& frontiers | Frontiers in Big Data

‘ @ Check for updates

OPEN ACCESS

EDITED BY

Bo Han,

Hong Kong Baptist University,
Hong Kong SAR, China

REVIEWED BY
Quanming Yao,

Tsinghua University, China
Jiangchao Yao,

Shanghai Jiao Tong University, China
Zhanke Zhou,

Hong Kong Baptist University,

Hong Kong SAR, China

*CORRESPONDENCE
Xia Hu
xia.hu@rice.edu

RECEIVED 28 March 2023
ACCEPTED 25 April 2023
PUBLISHED 15 June 2023

CITATION
Liu Z, Song Q, Li L, Choi S-H, Chen R and Hu X
(2023) PME: pruning-based multi-size
embedding for recommender systems.

Front. Big Data 6:1195742.

doi: 10.3389/fdata.2023.1195742

COPYRIGHT
© 2023 Liu, Song, Li, Choi, Chen and Hu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Big Data

Tvpe Original Research
PUBLISHED 15 June 2023
pol 10.3389/fdata.2023.1195742

PME: pruning-based multi-size
embedding for recommender
systems

Zirui Liu', Qingquan Song?, Li Li*, Soo-Hyun Choi*, Rui Chen* and
Xia Hu'*

Computer Science Department, Rice University, Houston, TX, United States, 2Linkedin, Sunnyvale, CA,
United States, *Samsung Electronics America, Mountain View, CA, United States

Embedding is widely used in recommendation models to learn feature
representations. However, the traditional embedding technique that assigns a fixed
size to all categorical features may be suboptimal due to the following reasons.
In recommendation domain, the majority of categorical features’ embeddings
can be trained with less capacity without impacting model performance, thereby
storing embeddings with equal length may incur unnecessary memory usage.
Existing work that tries to allocate customized sizes for each feature usually either
simply scales the embedding size with feature's popularity or formulates this size
allocation problem as an architecture selection problem. Unfortunately, most of
these methods either have large performance drop or incur significant extra time
cost for searching proper embedding sizes. In this article, instead of formulating
the size allocation problem as an architecture selection problem, we approach
the problem from a pruning perspective and propose Pruning-based Multi-size
Embedding (PME) framework. During the search phase, we prune the dimensions
that have the least impact on model performance in the embedding to reduce its
capacity. Then, we show that the customized size of each token can be obtained
by transferring the capacity of its pruned embedding with significant less search
cost. Experimental results validate that PME can efficiently find proper sizes and
hence achieve strong performance while significantly reducing the number of
parameters in the embedding layer.

KEYWORDS

neural network, recommender system, embedding compression, pruning, scalability

1. Introduction

Embedding feature information into vector representations is crucial for the success of
deep learning based recommendation models (Zhang et al., 2019). In practice, the input
features to recommender systems are often categorical, such as userID, itemID, and the
category of items. For deep learning based recommendation models, these categorical
features are mapped to low-dimensional learnable vectors (i.e., embeddings). Then, the
learned vectors are fed into the rest of the model to learn the interaction between features.
The number of layers in the rest of the recommendation model is typically small (usually
less than 10) and independent of the number of categorical features (Cheng et al., 2016; Guo
et al., 2017; Lian et al., 2018). In contrast, the dimension of the embedding matrix grows
linearly with the number of categorical features, which can easily be at the scale of millions
(Park et al., 2018). As a result, the weight matrix of the embedding layer is often responsible
for the major memory consumption of a deep learning based recommendation models.
For example, the embedding layer of Facebook recommender system contains billions of
parameters. Consequently, the embedding layer occupies more than 99.9% memory of the

01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1195742
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1195742&domain=pdf&date_stamp=2023-06-15
mailto:xia.hu@rice.edu
https://doi.org/10.3389/fdata.2023.1195742
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1195742/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

whole model, which can consume hundreds of gigabytes or
even terabytes (Park et al., 2018; Ginart et al, 2021). Without
compressing the embedding layers, the excessive memory usage
of recommendation models is a major obstacle for serving them
on-device, where the memory is limited.

Traditional embedding compression methods usually put
efforts on compacting the embedding matrix (Markovsky and
Usevich, 2012; Wang et al., 2017): Low-rank based methods assume
the weight matrix has reduced rank that can be decomposed into
several smaller matrices (Markovsky and Usevich, 2012). Hashing
based methods reduce the number of embedding vectors in the
matrix by mapping similar items into a same bucket (Wang et al.,
2017). All these methods follow the framework of the standard
embedding technique that learns embeddings with equal length for
each token.! However, recent advances demonstrate that assigning
a fixed embedding size to all tokens may be suboptimal due to the
following reasons (Joglekar et al., 2020; Zhao et al., 2020a,b; Ginart
et al., 2021). In the recommendation domain, usually a few head
tokens dominate the data, while the majority of tokens (i.e., long-
tail tokens) are rarely observed (Park and Tuzhilin, 2008). Since
the token’s popularity and the importance of its representation to
model performance is correlated (Joglekar et al., 2020; Zhao et al.,
2020a; Ginart et al., 2021). Thus, when using a fixed embedding
size, it may either lose the information of head tokens or waste
parameters on long-tail tokens (Kang et al., 2020; Zhao et al,
2020b). We usually choose a large enough embedding size to ensure
model performance, which incurs unnecessary memory usage for
storing long-tail token’s embedding.

To overcome the mentioned drawback of embedding with
equal length, several recent work proposes to allocate more capacity
(i.e., larger embedding size) to important tokens, and less capacity
to unimportant ones (Joglekar et al., 2020; Kang et al., 2020; Zhao
et al., 2020a,b; Ginart et al., 2021). These work can be roughly
divided into two categories. Some work proposes to explicitly scale
token’s embedding size with its frequency according to heuristic
rules designed by human experts (Kang et al., 2020; Ginart et al,,
2021). However, such allocation strategy may be suboptimal since
the importance of a token is not purely decided by its popularity.
Inspired by neural architecture search (NAS), another line of
research formulates the embedding size allocation problem as an
architecture selection problem, which selects the embedding size
for each token from several predefined options (Joglekar et al., 20205
Zhao et al., 2020a,b). Due to the extremely large search space, the
search process incurs a significant computational cost. Although
the number of parameters in the embedding layer is significantly
reduced, these methods still either have large performance drop or
introduce significant extra time cost for searching embedding sizes.

In this article, we approach the embedding size allocation
problem from a pruning perspective. Our work is motivated by
the observation that the majority of token’s embeddings can be
trained with less capacity without impacting model performance
(Joglekar et al., 2020). Therefore, during the search phase, instead
of selecting from a set of candidate embedding sizes, we prune
the dimensions that have the least impact on model performance

1 For convenience, we use the term "tokens” to represent elements (e.g.,

users and items) in the vocabulary.

