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Abstract—Nanogrids provide a redundant mode of operation
when the grid power fails. Nanogrids use data communication
networks to coordinate power and energy between distributed
energy resources (DERs). Under the corner-case of simultaneous
communication failure and electrical faults, it can be difficult
for the energy storage system with grid-forming/grid-following
capability to select the correct operational mode. This paper
proposes the use of a digital twin to assist in minimizing the
degradation on the nanogrid caused by loss of communication
during islanded operation under electrical fault conditions. The
structure of the digital twin is proposed, and the construction
of a virtual twin is presented. The error vector produced by
the difference between the physical twin and virtual twin is
demonstrated in various fault conditions. Lastly, the paper
presents a discussion of how the error vector could be used to
make inferences about the nanogrid state and to choose actions
during off-nominal communication.

Index Terms—Digital Twin, Microgrid, Nanogrid, Resilience,
Distributed Energy Resources, Machine Learning

1. INTRODUCTION

Larger industrial facilities can feature complex electrical
power systems (EPS) which can be spread out over a large
geographical area. Within the industrial facility, portions of the
EPS can be segmented into zones. The zones are identified by
geographically separated regions of critical loads. Load criti-
cality is tied to the operation of the facility, e.g. expensive and
complex manufacturing processes, security or safety systems,
water/waste water treatment, etc.

Microgrids provide additional distributed energy resources
(DERs) and additional modes of operations in the presence of
electrical grid failure, which can increase the EPS’ resilience
[1]-[3]. If the whole facility operating in islanded mode is
a microgrid, then a smaller portion of the EPS operating in
islanded mode is a nanogrid [4], [5]. The larger microgrid can
be built up of smaller nanogrids with the nanogrids located at
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the facility critical loads. If the critical loads are geographically
separated, then the EPS can be divided into zones, supported
by nanogrids, or zonal nanogrids. The zonal nanogrid proves
an additional redundant mode of operation should the larger
microgrid fail [4]. Nanogrids also offer a cost-effective way
for larger facilities to improve the resilience of their EPS by
building up smaller systems one at a time compared to one
large microgrid.

When the nanogrid is the sole remaining source of power
and energy, the DERs with the nanogrid, nanogrid controllers,
and switchgear/automatic transfer switches (ATS) must coor-
dinate efficiently and effectively to deliver power/energy to
the right place at the right time. This coordination requires
an exchange of data, making the nanogrid a cyber-physical
system reliant on a data communication network. Thus, the
impact of nominal and off-nominal communication should be
assessed under nominal and off-nominal electrical conditions,
where simultaneous communication and electrical faults pose
the extreme corner case for which solutions must be designed.

Fig. 1 shows a case-study for a nanogrid built with
commercial-off-the-shelf (COTS) equipment. The nanogrid is
designed to support the critical water treatment plant of an
industrial facility. The nanogrid is comprized of two distribu-
tion voltage levels: one at 13.8 kV medium voltage, and one
at 480 V low voltage. The medium voltage switchgear serves
as the interface of the nanogrid to the rest of the EPS. The
low voltage switchgear serves as the interface for the DERs
and loads.

The nanogrid is operating in islanded-mode with the diesel
genset enabled. The genset is supplying the loads connected to
the nanogrid and is charging the battery energy storage system
(BESS).

Proper coordination between the protection settings in the
distribution equipment and the DER low-voltage ride-through
(LVRT) settings in the power conversion equipment is needed
to ensure the maximum number of DERs will ride through the
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fault [6]. Assuming IEEE Std. 1547-2018 Category III ride-
through [7] is applied to the BESS, the BESS converter must
know under which fault conditions it should disconnect, per-
form momentary cessation, or switch to grid-forming/voltage-
control mode.

To demonstrate this point, Fig. 2 and Fig. 3 show line-to-
line faults between phase A and B (LLab) at fault location
4 (F4) and 2 (F2), respectively, as shown in Fig. 1. For the
downstream fault at F4, the BESS enters momentary cessation,
the genset contributes fault current, the circuit breaker (CB)-
SwitchGear-Load-3 opens, and the BESS resumes operation.
For the upstream fault at F2, the BESS enters momentary
cessation, CB-Gen trips, and after 1 second the BESS switches
to grid-forming. This provides fault current for the directional
overcurrent relay at CB-Switchgear-Grid.

