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Abstract—
Learning from the collective knowledge of data dispersed

across private sources can provide neural networks with en-
hanced generalization capabilities. Federated learning, a method
for collaboratively training a machine learning model across
remote clients, achieves this by combining client models via the
orchestration of a central server. However, current approaches face
two critical limitations: i) they struggle to converge when client
domains are sufficiently different, and ii) current aggregation
techniques produce an identical global model for each client. In
this work, we address these issues by reformulating the typical
federated learning setup: rather than learning a single global
model, we learn N models each optimized for a common objective.
To achieve this, we apply a weighted distance minimization to
model parameters shared in a peer-to-peer topology. The resulting
framework, Iterative Parameter Alignment, applies naturally to
the cross-silo setting, and has the following properties: (i) a unique
solution for each participant, with the option to globally converge
each model in the federation, and (ii) an optional early-stopping
mechanism to elicit fairness among peers in collaborative learning
settings. These characteristics jointly provide a flexible new
framework for iteratively learning from peer models trained on
disparate datasets. We find that the technique achieves competitive
results on a variety of data partitions compared to state-of-the-
art approaches. Further, we show that the method is robust to
divergent domains (i.e. disjoint classes across peers) where existing
approaches struggle.

I. INTRODUCTION

Federated Learning (FL) addresses issues of data privacy
and access rights by enabling wide-scale training of machine
learning models across decentralized data sources [1]–[3].
Standard FL involves clients (e.g. mobile, edge devices) training
a model locally with private data and communicating their
model updates back to a central server. The server aggregates
client models into a global model and returns it to each client,
a process that repeats iteratively until a final global model is
produced. Traditional FL often addresses cross-device settings
where clients consist of unreliable devices. Extensive research
has concentrated on addressing issues related to cross-device
FL such as communication constraints and heterogeneous data
partitioning [1], [4]–[8].

A second setting, cross-silo FL, involves training a machine
learning model across large organizations such as banks [9],

[10] and hospitals [11]–[14]. Silos in this scenario generally
have big data, extensive computational resources, and strong
network communication [15]. Further, the setting often contains
fewer clients compared to cross-device FL.

Motivation. In this work we identify and address two
issues present in current FL algorithms. First, we identify
a novel failure scenario in current FL frameworks: cross-
domain global model aggregation. Specifically, when clients
have divergent domains, such as completely different labels,
common FL approaches fail. Figure 1 (center) highlights the
issue, with existing algorithms FedAvg [2], FedDC [7], and
FedDyn [6] each failing to converge to baseline test accuracy
when three clients have differing labels (e.g. client one has
only training samples of animals and another only vehicles).
Cross-domain scenarios are important in the real-world such as
those involving GDPR where an entire demographic segment
is isolated, or cross-industry learning where the domains of
peers are disjoint. In Section IV-A, we show that existing FL
algorithms consistently have unstable results across various
datasets and label splits.

In addition, we also address an overlooked characteristic
of existing FL: the global model is identical for each partic-

ipant. This property can lead to important disadvantages. In
particular, the global model is exposed to all participants in
the federation. In the cross-silo setting this may leave a client
model unprotected against direct competitors, exposing obvious
vulnerabilities such as white-box attacks [16]. Personalized
FL is an alternative approach which produces individualized
models for each client unique to their data distribution [17]–
[19], including methods to produce joint personalized and
global models [20], [21], however current approaches still
produce a single global model (details in Section II).

Proposed Approach. To address the issues of divergent
client domains and a single global model, we propose the
Iterative Parameter Alignment (IPA) algorithm for merging
machine learning models across silos. Unique from existing
approaches the algorithm trains N different models, one
for each silo. The models each have arbitrary initializations,
different from current techniques which require the same initial
parameters [2]. IPA works by iteratively merging the models
by minimizing the distance between weights. The architecture
is depicted in Figure 1 (right).979-8-3503-2445-7/23/$31.00 ©2023 IEEE
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Fig. 1: Left: Test set accuracy across communication rounds of peers trained with Iterative Parameter Alignment compared to
their standalone performance (trained only on their local data). There are twenty peers each trained with an imbalanced subset
of the CIFAR-10 training set. They are split using heterogeneous data partitioning using a Dirichlet distribution with ↵ = 0.3.
One communication round (the x-axis) equals each peeri training their model (fi) once. Center: Three peers each trained with
distinct CIFAR-10 training labels (one peer has 4 labels, two peers have 3 labels each). We find that when peers have sufficiently
divergent domains, existing FL methods fail, creating global models that do not reach baseline accuracy. Iterative Parameter
Alignment produces distinct global models for each peer that each converge to baseline accuracy (85% on the test set). Right:
A single iteration of Parameter Alignment trained in a ring topology (random topologies are used in experiments). The method
relies on parameter exchange and alignment to learn from others. ✓1, ✓2, ...✓N are N peers parameters and f1, f2, ...fN are the
models. ✓⇤ represents all peer parameters {✓1, ✓2, ...✓N}. Each peeri can optionally apply differential privacy to their ✓i for
protection. Our code is available at https://github.com/mattgorb/iterative_parameter_alignment.