Frontiersin Big Data

10.3389/fdata.2023.1195742

in token’s embeddings to reduce its capacity. Then, we build a
multi-size embedding table for training without sacrificing model
performance, where the customized size of each token is obtained
by transferring the capacity of its pruned embedding. Moreover,
we show that the unimportant parameters in the embedding
layer can be identified and pruned at initialization, and this
significantly reduces the time cost of searching the customized sizes.
Consequently, our framework can reduce the memory occupied
by the embedding layer during both the training and inference
phases without sacrificing model performance. Our contributions
are summarized as follows:

e We rigorously show that the embedding size allocation
problem can be converted to a pruning problem. Based
on this reformulation, we propose a pruning-based multi-
size embedding (PMB) framework to search the customized
embedding size for each token.

e In our framework, during the search process, the embedding
layer is pruned without training it. Thus, the time cost of the
search process is significantly reduced. Once pruned, we build
the multi-size embedding table for training by transferring the
capacity of token’s pruned embedding. Our framework can
reduce the memory occupied by the embedding layer during
both the training and inference phases.

e We show that our framework can match or improve
the performance of several recommendation models using
significantly less parameters. e.g., for Autoint+ (Song et al,
2019), we show that PME could significantly improve the
Logloss and AUC while using 40 x fewer parameters for click-
through rate prediction task on the Criteo dataset.

2. Preliminary and problem statement
2.1. Notations

We denote matrices with uppercase bold letters (e.g., V),
vectors with lowercase bold letters (e.g., v), and scalars with
lowercase alphabets (e.g., v). We use V;. to represent the i row
of V, and V;; to denote the entry at the i row and j" column
of V. We denote the standard Ly norm as || - ||p. The operation
V = concat(Vy,V,) represents row-wisely concatenating matrix
Vi and V; into a new matrix V. We use N = {0,1,2,3---} to
denote the set of all non-negative natural numbers. We use © to
denote the Hadamard product.

2.2. Preliminary

Recommender systems involve a massive amount of categorical
feature fields, such as userIDs, itemIDs, and the category of items.
Let x = [x;;X2;---;Xp] be an input instance with M feature
fields, where x; is the one-hot vector corresponding to the ith field.
Suppose the vocabulary size of the i™ field is #;, i.e., there are n;
unique tokens (i.e., categorical features) in the ith field. For each
token x;, it is mapped into a low-dimensional vector v; € R? by
vi = Vx;, where V; € R"%*4 i the embedding matrix of the ith
field and d is the embedding size. For convenience of notations, let

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

10.3389/fdata.2023.1195742

—

Zero padding

Recommendalion Models

Backbone

Embeddings in
different fields

i | s

Projected
embeddings

Field specific
projection

Padding zeros to
retrieved

embeddings

Retrieve embeddings
from multi-size tables

Feature
Fields

Field 1

user id=14

Input Features

FIGURE 1

The multi-size embedding framework in our article. For element-wise operations to work (e.g., dot-product in factorization machines), the retrieved
embeddings are padded to equal length with zeros following by a field-specific projection.

Field m

item id=14

Field M

item category=comedy

V = concat(Vy, - - -
tokens” embeddings. Consider a deep learning based recommender

, V) be the embedding matrix consisting of all

system ¢ parameterized by V and ®, where ® denotes all other
model’s parameters excluding those in V. We denote the prediction
corresponding to x as y = ¢(x|V, ®). We aimed to minimize the
loss L(V,0;D) = E(x’y)NDZ(qb(xW, ®),y) over a dataset D =
{(x,y)}, where ¢ is the loss function such as Logloss.

2.3. Multi-size embedding

The multi-size embedding framework allows each token in the
vocabulary to have embeddings of different sizes (Joglekar et al.,
2020; Ginart et al,, 2021). By allocating an appropriate size for
each token, the multi-size embedding framework can significantly
reduce the total number of parameters in the embedding layer
while maintaining the quality of learned representations (Joglekar
etal., 2020). Although the multi-size embedding has the mentioned
advantages over the standard single-size embedding, applying it
requires solving the following problem: Suppose there are n tokens
in the vocabulary. If the total number of parameters in the multi-
size embedding table is limited to no more than a predefined budget
k, how to search for the optimal size d; of token i under the
budget constraint, such that the loss could be minimized as much
as possible with the learned d;-dimensional embedding vector
vi? We formally define this embedding size allocation problem
in Problem 1.

Problem 1 (Embedding size allocation problem). Given a

maximum embedding size d and a predefined parameter budget

Frontiersin Big Data

k, let the v; be a d;-dimensional embedding representing token
i. For element-wise operations between embeddings to work,
embeddings of different sizes are padded to equal length d with
zeros following by a projection. Namely, the ¥; € R% will be
padded with e; trailing zeros such that d; + ¢; = d, leading to a
padded vector V; € RY. We defined = [dy,- - - ,dy]. Let V € R"x4
be the single-size embedding matrix consisting of all projected
= PV, where P; € R4 jg
a learnable projection matrix associated with token i. The goal of

d-dimensional embeddings, i.e., \A/,-,;

embedding size allocation problem aimed to solve the following
optimization problem:

min L(V*(d), ©*(d); D), (1)
st. V¥(d), ©*(d) = argmin £(V(d), O(d); D),)
v,0
> odi<k ©)
i=1
Vie{l,---,nhdi e N,d; < d. (4)

Figure 1 illustrates our multi-size embedding framework. The
backbone recommendation models in Figure 1 refer to the rest
of the model excluding the embedding layer. Although the
projected embeddings have the same number of parameters as
the uncompressed ones, we will only retrieve and project the
embeddings for tokens in the current mini-batch data. As the
mini-batch size restricts the number of retrieved embeddings, the
memory usage from these additional parameters is negligible when

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

considering the significant reduction in parameter numbers of the
multi-size embedding table.

Following the studies by Zhao et al. (2020a) and Ginart et al.
(2021), in our article, the projection matrix P in Problem 1 is
shared between tokens in a same field to learn field-level structures.
We note that such approach also has a nice algebraic explanation:
the degree of freedom of the token 7’s representation is limited by
d; since

—P1— di
Po;: I:Vl;...;vdi;o;...-()
— —.

Bl P

In each field, for the token allocated with larger d;, the
expressive ability of its embedding is stronger since it is represented
using more basis from the row space of P. Thus, the multi-
size embedding framework illustrated in Problem 1 can control
the capacity of each token’s representation by allocating different
embedding sizes.

Solving Problem 1 poses a significant computational hurdle
due to the following two reasons. First, in the recommendation
domain, the vocabulary size can easily reach the million level
(Covington et al.,, 2016). Second, since the size of embedding could
only be integers, the combinatorial nature of this problem leads to
an intractable optimization for a large search space. Finding the
optimal embedding sizes for millions of tokens from a discrete
search space requires a large amount of computational resources.

In the next section, we show that this combinatorial
optimization problem can be converted to a pruning problem,
which can be approximately solved with significantly less cost.

3. Methodology

Figure 2 illustrates the overview of our proposed framework.
We first search the customized embedding size for each token in a
separate search process before training. The key intuition of our
proposed method is the optimal capacity of a token that can be
obtained by pruning unimportant dimensions in its embedding. In
particular, given a standard single-size embedding layer, we prune
the dimensions that have the least impact on model performance
in token’s embeddings to reduce its capacity. Then, the customized
size of each token can be obtained by transferring the capacity of
its pruned embedding (Section 3.1). We then derive our proposed
pruning-based multi-size embedding framework, which prunes the
embedding layer at initialization (Section 3.2). In this way, the time
cost of the search process is significantly reduced.