This example only shows a LLab fault in two locations
under one configuration. However, other configurations, such
as genset + BESS + PV, BESS + PV, Grid + BESS + PV,
etc., must also be taken into account. One set of ride-through
settings may not be optimal for all possible configurations,
fault types, and fault locations.

Knowledge of the neighboring breakers and DERs states
through a high-speed communication network would simplify
the complexity of proper ride-through operation. However, if
the communication experiences degradation or failure (equip-
ment malfunction, cyber-attack, etc.), making the proper ride-
through decision for the BESS will be significantly more
difficult.

Several works have demonstrated detrimental effects on EPS
caused by off-nominal communications [8]-[10], but to the
best of the authors’ knowledge, no previous work is available
in literature addressing nanogrid resilience during off-nominal
data communication in the midst of an electrical fault. We
propose the use of digital twins (DTs) to minimize the
impact of simultaneous electrical and communication faults,

and to improve the systems recovery via proper ride-through
performance of the BESS.

During off-nominal communications, the BESS must be
able to estimate the state of the nanogrid without being able
to communicate with other devices. The use of a DT will
allow the BESS to extract physics-based information from its
measurements which can be used to gain insights and help
determine the correct mode of operation the BESS converter
should be in.

A. Literature Review of Digital Twins

A DT for smart grids is presented in [11]. Automatic
Network Guardian for Electrical (ANGEL) systems monitors a
smart grid using SCADA and other communication techniques
to gather measurements in real-time. These measurements are
used by a simulation of the grid, which is also run in real-time.
By comparing the received measurements to the measurements
predicted by the DT simulation, anomalies including electrical
faults and false data injection can be detected. The authors
note the need for real-time communication, thus identifying
communication delays or failures as a potential weakness.

Artificial neural networks (ANN) are employed in [12] to
locate faults in a smart grid. Measurements from smart meters
in the grid are sent across a communication network and used
as inputs to the ANN. The ANN outputs are used to detect and
locate faults. Use of the ANN aids in the analysis of a fault
by simplifying the transient state estimation (TSE) equation,
allowing the TSE to be solved only for the faulted parts of the
system rather than the entire system. The authors also note the
need for real-time communication.

Use of a deep learning convolutional neural network (CNN)
for smart grid anomaly detection is presented in [13]. The
CNN is demonstrated on the IEEE 9-bus model and the IEEE
39-bus model. Three-phase voltages from each bus are used
as inputs to the CNN. The CNN detects faults and estimates
which bus in the model has been faulted.

A DT for a battery system is presented in [14]. A simulation
of the battery system was created, and a rule-based system
was used to detect anomalies in the battery state of charge
(SoC). Anomalies were detected by a divergence between
the predicted SoC and actual SoC. The authors identified
the importance of an accurate model of the system and
noted the need for timely communication between the battery
system and the simulation. A related work [15] improves the
battery model by training a CNN to predict the battery system
response.

A medium voltage (MV) to low voltage (LV) distribu-
tion transformer DT is given in [16]. Voltage and current
measurements are taken on the LV side of the transformer.
A simplified model of the transformer circuit is used to
estimate the voltages and currents on the MV side of the
transformer given the LV side measurements. The authors use
a statistical comparison and a frequency analysis of the model
output, testing its predictions against data recorded from a real
transformer.
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In [17], a nonlinear autoregressive network with exogenous
inputs (NARX) is used to model the dynamics of a power
converter. The NARX model is used to predict inductor current
and capacitor voltage for the converter given the converter’s
duty cycle, input voltage, and load current. Once trained, the
NARX model can be run in real-time alongside the converter
to predict the expected converter measurements. The model is
validated by testing its response in both the time domain and
the frequency domain.