Essential to cross-silo FL, IPA can protect the client’s data
and the client’s final model. Data protection is a primary goal
of FL (achieved via data localization [2] and differential privacy
[22]–[25]), however, model protection is a more ambiguous
task. Homomorphic encryption is the primary model protection
technique in FL, enabling clients to encrypt model updates
for protection against a central server [26], [27]. Differential
privacy also achieves model protection by enabling clients
to add noise to their models parameters [28]. However, in
each of these scenarios the global model is still the same for
each client. Some techniques emphasize fairness by producing
varying models which depend on a clients data contribution
[29]–[31]. However, such approaches produce client models
derived from the same global model, which are produced at
the server. Moreover, fairness may not be a requirement for
every FL scenario, and in such cases it may still be desirable
to create differing global models without this constraint.

IPA addresses issues of model protection through silo-to-silo
federated learning over N unique models. This decentralized
topology is favorable particularly in cross-silo scenarios where a
central server may create a communication bottleneck [32]. By
creating unique global models for each peer, IPA prevents peers
from knowing each others parameters, an approach achieved
through differential privacy. In particular, a peer may add noise
to its model parameters to protect its model from the other
peers (we assess IPA under differential privacy in Section V).
We study the differences in peer models without differential
privacy in Section IV-C.

In addition to model protection, IPA provides the flexibility
for peer models to either converge to a global optimum, or
decide on an early-stopping point to elicit fairness (in cases

of heterogeneous data silos). For example, when one peer
has more data than another, their model will converge faster
using the IPA algorithm. If fairness is a requirement, peers can
decide on an early stopping point so that the higher contributor
achieves a stronger model. If fairness is not a requirement, all
peers will still converge to a global optimum (each with unique
parameters). We study this property of IPA in Section IV-D.

Contributions. We propose IPA for merging peer models
trained on separate data. Different from existing approaches,
the algorithm produces a unique model for each peer (silo) in
the federation, each with arbitrary initializations. IPA works
by iteratively merging peer models by minimizing the distance
between weights. The architecture is depicted in Figure 1 (right).
IPA offers several advantages compared to existing methods:

• IPA is robust in scenarios with completely segregated
labels across peers, including scenarios where existing FL
algorithms fail to converge.

• IPA achieves state-of-the-art convergence rates on bal-
anced data partitions (Table I). Further, the method
achieves competitive results (significantly outperforming
FedAvg) with heterogeneous data sources, a known burden
of standard FL [1], [2], [6]–[8].

• It produces unique peer models in a decentralized topology,
providing independence from a central orchestrator and
implicit collaboration with peers.

• The method produces distinct global models for each peer,
which we analyze in Section IV-C.

• IPA contains built-in fairness: we show that model
performance on classification tasks is correlated with a
peers standalone model performance. We propose an early
stopping mechanism to elicit fairness in Section IV-D.

https://github.com/mattgorb/iterative_parameter_alignment


II. RELATED WORK

Federated Learning. The pioneering FL framework, Fed-
erated Averaging (FedAvg), aggregated a global model by
averaging the weights of client models trained on private data
[2]; heterogeneous data partitioning, inefficient communication,
and variable participation across clients were identified as key
challenges [33]–[35]. Subsequent work improved the conver-
gence rate of heterogeneous client data through corrections
to the gradients of local models [8], regularization of local
models against the global model [1], dynamic regularization
of local models [6], and correcting local model drift from the
global model [7].

Cross-Silo Federated Learning. Cross-silo FL involves
training machine learning models across entities with large data-
silos (i.e. data centers) [5], [15]. Peer-to-peer communication
has been proposed as an effective alternative to centralized
orchestration in cross-silo federations with reliable participants
[32]. Marfoq et al. examine the effect of topology on the
duration of communication rounds in cross-silo settings, and
propose algorithms for measuring network characteristics to
construct a high-throughput network topology. Other works
address security and personalization of cross-silo FL [22], [36].
We consider cross-silo FL a realistic application for IPA due
to the large computational costs of the algorithm, as well as
organizations’ potential desire to maintain independent models.