In practice, a multi-size table is implemented as multiple two-
dimensional embedding matrices, each with different sizes. Since
the searched size could be any integer smaller than the maximal
size d, we need to initialize at most d two-dimensional matrices,
which incurs extra time cost to the retrieval process. To reduce the
extra time cost of retrieving from multi-size table, we optimize the
retrieval process based on group-wise operations (Section 3.3).

3.1. Size allocation as a pruning problem

The success of multi-size embedding framework suggests the
embeddings of long-tail tokens can be trained with less capacity

Frontiersin Big Data

10.3389/fdata.2023.1195742

without impacting model performance (Joglekar et al., 2020; Ginart
et al., 2021). This implies that there exists redundant parameters
in the single-size embedding. It is intuitive to start pruning from
the parameters that have the least impact on model performance,
which is equivalent to reducing the embedding size. For example,
as shown in Figure 3, the second value in embedding v, is pruned
out and set as zero, leading to a d; = d — 1 embedding size in
effect. The actual size of the pruned embedding equals the number
of remaining parameters.

Informally, by setting token 7’s allocated size d; to the number
of remaining parameters, the capacity of its pruned embedding will
be transferred to v; in Problem 1. We formalize this statement
by showing under mild assumptions, the optimal solution of
Problem 1 can be constructed using the pruned embeddings 2.
We first give the definition of redundant parameter identification
problem.

Problem 2 (Redundant parameters identification problem). Given
an overparameterized embedding matrix V € R"*%, the redundant
parameter identification problem aims to solve the following
constrained optimization problem:

in L(VOC,0; D), 6
min. Vo) (6)
st. Ce {01y ||Cllo < k, (7)

where C is an auxiliary variable representing binary “gates” that
denotes whether a parameter in V is present. k is the parameter
budget referring to the number of non-zero entries in V, i.e., the
amount of gates being “on”. The redundant parameters can be
identified by the zeros (the gates being “off”) in C.

Proposition 1 (Proof in Appendix 1). If the projection matrix in
Problem 1 is shared between tokens in each field, the optimal
solution of Problem 1 can be constructed from one solution
to Problem 2.

The solution d to Problem 1 can be obtained by setting the
size of each token to the number of remaining parameters in
its pruned embedding. We note that such constructed d satisfies
all constraints in Problem 1. First, according to Equation (7),
since there are totally at most k remaining parameters in the
pruned embedding matrix, the constructed d meets the budget
constraint in Equation (3). Second, the constructed d naturally
meets the maximal size constraint in Equation (4) since the
number of remaining parameters in the pruned embedding are no
more than d.

As shown in Figure 3, by Proposition 1 and the above analysis,
we build the multi-size embedding table for training, where the
customized size of each token equals the capacity of its pruned
embedding. In the next subsection, we show that Problem 2 can
be approximated solved with significant fewer costs.

3.2. Prune embeddings without training
them

Most of the existing methods in the pruning literature attempt
to identify redundant parameters from a pretrained reference

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

10.3389/fdata.2023.1195742

Embedding size search 1"

The embedding table 1
consisting of all :: Field 1
tokens from each field 1"

user_id=14

SNIP 1

Count number of [7]
in each row
:: Field M

11 country=US

Zero padding to
retrieved
embeddings

Backbone
Model

Linear,

Embedding tables
with rounded sizes

FIGURE 2
Overview of PME framework

1
S mmmm
1 1

Multi-size
Embedding Table

Original Single-size
Embedding Matrix

FIGURE 3

An example to illustrate the pruning-based multi-size embedding.
After pruning, we build the multi-size embedding table for training,
where the size of each token is set to the number of remaining
parameters in its pruned embedding. We note that some tokens
may be entirely cutoff from the vocabulary (such as vz, in this
example), and they are mapped to unlearnable zero vectors.

2016;
2020) or utilizing sparsity enforcing penalties

network either based on a saliency criterion (Han et al,
Kusupati et al,
(Carreira-Perpindn and Idelbayev, 2018). Unfortunately, all these
pruning methods require many expensive pretrain-prune-retrain
cycles and introduce additional hyperparameters. Recent work has
explored the possibility of pruning neural networks at initialization
(Lee et al., 2019; Wang et al.,
parameter budget, redundant parameters are pruned once before

2020). Namely, given a desired

training, and then the pruned network is trained in the standard
way. Equipped with the technique, there is no need for network
pretraining and complex pruning schedules. Inspired by single-
2019), we directly
prune unimportant parameters in the embedding according to

shot network pruning (SNIP) (Lee et al,
the connection sensitivity, which can be obtained by utilizing a

full-batch of training data. Consequently, the pruning process is
disentangled from the above iterative cycle.

Frontiersin Big Data

05

The key idea of connection sensitivity proposed in SNIP is to
preserve the parameters that have the maximum impact on the loss
if perturbed. Specifically, the effect of removing parameter V;; on
the loss can be measured as follows:

AL;ij(V,0; D) = L(1 O V,0; D) — L(1 — e;) ®V,0; D), (8)

where e;; € R"*4 is an indicator matrix of element V; j (i.e., zeros

everywhere except at the i row and j" column where it is one),
and 1 € R™ js an all-ones matrix. Equation (8) measures the
influence of parameter V;; on the loss in the discrete setting since
C is binary. Computing AL;; for each i, j is prohibitively expensive
since it requires an individual forward pass over the dataset for each
parameter V;;. However, by relaxing the binary constraint of C,
AL;j can be approximated by the derivative of L with respect to C;;,
which is named as connection sensitivity. Specifically, the connection

sensitivity G(V, ®; D) in SNIP can be computed as follows:

dL(COV,0; D)
AL,',]'(V, 0; D)~ Gi,j(V> 0;D) = Tlc:l 9)
1,
IL(V,0; D)
=" """0OV. 10
oV © (10)

Parameters that least impact the performance if removed can
be identified according to connection sensitivity. We list the full
algorithm in Algorithm 1. There is only one hyperparaemter in
Algorithm 1, namely, the parameter budget k, which controls the
total number of parameters in the multi-size table. Specifically, we
first initialize a standard single-size embedding layer, then calculate
the connection sensitivity G(V, ®; D). Once G(V, ®; D) is obtained,
the parameters corresponding to the top-k values of |G(V, ©; D)|
are kept. Finally, the allocated size of each token is set to the number
of kept dimensions in its pruned embedding.

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

Input: Loss L, training dataset D, a recommer
system ¢ parameterized by the single-size
embedding matrix Ve R"™“ and other
parameters ©.

Parameters : parameter budget k.

Output: The embedding size for each token in the

vocabulary {(i,di)}l, .

-

G < initialize a nxd zero-matrix; C <«
initialize a nxd zero matrix.

for each mini-batch D’ = {(Xf,yi)}f;l ~D do

3| G=6+Gv,e:D")

sensitivity in Equation (10)

S}

> Calculate connection

4 end

w

Build C by setting all indices in the top-k of

IG] to 1.
6 for i=1,---,n do
d
7 ‘ di:Zj:ICi,j
8 end

©

return {(i,d;)};

Algorithm 1. Pruning-base embedding size search.