A DT is recommended for self-security of inverters in
[18]. The DT contains knowledge of IEEE Std. 1547-2018
requirements and of the safe operating region and dynamic
response of the inverter. Commands to change the PQ setpoints
can be sent to the inverter, and the DT will compare these
setpoints to its knowledge of the inverter and the current state
of the system. If the PQ setpoints would cause a problem, the
DT rejects the setpoints. Rejecting invalid PQ setpoints keeps
the inverter in a safe state, protecting against both malicious
and unintentionally dangerous commands.

A DT for a photovoltaic energy conversion unit (PVECU)
is demonstrated in [19]. The DT contains a state-space model
of the converter to model the inductor current and output
capacitor voltage. The DT also contains knowledge of the
maximum power point (MPP) current and voltage of the PV
panel. Using measurements of the inductor current, capacitor
voltage, PV irradiance levels, and PV panel temperature,
the DT predicts what the measurements will be at the next
timestep. An error vector at a given timestep is calculated as
the difference between the predicted measurements and the
actual measurements at that timestep. Tolerance levels are set
for each dimension of the error vector, and the DT signals a
fault if any of the tolerances are exceeded. An inner-product
calculation is used to compare the trajectory of the error vector
to a library of pre-calculated fault vectors, using the result to
predict which type of fault (if any) is occurring.

A probabilistic approach to analyzing an error vector is
given in [20]. The state-space model is formulated where the
coefficient matrices are treated as stochastic processes. The
error vector is calculated similar to [19], but the use of polyno-
mial chaos expansion (PCE) allows the tolerance levels of the
error vector to be varied probabilistically. This approach can
model random effects of the physical device, such as circuit
components being manufactured within a random tolerance of
their rated value, thus allowing the DT to detect faults while
tolerating the expected variances in its physical counterpart.

B. Paper contributions and organization
The contributions of this paper include the following:
1) A novel DT structure including the physical twin, virtual
twin, intelligent agent, and data communication
2) Description of a BESS physical twin and derivation of
a state-space model for the BESS virtual twin
3) Formulation of the virtual twin error vector

The paper is organized as follows: Section II proposes a
novel structure for the DT. Section III formulates the virtual
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Fig. 2: Line-to-line fault between phases A and B at F4.

twin for the BESS. Section IV presents simulation results of
the error vector and Section V draws some conclusions.

II. DIGITAL TWINS
A. Overview

Based on the review of DT literature, the proposed DT
design consists of four layers:
s Physical Twin - the physical device itself
o Virtual Twin - a real-time, physics-based simulation of
the physical twin
» Intelligent Agent - a model of the learning and decision
making processes
e Data Communications - data exchange with other de-
vices, services, or human operators
One of the goals of the DT is to perform actions which are
most likely to maximize a utility function. The physical twin
will have sensors to measure its present state (e.g. voltages,
currents) and actuators to affect its future state (e.g. digital
control signals and gate signals). The virtual twin is an up-
to-date digital model of the physical twin and is used to
provide physics-based information about the physical twin.
Data communication allows the DT to exchange information
with other devices or humans. The intelligent agent, or simply
the agent, of the DT follows a sense-decide-act loop [21],
[22]. This loop consists of three stages:
s Sense - take sensor measurements from the physical twin
s Decide - evaluate possible actions and choose an action
to be performed
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Fig. 3: Line-to-line fault between phases A and B at F2.

s Act - perform the chosen action by configuring the
physical twin actuators
This loop is performed continuously during the DT’s oper-
ation. During each repetition of this loop, the following steps
take place:
1) Read the physical twin state x; from the physical twin
sensors
2) Calculate and store the predicted state % for the next
timestep
3) Calculate the error vector ¢ for the current timestep
4) Use the error vector and other relevant information to
choose an action
5) Configure the physical twin actuators according to the
action

B. Virtual Twin

The virtual twin is a real-time digital representation of the
physical twin [5], [23], [24]. The virtual twin must be:

« Physics based

« Real-time capable

« Driven by physical twin sensor measurements

The virtual twin’s understanding of the physical model can
be used to monitor and protect the physical twin. Using its
understanding of the physical twin dynamics, a virtual twin
can monitor the health of the physical twin [11], [12], [19],
[20], [25], analyze its behavior and its interaction with the
environment [14], [15], [19], [20], and prevent it from being
placed in a dangerous state [18].