Collaborative Learning. Important to cross-silo FL is
designing incentive mechanisms for peers to participate in
a federation, commonly referred to as collaborative learning.
Participants may have concerns about contributing their data
for the benefit of others. For example, if two peers are direct
competitors they may be concerned that the other peer will
benefit more from federated learning. As a result, fairness

schemes have been proposed using methods such as contract
theory [37], [38], monetary payouts [39], and game-theoretic
approaches [40], [41]. Lyu et al. [30] propose a credibility
metric so that each participant receives a different version of the
global model with performance comparable to its contribution.
Similar to our work the authors use a decentralized framework
(they propose blockchain). Different from their approach, IPA
works in cross-domain settings and produces differing global
models. IPA is additionally a less complex framework. Xu
et al. [29] propose a reward mechanism that specifies model
updates at the server commensurate to a client’s contributions.
Other works utilize the Shapely value [42] and reputation lists
[31] to evaluate client contributions.

Personalized Federated Learning. Personalized FL pro-
duces individualized models that are catered to a client’s data
distribution while also leveraging the data of the federation [17].
Clients can create personalized models via local fine-tuning of
the global model [5], or from more advanced techniques such
as hypernetworks [43], pruning [44], encouraging interaction
between related clients [18], [21], [45], [46], and learning client-
level and shared feature extractors [47], [48]. Research also
addresses fairness in personalized FL [19], [49], identifying
performance disparity across clients as a key issue.

Some methods create high performing personalized and

global models. FedRoD [20] utilizes an additional local layer
on a global model to create a high performing personalized
model, while FedHKD [21] uses local "hyper knowledge" to
aggregate the global model. However, these approaches create
identical global models across clients. Further, the methods
centrally aggregate the global model.

IPA versus personalized FL. Unique from IPA, personalized
FL methods produce models individualized to each clients data

distribution. For example, if one client has data of dogs and
another has data of cats, they may not benefit from each other.
Unlike existing research in personalized FL, IPA aims to learn
an individualized model on a common objective for each peer
in the network. In our dogs and cats example, each peer would
learn a different global model that does well at classifying
dogs and cats in a decentralized network topology.

III. METHOD

We begin by reviewing the standard federated averaging
objective, followed by describing the unique approach of IPA.

Background. In standard FL there are N clients in a
federation, where each client i has a local dataset Di. The
goal is to solve a common objective over a universal dataset
D = [i2[N ] by aggregating each local model into a global
model. The system iterates between local training on each client
and global aggregation at the server. FedAvg, the original
FL algorithm [2], involves a weighted averaging of client
parameters at the server:

Local : ✓i = argmin
✓2R

Li(Di; ✓), initialized with ✓ (1)

Global: ✓ =
NX

i=1

|Di|

|D|
✓i (2)

where ✓i is the local model’s parameters, ✓ is the global
model’s parameters, Li(✓) = E(x,y)⇠Di

⇥
`i(f(x), y; ✓)

⇤
is the

local empirical loss of model i on dataset Di, and x and y are
the samples and labels in Di.

Iterative Parameter Alignment. To begin, we consider a
set of N peers (rather than clients) where peer i has access to
local dataset Di. Similar to standard FL, our goal is to solve
an objective over universal dataset D for each peer model
f(✓i). To do this, each peer solves both an empirical learning
objective, denoted Li, as well as an alignment objective Ai,
which together minimize the set of all peer parameters ✓⇤,
where ✓⇤ = {✓1, ...✓N}:

argmin
✓⇤2R

⇥
Li(Di; ✓i) +Ai(✓

⇤)
⇤

where Li(✓i) = E(x,y)⇠Di

⇥
`i(f(x), y; ✓i)

⇤
and x and y are

samples from Di. For experiments in this work, we set `
to be a cross-entropy loss for image classification problems.
Importantly, Di is only seen by peer model f(✓i), from which
the empirical loss is calculated. Moreover, peers are not able
to share data with each other, only model parameters. This is
similar to parameter sharing among the client and server in



standard FL. We can apply differential privacy to the parameter
sharing similar to previous work [28], albeit in a decentralized
(rather than centralized) topology.

