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Abstract
As the model size grows rapidly, fine-tuning the large pre-trained language model
has become increasingly difficult due to its extensive memory usage. Previous
works usually focus on reducing the number of trainable parameters in the network.
While the model parameters do contribute to memory usage, the primary memory
bottleneck during training arises from storing feature maps, also known as activa-
tions, as they are crucial for gradient calculation. Notably, machine learning models
are typically trained using stochastic gradient descent. We argue that in stochastic
optimization, models can handle noisy gradients as long as the gradient estimator
is unbiased with reasonable variance. Following this motivation, we propose a new
family of unbiased estimators called WTA-CRS , for matrix production with reduced
variance, which only requires storing the sub-sampled activations for calculating
the gradient. Our work provides both theoretical and experimental evidence that, in
the context of tuning transformers, our proposed estimators exhibit lower variance
compared to existing ones. By replacing the linear operation with our approxi-
mated one in transformers, we can achieve up to 2.7× peak memory reduction
with almost no accuracy drop and enables up to 6.4× larger batch size. Under
the same hardware, WTA-CRS enables better down-streaming task performance by
applying larger models and/or faster training speed with larger batch sizes. The
code is available at https://github.com/zirui-ray-liu/WTACRS/.

1 Introduction

Pre-trained language models (LMs) with transformer architecture have achieved remarkable success
in numerous natural language processing (NLP) tasks [1, 2, 3, 4, 5]. Specifically, these models
are trained on vast text corpora to acquire general-purpose representations, which are then adapted
to a specific task by fine-tuning on task-specific data. In recent studies, it has been convincingly
demonstrated that significantly increasing the number of parameters in pre-trained LMs leads to
remarkable improvements in performance [6, 7]. As a result, there is now an urgent necessity to
effectively adapt these models, equipped with billion-scale parameters, to a wide range of tasks.

However, a significant disparity exists between the memory requirements of pre-trained LMs and
the capacity of current hardware, particularly GPUs. For example, even a GPU with 24GB memory
cannot accommodate the fine-tuning process of the T5-3B model [3] with batch size one, which
boasts three billion parameters. Without additional techniques, attempting to fine-tune billion-scale
LMs on a single GPU is impossible. Although model-parallel fine-tuning is feasible, the majority of
the time, we cannot bear the expense of acquiring multiple GPUs or the communication overhead
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involved. To ensure the smooth deployment of language models during the fine-tuning process, it is
crucial to adapt them for operation on a single GPU.

To address this issue, several parameter-efficient tuning methods are proposed [8, 9, 10, 11, 12, 13, 14].
Specifically, adapters [14, 13] insert a small module into the transformer blocks and only update it
while keeping other parameters fixed. Similarly, prompt tuning [8] introduces a small vector that is
concatenated with the input embeddings and updated during the tuning process. LoRA [12] injects
trainable rank decomposition matrices into the transformer block, updating them while freezing the
others. Parameter-efficient tuning methods mainly reduce the memory taken by the optimizer states
[15, 12]. Although the optimizer states contribute to the memory footprint, storing activations (or
feature maps) is the main memory bottleneck during training (often > 70%) [16, 17, 18, 19]. Thus,
parameter-efficient methods often do not reduce memory usage by much [9, 19].

In parallel, we can reduce the main memory bottleneck by reducing the activation storage in fine-
tuning. Since transformer-based models are mainly built based on the linear layer, a less-explored
direction is to replace the expensive matrix multiplication operation with its memory-efficient
estimations using column-row sampling (CRS) [21, 22]. The key idea of CRS is to sub-sample
tensors onto low-dimensional spaces and perform the original operations here. Specifically, for
the linear operation between two matrices A ∈ Rn×m and B ∈ Rm×q (in the context of machine
learning, A is often activations), we first sample k (k < m) column-row pairs according to a
pre-defined distribution. Then we obtain A′ ∈ Rn×k and B′ ∈ Rk×q (k < m) by picking k
columns of A and the corresponding rows of B according to the sampled column-row pairs [22].
Finally, we estimate AB ≈ A′B′. In this way, we only need to store the sub-matrix A′ and B′

in GPU memory to perform the computation. Moreover, transformer-based models training/tuning
are performed with the first-order stochastic optimizer, e.g., Adam [15]. In stochastic optimization,
models can work with noisy gradients, as long as the gradient estimator is unbiased and has a
reasonable variance. In view of such, we ask: why spend resources on obtaining exact gradients
when we are using stochastic optimization? Motivated by this, we focus on obtaining unbiased
gradients cheaply with approximated matrix multiplication.

20 30 40
Training Peak Memory (GB)

75

80

85

90

A
ve

ra
ge

 V
al

id
at

io
n 

R
es

ul
t (

%
)

Full (T5-Large)
LoRA (T5-Large)
LST (T5-Large)
LoRA+WTA-CRS@0.3 (T5-Large)
LoRA+WTA-CRS@0.3 (T5-3B)
LoRA+WTA-CRS@0.1 (T5-Large)
LoRA+WTA-CRS@0.1 (T5-3B)

Fig. 1. Accuracy-memory trade-off
of WTA-CRS and other memory-efficient
tuning methods. Unless specially stated,
we use the T5-Large in the figure.

The approximation method reduces the memory usage at the
cost of giving outputs with variance. Thus there naturally
exists an accuracy-memory trade-off. The main challenge is
how to integrate the approximated matrix multiplication into
transformer with minimal gradient variance. In this paper,
we propose a new family of unbiased estimator for matrix
multiplication with reduced variance, dubbed Winner-Take-
All Column-Row Sampling (WTA-CRS ). Compared to CRS,
WTA-CRS reduces the variance of an estimator by focusing
more on high-probability regions of the sampling distribution.
Moreover, WTA-CRS can serve as a drop-in replacement for the
linear operation in transformers, providing an unbiased weight
gradient with reduced memory usage. As shown in Figure 1,
our method achieves better accuracy-memory trade-off than
state-of-the-art memory-efficient tuning methods, e.g., LST [9] and LoRA [12]. Moreover, since
WTA-CRS executed at the operation level, it is orthogonal to most of the existing parameter-efficient
tuning methods. Our contributions are highlighted as follows:

• We design a new family of unbiased estimator for matrix multiplication with reduced variance. We
theoretically and experimentally verify that it has smaller variance than the established one under the
context of tuning transformer.

• By replacing the linear operation with WTA-CRS in transformers, we can achieve up to 2.7× peak
memory reduction with almost no accuracy drop, and enables up to 6.4× larger batch size. For
example, to fully tune T5-3B, it requires 66.4GB of memory for in a mini-batch size of 32, which
relies on A100 GPUs with a capacity of 80GB. With WTA-CRS , it only requires 21.6GB of memory
for fine-tuning, which can run on a GPU with 24GB memory, e.g. RTX3090Ti.

• We implement WTA-CRS as a ready-to-use extension for Pytorch with an easy-to-use API that can
also be combined with other memory-saving techniques.
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2 Background and Preliminary

In this section, we first analyze the memory usage of transformers. Then we introduce the background
on the approximated matrix multiplication.

2.1 The Memory Usage of Transformers
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Fig. 2. The GPU memory usage
breakdown for fine-tuning T5 [23],
where the batch size B is 64 and
sequential length S is 128 or 256.