The virtual twin provides physics-based information to
the agent. The virtual twin uses the physical twin sensor
measurements along with other physical information, such as
actuator configuration, to make a prediction about the values
of the next sensor measurements which will be taken.

Several methods of creating a virtual twin model have been
explored. The physical twin model can be viewed as a black-
box (completely unknown), gray-box (partially known), or
white-box (fully known) [17], [26]. A gray-box approach is
taken in [17], where the details of the converter are learned
from recorded measurements in a test environment. State-
space modelling is a white-box approach and is used to create
the virtual twins in [19], [20].

A state-space model is a set of differential equations which
represent the dynamics of the physical twin. A simple state-
space model is given in (1), where z is the state vector, 4 is the
change in state vector, and w is the system input vector. The
virtual twin prediction function uses this state-space model
along with an integration method such as Forward Euler, i.e.
(2), to estimate what the state of the physical twin will be at the
next timestep. Equation (3) shows the virtual twin prediction
function as a combination of (1) and (2). Both z; and u; are
measured from the physical twin on each timestep, so (3) only
needs to predict one timestep ahead.

d

itzazt:A-mt—i—B-u; (D)

. d
Tpy1 =2 + At - piL 2)
Fop1= (I +At-A) -2+ At-B-u 3)

An error vector is constructed on each timestep, where
the error vector is the difference between the measurements
taken on the timestep and the measurements predicted from
the previous timestep. Equation (4) shows the calculation of
the error vector, where #; is the prediction from the previous
timestep.

)

The error vector can be used to quantify the effects acting on
the physical twin which are not captured in the virtual twin
model. For example, an electrical fault in the nanogrid will
affect the physical twin measurements, but the virtual twin
does not model the dynamics and states of the interfacing
nanogrid, so the effects of the fault will be captured in the
error vector.

Error vectors can be analyzed by the agent to make infer-
ences about outside effects acting on the physical twin. The
output of the machine learning (ML) model could be used
to decide on an action, such as choosing the proper IEEE
std. 1547-2018 ride-through action or changing from grid-
following to grid-forming mode.

€ = &y — 1

ITII. DiGITAL TWIN FOR A BESS VSC

Fig. 4 shows an example DT for the voltage source converter
(VSC) of a battery energy storage system (BESS). Fig. 5
shows the VSC topology being modelled by the virtual twin.
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Fig. 5: Virtual twin model of BESS VSC

The BESS VSC includes an LCL filter with passive damping,
an interfacing Y-A transformer, and an output circuit breaker
(labeled as CB-BESS in Fig. 1). The transformer is grounded
on the Y side. The virtual twin only models the topology
highlighted in the gray box in Fig. 5.

« Output inductor currents iz, qpe
« DC source voltage vpc
» Grid connection voltages vg_gpe

These measurements are noted in Fig. 5. In addition, the state
of the converter gate drives S,, Sy, and S, is known on each
timestep.

A. Virtual Twin model for BESS VSC

The virtual twin prediction function is created as described
in (3). The state vector z; consists of inductor currents and
capacitor voltages from the LCL filter, iy f_abe, Vo f—abe, and
iLo—abe, a8 shown in (5). The input vector u; consists of vpe
and vg_ape, as shown in (6). The matrices A and B in (3) are
derived from the converter and filter topology, as shown in (7)
and (8), respectively.

The switch states Sg, Sp, and S; (Sq, Sp, Sc € {—1,1}) are
part of the B matrix, where S,, Sy, and S. represent either
the upper switch (1) or lower switch (-1) being on for phase
leg A, B, or C, respectively. The switch state is multiplied
by vpe/2 to represent the voltages at the midpoints of each
phase leg (vgqa, vep, and ve. in Fig. 5).