3.3. Multi-size table lookup optimization

Most of the deep learning frameworks do not support
embedding table with multiple sizes. In practice, a multi-size table
is implemented as multiple two-dimensional matrices, each with
different sizes. When retrieving embeddings from a multi-size table,
it requires to identify which matrix contains the token’s embedding
according to its size.

The time cost for identifying the matrix containing the token’s
embedding grows linearly with the number of candidate matrices.
In Algorithm 1, the searched size of each token can be arbitrary
integer between 0 and d, which means we need to initialize at
most d two-dimensional matrices. Thus, the retrieval process will
be significantly slowed down when d is large, which contradicts
with the goal of being efficient.

Similar to the previous studies, (Joglekar et al., 2020; Zhao et al.,
2020a,b), we define a candidate size set C = {;il, 32, BRI &T}, where
0 < cAil < ;iz < .- d
sizes. The searched size given by Algorithm 1 will be rounded to

< dr = d are T predefined embedding

its nearest neighbor in C. If 211 = 0, for these tokens which have
been entirely cutoff from the vocabulary (e.g., v3 in the example
of Figure 3), they will be mapped to a padding index. The padding
index will then be retrieved as an unlearnable zero vector. Formally,
as shown in Figure 2, to retrieve embeddings for a batch of tokens
in different fields, we first split them into T groups based on their
rounded embedding size. Then, we retrieve the embeddings for
each group and pad them to equal length with zeros. Finally, we
re-arrange these padded embeddings to recover the original order
of input tokens, and apply field-specific projection on them. We
note that the above padding and retrieving process can be efficiently
executed in parallel. As the number of groups T is typically small,
we found that this group-wise implementation delivers minimal
overhead compared with standard single-size embedding.

Frontiersin Big Data

10.3389/fdata.2023.1195742

3.4. Discussion and limitation

3.4.1. Discussion

we recap and discuss the difference between our formulation of
the embedding size allocation problem and that in a previous study.
There are two main difference between them.

First, in most of the previous studies, the size allocation
problem is formulated as an architecture selection problem
(Joglekar et al., 2020; Zhao et al., 2020a,b). Consequently, following
the paradigm of NAS, the validation set is used for selecting the
size, i.e., the objective in Equation (1) is Eml(v*(d), ®*(d); Dyar)-
In contrast, we formulate this size allocation problem as a pruning
problem, which tries to identify parameters that least impact the
training loss if removed. Only with such formulation, we can
search embedding sizes without training the model, and hence
significantly improve the search efficiency. Moreover, the memory
usage of embedding layers can be reduced during both the training
and inference phases. A detailed discussion about the difference
between the formulation based on NAS and the formulation based
on pruning is provided in Appendix 2 (Supplementary material).

Second, most of the previous work constructs several projection
matrices for each field. In each field, tokens with same allocated
sizes share a common projection matrix. In contrast, we propose
to construct only one projection matrix for each field since tokens
in a same field have field-level latent structure (Zhao et al., 2020a;
Ginart et al., 2021). Specifically, embeddings with different sizes are
padded to equal length with zeros, enabling the feasible adoption
of the field-specific projections. This approach has nice algebraic
explanation (see Equation 5). We note that our approach also
enables embeddings of equal length but belonging to different fields
to be retrieved simultaneously, which is inflexible in most of the
previous studies. A detailed analysis is provided in Appendix 2
(Supplementary material).

3.4.2. Limitation

The main limitation of PME is that, during the embedding size
search phase, the memory usage of embedding layers cannot be
reduced. However, we note that most of the search based multi-
size embedding frameworks also have this problem (Joglekar et al.,
2020; Zhao et al, 2020a,b; Liu et al., 2021). It is necessary to
initialize embeddings with maximal size to evaluate whether the
maximal available size in the search space is suitable for a specific
token. In this article, we mainly focused on reducing the memory
usage of models during the training and inference phases, and their
storage requirements.

4. Experiment

We verify the effectiveness of our proposed framework through
answering the following research questions:

e RQl. How is PME compared with other embedding
compression methods in terms of model performance at
different compression rates?

e RQ2. What is the additional time cost for searching the
embedding size and for training the model, respectively?

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1195742
0.450
A . <@ PME 8 0.449 © PME c 0.450 ‘ @ PME
0.449 ® LRF LRF : ®- LRF
* MDE 0.448 MDE 4@ % MDE
0.448 @ QREMB * QREMB ! @ QREMB
-¢- SE 0.447 - SE - SE
2 2 2 0448
@ =X DartsEMB @ © DartsEMB @ DartsEMB
it S 0446 2
[[o0
= 0446 = o445 S 0447
.
0.445 0.444 0446
0.443 = °
0.444 4 ol T e S —
0.442 hd hd
10° 10 10° 10’ 10° 10’
Par s in the embedding matrix # Par ters in the embedding matrix # Parameters in the embedding matrix
FIGURE 4

Test Logloss of recommendation models at approximately 10x, 20x, and 40x compression rate on Criteo dataset. (A) The backbone model is
DeepFM. (B) The backbone model is Autoint+. (C) The backbone model is Wide and Deep.

A B C 0386
* @ PME 0386 L @ PME . @ PME
0385 ®- LRF - *- LRF - .- LRF
= % MDE % MDE 0.385 % MDE
: @ QREMB 0385 - QREMB e QREMB
0.384 i -4 SE -4 SE -4 SE
2 ~ DartsEMB | 2 (34 X DartsEMB | g 0384 % DartsEMB
2] 2
o0 o0 o0
3 0383 3 3
0.383 0.383
0.382
0382 0.382
0381 . * N g
10° 10’ 10° 10 10° 10’
Parameters in the embedding matrix # Parameters in the embedding matrix # Par ters in the embedding matrix
FIGURE 5

Test Logloss of recommendation models at approximately 10x, 20x, and 40x compression rate on Avazu dataset. (A) The backbone model is
DeepFM. (B) The backbone model is Autoint+. (C) The backbone model is Wide and Deep.

............ ° B e @ C o807 ...
0808 — —eeeenee® B e @
I 0.809{ @ T -
0.806 e
08071 @ 0.808 r
0.806 e 0.807 =l 08051 ¢
QO 0805 O 0.806 12
= 0805 S = 0.804
< © PME < 0.805 : ®: PME < © PME
0.804 LRF % ® LRF 0s03{ & o LRF
- MDE 0.804 *- MDE * % MDE
0.809 - QREMB —_— @ QREMB 0.802 @ QREMB
0.802 - SE) & SE y & SE
¢ DartsEMB 0.802 ¢ DartsEMB 0.801 ¢ DartsEMB
10° 10 10° 10 10° 107
Parameters in the embedding matrix # Parameters in the embedding matrix # Par s in the embedding matrix
FIGURE 6

Test AUC of recommendation models at approximately 10x, 20x, and 40x compression rate Criteo dataset. (A) The backbone model is DeepFM. (B)
The backbone model is Autoint+. (C) The backbone model is Wide and Deep.

e RQ3. How sensitive are the searched

sizes to the backbone models and to the

embedding
initialized
weights, respectively?

4.1. Experimental settings

We first introduce the baseline methods for comparison. Then,
we introduce the applied datasets and the hyperparameter settings.