In each training step of backpropagation, it has exactly two
phases, i.e., one forward phase and one backward phase.
Transformer-based models are mainly built based on the linear
operation, which can be written as:

Forward Pass Z = GEMM(H,W), (1a)

Backward Pass ∇H = GEMM(∇Z,W⊤), (1b)

∇W = GEMM(H⊤,∇Z), (1c)

where GEMM(·, ·) is the General Matrix Multiplication operation,
H and Z are the activation (or input feature maps) and output
feature maps, respectively. W is the weight of the linear layer. ∇H, ∇W, and ∇Z are the gradient
of H, W, and Z, respectively. From Equation (1c), activations H are used in the backward phase. In
commonly used deep learning framework [24, 25], it requires storing H in GPU memory during the
forward pass, for calculating the weight gradient∇W in the backward pass.

Previous works show that although the model parameters contribute to the memory footprint, acti-
vations (e.g., storing H) are the main memory bottleneck during training [16, 17, 18, 19]. To get a
sense of the scale, we show in Figure 2 that for popular transformer models like T5, activations may
take roughly 73 ∼ 88% of the total memory, depending on the batch size B and sequential length S.

2.2 Approximated GEMM With Sampling

Let X ∈ Rn×m, Y ∈ Rm×q be two matrices. The goal is to efficiently estimate the matrix production
XY. Singular Value Decomposition (SVD) outputs provably optimal low-rank estimation of XY
[21]. However, SVD is almost as expensive as matrix production itself. Instead, the sampling
algorithm is proposed to approximate the matrix product XY by sampling k columns of X and
corresponding rows of Y to form smaller matrices, which are then multiplied as usual [22, 26]:

GEMM(X,Y) =
m∑
i=1

X:,iYi,: ≈
k∑

t=1

1

kpit
X:,itYit,: = X′Y′, (2)

where X:,i ∈ Rn×1 and Yi,: ∈ R1×q are the ith column and row of X and Y, respectively. In this
paper, we call (X:,i,Yi,:) the ith column-row pair. k is the number of sampled pairs (1 ≤ k ≤ m).
P = {pi}mi=1 is a probability distribution over the column-row pairs. it ∈ {1, · · ·m} is the index of
the sampled column-row pair at the tth trial. st is the scale factor. X′ ∈ Rn×k and Y′ ∈ Rk×q are
the normalized sub-matrices sliced according to the sampled column-row pairs.

Existing work [22] shows X′Y′ is an unbiased estimation of XY, i.e., E[X′Y′] = XY. Furthermore,
the approximation error E[||XY − X′Y′||F ] is minimized when the probabilities {pi}mi=1 are
proportional to the product of the column-row Euclidean norms [22] (Proof in Appendix C):

pi =
||X:,i||2 ||Yi,:||2∑m
j=1 ||X:,j ||2 ||Yj,:||2

. (3)

As we analyzed in Section 2.1, storing the activation H is the major memory bottleneck. If we can
replace GEMM(H⊤,∇Z) in Equation (1c) with H′⊤∇Z′ following the paradigm of Equation (2),
then we only need H′ instead of H in GPU memory to compute the gradient, which significantly
decreases the memory usage of activations. This estimation linearly reduces the memory complexity
from O(nm) to O(nk). Also, the total number of floating point operations (FLOPs) is reduced as
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well since the computation is executed on two smaller matrices. For the ease of illustration, in this
paper we call the distribution in Equation (3) the column-row index distribution. In the next section,
we explore how to reduce memory usage via sampling-based matrix multiplication.

3 Methodology

In recent years, we have observed that deep neural network training can be performed almost entirely
with first-order stochastic optimization [15]. Thus intuitively, in stochastic optimization we can
reduce the resources spent on obtaining gradients, as long as the estimated gradient is unbiased with
reasonable variance [27, 28, 29]. Following this motivation, we first design a new unbiased estimator
for matrix multiplication with reduced variance compared to the one in Equation (2) (Section 3.1 ).
Then we introduce how to replace the GEMM in Transformer with its approximated version to reduce
the memory usage (Section 3.2).

3.1 Winner-Take-All Column-Row Sampling: A New Unbiased Estimator for GEMM

In this section, we mathematically design a new unbiased estimator for GEMM with reduced variance
called WTA-CRS (Winner-Take-All Column-Row Sampling). Following the notation in Section 2.2,
let X ∈ Rn×m, Y ∈ Rm×q be two matrices. P = {pi}mi=1 is the column-row index distribution in
Equation (3)2. We first define the variable f(i) as f(i) = X:iYi:

pi
.

f(i) is an unbiased estimation for the matrix production between X and Y. To see this,

Ej∼P [f(j)] =
m∑
i=1

pi
X:,iYi:

pi
= XY.

We note that the prior approximated matrix multiplication in Equation (2) is the direct extension of
f(i) by taking the average of {f(it)}kt=1 among k independent random trials to reduce the variance.
Here we explore an alternative approach to reduce the variance of f(i) beyond simple averaging. Our
core idea is to partition the column-row index distribution P = {pi}mi=1 into two complementary
regions based on the probability mass: a high-probability region PC and a low-probability region
PD\C , where D = {1, · · · ,m} is the whole set and C is the set of the column-row index with the
largest probability. Let C be the set of column-row pair indices associated with |C| largest pi. We
define WTA-CRS estimator for XY as follows:

Ej∼PD\C

[∑
c∈C

f(c)pc + (1−
∑
c∈C

pc)f(j)
]
. (4)

We note that the random variable in Equation (4) is the column-row pair index j, and is only
sampled from D\C. The estimator defined in Equation (4) contains two parts. The first part∑

c∈C f(c)pc has no relationship with the random variable j and is summed deterministically. The
second part f(j) is sampled stocastically, but scaled by the factor (1−

∑
c∈C pc). When P = {pi}mi=1

is concentrated on a small number of atoms, the scaling factor (1−
∑

c∈C pc) for the stochastic term
should be small. Therefore, we intuitively expect the estimator to have a small variance in this case
due to a small scaling factor. In this way, we reduce the variance of an estimator by focusing more on
high-probability regions of the distribution (winner-take-all). Below we formalize this intuition by
showing the statistical property of our estimator regarding the bias and variance, respectively.
Theorem 1 (Proof in Appendix C.2). The estimator defined in Equation (4) is an unbiased estimator
for matrix production XY, i.e, Ej∼PD\C [

∑
c∈C f(c)pc + (1−

∑
c∈C pc)f(j)] = XY.

Theorem 1 states that our proposed estimator in Equation (4) is unbiased. Below we compare our
proposed estimator to the CRS estimator in Equation (2) in terms of the variance. Suppose we have
the budget of only utilizing k column-row pairs for approximating the matrix production. From the
implementation perspective, the estimator defined in Equation (2) estimates GEMM(X,Y) as:

(CRS) g(X,Y) =
1

k

k∑
t=1

f(it), i1, · · · , ik
i.i.d∼ P . (5)

2Here we note that the theoretical analysis in this section can be applied to any probability distribution, not
only limited to the one in Equation (3).
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Our estimator defined in Equation (4) splits the budget k into two parts. Namely, the first part explicitly
sums the expectation terms for the largest probability group C (|C| < k), while stochastically average
k − |C| samples drawn from D\C to estimate the remaining terms, up to scale:

(WTA-CRS) ĝ(X,Y) =
∑
c∈C

f(c)p(c) +
1−

∑
c∈C pc

k − |C|

k−|C|∑
j=1

f(j), i1, · · · , ik−|C|
i.i.d∼ PD\C . (6)

Theorem 2 (Proof in Appendix C.3). Suppose the total budget of column-row pairs is k. If C satisfies∑
c∈C

pc >
|C|
k
, (7)

then we have Var[ĝ(X,Y)] < Var[g(X,Y)]. Moreover, Var[ĝ(X,Y)] is minimized when |C| =
min|C|∈{0,··· ,k}

1−
∑

c∈C pc

k−|C| .