On each timestep, the state vector z; and input vector u;
is created by sampling each of the respective physical twin
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Fig. 6: L, phase A measured current (line) and predicted
currents (dots)

sensors. The B matrix is updated with switch states S,, Sp,
and S,. The virtual twin creates the prediction for the next
timestep, and the error vector for the current timestep is
calculated and stored for processing.

It is worth noting that often times in the derivation of state-
space model for 3-phase VSC with LCL filters, a single-phase
equivalent circuit is used. However, this does not capture the
constraint that the sum of current of the inverter must comply
with Kirchhoff’s current law (KCL), i.e., irfa +irfe+irfe =
0. Thus, the single-phase equivalent circuit would not capture
the effects of imbalances within the state-space model. To
solve for the state-space model while capturing the KCL
constraint, the VSC line-to-line output voltages are used which
accounts for the cross-coupling terms in the three-by-three
block a4 — agz in matrix A and in b;; — b33 in matrix B.

It is also worth noting that this virtual twin model does
not include BESS controller parameters, it only models the
physics of the converter. It is not tied to a specific controller
or control algorithm, thus making it an adaptable and generic
approach to creating a virtual twin.

IV. SIMULATION RESULTS

Simulations of the nanogrid in Fig. 1 were performed in
Matlab/Simulink, including simulations for fault types F2 and
F4. In both simulations, the faults occur at time 0.5 seconds.
Since the error vector for the BESS DT is 9-dimensional, it
cannot be fully plotted on a single diagram. Instead, plots of
the error vector magnitudes (calculated with the L2 norm) can
be used to illustrate some of the error vector patterns. Error
vector analysis is not subject to this limitation and may take
full advantage of all 9 dimensions.

Fig. 6 shows a plot of the measured L, current from phase
A with its predicted measurements overlaid as dots. Figs. 7a,
7b, and 7c show the three-phase measurements and predictions
from Ly, Cy, and L,, respectively. These plots show that the
state-space model of the virtual twin follows the behavior of
the BESS physical twin with a high degree of accuracy.

Figs. 8 and 9 include plots of BESS DT measurements and
of error vectors created from the vy and iz, components
of the overall error vector #. Figs. 8a and 8b show the
measurements and error vector magnitudes for C; and Figs.
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Fig. 7: BESS DT measurements and predictions

8c and 8d show the measurements and error vector magnitudes
for L, during fault F2. Similar plots are provided in Fig. 9 to
show the values during fault F4.

The error vectors can be used to quickly detect a divergence
from expected operation, for example in Figs. 8d and 9d by
the sudden increase in inductor current error vector magnitude
at fault inception similar to [19], [20]. The error vectors could
also be used to identify the cause of a divergence, for example
by the patterns in capacitor voltage similar to [12], [13]. ML
models can be trained to learn the subtle and complex features
of the error vectors in different situations (e.g. F2 vs. F4).
For example, the agent could include a trained ML model to
recognize features in the error vectors, similar to the ANN in
[12] or CNN’s in [13], [15].
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During nominal data communications, the BESS DT will be
receiving information about the nanogrid state from the com-
munication network, including commands from a centralized
nanogrid controller. The received data can be paired with the
error vectors being recorded by the DT, and a ML model could
be trained to recognize nanogrid states from error vectors
alone. Using the error vectors in this fashion could allow the
DT to recognize the nanogrid state and make the appropriate
IEEE Std. 1547-2018 ride-through action without the need for
active communication with a centralized nanogrid controller.

V. CONCLUSION

This paper describes the creation of a virtual twin for a
BESS DT. Use of the virtual twin provides physics-based
information about its physical twin in the form of an error
vector. This error vector can be used as a feature for detecting
and identifying events in the nanogrid such as electrical faults.
The physical twin for a BESS was identified and a state-space
model was developed to calculate the virtual twin error vector.
Simulations were conducted of a COTS nanogrid, and the error
vector was demonstrated under fault conditions. The approach
to creating the BESS virtual twin is generic, straightforward,
and can be applied for the development of other DERs or
nanogrid digital twins.
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