Frontiersin Big Data

4.1.1. Baselines

We compare our proposed method with the following five
representative embedding compression methods: (1) SE (single-
size embedding): a standard single-size embedding method that
assigns a fixed embedding size to all tokens in the vocabulary.
(2) MDE (mixed dimension embedding) (Ginart et al., 2021):
a multi-size embedding method that scales token’s embedding
sizes with its frequency according to heuristic rules designed
by human experts. (3) QREMB (quotient-remainder embedding)
(Shi et al., 2020): a hashing-based method to reduce the total

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

10.3389/fdata.2023.1195742

A o e| Boms ¢ C o
0.778 -
0.776
0.776
0.776 0.775
19 © 0774 19 74
= 0.774 =] =]
< - PME = o PVE 2 0m
LRF 0.772 ®_LRE 0.772
0.772 MDE % MDE
* QREMB @ QREMB 0.771
© SE 0.770 ¢ SE 0770
0.770 = DartsEMB ’»"4 =¥ DartsEMB) ‘ =¥ DartsEMB
10° 10 10° 10 10° 107
Parameters in the embedding matrix # Par ters in the embedding matrix # Parameters in the embedding matrix
FIGURE 7
Test AUC of recommendation models at approximately 10x, 20x, and 40x compression rate on Avazu dataset. (A) The backbone model is DeepFM.
(B) The backbone model is Autoint+. (C) The backbone model is Wide and Deep.

vocabulary size by storing multiple smaller embedding tables
based on a standard remainder-hashing function. (4) LRF (low-
rank factorization) (Koren et al., 2009): a low-rank based method
that factorizes the embedding matrix V. € R"*? as QR, where
Q € R™,R € R™4 and r is the rank, which satisfies
r < d. (5) DartsEMB (Zhao et al., 2020b): a NAS-based mutli-
size embedding method that relaxes the discrete embedding size
allocation problem to a continuous one that can be solved by
gradient descent (Liu et al., 2019). This method is chosen to display
the performance of NAS-based mutli-size embedding methods.?
Different embedding compression methods are deployed to three
representative state-of-the-art recommendation models: DeepFM
(Guo et al,, 2017), Autoint+ (Song et al., 2019) and Wide and Deep
(Cheng et al., 2016), to compare their performance. More details
about the hyperparameters of these three recommendation models
are elaborated in Appendix 3.2 (Supplementary material). Logloss
and AUC score are selected as the core metrics for evaluating
recommendation model performance.

4.1.2. Data preprocessing

We adopt two public benchmark datasets in this article, i.e.,
Criteo® and Avazu.* The basic statistics of these two datasets are
summarized in Supplementary Table A1 (Supplementary material).
Both the datasets are processed based on the method and codes
provided in the study by Song et al. (2019). Following the studies
by Guo et al. (2017) and Song et al. (2019), for each dataset, we
divide the data into the training (80%), validation (10%), and test
sets (10%).

4.1.3. Hyperparameter settings

Since there is a trade-off between recommendation model
performance and the number of parameters in the embedding
table, to fairly compare the effectiveness of different embedding
compression methods, we adjust their hyperparameters to ensure

2 We do not compare with NIS (Joglekar et al, 2020), since the
reinforcement learning based search process is extremely slow in the
normal setting.

3 https://www.kaggle.com/c/criteo-display-ad-challenge

4 https://www.kaggle.com/c/avazu- ctr- prediction

Frontiersin Big Data

the number of their trainable parameters are comparable. For PME,
the size of the full SE embedding table to be pruned is set to 32. As
illustrated in Section 3, PME has two hyperparameters, namely, the
parameter budget k and the candidate embedding size set C. The
candidate size set C is set to {0, 2,8, 16,32} across all experiments,
i.e., each searched size given by Algorithm 1 will be rounded to its
nearest neighbor in C. Suppose before pruning, the total number of
parameters in the single-size embedding table is K. The parameter
budget k is set to 2% x K, 5% x K, and 10% x K. Due to the page limit,
detailed hyperparameter settings for all other baselines are specified
in Appendix 3.3 (Supplementary material). The compression rate
cr can be calculated as follows:

of parameters in the full SE embedding table

cr=
of parameters in the compressed embedding table.

We implement our method using Pytorch (Paszke et al., 2019).
Every single experiment is run on a single NVIDIA GeForce RTX
1080 Ti GPU with several models parallelly trained on it. To reduce
the variance, all of the reported numbers are averaged over four
random trials.

4.2. Performance vs. parameter number

To answer RQl, we evaluate model performance with
embedding compression methods at different compression rates. In
addition, we also experimentally analyze the relationship between
token’s assigned sizes and its frequency to understand how PME
allocates embedding sizes for each token.

4.2.1. Criteo and Avazu results

Figures 4, 5 depict the Logloss of three recommendation
models with embedding compression methods on Criteo and
Avazu dataset, respectively. We observe that PME generally
outperforms other baselines at different compression rates.
Furthermore, we remark that PME can outperform SE even when
SE uses maximal sizes on Criteo dataset. For example, PME
improve the Logloss by 0.001 level while eliminating 97.4% and
95.7% parameters in the embedding layer for Autoint+ and Wide

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

Assigned embedding size
>

10
5 e

T T T T T T T T

o 100 100 10° 10

Token frequency

9

FIGURE 8

Distribution of token's allocated embedding size across all fields on
Criteo Dataset. The backbone model is DeepFM. PME generally
assigns larger embedding sizes to frequent tokens and smaller sizes
to infrequent tokens.

and Deep on Criteo dataset, respectively. It is worth pointing out
that an improvement of approximately 0.001 in terms of Logloss
or AUC is already regarded as practically significant on these CTR
prediction tasks (Cheng et al.,, 2016). The AUC results are shown
in Figures 6, 7, which are similar to the Logloss, due to the page
limit. We note that DartsEMB cannot assign zero dimension to
tokens due to its NAS-based formulation. Moreover, DartsEMB
cannot directly control the compression rate. Consequently, the
only way to control the DartsEMB’s compression rate is to decrease
the maximal available size in its search space. However, decreasing
maximal available size will limit the capacity of important tokens’
representation. Thus, with DartsEMB, it is hard to achieve good
performance at a high compression rate beyond 10x. In contrast,
PME can directly exclude unimportant tokens from the vocabulary
by assigning zero dimensions to them. Since the majority of
tokens in the vocabulary are unimportant, PME can maintain the
model performance even at an extremely high compression ratio,
such as 40x. Moreover, we emphasize that the memory usage of
recommendation models with PME is reduced during both the
standard training and inference process.

4.2.2. Relationship between frequency and
allocated sizes

Recent work hypothesizes that frequent tokens are more
important for model performance, and hence deserve to have more
capacity while few parameters are enough for infrequent tokens
(Joglekar et al., 2020; Kang et al., 2020; Ginart et al., 2021). Based
on the hyperthesis, several studies explicitly scale the embedding
size with token’s frequency (Kang et al., 2020; Ginart et al., 2021).
In contrast to them, PME learns embedding sizes by transferring
the capacity of tokens’ pruned embeddings without using the
frequency information.