Both the left- and right-hand sides of Equation (7) depend on the size of the highest probability group
|C|, which controls the number of high probability column-row pairs that are directly added without
sampling. Below we experimentally investigate whether Equation (7) holds under the context of
fine-tuning the transformer-based model with varying |C|.
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Fig. 3. The probability mass
∑

c∈C pc versus |C|
k in Equation (7) at k = 0.3|D|. Here we visualize

the column-row index distribution of query/key/value projection layer in the T5-base model, which is
fine-tuned on RTE dataset. More similar results can be found in Appendix E.1.

Experimental analysis. As shown in Figure 3, we visualize the two terms in Equation (3) for
the column-row index distribution of query, key, and value projection in the self-attention module,
respectively [1]. Specifically, we fix the total column-row pair budget k = 0.3|D| and change the
size of the highest probability group |C| from 0 to k. We conclude that Equation (7) holds for most of
the layers when fine-tuning transformers. Thus, we expect our WTA-CRS has better performance than
CRS for adapting transformer-based models, which is later experimentally verified in Section 5.

3.2 Compress GEMM in Transformers with WTA-CRS

GEMM Approx-
GEMM GEMMLived in GPU

memory

Equation (5)

Fig. 4. The illustration of how to deploy WTA-CRS
to linear layers. We only replace GEMM in Equa-
tion (1c) with its approximated version using
WTA-CRS . The pseudocode is given in Appendix
D Algorithm 1.

Previous work has shown that unbiasedness
of the estimated gradient is crucial for the
proper convergence of stochastic gradient de-
scent [27, 28, 16, 30]. As shown in Section 2.1,
we have three GEMM in the linear layer. Below
we investigate how to replace GEMM with its ap-
proximated version in a way that the estimated
gradient is unbiased.

Unbiasedness. Previous work has shown that
to ensure the unbiasedness of the gradient, the
approximation can only be applied during the
backward pass [16, 31, 21]. The rationale be-
hind this conclusion is that we have E[f(x)] ̸=
f(E[x]) for any non-linear function f(·), e.g.,
E[x2] ̸= E2[x]. Thus if we replace the forward GEMM in Equation (1a), even when the approximation
method gives an unbiased estimation, i.e., E[ĝ(H,W)] = HW = Z, the output activations (e.g.,
GeLU(Z)) are still biased since the activation function is non-linear, namely,

GeLU(ĝ(H,W)) = GeLU(E[Z]) ̸= E[GeLU(Z)].
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Fig. 5. The diagram of a single Transformer block. The shape of activations is annotated, where
B,S,Dmodel, Nhead, and Dhead are the batch size, sequence length, hidden size, number of attention
heads, and head dimension, respectively. WTA-CRS can be applied to the operators in green; the acti-
vation maps of operators in blue can be losslessly compressed; and those in gray are not compressed
in this paper. The idea of this figure is inspired by [32].

To ensure the unbiasness of gradient and reduce the memory usage of storing H, as shown in the
example of Figure 4, we only replace GEMM in the backward pass with its approximation (e.g.,
Equation (1c)), while leaving the forward one unchanged (e.g., Equation (1a)). We show in
Appendix B that the estimated weight gradient is unbiased in this case.

System Implementation. Here we present how we implement WTA-CRS in Equation (6) in practice.
For the linear layer, as we analyzed, we only replace GEMM in Equation (1c) with its approximated
version. In this case, X and Y in Equation (6) are activation H⊤ and output gradient∇Z, respectively.
Given the total column-row pair budget k, the first step is to build the deterministic index set C,
where each element is summed explicitly without sampling. Note that C is a set of indices with
the highest probabilities in Equation (3). Thus, to build C, we only need to determine its size,
denoted as |C|, which minimizes the variance of the estimator. As Theorem 2 suggested, we set
|C| = min|C|∈{0,··· ,k}

1−
∑

c∈C pc

k−|C| . The second step is to sample k − |C| column-row indices from

the remaining distribution PD\C to obtain the set Cstoc, where |Cstoc| = k − |C|. The third step is to
build sub-sampled H′ with only rows from C ∪ Cstoc. Note that for rows in H′ from Cstoc, we need to
normalize it by 1−

∑
c∈C pc

k−|C| according to Equation (6). We illustrate the above process in Figure 4.
The pseudocode to Appendix D Algorithm 1.

Scope. Here we show which operation can be replaced with its approximation version. As shown
in Figure 5, the transformer is mainly consisted of linear layer, TensorMul, and other operations
(e.g., GeLU, Dropout, LayerNorm). TensorMul in Figure 5 refers to the multiplication between two
four-dimensional tensors. Our WTA-CRS can be applied to Linear-Q, -K, -V, -O, -U, -D, TensorMul-1,
and TensorMul-2 (in green). The activations of Dropout and GELU operations (in blue) can be
losslessly compressed. The Softmax and LayerNorm operators (in gray) remain unchanged.

4 Related Work and Discussion

Due to the page limit, we discuss the related work on approximated matrix multiplication and
aproximation in LLM inference. Other related topics, e.g., parameter-efficient fine-tuning, activation
quantization, and gradient checkpointing, can be found in Appendix A. We also discuss the limitation
and potential negative social impact in Appendix A.

Approximated Matrix Multiplication. In the context of neural networks, approximated matrix
multiplication methods can be broadly categorized into two main groups: (1) Butterfly-based methods
[33, 34] replace dense weight matrices with butterfly matrices. We note that they focus on the weight
matrix and are orthogonal to our research, as we concentrate on sub-sampling the activation matrix.
(2) Column-row sampling (CRS) methods[22, 21, 31] select important rows and columns from the
input matrices and perform the multiplication on the sampled matrix. Our work is closely aligned

6



with this second research line. [21, 31] share similarities with our research in terms of utilizing CRS
for approximating matrix multiplication within neural networks. The main distinction lies in how to
select the column-row pairs. Specifically, [21] deterministically selects column-row pairs without
scaling, whereas our estimator divides the column-row pairs into a deterministic component and a
stochastic component. As we analyzed, selecting column-row pairs deterministically is biased. Later
we show that this approach may cause a significant accuracy drop (“Deterministic” in Figure 12).

Approximation in Inference There are two approximation techniques to reduce inference latency.
(1) Sparse Modeling, which only involve a subset of weights during computation to reduce both
computational and memory I/O demands [35, 36, 37]. (2) Quantization, which compresses the trained
weight into lower numerical precision [38, 39, 40]. All these approximation techniques trade-off
model quality in return for improved efficiency. Besides approximation technique itself, researchers
also propose methods to recover the accuracy drop of compressed models [41, 42], e.g., by prompting
compressed models. These methods can greatly improve the accuracy-efficiency trade-off of LLMs.