Key to the global convergence of a peer model is the
alignment of parameters during training. Specifically, model i
holds parameters ✓⇤ locally, and during each minibatch updates
✓i by minimizing the distance between ✓i and each ✓n. For a
single weight matrix or bias for model i we denote this as ai:

ai(✓
⇤) =

NX

n=1

||✓i � ✓n||p, where i 6= n (3)

where p is the L1 or L2 distance. In other words, ai is
the sum of distances in ✓⇤ between ✓i and ✓n. Generalizing
parameter alignment across the weights and biases of each
layer 1, l, ...L of a neural network we achieve our alignment
objective for model i:

Ai(✓
⇤) = �

LX

l=1

ai(✓
⇤) (4)

where � is a global scale factor on the weight alignment
objective. We set � to 1 in this work. IPA leads to a
minimization of the global loss in individual models who have
never seen the global dataset. In other words, when solving
for the alignment objective in Equation III, we show that a
peer model with access to the full parameter set ✓⇤ iteratively
converges to an objective solved over the global dataset
D: argmin✓i Li(Di; ✓i) ! argmin✓ L(D; ✓). Compared to
standard FL, the IPA algorithm only updates parameters on
peer devices in a decentralized and synchronous architecture.
Further, the method relies on independent (i.e. never aggregated)
peer models. In the next section, we highlight the benefits of
the approach in various settings.
Algorithm 1 Parameter Alignment, One Iteration.
Input:
N peers
Peeri has: dataset Di, model fi with weights ✓i
✓⇤ is all peer parameters: {✓i, ...✓N}

Output:
Models f1(✓1), f2(✓2), ...fN (✓N )

Each peer initializes ✓i, sends to peer1
for each peeri 2 N do

for each batch b 2 Di do
Li = `(fi(b; ✓i)) + PARAMALIGN(fi, ✓⇤)
✓i  ✓i � OLi

Transfer ✓⇤ to peeri + 1

PARAMALIGN(fi, ✓⇤ ):
Ri  0
for each layer 2 fi do

for each ✓j 2 ✓⇤, j 6= i do
Ri  Ri + |✓i � ✓j |p

return Ri

IV. EXPERIMENTS

We begin by evaluating Iterative Parameter Alignment
against existing methods in federated learning, including
experiments merging peer models trained on segregated classes.
Next, we quantify the difference between peer models, showing
that each peer produces a distinct model in both parameter
space and during inference. Finally, we highlight the ability for
IPA to produce fair models (at epoch t), converging thereafter
to globally optimized solutions.

A. Domain Divergent Silos

Unique to this work we experiment with merging peer models
that have completely segregated classes. For example, Peer1
may only have images of dogs while Peer2 has only images
of cats. Such scenarios are important in the real-world such as
those involving GDPR where an entire demographic segment
is isolated, or cross-industry learning where the domains of
individual peers are disjoint.

The scenario also highlights the distinction between IPA and
personalized FL [20], [21]. In the above example, personalized
FL would aid Peer1 to better generalize to its own domain
(dogs) by utilizing Peer2 data. However, Peer1 may not gain
much value from Peer2’s information about cats. We further
distinguish IPA from personalized FL in Section II.

IPA, in contrast, can successfully merge two or more
seemingly independent domains. Figure 1 (center) shows how
three peers trained with different CIFAR-10 labels can be
iteratively aligned and each converge to the accuracy of a
baseline model trained on all data.

We compose our experiments with simple class splits, such
as a two-peer class split where one peer has all training data
labeled 0 to 4 and the second peer has training data labeled 5
to 9 (in a dataset with 10 classes). We also consider imbalanced
splits such as peers with an unequal number of classes.

Results. Figure 2 highlights the convergence of peer models
trained using the IPA algorithm on disjoint classes. We find
that compared to FedAvg, FedDyn, and FedDC, IPA achieves
stable training. Moreover, under both balanced splits (each
peer has the same number of labels) and imbalanced data
splits, IPA converges consistently to baseline accuracy. Existing
algorithms such as FedDyn and FedDC have very unstable
training; their global model test accuracy curves were smoothed
in Figure 2 for visualization purposes. FedAvg had more stable
training, however, its naive parameter averaging technique did
not converge to baseline accuracy. Rather, its performance
flattened out after a few communication rounds.

We hypothesize that existing FL algorithms are unstable in
the segregated class scenario because the gradient updates of
local models are entirely disassociated from each other as a
result of the domain discrepancy. Existing work has shown that
clients with heterogeneous data partitions have inconsistent
optimization directions [8], [33], which cause drifts in the
local models away from a global solution. We tried over half a
dozen different configurations for existing algorithms, including
different seeds, reduced learning rate, and a smaller number
of local epochs.