Frontiersin Big Data

09

10.3389/fdata.2023.1195742

TABLE 1 Search time (second) of PME and DartsEMB on criteo dataset
with different backbone models.

Search time DeepFM Autoint+ Wide and deep
DartsEMB 801 ‘ 2,404 ‘ 745
PME ‘ 228 (—71.5%) ‘ 1,034 (—60.0%) ‘ 219 (~70.6%)

To study whether the embedding sizes assigned by PME are
relevant to the frequency, we visualize the distribution of token’s
embedding size against its frequency on Criteo dataset in Figure 8,
where the backbone model is DeepFM with a 40x compressed
embedding layer. Two main observations are summarized as
follows: (1) PME generally assigns larger sizes to frequent tokens,
and vice versa. (2) Several infrequent tokens, whose frequency is
less than 10%, are assigned with large capacity, and some frequent
tokens are assigned with a smaller capacity. These two observations
are partially aligned with the hyperthesis that frequent tokens
are more important for model performance, and hence deserve
to have more capacity. More importantly, our observations also
suggest that the token’s capacity should not be purely decided by
its popularity. For example, niche items, such as cult films in movie
recommendation, are rarely observed compared with popular
ones in the collected data, however, the quality of these niche
items’ representations is crucial for personalized recommendations,
and hence deserve to have more capacity. However, simply
scaling embedding sizes with token’s frequency may sacrifice the
quality of these niche item’s representation. In contrast, PME
allocates sizes which can maintain model performance with the
full embedding as much as possible, and hence may allocate more
capacity for tokens whose representation plays a decisive role for
recommendation performance.

4.3. Efficiency analysis

As shown in Figure 2, the entire pipeline has two phases,
namely, the size search phase and the training phase. To answer
RQ2, we present and analyze the time cost of these two
phases, respectively.

For the search phase, we report the search time of PME
and DartsEMB in Table . We note that all other baselines do
not have a separate search process. The search cost of PME is
approximately 30% ~ 40% of DartsEMB. This is mainly because
the embedding table in PME is not trained during the search. In
contrast, DartsEMB follows the paradigm of neural architecture
search, leading to solve the bi-level optimization problem during
the search.

For the training phase, Figure 9 displays the training time
per epoch of three models with different embedding compression
methods. We can observe that PME generally reduce the 10% ~
20% training time compared with SE, and is comparable or faster
than other baselines. This speedup may be due to models with PME
have significantly less trainable parameters, i.e., many tokens are
mapped to unlearnable zero vectors during training (see Figure 8).
We remark that PME could retrieve tokens’ embeddings from
different fields simultaneously, which cannot be done in DartsEMB

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

(see Appendix 2 in Supplementary material). To summarize, PME
can not only reduce the memory occupied by the embedding layer
during both the training and inference process, but also can speed
up the training process.

4.4. Sensitivity analysis

In this subsection, we study the sensitivity of searched sizes
proposed by PME on backbone models and initialized weights
using the Criteo dataset (RQ3).

4.4.1. Initialization sensitivity analysis

The Lottery Ticket Hypothesis (LTH) demonstrates randomly
initialized networks contain subnetworks (winning tickets) that,
when trained in isolation, can reach the accuracy comparable to
the original network (Frankle and Carbin, 2019). LTH suggests the
connections of winning tickets have those specific initial weights
that make training particularly effective (Frankle and Carbin, 2019).

However, in PME, the allocated size of each token is obtained by
transferring only the capacity of its pruned embedding. Moreover,
the randomly initialized weights used for identifying redundant
parameters are not trained during the search process. According
to LTH, the allocated sizes may overfit the particular initialized
weights used during the search process. To investigate whether
searched sizes are customized for the initialized weights used
during the search process, following the method given in the
study by Zhao et al. (2020a), we calculate the averaged Pearson
correlation of searched sizes with five different random seeds. Here,
the searched sizes refers to the output of Algorithm I, instead
of rounded sizes for a fine-grained comparison. The results are
presented in Figure 10. We note that a Pearson correlation beyond
0.8 is already regarded as strongly correlated (Buda and Jarynowski,
2010; Zhao et al., 2020a).

As shown in Figure 10, PME is generally robust to different
initializations in terms of Pearson correlation. Moreover, as the
parameters are being pruned, the Pearson correlation converges to
one. This suggests that under highly limited resource constraints,
the allocation strategy of PME is initialization-agnostic.

4.4.2. Architecture sensitivity analysis

For PME, the embedding sizes are calculated based on the
gradients of the randomly initialized weights. Thus, backbone
models may largely influence the searched embedding sizes since
the gradient flow is decided by the architecture of backbone model.
To investigate whether the searched embedding sizes are sensitive
to the backbone models, similar to the initialization sensitivity
analysis experiments, Figure 11 presents the Pearson correlation of
searched embedding sizes with two representative models, namely,
DeepFM and Autoint+.

Similarly, as shown in Figure 11, PME is generally robust to
backbone models in terms of Pearson correlation. Moreover, as the
parameters are being pruned, the Pearson correlation converges to
one. This suggests that under highly limited resource constraints,
the searched embedding sizes proposed by PME is model-agnostic.
We note that both DeepFM and Autoint+ with PME can achieve

Frontiersin Big Data

10.3389/fdata.2023.1195742

comparable or better performance at high compression rates
on Criteo dataset (see Figure 4), we hypothesize that although
backbone models are different, PME identifies a same group of the
most important tokens and allocate more parameters to them.

5. Related work

Many embedding compression embedding methods have been
proposed to reduce the memory consumption of the embedding
layer. We roughly categorize existing embedding compression
methods into four classes as follows.

5.1. Multi-size embedding

Multi-size embedding allows each token in the vocabulary
to have embeddings of different sizes. Specifically, mixed
dimension embedding (MDE) proposes to adaptively allocate
sizes for tokens according to their frequency (Ginart et al,
2021). Neural Input Search (NIS) tries to search the embedding
size using Reinforcement Learning (Joglekar et al, 2020).
Inspired by the differentiable architecture search (DARTS) (Liu
et al, 2019), AutoEmb makes the embedding sizes selection
process differentiable by incorporating the DARTS method (Zhao
et al, 2020b). Similarly, AutoDim proposes to search field-wise
embedding sizes by relaxing the discrete embedding size allocation
problem to a continuous one that can be solved by gradient descent
(Zhao et al., 2020a).

Plug-in Embedding Pruning (PEP) (Liu et al., 2021) also adopts
the pruning-based formulation to learn embedding sizes, which is
the most related study to ours with two main differences. First,
PEP uses the sparse matrix format to store the pruned embedding
layer and retrains the model with the sparse embedding matrix. In
contrast, PME builds a multi-size embedding table for training by
transferring the capacity of the token’s pruned embeddings. Second,
PEP utilizes Soft Threshold Reparameterization (Kusupati et al,
2020) to prune redundant parameters, which requires expensive
pretrain-prune-retrain cycles. In contrast, PME disentangles the
pruning process from the iterative cycle by pruning redundant
parameters at initialization. We do not compare with PEP due to
the following two reasons. First, to the best of our knowledge, the
official implementation of embedding layers in Pytorch does not
support the sparse matrix format. The official codes of PEP have
not released yet. Second, the baseline performance reported in Liu
etal. (2021) has a large gap with ours.