5 Experiments

In this section, we design experiments to answer the following research questions: RQ1: How
effective is WTA-CRS in terms of accuracy with reduced memory usage? RQ2: How sensitive
is WTA-CRS affected by its key hyper-parameters? RQ3: WTA-CRS contains two parts, i.e., the
deterministic summation part and the statistical sampling part. Are they both necessary? RQ4: How
is the fine-tuning speed affected by WTA-CRS ?

5.1 Experiment Setup

Datasets and Evaluation Protocol. Following most of the previous work, we adopt GLUE bench-
mark [43] to evaluate the effectiveness of different methods, including the CoLA, SST-2, MRPC,
QQP, MNLI, QNLI, RTE, and STS-B datasets. To evaluate the memory usage, we report the peak
GPU memory usage and compression rate during the fine-tuning process with Huggingface API [44].

Compared Methods and Adopted Models. We consider three methods to compare in this paper:
Full fine-tuning (Full), LoRA [12], and Ladder Side-tuning (LST) [9]. Specifically, Full tunes all
of the parameters in the model to provide an upper bound of accuracy; LoRA inserts trainable
low-rank matrices into the model to parameterize the weights’ changes; LST injects a trainable ladder
side structure. Since WTA-CRS essentially replace the linear operation with approximated one, we
emphasize that our WTA-CRS is compatible with all these three compared methods, i.e., they can
be combined together towards smaller memory usage. For the backbone model, we follow the
previous work [9, 14, 12] to adopt the OPT [45], Bert-Base [2], Bert-Large, T5-Base, T5-Large, and
T5-3B [46] for evaluating the effectiveness of different methods.

Hyperparameter Settings. For WTA-CRS, it only has one hyperparameter k, which controls the
column-row pair budget. We assign the same k to all replaceable linear operations in the model. We
consider the normalized column-row pair budget k/|D| ∈ {0.3, 0.1}, which are denoted as WTA-CRS
@0.3 and WTA-CRS@0.1, respectively. We also consider the combination of WTA-CRS and LoRA to
further reduce the memory cost of both optimizer and activations. The detailed hyperparameters are
given in Appendix F. All reported results are averaged over three random trials.

5.2 Accuracy versus Memory Usage (RQ1)

To answer RQ1, we first analyze the trade-off between the model performance and memory saving.
The evaluation results and peak memory usage are given in Tables 1 and 2, respectively. We observe:

❶ WTA-CRS achieves a superior trade-off between accuracy and memory usage compared to baselines.
Specifically, WTA-CRS has negligible accuracy drop, while the peak memory usage is reduced by
2.1× ∼ 2.7× (when combined with LoRA).
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Table 1: The GLUE benchmark results with T5 and Bert at different scales.
Model Method CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B AVG

BERT-Base

Full 60.9±1.89 92.2±0.34 87.9±0.46 87.8±0.01 83.7±0.05 90.7±0.14 66.4±0.36 88.1±0.27 82.2
LoRA 61.6±0.25 91.7±0.17 90.0±0.34 86.9±0.1 83.6±0.02 90.8±0.17 68.2±0.36 87.6±0.52 82.6
WTA-CRS@0.3 60.7±0.89 90.2±0.06 87.0±0.14 87.5±0.03 83.4±0.06 90.4±0.07 65.9±0.18 89.3±0.2 81.8
LoRA+WTA-CRS@0.3 61.5±1.08 89.6±0.52 89.6±0.09 86.3±0.02 82.8±0.35 90.6±0.16 67.9±0.72 87.3±0.7 81.9

T5-Base

Full 60.1±0.37 94.9±0.29 91.5±0.29 88.5±0.07 87.0±0.1 93.3±0.03 79.4±0.78 90.6±0.14 85.7
LoRA 60.6±0.94 94.6±0.05 92.2±0.31 87.4±0.06 86.2±0.06 93.4±0.03 80.6±0.74 90.7±0.05 85.7
LST 55.5±0.24 94.0±0.17 91.1±0.18 87.4±0.03 85.7±0.13 93.4±0.0 72.7±0.54 90.4±0.06 83.8
WTA-CRS@0.3 60.9±0.52 94.8±0.14 91.1±0.35 88.0±0.11 86.3±0.02 93.1±0.07 78.7±0.59 90.5±0.05 85.4
LoRA+WTA-CRS@0.3 60.0±0.51 94.4±0.16 92.0±0.38 87.3±0.04 85.6±0.08 93.2±0.01 80.1±1.02 90.4±0.06 85.4

BERT-Large

Full 66.8±0.31 93.5±0.29 89.5±0.26 88.5±0.03 86.4±0.19 92.1±0.24 72.6±0.36 90.2±0.76 85.0
LoRA 65.9±0.27 93.8±0.17 90.8±0.37 87.6±0.08 85.9±0.05 92.0±0.2 71.3±0.18 90.3±0.09 84.7
WTA-CRS@0.3 64.7±0.44 93.5±0.0 89.3±0.39 88.2±0.04 85.2±0.03 91.9±0.12 73.8±0.54 90.4±0.02 84.6
LoRA+WTA-CRS@0.3 66.0±0.33 93.3±0.29 89.7±1.32 87.6±0.02 86.0±0.07 91.9±0.14 72.4±0.17 89.7±0.04 84.6

T5-Large

Full 61.3±1.01 96.3±0.0 93.4±0.13 89.7±0.01 89.8±0.07 94.2±0.05 85.3±0.17 91.8±0.08 87.7
LoRA 63.3±0.26 96.4±0.14 93.5±0.16 88.5±0.03 89.5±0.05 94.3±0.07 84.2±0.68 91.7±0.13 87.7
LST 59.9±0.77 95.8±0.06 91.8±0.08 88.4±0.01 88.7±0.05 94.2±0.02 82.5±0.18 91.4±0.07 86.6
WTA-CRS@0.3 60.9±1.18 96.3±0.25 93.6±0.57 89.3±0.04 89.5±0.12 94.1±0.03 84.4±0.34 91.3±0.05 87.4
LoRA+WTA-CRS@0.3 62.9±1.19 96.2±0.05 93.6±0.47 88.3±0.02 89.2±0.08 94.0±0.07 83.9±0.95 91.3±0.03 87.4

T5-3B LoRA 70.1±0.37 96.8±0.29 94.0±0.27 89.9±0.0 91.0±0.14 95.6±0.05 85.9±0.36 92.9±0.08 89.5
LoRA+WTA-CRS@0.3 71.4±0.35 96.4±0.06 94.6±0.39 90.0±0.05 91.0±0.06 95.6±0.12 86.3±0.36 92.9±0.09 89.8

Table 2: Peak memory usage (GB) and compression rate of fine-tuning T5-Base and -Large. We
measure the memory usage on a single NVIDIA A100 (80GB) GPU. For T5-3B, since it is trained
using multi-GPUs with data parallel. We instead report the maximum batch size in Figure 6 for it.

FP LoRA LST WTA-CRS@0.3 WTA-CRS@0.1 LoRA+WTA-CRS@0.3 LoRA+WTA-CRS@0.1

T5-Base 17.66 (1×) 13.84 (1.3×) 5.50 (3.2×) 8.44 (2.1×) 7.30 (2.4×) 6.50 (2.7×) 5.44 (3.2×)
T5-Large 45.85 (1×) 36.83 (1.2×) 14.85 (3.1×) 21.58 (2.1×) 18.46 (2.5×) 17.44 (2.6×) 14.64 (3.13×)
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Fig. 6. Peak memory usage
versus the maximum batch size
of T5-3B. More similar results
are shown in Appendix E.2.