Fig. 2: Aligning Peer Models Trained on Disjoint Classes: We find that existing federated learning approaches such as
FedAvg struggle when trying to merge models trained with divergent (rather than heterogeneous) data partitions. We show how
IPA achieves stable training compared to existing approaches, with IPA eventually converging to baseline accuracy compared to
other methods which create global models with unstable performance.

Dataset Target
Acc. (%) FedAvg FedProx Scaffold FedDyn FedDC IPA

IID, 20 Peers, p = 2

MNIST 98 49 46 50 20 33 3
Fashion 89 148 151 165 35 100 14
CIFAR-10 85 42 46 31 20 20 15
CIFAR-100 50 82 84 45 60 43 30

Dir. (↵ = 0.6), 20 Peers, p = 1

MNIST 98 147 140 52 20 35 28
Fashion 87 60 67 62 15 40 60
CIFAR-10 85 64 65 44 22 24 44
CIFAR-100 50 105 105 56 61 55 97

Dir. (↵ = 0.3), 20 Peers, p = 1

MNIST 98 139 199 57 45 39 70
Fashion 87 98 93 92 25 50 90
CIFAR-10 85 133 144 58 28 29 95
CIFAR-100 50 111 110 64 74 55 103

TABLE I: Communication rounds required to achieve target
accuracy: We compare the number of communication rounds
required for IPA and other state-of-the-art FL algorithms
to reach a target accuracy. IPA converges quickly on IID
data, with competitive results on heterogeneous splits. IPA
does not achieve state-of-the-art performance in heterogeneous
experiments, however, communication is less of a constraint
in cross-silo settings.

B. Comparison to Existing Approaches

Our second empirical study compares the convergence rate of
Iterative Parameter Alignment against existing FL algorithms.
McMahan et al. [2] noted the slow convergence of FedAvg
when clients had heterogeneous data partitions. Since the
initial research, much effort has been put into improving
this convergence rate, which is measured by the number of

communication rounds between the clients and the server until
the global model reaches some target accuracy on the test set.
We test IPA in a similar fashion, where one communication
round equals each peer performing their allotted training.

Experimental Setup. We construct our experiments from
a set of scenarios with homogeneous and heterogeneous data
partitions consistent with previous research. In heterogeneous

settings, our label ratios follow the Dirichlet distribution
with ↵ = 0.3 and ↵ = 0.6, similar to previous works.
Lower ↵ indicates a higher data heterogeneity. We compare
Iterative Parameter Alignment to the standard FL algorithm
FedAvg [2] as well as state-of-the-art approaches FedProx
[1], Scaffold [8], FedDyn [6], and FedDC [7]. The original
hyperparameters are used for each algorithm. We compare
algorithms using MNIST, FashionMNIST, CIFAR-10, and
CIFAR-100 datasets. We use the same architecture as previous
works for the MNIST and FashionMNIST datasets; for the
CIFAR-10 and CIFAR-100 datasets, we use a larger CNN
model which includes four convolutional layers followed by
three linear layers. We consider one round of communication
as each client training the model and sending it back to the
server for aggregation (100% client participation). For IPA, we
report the number of communication rounds it takes for the
first peer to reach a target accuracy.

Unique to Iterative Parameter Alignment, we report the
convergence rates of peer models with different initializations,
i.e. each peer model is initialized from a different random seed.
In the original FL work, the authors highlighted the success of
naive parameter averaging when models had the same initial
weights. Averaging did not perform as well when the models
were initialized differently. This phenomenon was also reported
in model merging literature [50], where the authors required
models trained from the same initial weights. Research has
suggested permutation invariance of neural networks as a
driving force for this observation, i.e. a neural network has
many variants which differ only in the ordering of its parameters
[51].