5.2. Low-rank approximation

Low-rank approximation assumes there is a low-rank latent
structure in the embedding matrix, and decomposes the original
matrix to several smaller matrices (Markovsky and Usevich, 2012).
TT-Rec uses tensor train decomposition instead of the standard
low-rank decomposition to optimize for GPU computations (Yin
etal., 2021).

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

10.3389/fdata.2023.1195742

A 1000 B 2000

800
1500
600
1000

Second
Second

400

200

&
&

FIGURE 9

& & &
ﬂ.@&g)

Training time per epoch of recommendation models with different embedding compression methods on Criteo dataset. (A) The backbone model is
DeepFM. (B) The backbone model is Autoint+. (C) The backbone model is Wide and Deep.

C 1000

Second

&
&

$©
$ ¢

Qé\

& Qs?gb S ¢
N &“

0.95 - ”

5 ' W
E *
< 0.90 -

=

=) i

=}
@] w

5 0.85

w

-

5

53
=]

0.80
*
50 60 70 80 90 100
Pruned parameters percentage (%)

FIGURE 10

Averaged Pearson correlation between searched sizes with different

random seeds. As parameters are being pruned, the Pearson

correlation converges to one.

5.3. Hashing

Hashing is a widely used technique to reduce the store
space by mapping similar tokens into the same bucket, and
vice versa (Wang et al., 2017). Recently, efforts have also been
devoted to jointly learn feature representations and hashing
functions to preserve the similarity, and hence minimize the
performance gap after compression (Lin et al., 2015; Cao et al,
2017; Wang et al, 2017). Another representative work is ROBE
(Desai et al., 2022). Specifically, Desai et al. (2022) maintain
a single array for learned parameters which is a compressed
representation of embedding table. All embedding tables share the
same array of learned parameters. The embeddings are accessed in
a blocked manner from the embedding array using GPU-friendly
universal hashing.

5.4. Quantization

Quantization refers to representing weights or gradients
with a small numbers of bits, e.g., eight bits. In this way, we can

Frontiersin Big Data

11

.‘*..*
0.96 - et
= *
S
E 0.94 *
@ *
£ 092 3
=}
&)
= 0.90
5
£
g 0.88
=]
0.86
w
50 60 70 80 9 100
Pruned parameters percentage (%)
FIGURE 11
Averaged Pearson correlation between searched sizes with DeepFM
and Autoint+. Here, we use the searched sizes instead of rounded
sizes. As parameters are being pruned, the Pearson correlation
converges to one.

effectively shrink the model size and accelerate the inference
procedures (Han et al., 2016). Specifically, differentiable product
quantization (DPQ) proposes a differentiable quantization
framework that enables end-to-end training for embedding
compression and achieves significant compression rates on
NLP models (Chen et al, 2020). Inspired by DPQ, multi-
(MGQEs) generalize the

recommendation domain by

granular quantized embeddings
of DPQ to the
incorporating the frequency information of tokens (Kang

et al., 2020).

framework

6. Conclusion

In this study, we approach the embedding size allocation
problem from a pruning perspective. During the search phase,
we prune the dimensions that have the least impact on model
performance in the embedding to reduce its capacity. Then,
we show that the customized size of each token can be
obtained by transferring the capacity of its pruned embedding.
Experiments verify that PME can achieve strong performance

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

while significantly reducing the parameter number and can be
trained efficiently.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

ZL, QS, and XH contributed to the whole framework. XH, QS,
LL, S-HC, and RC contributed to the revision of the manuscript.
All authors contributed to the manuscript and approved the
submitted version.

Funding

This work was funded by NSF 11S-2224843 and IIS-1849085.

Conflict of interest

QS was employed by LinkedIn. RC, LL, and S-HC were
employed by Samsung Electronics America.

References

Buda, A., and Jarynowski, A. (2010). Life Time of Correlations and its Applications.
Andrzej Buda Wydawnictwo NiezaleLLne.

Cao, Z., Long, M., Wang, J., and Yu, P. S. (2017). “Hashnet: Deep learning to hash
by continuation,” in IEEE International Conference on Computer Vision, ICCV 2017
(Venice: IEEE Computer Society), 5609-5618. doi: 10.1109/ICCV.2017.598

Carreira-Perpinan, M. A., and Idelbayev, Y. (2018). ““Learning-compression”
algorithms for neural net pruning,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 8532—-8541.

Chen, T., Li, L., and Sun, Y. (2020). “Differentiable product quantization for end-
to-end embedding compression,” in Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, Virtual Event (PMLR), vol. 119 of Proceedings of
Machine Learning Research (Vienna), 1617-1626.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., et al.

(2016). “Wide & deep learning for recommender systems,” in Proceedings of the Ist
Workshop on Deep Learning for Recommender Systems, 7-10.

Covington, P., Adams, J., and Sargin, E. (2016). “Deep neural networks for youtube
recommendations,” in Proceedings of the 10th ACM Conference on Recommender
Systems, eds S. Sen, W. Geyer, J. Freyne, and P. Castells (Boston, MA: ACM), 191-198.
doi: 10.1145/2959100.2959190

Desai, A., Chou, L., and Shrivastava, A. (2022). “Random offset block embedding
(ROBE) for compressed embedding tables in deep learning recommendation systems,”
in Proceedings of Machine Learning and Systems 2022, MLSys 2022, eds D. Marculescu,
Y. Chi, and C. Wu (Santa Clara, CA: mlsys.org).

Frankle, J., and Carbin, M. (2019). “The lottery ticket hypothesis: Finding
sparse, trainable neural networks” in 7th International Conference on Learning
Representations, ICLR 2019 (New Orleans, LA: OpenReview.net).

Ginart, A. A, Naumov, M., Mudigere, D., Yang, J., and Zou, J. (2021).
“Mixed dimension embeddings with application to memory-efficient recommendation
systems,” in IEEE International Symposium on Information Theory, ISIT 2021
(Melbourne, VIC: IEEE), 2786-2791. doi: 10.1109/1S1T45174.2021.9517710

Guo, H,, Tang, R, Ye, Y., Li, Z., and He, X. (2017). “Deepfm: A factorization-
machine based neural network for CTR prediction,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, ed C. Sierra (Melbourne, VIC: ijcai.org), 1725-1731. doi: 10.24963/ijcai.
2017/239

Frontiersin Big Data

10.3389/fdata.2023.1195742

The that the
conducted in the absence of any commercial or financial

remaining authors declare study was

relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Author disclaimer

The views and conclusions contained in this paper are those
of the authors and should not be interpreted as representing any
funding agencies.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdata.2023.
1195742 /tull#supplementary-material

Han, S., Mao, H., and Dally, W. J. (2016). “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding,” in 4th
International Cvnference on Learning Representations, ICLR 2016, edsY. Bengio and Y.
LeCun (San Juan).