As we analyzed, LoRA mainly reduces the memory of optimizer
states. Thus, although it has negligible accuracy drop, it can only
achieve∼ 1.3× peak memory saving. LST can reduce memory us-
age up to 3×, but its accuracy drop is much larger than LoRA and
WTA-CRS . Since WTA-CRS executes at the operation level and fo-
cuses on the activations, we further combine LoRA with WTA-CRS
to reduce memory usage more aggressively. When combing with
LoRA, WTA-CRS achieves 2.7× memory usage saving with almost
no accuracy drop. To fully tune T5-3B, it requires 66.4GB of mem-
ory for in a mini-batch size of 32, which relies on A100 GPUs
with a capacity of 80GB. On the other hand, LoRA+WTA-CRS
only requires 21.6GB of memory for finetuning with a mini-batch
size of 32, which can run on a GPU with 24GB memory, e.g.
RTX3090Ti or A5000. We have experimentally confirmed this
conclusion. Under the same hardware, WTA-CRS enables the tuning of larger models, resulting in
improved down-streaming task performance. Thus as shown in Figure 1, ❷ under the similar memory
budget, WTA-CRS outperforms the other methods in terms of the accuracy.

Also, according to Figure 6, for T5-3B, LoRA itself can enable 1.9× larger batch size. ❸ When
combined with LoRA, WTA-CRS enables 4.8× (k=0.3|D|) to 6.4× (k=0.1|D|) larger batch-size.

Influence of Row-column Pairs Budget (RQ2). As we analyzed in Section 3.2, WTA-CRS only have
one hyperparameter, i.e., the total column-row pair budgets k. We conduct the ablation study with
different budget k in Figure 7. We observe that ❹ It has almost no accuracy drop when k = 0.3|D|.
And the accuracy drop is about 1% when k = 0.1|D|. Notably, for T5-3B, the accuracy drop is only
0.4% when k = 0.1|D|, which is much smaller than T5-Base and T5-Large. This suggests that larger
models are more compressible because they have more redundant activations, which is consistent
with previous observations [47].

5.3 Ablation Study (RQ3 and RQ4)

To answer RQ3, WTA-CRS is compared with two compositional methods to demonstrate its superiority.
Namely, (1) the Deterministic method selects row-column pairs with top k probability of Equation (3).
We note that this is the estimator proposed in [21]. (2) The CRS method follows Equation (3) to
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Fig. 7. Average validation results on GLUE dataset of WTA-CRS with varying budgets.

sample the row-column pairs. All methods are deployed to GEMM in the backward pass, while leaving
the forward one unchanged. The experiments are conducted on the training of T5-base language
model on the SST2, MNLI, and QQP datasets; The column-row pair budget takes k/|D| = 0.1 for
all methods. The validation accuracy versus training epoch is given in Figure 12. We observe:

❺ WTA-CRS outperforms all compared methods, especially as the training epoch grows. The deter-
ministic selection of top k column-row pairs suffers from accumulation of bias error that ultimately
results in a failure of convergence. For CRS, it also enables the unbiased weight gradient. However,
as we theoretically and experimentally analyzed in Theorem 7 and Figure 3, it is worse than WTA-CRS
due to larger variance. In summary, both the deterministic and stochastic parts contribute to the
effectiveness of WTA-CRS , which is consistent with our theoretical analysis.
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Fig. 8. Batch size versus training throughput (sen-
tences/sec) with different methods, where the se-
quential length is 128. The hardware is one single
NVIDIA-A100 (80GB).

The speed of WTA-CRS (RQ4). The configu-
ration of computational infrastructure is given
in Appendix F.1. We note that WTA-CRS does
not add any extra parameters to the model.
Thus, WTA-CRS only affect the fine-tuning
speed, without affecting the inference speed.
Below we analyze how the fine-tuning speed
affected by WTA-CRS . As we analyzed in Ap-
pendix A limitation, the current implemen-
tation is not heavily optimized and thus the
execution time of WTA-CRS is still slower than
the original linear operation (details are shown
in Appendix E.2). However, under the same
hardware, a reduction in activation memory enables the use of larger batch sizes, thereby improving
training speed due to increased GPU utilization [48, 9]. As we analyzed in Figure 6, WTA-CRS can
enlarge the available batch size by up to 4.8× larger. This enhancement is expected to result in a
acceleration of the training speed. To illustrate, Figure 8 presents a visualization of batch size against
training throughput (sentences per second) for both T5-Large and T5-3B models. We observe that
❻ WTA-CRS enables faster training speed under the same hardware. Specifically, on the T5-Large
model, WTA-CRS@0.1 shows 1.08× higher training throughput; and on the T5-3B model, WTA-CRS
@0.3 and WTA-CRS@0.1 achieve 1.14× and 1.21× higher training throughput, respectively.
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7 Conclusion
In this paper, we propose WTA-CRS , a new unbiased estimator for matrix production with reduced
variance. We theoretically and experimentally show when and why the estimator is better than the
traditional unbiased estimator in terms of the variance. In the context of adapting transformers, it
almost has no accuracy drop while reducing the peak memory usage by up to 2.7×, and it enables a
6.4× larger batch size, which in return resulting in 1.2× higher training throughput.
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Appendix

A Extended Related Work and Discussion

Parameter-Efficient Fine-tuning. Parameter-efficient tuning methods select a small subset of
parameters or insert a few parameters to a pre-trained network. Then they only update the small
subset of parameters, while keeping others fixed [8, 9, 10, 11, 12, 13, 14, 49]. For example, Adapters
[14, 13] insert a small module into the transformer blocks and only update it. Similarly, prompt
tuning [8] introduces a small vector that is concatenated with the input embeddings. BitFit [11] only
tunes the bias term of the model. LoRA [12] injects trainable rank decomposition matrices into the
transformer block. Although these methods are “parameter-efficient”, they actually cannot reduce the
memory usage of the model itself. This is because we still needs to build the computation graph for
the whole model. Instead, the memory usage of optimizer states will be significantly reduced, which
is in proportional to the number of trainable parameters [15].

Activation Quantization. The activation quantization methods focus on quantizing the activation
into low numerical precision numbers, e.g., 8-bit integers [16, 30, 50, 51, 52]. Our work also
compresses the activation, but in a different way. We emphasize that our work is orthogonal to
activation quantization in the sense that our work essentially reduces the dimension of activation.
This distinction allows our method to be readily combined with activation quantization techniques,
offering the potential for even more aggressive compression.

Gradient Checkpointing. Gradient checkpointing helps decrease activation memory usage by
saving only a selection of activations. However, it demands additional computation during the
backward pass, as discarded activations must be recalculated [18, 17]. According to the report of
Checkmate3 [17], it achieves “a 2.3x memory reduction when training a BERT model with Checkmate
optimizations (at 1x extra overhead for rematerialization)”.

Limitations Although WTA-CRS significantly reduces the computation of the backward pass in a
hardware-friendly way i.e., dropping entire rows/columns in the tensor, the current implementation
still hampers the execution time of linear operations. This is because the extra sampling process and
data movement counteract the acceleration. However, we note that (1) the overhead can be greatly
reduced with better implementation, e.g., using prefetch and operation-fusion technique [30]; (2) the
existing implementation can still yield a large speedup when employing larger batch sizes (Figure 8).