Results. Table I highlights the results of IPA against five
state-of-the-art methods. Unsurprisingly, under IID settings
IPA converges quickly towards the target accuracy on all four
datasets. While the algorithm only feeds dataset Di to f(✓i),
it has 20⇥ ✓̄ parameters, optimizing 19⇥ ✓̄ parameters using
alignment and the final ✓i using alignment plus empirical loss.
As a result, the balanced, overparameterized networks converge
quickly despite only having access to a fraction of the training
samples. Compared to existing approaches, IPA achieves state-



FashionMNIST CIFAR-10

Distance Dir(0.3) IID Dir(0.3) IID

||✓i � ✓j ||1 196.5 1352.6 1.8⇥ 103 3.3⇥104

||✓i � ✓j ||2 0.7 4.9 2.0 35.9
H(fi, fj) 1,990 650 2,504 1,043
fi ^ fj 7,358 8,603 6,871 8,214
fi ^ fj 947 837 1,094 947

Fig. 3: Comparing Peer Models: We measure the distance between peer models across a variety of metrics. Each experiment
contains ten peers and is aggregated across three runs, with the mean presented for each. Left: Measuring the distance between
models across parameters (first two rows) and model predictions (the last three rows). The last three rows denote the Hamming
distance between predictions, mutual correct predictions, and mutual incorrect predictions on the test set. Test set size for
both datasets is 10k. Right: A similarity matrix of Hamming distances between peer model predictions for: 1) heterogeneous
data partition (bottom triangle) and 2) homogeneous (IID) data partition (top triangle). The distances represent the number of
mismatching predictions in the test set for each model. For reference, the lowest (averaged) Hamming distance between models
in the IID setting is 880, with a test set size of 10k.

of-the-art performance.
Under increasingly heterogeneous settings (from top to

bottom) we observe a longer convergence rate for IPA compared
to other algorithms. IPA remains competitive for MNIST and
FashionMNIST, however, has a slightly longer convergence
rate for CIFAR-10 at Dirichlet (a = 0.3) as well as CIFAR-100.
We argue that convergence rate is less of a concern in cross-silo
settings since large companies likely have adequate computa-
tion. Moreover, it achieves better accuracy than baseline models
FedAvg and FedProx.

C. Peer Model Comparison

We look at the quantitative differences between peer models
across a variety of metrics to assess whether IPA creates
sufficiently unique models. Existing literature has found that
neural networks are known to be sensitive to small changes
in their parameters [52], causing drastic changes in model
inference and generalization. There is a rich area of research
examining this phenomenon for injecting adversarial attacks
[52]–[54], evaluating the generalization gap of model minima
[55], [56], and assessing the effects of model quantization [57].
As a result, even the smallest differences in the weights of
peer models can create unique results.

Experiments. To quantify the difference between two peer
neural networks we compare both the network parameters
as well as the predictions. We measure the distance between
two models’ parameters as ||✓i � ✓j ||p, where p = {1, 2}. To
measure the difference between model predictions, we compute
the Hamming distance between models’ outputs on the test set,
which we denote H(fi, fj). We also present a count of when
both models’ predictions are correct (denoted fi ^ fj), as well
as both incorrect (fi ^ fj).

We test heterogeneous (Dirichlet with ↵ = 0.3) and
homogeneous scenarios with both the FashionMNIST and
CIFAR10 datasets. All experiments use ten peers and are
averaged over three runs. We choose a lower number of peers
compared to previous experiments in order to magnify potential
similarities between models. Heterogeneous experiments are
trained for 200 epochs and homogeneous experiments are
trained for 50 epochs. The FashionMNIST experiment on
homogeneous data had a test accuracy of 88.9%±0.24, and the
heterogeneous scenario 82.5%±3.42. The CIFAR10 experiment
on homogeneous (IID) data had a mean test accuracy of
86.4%±0.44, and the heterogeneous scenario 79.5%±4.12.

Results. Table 3 highlights the differences between peer
models across four experiments. The first two rows indicate
a dissimilarity between peer model parameters across L1

distance, with a smaller discrepancy when measured with
L2 distance. We hypothesized that IID data experiments
would have closer parameters, however, the heterogeneous
experiments yielded smaller values. We speculate this is
because we train heterogeneous data for 200 epochs compared
to just 50 epochs for IID data.

The bottom three rows measure the difference in test
inference between peer models, with both datasets having
a test set size of 10k. The smallest Hamming distance was
between IID models, with 650 for FashionMNIST and 1,043
for CIFAR-10. We argue that these values indicate a significant
difference from each other since IID models achieve 88.9%
and 86.4% accuracy on the test set. Finally, we note that the
standard error was negligible across all experiments.

