittivity of 1.75.  

The DC partial discharge test is performed under the test 
setup shown in Fig. 7. The PDIV is marked for the first 
discharge higher than 10 pC, according to IEC 61287. The 
patterned DBC is partial discharge free for more than 6.1 kV 
DC, while the conventional one PDIV at 5.8 kV, as shown 
in Fig. 8.  

    

(a) Traditional stacked substrates   (b) Middle-layer patterned substrates 

Fig. 6. DC PD test samples. 

 

Fig. 7. DC partial discharge test setup. 

 

    (a) Traditional stacked substrates PDIV = 5.8  kV  
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(b) Middle-layer patterned stacked substrates PDIV > 6.1 kV, 

Fig. 8.  DC PD test results: discharge threshold = ± 10 pC    

III. THERMAL RESISTANCE OF THE MIDDLE-LAYER 

PATTERNED STACKED SUBSTRATES 

The influence of the middle-layer pattern on the thermal 
resistance is evaluated. Based on a 1-D thermal network, the 
power module thermal resistance Rth can be calculated as a 
series of multilayer thermal resistances 

    i

th

i i i

t
R

k A
=     (6) 

where ti, Ai and ki are the thickness, effective heat transfer 
area, and thermal conductivity of each layer, respectively. 

As shown in Fig. 9, the effective heat transfer area varies 
in different layers due to the thermal spreading 
angle[26][27], which can be described as the ratio of thermal 
conductivities of the current layer versus the layer 
underneath 

    1

1

tan i

i

i

k

k
α −

+

=     (7) 

where αi is the spreading angle (degrees), ki is the thermal 
conductivity of the current layer and ki+1 is the thermal 
conductivity of the lower layer. 

Considering the thermal spreading angle, the effective 
heat transfer area can be described as the first-order 
approximation of the top and bottom surfaces, which are 
different in each layer in (8) 

 
( )( 2 tan )( 2 tan )i i i i i i i i iA w l w t l tα α= × + × × + × ×

  (8) 

where wi, li are the width and length of the top surface 
effective heat transfer area, respectively. 

 

    

 
Fig. 9. Thermal spreading angle.  

The thermal resistance increases 2% as the middle-layer 
pad size is smaller than the top one by 1.5mm, as shown in 
Fig. 10. This is because the divided copper restricts the 
thermal spreading if the pad size is smaller than the effect 
heat spreading area. A margin larger than 2.9 mm would not 
influence the performance, as shown in Fig. 11.  
 

 
Fig. 10. Relationship between the top and middle layer copper size offsets 

and thermal resistance.    

       

Fig. 11. Thermal spreading in the middle-layer patterned stacked substrates. 
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IV. AC PARTIAL DISCHARGE EXPERIMENT RESULTS 

The AC PD test for power module voltage rating at 1.5 
kV or more should follow IEC 61278-1 [28], as shown in 
Fig. 12. The applied AC r.m.s voltage should increase to 1.5 

× Um / √2 in 10 s and maintain 1 min, where Um = 10 kV is 
the maximum module blocking voltage. The maximum 
applied AC voltage ≃ 10.6 kV at 50 Hz or 60 Hz. Then the 
voltage should decrease to 1.1 × Um / √2 ≃ 7.8 kV in 10 s and 
keep it for 30 s. A PD level higher than 10 pC should be 
measured as a discharge. 

 

Fig. 12. IEC 61287-1 for AC PD test. 

A partial discharge test for the stacked substrates should 
be distinguished from the single-layer one. For the low 
voltage power module PD test, the terminals are shorted 
together, and the target voltage is applied between all the 
terminals and the baseplate. Although there is electric 
potentials difference in the horizontal pads, it is the one layer 
of ceramic that withstand the voltage. However, the parasitic 
capacitance in stacked substrates determines the voltage 
sharing, as discussed in Section II. Shorting all terminals 
together creates equal voltage sharing in the two ceramic 
layers, but the top substrate will be the short slab for the 
potential difference in application. 

The middle-layer patterned stacked substrates balanced 
the voltage sharing in the two ceramic layers. The test 
sample and experiment setup are shown in Fig. 13 (a) and 
(b). The sample passed the 12 kV rms with a peak voltage of 
18 kV.  

 

(a) Test sample: middle-layer patterned stacked substrates in dielectric oil   

 

 (b) AC PD Test setup      

    

(c) AC PD test results at 12.8 kVrms.   

Fig. 13. AC PD Test. 

V. CONCLUSIONS  

In stacked substrates for medium voltage applications, the 
top substrate suffers significantly higher voltage than the 
bottom one because of unbalanced parasitic impedance. This 
paper proposed middle-layer patterned stacked substrates to 
naturally achieve voltage balancing by dividing the middle-
layer copper into differential potentials. By adjusting the 
offsets between the top and bottom layers, the patterned 
structure can reduce the maximum electric field stress by 
33% with a 2% increment in thermal resistance. The 
proposed middle-layer patterned stacked substrates avoid 
the expensive and complicated through-hole design, 
resulting in reduced cost and a simplified fabrication 
process. The designed 10 kV SiC MOSFET substrate is 
validated by the PD test at 12.8 kVrms.  
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