Potential Negative Societal Impacts. Our research primarily focuses on reducing the memory
requirement of fine-tuning Language Models (LMs). The carbon emissions produced by LM fine-
tuning may pose environmental issues. Our next step is to further improve the efficiency of LM
fine-tuning, particularly on hardware with lower energy consumption.

B Unbiasedness of Weight Gradient

This part we directly follow the proof of Theorem 1 in ActNN [16]. For completeness, we provide
the proof sketch here that is short and easy to follow. Specifically, here we use ReLU as the activation
function for illustration convenience. We note that the conclusion in this section holds for any
non-linear activation function. Specifically, the forward pass of ReLU-Linear at the lth layer is

Z(l+1) = H(l)W(l),

H(l+1) = ReLU(Z(l+1)),

and the backward pass of ReLU is:

E[∇Z(l+1)] = E[1Z(l+1)>0 ⊙∇H(l+1)]

= 1Z(l+1)>0 ⊙ E[∇H(l+1)],

3https://github.com/parasj/checkmate/issues/153
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where ⊙ is the element-wise product and 1 is the indicator function. The element-wise product
is linear operation and 1Z(l+1)>0 is only related to the pre-activation Z(l+1) in the forward pass.
We only apply the approximation during the backward pass so 1Z(l+1)>0 can be extracted from
the expectation. We know that for the last layer L, we have E[∇H(L)] = H(L) since we do not
apply activation at the output layer. We then can prove by induction that E[∇H(l+1)] = H(l+1) and
E[∇W(l)] = W(l) for any layer l.

C Proof

C.1 Derivation of Equation (3)

Let X ∈ Rn×m, Y ∈ Rm×q be two matrices. The matrix multiplication XY can be estimated as

GEMM(X,Y) =
m∑
i=1

X:,iYi,: ≈
k∑

t=1

1

kpit
X:,itYit,: = X′Y′,

Equation (3) shows the approximation error E[||XY−X′Y′||F ] is minimized when the probabilities

pi =
||X:,i||2 ||Yi,:||2∑m
j=1 ||X:,j ||2 ||Yj,:||2

.

Proof. Let f(i) = X:iYi:

pi
∈ Rn×q . We note that f(i) is an unbiased estimation of XY. Namely,

Ej∼P [f(j)] =
m∑
i=1

pi
X:,iYi:

pi
= XY.

Then we have

X′Y′ =
1

k

k∑
t=1

f(it), (8)

where i1, · · · , it are the index of the sampled column-row pairs at tth random trials. For each it, its
variance is

Var[f(it)] = Var[
X:itYit:

pit
]

= E[
X2

:it
Y2

it:

p2it
]− E2[

X:itYit:

pit
]

= E[
X2

:it
Y2

it:

p2it
]− (XY)2.

=
m∑
t=1

X2
:tY

2
t:

pt
− (XY)2. (9)

where the first step follows from the fact that Var[x] = E[x2]− E2[x].

Then we have,

E[||XY −X′Y′||F ] =
n∑

i=1

q∑
j=1

E[(XY −X′Y′)2ij ]

=
n∑

i=1

q∑
j=1

Var[(X′Y′)ij ].
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By combining Equation (8) and Equation (9) into the above equation, we have

E[||XY −X′Y′||F ] =
1

k

n∑
i=1

q∑
j=1

m∑
t=1

X2
itY

2
tj

pt
− 1

k
∥XY∥2F .

=
1

k

m∑
t=1

∥X:,t∥22∥Yt,:∥22
pt

− 1

k
∥XY∥2F .

To minimize E[||XY −X′Y′||F ], the optimal probability distribution can be obtained via solving
the following optimization problem:

min
p1,··· ,pm

m∑
t=1

∥X:,t∥22∥Yt,:∥22
pt

,

s.t.
m∑
t=1

pt = 1.

The solution to the above convex problem is the distribution defined in Equation (3). Namely,

pi =
||X:,i||2 ||Yi,:||2∑m
j=1 ||X:,j ||2 ||Yj,:||2

.

C.2 Unbiasedness of Our Proposed Estimator

Theorem 1 (Proof in Appendix C.2). The estimator defined in Equation (4) is an unbiased estimator
for matrix production XY, i.e, Ej∼PD\C [

∑
c∈C f(c)pc + (1−

∑
c∈C pc)f(j)] = XY.

Proof.

Ej∼PD\C

[∑
c∈C

f(c)pc + (1−
∑
c∈C

pc)f(j)
]

=
∑
c∈C

f(c)pc + (1−
∑
c∈C

pc)Ej∼PD\C [f(j)]

=
∑
c∈C

f(c)pc + (1−
∑
c∈C

pc)
∑

j∈D\C

pj
1−

∑
c∈C pc

f(j)

=
∑
c∈C

f(c)pc +
∑

j∈D\C

f(j)pj

=Ej∼P [f(j)]

=XY

C.3 Variance of Our Proposed Estimator

Theorem 2 (Proof in Appendix C.3). Suppose the total budget of column-row pairs is k. If C satisfies∑
c∈C

pc >
|C|
k
, (7)

then we have Var[ĝ(X,Y)] < Var[g(X,Y)]. Moreover, Var[ĝ(X,Y)] is minimized when |C| =
min|C|∈{0,··· ,k}

1−
∑

c∈C pc

k−|C| .
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Proof. Recall that the original estimator for matrix production XY is defined as

Ei∼P [f(i)]. (10)

and our proposed family of estimator is defined as:

h(j) = Ej∼PD\C

[∑
c∈C

f(c)pc + (1−
∑
c∈C

pc)f(j)
]
. (11)

We first define three independent random variables as belows:

u ∼ PC , (12)

j ∼ PD\C , (13)

b ∼ Bernoulli(1−
∑
c∈C

pc). (14)

According to the Law of total variance, we have

Var[f(i)] = Eb

[
V ar[f(i)|b]

]
+Varb

[
E[f(i)|b]

]
≥ Eb

[
Var[f(i)|b]

]
=

∑
c∈C

pcVar[f(i)|b = 0] + (1−
∑
c∈C

pc)Var[f(i)|b = 1]

≥ (1−
∑
c∈C

pc)Var[f(i)|i ∈ D\C] (15)

where the first step follows from the fact that for any random variance x,y, we have Var[y] =
E[Var[y|x]] + Var[E[y|x]]. Also, by Equation (11), we have

Var[h(j)] = (1−
∑
c∈C

pc)
2Var[f(j)|j ∈ D\C]. (16)

By combining the above two inequality, we have

Var[h(j)] ≤ (1−
∑
c∈C

pc)Var[f(i)]. (17)

Equation (17) quantitatively shows the variance reduction of h(j) over f(i). Then we compare our
estimator ĝ(X,Y) and g(X,Y) in terms of variance.