D. Fairness through Early Stopping

In cross-silo settings organizations may be competing against
each other, hence the contribution of participants becomes



MNIST CIFAR-10
20 Peers 10 Peers

Algorithm CLA POW CLA POW

q-FFL [58] 38.7 48.07 51.33 94.06
CFFL [31] 94.7 85.71 72.55 81.31
ECI [59] 99.41 95.21 79.5 99.55

CGSV (�=1) [29] 96.39 97.23 98.78 99.89
CGSV (�=2) [29] 91.33 94.32 88.78 93.39

IPA (Ours) 96.44 95.98 95.86 92.22
TABLE II: Fairness of IPA compared to existing approaches:
We compare the fairness of various collaborative learning
approaches against IPA by measuring the correlation of each
clients model performance compared to its standalone models’
performance. Correlation is scaled between -100 and 100.

a critical measure. Designing proper incentive mechanisms
and rewards for participation can encourage peers to join a
federation. Previous work has proposed fairness schemes using
methods such as contract theory [37], [38], monetary payouts
[39], game-theoretic approaches [40], [41], the Shapely value
[29], [42], and reputation lists [31]. Most of these methods
produce variations of the single global model, i.e. models for
each client whose performance is commensurate to its data
contribution.

IPA takes a different approach: Figure 1 highlights the
variable convergence rates of peer models with heterogeneous
data partitions. We find that the convergence of a peer model
trained with IPA is a function of the peers’ standalone model
performance. We enable fairness in the IPA algorithm through
the early stopping of training at some iteration t < T , where
T is the number of iterations it takes for all peer models to
converge to some target accuracy.

To test our approach, we conduct experiments designed from
benchmarks in previous works. We measure fairness using a
scaled Pearson’s coefficient: 100⇥⇢(', ⇠) 2 [�100, 100] [29]–
[31]. Specifically, we measure the correlation between the test
set accuracy of the set of standalone models (') compared to
the test set accuracy of the set of models generated by IPA
(⇠) . The intuition is that peers should have a federated model

with similar capabilities to their standalone model relative to

others peers.
Our first experiments involve comparing our method with

the benchmarks of Xu et al. [29] since their approach provides
theoretically guaranteed fairness metrics. Additionally we
compare q-FFL [58], CFFL [31], and ECI [59]. Experiments use
the CIFAR10 and MNIST datasets and apply class-imbalanced
(CLA) and size-imbalanced (POW) data partitioning each using
600 samples per peer. For IPA, we run each model in a random
topology with one local training epoch per peer since there is
a limited amount of training data. For CIFAR10, we average
peer model performances on the test set for epochs 5-15, while
in MNIST we average peer model performances in epoch 1-5.
Results in Table II show that IPA has a correlation above 86

Fig. 4: Fairness across iterations: We show that the IPA
algorithm creates fair models earlier in training before the
global convergence of peer models. CIFAR-10 (Left) and
MNIST (Right) performance across models and communication
rounds, overlaid with peer models’ correlation with their
standalone performances (orange). We find that early in training,
peer model performances are correlated with the performance
of their standalone models relative to other peers. As training
proceeds and the peer models globally converge, model fairness
decreases, as can be seen in the MNIST figure.

for each of the four tests, with three of the results above 95.
These metrics are on average stronger than each prior method
except for CGSV at � = 1.

Next we experiment with a more robust and realistic data
partitioning by using the full CIFAR-10 and MNIST datasets,
20 peers, and a Dirichlet split with ↵ = 0.25. We run each
experiment four times in a random topology and test the
correlation between IPA and standalone model performance. In
these experiments, we find that the test loss (rather than the test
accuracy) is a stronger metric for correlation. For CIFAR-10,
we average the test loss between communication rounds 50 and
100 to gain a thorough picture of the correlation, and to counter
the variance of individual communication rounds. For MNIST,
we average communication rounds 5 to 25. Overall our CIFAR-
10 experiments have a correlation of 86.3 ±2.2, while our
MNIST experiments have a correlation of 80.5 ±3.4. Figure 4
depicts the test accuracy of peer models across communication
rounds overlaid with the correlation (orange) of the group of
peer models compared to the group of standalone models.

Finally, we would like to note that IPA offers a distinct advan-
tage in homogeneous settings: in existing fairness approaches,
peer models will be more or less identical as a result of being
derived from the same global model. IPA, however, will produce
a unique solution for each peer in the homogeneous setting.

V. ADDITIONAL ANALYSIS

Simulating Differential Privacy To simulate differential
privacy we run two experiments which test the effect of adding
noise to peer model parameters. Our motivation is to test
whether peer models still converge to a high test set accuracy
when differential privacy is applied to each peer. Specifically,
when one peer is finished with a training iteration, we add a
small amount of noise to their parameters (✓i) prior to sharing
with others. We add random noise with µ = 0 and � = 0.0005.