Joglekar, M. R., Li, C., Chen, M., Xu, T., Wang, X, Adams, J. K,, et al. (2020).
“Neural input search for large scale recommendation models,” in KDD 20: The 26th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,
eds R. Gupta, Y. Liu, J. Tang, and B. A. Prakash (New York, NY: ACM), 2387-2397.
doi: 10.1145/3394486.3403288

Kang, W., Cheng, D. Z.,, Chen, T, Yi, X, Lin, D., Hong, L., et al. (2020).
“Learning multi-granular quantized embeddings for large-vocab categorical features
in recommender systems,” in Companion of The 2020 Web Conference 2020, eds A.
E. F. Seghrouchni, G. Sukthankar, T. Liu, and M. van Steen (Taipei: ACM / IW3C2),
562-566. doi: 10.1145/3366424.3383416

Koren, Y., Bell, R,, and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer 42, 30-37. doi: 10.1109/MC.2009.263

Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M., Jain, P., Kakade, S. M.,
et al. (2020). “Soft threshold weight reparameterization for learnable sparsity,” in
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
Virtual Event (PMLR), vol. 119 of Proceedings of Machine Learning Research, 5544—
5555.

Lee, N., Ajanthan, T., and Torr, P. H. S. (2019). “Snip: single-shot network
pruning based on connection sensitivity,” in 7th International Conference on Learning
Representations, ICLR 2019 (New Orleans, LA: OpenReview.net).

Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., and Sun, G. (2018). “xdeepfm:
Combining explicit and implicit feature interactions for recommender systems,” in
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD 2018, eds Y. Guo and F. Farooq (London: ACM), 1754-1763.
doi: 10.1145/3219819.3220023

Lin, K., Yang, H., Hsiao, J., and Chen, C. (2015). “Deep learning of binary hash
codes for fast image retrieval,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2015 (Boston, MA: IEEE Computer Society),
27-35. doi: 10.1109/534CVPRW.2015.7301269

Liu, H., Simonyan, K., and Yang, Y. (2019). “DARTS: differentiable architecture
search,” in 7th International Conference on Learning Representations, ICLR 2019 (New
Orleans, LA: OpenReview.net).

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://www.frontiersin.org/articles/10.3389/fdata.2023.1195742/full#supplementary-material
https://doi.org/10.1109/ICCV.2017.598
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1109/ISIT45174.2021.9517710
https://doi.org/10.24963/ijcai.2017/239
https://doi.org/10.1145/3394486.3403288
https://doi.org/10.1145/3366424.3383416
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/3219819.3220023
https://doi.org/10.1109/534CVPRW.2015.7301269
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al.

Liy, S., Gao, C,, Chen, Y., Jin, D., and Li, Y. (2021). “Learnable embedding sizes for
recommender systems,” in 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event (OpenReview.net).

Markovsky, 1. (2012). “Low rank approximation - algorithms, implementation,
applications,” in Communications and Control Engineering (London: Springer).
doi: 10.1007/978-1-4471-2227-2

Park, J., Naumov, M., Basu, P., Deng, S., Kalaiah, A., Khudia, D. S., et al. (2018).
Deep learning inference in facebook data centers: Characterization, performance
optimizations and hardware implications. arXiv [Preprint]. arXiv: 1811.09886.

Park, Y., and Tuzhilin, A. (2008). “The long tail of recommender systems and how
to leverage it,” in Proceedings of the 2008 ACM Conference on Recommender Systems,
RecSys 2008, eds P. Pu, D. G. Bridge, B. Mobasher, and F. Ricci (Lausanne: ACM),
11-18. doi: 10.1145/1454008.1454012

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G, et al
(2019). “Pytorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, eds H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Bug, E. B. Fox, and R. Garnett (Vancouver, BC), 8024-8035.

Shi, H. M., Mudigere, D., Naumov, M., and Yang, J. (2020). “Compositional
embeddings using complementary partitions for memory-efficient recommendation
systems,” in KDD 20: The 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, eds R. Gupta, Y. Liu, J. Tang, and B. A. Prakash (ACM),
165-175. doi: 10.1145/3394486.3403059

Frontiersin Big Data

13

10.3389/fdata.2023.1195742

Song, W., Shi, C, Xiao, Z., Duan, Z., Xu, Y., Zhang, M., et al. (2019).
“Autoint: Automatic feature interaction learning via self-attentive neural networks,”
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM 2019, eds W. Zhu, D. Tao, X. Cheng, P. Cui, E.
A. Rundensteiner, D. Carmel, Q. He, and J. X. Yu (Beijing: ACM), 1161-1170.
doi: 10.1145/3357384.3357925

Wang, C., Zhang, G., and Grosse, R. B. (2020). “Picking winning tickets before
training by preserving gradient flow;” in 8th International Conference on Learning
Representations, ICLR 2020 (Addis Ababa: OpenReview.net).

Wang, J., Zhang, T., Sebe, N., and Shen, H. T. (2017). A survey on learning to Hash.
IEEE Trans. Pattern Anal. Mach. Intell. 40,769-790. doi: 10.1109/TPAMI.2017.2699960

Yin, C., Acun, B., Wu, C,, and Liu, X. (2021). “Tt-rec: Tensor train compression
for deep learning recommendation models,” in Proceedings of Machine Learning and
Systems 2021, MLSys 2021, virtual, eds A. Smola, A. Dimakis, and I. Stoica (mlsys.org).

Zhang, S., Yao, L., Sun, A, and Tay, Y. (2019). Deep learning based
recommender system: a survey and new perspectives. ACM Comput. Surv. 52, 1-38.
doi: 10.1145/3158369

Zhao, X, Liu, H., Liu, H., Tang, J., Guo, W., Shi,], et al. (2020a). Memory-efficient
embedding for recommendations. arXiv [Preprint]. arXiv:2006.14827.

Zhao, X., Wang, C., Chen, M., Zheng, X, Liu, X,, and Tang, J. (2020b). AutoEMB:
automated embedding dimensionality search in streaming recommendations. arXiv
preprint arXiv:2002.11252.

frontiersin.org

https://doi.org/10.3389/fdata.2023.1195742
https://doi.org/10.1007/978-1-4471-2227-2
https://doi.org/10.1145/1454008.1454012
https://doi.org/10.1145/3394486.3403059
https://doi.org/10.1145/3357384.3357925
https://doi.org/10.1109/TPAMI.2017.2699960
https://doi.org/10.1145/3158369
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	PME: pruning-based multi-size embedding for recommender systems
	1. Introduction
	2. Preliminary and problem statement
	2.1. Notations
	2.2. Preliminary
	2.3. Multi-size embedding

	3. Methodology
	3.1. Size allocation as a pruning problem
	3.2. Prune embeddings without training them
	3.3. Multi-size table lookup optimization
	3.4. Discussion and limitation
	3.4.1. Discussion
	3.4.2. Limitation

	4. Experiment
	4.1. Experimental settings
	4.1.1. Baselines
	4.1.2. Data preprocessing
	4.1.3. Hyperparameter settings

	4.2. Performance vs. parameter number
	4.2.1. Criteo and Avazu results
	4.2.2. Relationship between frequency and allocated sizes

	4.3. Efficiency analysis
	4.4. Sensitivity analysis
	4.4.1. Initialization sensitivity analysis
	4.4.2. Architecture sensitivity analysis

	5. Related work
	5.1. Multi-size embedding
	5.2. Low-rank approximation
	5.3. Hashing
	5.4. Quantization

	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Author disclaimer
	Supplementary material
	References