First, because g(X,Y) = 1
k

∑k
t=1 f(it), i1, · · · ik

i.i.d∼ P . Thus we have

Var[g(X,Y)] =
1

k
Var[f(i)]. (18)

Similarly, we have

Var[ĝ(X,Y)] =
1

k − |C|
Var[h(j)]. (19)

By combining Equation (17) into the above two equations, we have

Var[ĝ(X,Y)] =
1

k − |C|
Var[h(j)] (20)

≤
1−

∑
c∈C pc

k − |C|
Var[f(i)]

≤
1−

∑
c∈C pc

k − |C|
kVar[g(X,Y)],
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where the first step follows from Equation (17). By setting 1−
∑

c∈C pc

k−|C| k ≤ 1, we arrive the conclusion

that when
∑

c∈C pc >
|C|
k , we have Var[ĝ(X,Y)] ≤ Var[g(X,Y)].

Further, 1−
∑

c∈C pc

k−|C| k achieves the minimal when |C| = min|C|∈{0,··· ,k}
1−

∑
c∈C pc

k−|C| .

D Implementation Details

The pseudocode for approximated linear layer with WTA-CRS and standard line layer is given in
Algorithm 1 and Algorithm 3, respectively. The column-row pair sampling procedure is given in
Algorithm 2. For the ease of illustration, we ignore the sequential length. As we mentioned in the
main text, we only replace the GEMM in the backward pass with WTA-CRS . According to Equation (1c),
we need the activation gradient∇Z to perform the column-row pair sampling during the forward pass.
Thus we initialize a cache in CPU memory to store the gradient norm of activations from the last
step. When performing column-row pair selection, we need to swap the gradient norm of activations
between CPU and GPU, which will cause extra time overhead due to the data movement. Fortunately,
we note that the number of elements in the gradient norm of activations is significantly less than the
one in activations, which does not cause a significant time overhead.

Algorithm 1: Forward & Backward pass of Approximated Linear Layer
Hyperparameter: The total budget of column-row pairs k.
procedure INIT:

Initialize Cache ∈ RN as an empty matrix in main memory // N is the total number
of samples in the dataset. Cache is used for saving the norm of
output gradient ∇Z.

end
procedure FORWARD PASS:

Input: activation H ∈ RB×D, weight W ∈ RD×D, indices of the current batch samples
BI = {j1, · · · , jB}.

ctx← {} // the context which saves tensors for backward
Z = HW
H′, ind←SUBSAMPLE(H, Cache[BI], k)
// Cache[BI] is the cached gradient norm from the backward pass; ind

is the set of involved column-row pair indices
ctx← {H′,W, BI, ind}
return Z

end
procedure BACKWARD PASS:

Input: ctx from the forward pass, output gradient∇Z ∈ RB×D

H′,W, BI, ind← ctx
∇H = ∇ZW⊤

∇Z′ ← ∇Z[ind]
// ∇Z′ ∈ Rk×D

∇W = H′⊤∇Z′

for j in BI do
Cache[j] = ∥∇Zj,:∥2

end
// Update the gradient norm of samples in the current batch
return∇H,∇W

end
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Algorithm 2: SUBSAMPLE

Input: activation H ∈ RB×D, gradient norm z ∈ RB , the total budget of column-row pairs k.
for i = 1, · · · , B do

pi ← zi||Hi,:||2∑B
j=1 zi||Hj,:||2

// The probability of column-row pairs defined in

Equation (3).
end
k̂ ← mink̂∈{0,··· ,k}

1−
∑

c∈C pc

k−k̂
, s.t. C = |k̂|. // C is the set of column-row pair

indices associated with |C| largest pi.
Sample k − |C| i.i.d. column-row pairs Cstoc = {i1, · · · , ik−|C|} from the distribution PD\C

ind← C ∪ Cstoc
for j ∈ Cstoc do

H[j, :]← H[j, :] ∗ 1−
∑

c∈C pc

(k−|C|)pj
// We need to normalize the stochastic part

in Equation (6) to ensure the unbiasedness.
end
H′ ← H[ind] // H′ ∈ Rk×D

return H′, ind

Algorithm 3: Forward & Backward pass of the standard Linear layer
procedure FORWARD PASS:

Input: activation HQ ∈ RBS×D, weight WQ ∈ RD×D, batch indices index
ctx← {} // the context which saves tensors for backward
ZQ = HQWQ

ctx← {HQ,WQ}
return ZQ

end
procedure BACKWARD PASS:

Input: ctx from the forward pass, output gradient∇ZQ

HQ,WQ ← ctx
∇HQ = ∇ZQW

⊤
Q

∇WQ = H⊤
Q∇ZQ

return∇HQ,∇WQ

end
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E More Experimental Results
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Fig. 9. The probability mass
∑

c∈C pc versus |C|
k in Equation (7) at k = 0.1|D|. Here we visualize the

column-row index distribution of query/key/value layer T5-base model, fine-tuned on RTE dataset.
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Fig. 10. The probability mass
∑

c∈C pc versus |C|
k in Equation (7) at k = 0.5|D|. Here we visualize

the column-row index distribution of query/key/value layer T5-base model, fine-tuned on RTE dataset.
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Fig. 11. The probability mass of top-10% column-row pairs in Equation (3) versus iterations. Here
we visualize the query/key/value layer T5-base model, fine-tuned on RTE dataset.
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Fig. 12. Validation results of T5-Base with different methods.

E.1 More Experimental Analysis on Theorem 2

To evaluate Theorem 2 more comprehensively, below we also plot the
∑

c∈C pc versus |C|
k at k =

0.1|D| and k = 0.5|D| in Figure 9 and 10, respectively. We also plot
∑

c∈C pc versus iterations
in Figure 11. We summarize that the the column-row index distribution is concentrated on a few
column-row pairs. Thus, the assumption in Theorem 2 holds under the context of fine-tuning
transformers.

E.2 More Experimental Speed Analysis

Increasing the batch size can often result in faster model convergence and/or enhance the final
performance. Ideally, we should adjust the batch size according to the requirements of our model
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Method T5-
ATT

T5-
FF

T5
Block

T5-
Large

Fwd Full 8 10 17 1052
WTA-CRS 22 16 37 2013

Bwd Full 16 19 34 2073
WTA-CRS 15 14 30 1738

F-B Full 24 29 51 3125
WTA-CRS 37 30 67 3751

Table 3: Latency (ms) of Forward and Backward pass.

rather than being constrained by the GPU’s memory capacity. To illustrate this, we have represented
the correlation between peak memory usage and maximum mini-batch size for T5-Base, T5-Large,
and T5-3B in Figure 13. Our observations highlight that WTA-CRS effectively increases the maximum
available batch size.

We also provide the apple-to-apple speed comparison for linear operation with and without WTA-CRS
in Table 3. In Table 3, “Fwd”, “Bwd”, and “F-B” are the time of forward pass, the time of backward
pass, and the total time for both the forward and backward pass, respectively. We summarize that
under the same workload, the current implementation of WTA-CRS may roughly slow down the linear
operation about 20%. This is because the extra sampling process and data movement counteract
the acceleration (see Algorithm 1). However, we note that (1) the overhead can be greatly reduced
with better implementation, e.g., using prefetch and operation-fusion technique [30]; (2) the existing
implementation can still yield a large speedup when employing larger batch sizes (Figure 8).
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Fig. 13. Peak memory usage versus maximum mini-batch size of T5.

E.3 Performance of WTA-CRS on OPT models

We conduct experiments of WTA-CRS on OPT models. It is observed in Table 4 that WTA-CRS
exhibits almost no drop in accuracy compared to Full training and LoRA on all three architectures.
This observation indicates the effectiveness of WTA-CRS, especially considering its consistent
performance across the encoder-only, decoder-only and encoder-decoder transformer architectures.