Our first experiment uses the CIFAR-10 dataset with two
silos, each with half of the labels. Both models converge to
85% test accuracy after roughly 4,000 rounds. Our second
experiment uses CIFAR-10 with 20 peers using a Dirichlet



data split with ↵ = 0.6. The first silo converges to 85% test
accuracy after 197 rounds. While both of these are significantly
longer than IPA without differential privacy, differential privacy
provides security guarantees for each silo.
L1 versus L2 Parameter Alignment. In Figure 5 (left)

we show that split label experiments exhibit instability when
using squared error (L2) alignment, while absolute error (L1)
alignment achieves smooth convergence. We observed similar
results in all experiments using heterogeneous and disjoint data
partitions.

Effect of Initialization Strategy. We show how models are
able to be aligned even when they have different initializations.
In Figure 5 (right), we show the convergence of a CIFAR-
10 experiment with ten peers split with Dirichlet with ↵ =
0.25. Both the green (same initialization) and orange (different
initialization) converge at similar rates.

Fig. 5: Left: We show the instability of squared error alignment
compared to absolute error in a CIFAR-10 experiment with
two peers with 5 labels each. Right: We discover similar
convergence rates of peers when models have the same
initialization (green) and different initializations (orange).

VI. DISCUSSION

Limitations. IPA is feasible specifically in cross-silo settings
where peers have an adequate amount of computational capacity.
It does not scale well to many peers as a result of requiring
N ⇥ ✓̄ parameters during training unless all peers have large
computational capacity. For example, IPA worked well in our
experimental settings with up to 20 peers on a single GPU
where each model had 2-3 million parameters. We note that
advances in neural network pruning and quantization may
enable the method to scale well in the future [60]–[62].

Additionally, we note that IPA works well under settings with
reliable peers. Standard FL considers scenarios where peers go
offline; we do not consider this scenario in this paper. However,
if one peer drops out during the IPA training process, their
latest parameters will still be available for others to continue.

There are additional settings we have not considered in
this paper such as tasks other than image classification and
vertically aligned FL [5].

Additional Security Considerations. Key to our approach
is sharing model parameters across peers during the IPA training
process. While each peer produces an independent global model,
each peer has access to others parameters during training. This
may lead to inadequate security and potential for misuse. To
counter this security flaw, we propose differential privacy on
top of IPA, which provides formalized privacy guarantees

[63]. Using this approach, each peer may add noise to their
parameters before sharing with others. Differential privacy is
commonly applied to training data, however, it can also be
applied to model training [64]. We perform experiments on
IPA with differential privacy in Section V. Differential privacy
has been applied to the FL pipeline [23]–[25], [65] including
in the cross-silo setting [36] where additional considerations
need to be made such as securing the privacy of sample-level
(rather than client level) data [22].

Homomorphic encryption [66] and garbled circuits [67]
are other protection techniques that enable peers to encrypt
their models for enhanced protection; such techniques have
been applied to FL systems [26], [27], [68]. For example,
homomorphic encryption allows clients to encrypt their model
parameters before sending their updates to the server [69],
effectively protecting their model against a potential malicious
server. Homomorphic encryption can be applied in a similar
fashion in the IPA algorithm, where peers send encrypted
models to each other to hide the true values.

Applications Beyond Federated Learning. IPA may be of
interest to other fields such as domain adaptation and transfer
learning [70]–[74], model merging [50], [75], model fusion
[76]–[78], ensembling [79], and other contexts with variable
data distributions. For example, fine-tuning has been found to
cause reduced robustness on source domain distribution shift
benchmarks [80], [81]. Wortsmann et al. proposed ensembling
the pre-trained and fine-tuned models for increased performance
on source domain robustness [72]. Similar insights could
potentially be gleaned from IPA, where iteratively merging
the parameters of segregated domains provides enhanced
performance. Domain divergence is also an active area of
research in negative transfer learning [82], [83], where source
domain knowledge negatively effects a target domain’s ability
to learn. Exchanging and aligning models trained on divergent
domains can enable opposing models to learn from each other,
thereby enhancing generalization.

Conclusion We propose a new method for iteratively aligning
the parameters of peers models trained on independent data.
IPA is favorable in segregated class settings, achieves state-of-
the-art performance on homogeneous data partitions, and has
competitive convergence under heterogeneous data partitions.
We assess our approach across novel and existing benchmarks
and show that the method generates unique peer models that
converge at a rate correlated to their standalone performance.
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