Method CoLA MRPC RTE STS-B Average

Full 49.84 85.47 72.56 84.43 73.075
LoRA 52.3 88.36 74.01 87.21 75.47
LoRA+WTA-CRS@0.3 51.8 88.43 74.01 86.61 75.2125

Table 4: Deployment of WTA-CRS@0.3 to OPT-350M.

E.4 Performance of Activation Quantization+WTA-CRS

To demonstrate the orthogonality of WTA-CRS with activation quantization, we conducted additional
experiments of combining WTA-CRS@0.3, along with activation quantization@8bit, on the T5-
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base model. The experiment results are presented in Table 5. It is notabe that the combination
of LoRA+WTA-CRS@0.3+Quant@8bit exhibits almost no drop in accuracy compared with Full
training, LoRA, WTA-CRS@0.3, and LoRA+WTA-CRS@0.3. This observation clearly demonstrates
the orthogonality of WTA-CRS with activation quantization, indicating that they can be effectively
applied together without compromising performance.

Method CoLA MRPC RTE STS-B Average

FP32 60.1 91.5 79.4 90.6 80.4
LoRA 60.6 92.2 80.6 90.7 81.0
WTA-CRS@0.3 60.9 91.1 78.7 90.5 80.3
LoRA+WTA-CRS@0.3 60 92 80.1 90.4 80.6
LoRA+WTA-CRS@0.3+Quant@8bit 60.3 92.06 81.2 90.4 81.0

Table 5: Combination of WTA-CRSwith quanzation on the T5-base model.

E.5 Comparison of WTA-CRSwith QLoRA

We conduct experiments to compare WTA-CRSwith QLoRA on the T5-Base model. Specifically, we
first quantize the model into NF4 data format using ‘bitandbytes‘ and keep it fixed. Then we apply
LoRA+WTA-CRS@0.3 over the quantized model. Below in Table 6, we demonstrate that applying
QLoRA and WTA-CRS over a base model quantized in NF4 results in almost no performance loss
against the QLoRA baseline. However, such joint applications may enjoy the training-time memory
efficiency offered by WTA-CRS, as illustrated in Table 7.

Method Cola MRPC RTE STS-B Average

LoRA 60.6 92.2 80.6 90.7 81.025
LoRA+WTACRS@0.3 60.0 92.0 80.1 90.4 80.625
QLoRA (NF4) 61.3 92.2 81.2 90.5 81.3
QLoRA (NF4)+WTACRS@0.3 62.1 92.2 82.7 90.1 81.775

Table 6: Comparison of WTA-CRSwith QLoRA.

Method Base Large

Lora 13.84 36.83
QLora 13.64 36.12
LoRA+WTA-CRS@0.3 6.50 17.44
QLoRA+WTA-CRS@0.3 6.31 16.75

Table 7: Peak memory usage (GB) of fine-tuning T5-Base with different methods.

F Experimental Settings

We give the detailed hyper-parameter setting in this section. Specifically, for both T5 and BERT
models, the parameters are updated with the AdamW optimizer β1 = 0.9 β2 = 0.999 ϵ = 10−8 and
weight decay = 0. The the learning rate is adjusted with a linear LR Scheduler, which maintains a
constant learning rate for the initial 500 steps, and adjusts it gradually thereafter. The input sequences
are padded to the maximum length 128. WTA-CRS has a LoRA dimension 32 if it is combined with
LoRA. To achieve the optimal solution, the T5-Base, Large, 3B and BERT-Base and Large models
have different learning rate, training epoch number, and mini-batch size on different datasets, which
are given in Tables 9, 10, 11, respectively.

F.1 Computational Infrastructure

The computational infrastructure information is given in Table 8.
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Table 8: Computing infrastructure for the experiments.
Device Attribute Value
Computing infrastructure GPU
GPU model NVIDIA-A100
GPU Memory 81251MB
CUDA Version 11.4
CPU Memory 512GB

Table 9: Learning rate.
Model Method CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B

BERT-Base WTA-CRS@0.3 2e-5
LoRA+WTA-CRS@0.3 2e-4 5e-4 2e-4 3e-4 3e-4 2e-4 2e-4 3e-4

T5-Base

WTA-CRS@0.3 3e-5 3e-6 3e-5 3e-5
WTA-CRS@0.1 3e-5
LoRA+WTA-CRS@0.3 3e-4 3e-5 3e-4 3e-5 3e-5 3e-5 3e-4 3e-4
LoRA+WTA-CRS@0.1 3e-4 3e-5 3e-4 3e-5 3e-5 3e-5 3e-4 3e-4

BERT-Large WTA-CRS@0.3 2e-5
LoRA+WTA-CRS@0.3 3e-4 2e-4 2e-4 2e-4 2e-4 2e-4 3e-4 3e-4

T5-Large WTA-CRS@0.3 3e-5 3e-6 3e-5 3e-5
WTA-CRS@0.1 3e-5 3e-6 3e-5 3e-5
LoRA+WTA-CRS@0.3 3e-4 3e-5 3e-4 3e-5 3e-5 3e-5 3e-4 3e-4
LoRA+WTA-CRS@0.1 3e-4 3e-5 3e-4 3e-5 3e-5 3e-5 3e-4 3e-4

T5-3B LoRA+WTA-CRS@0.3 3e-4 3e-5 3e-4 3e-4 3e-4 3e-5 3e-4 3e-4
LoRA+WTA-CRS@0.1 3e-4 3e-5 3e-4 3e-4 3e-4 3e-5 3e-4 3e-4

Table 10: Training epoch number.
Model Method CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B

BERT-Base WTA-CRS@0.3 20 20 10 10 10 10 20 10
LoRA+WTA-CRS@0.3 60 20 20 20 20 20 40 40

T5-Base

WTA-CRS@0.3 40 10 20 10 10 10 50 20
WTA-CRS@0.1 40 10 20 10 10 10 50 20
LoRA+WTA-CRS@0.3 40 10 20 20 20 10 50 20
LoRA+WTA-CRS@0.1 40 10 20 20 20 10 50 20

BERT-Large WTA-CRS@0.3 60 20 20 10 10 10 40 10
LoRA+WTA-CRS@0.3 60 20 20 20 20 20 40 40

T5-Large

WTA-CRS@0.3 20 10 20 10 10 10 40 20
WTA-CRS@0.1 20 10 20 10 10 10 40 20
LoRA+WTA-CRS@0.3 40 10 40 10 10 10 60 20
LoRA+WTA-CRS@0.1 40 10 20 10 10 10 60 20

T5-3B LoRA+WTA-CRS@0.3 40 10 20 10 10 10 60 20
LoRA+WTA-CRS@0.1 40 10 20 10 10 10 60 20

Table 11: Training mini-batch size. Here for BERT models, we utilize 128 batch size except STS-B,
where a batci size 16 is used. For T5 model, we use a 100 batch size across all datasets.

Model Method CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B

BERT-Base/Large WTA-CRS@0.3 128 16
LoRA+WTA-CRS@0.3 128 16

T5-Base/Large/3B

WTA-CRS@0.3 100
WTA-CRS@0.1 100
LoRA+WTA-CRS@0.3 100
LoRA+WTA-CRS@0.1 100
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