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a b s t r a c t

We propose a data-driven robust iterative learning control (ILC) technique to multi-input-multi-output
(MIMO) linear systems. Control of MIMO linear systems, particularly with strong cross-axis coupling,
is challenging as modeling of a MIMO system can be complicated, time-consuming, and often requires
a trade-off between robustness and performance. As such, limitations exist in current ILC techniques.
The aim of this paper is to develop an efficient and easy-to-use data-driven ILC technique to output
tracking of MIMO linear systems under random disturbance. Through the proposed technique, the
complicated modeling process and the robustness-accuracy trade-off are avoided, and the up-to-now
system dynamics is captured by constructing and updating the iteration gain using the input and
output data in the last iteration. It is shown that monotonic convergence of the ILC algorithm is
guaranteed, and an optimal gain can be obtained to maximize the convergence rate and minimize the
residual tracking error. The proposed technique is illustrated through experiments on a three-input
three-output piezoelectric actuator system, with comparison to the adaptive multi-axis inversion-based
iterative control (A-MAIIC) technique. The experimental results show rapid convergence and improved
formance of the proposed technique when the cross-axis coupling is strong.
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license

(http://creativecommons.org/licenses/by-nc/4.0/).
1. Introduction

A data-driven iterative learning control (DD-ILC) technique is
roposed for output tracking of multi-input multi-output (MIMO)
ystems under random output disturbance. Precision tracking of
IMO systems is needed in various applications, ranging from
dvanced manufacturing (Armstrong & Alleyne, 2021), atomic
orce microscope (AFM) (Yan, Wang, & Zou, 2012), robot ma-
ipulation (Yan et al., 2021) to semiconductor fabrication (Dirkx,
an de Wijdeven, & Oomen, 2020). In these applications, iterative

learning control (ILC) becomes a natural choice due to the peri-
odic motion involved (Chen & Tomizuka, 2013). However, existing
LC techniques face challenges in modeling, trade-off between
erformance and robustness, and system dynamics complexity.
his motivates the development of a DD-ILC approach in this
ork.
Limitations exist in current ILC techniques to achieve high-

peed precision tracking of MIMO systems. For model-based ILC
echniques (Bristow, Tharayil, & Alleyne, 2006), modeling of a

✩ This work was supported by NSF CMMI-1851907, IIBR-1952823, and PFI-
234449. The material in this paper was partially presented at the 2023
merican Control Conference (ACC), May 31–June 2, 2023, San Diego, California,
SA. This paper was recommended for publication in revised form by Associate
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MIMO system can be time-consuming and complicated, partic-
ularly when the dimension of the system increases. For example,
both the structure and the order of the model need to be deter-
mined, and the model quality can be sensitive to the measure-
ment noise and the unmodeled dynamics. The complexity of the
modeling process can be alleviated by only modeling the diagonal
dynamics of the system (Yan et al., 2012). Through a frequency-
domain inversion-based framework, efficient and precision out-
put tracking can be achieved (Yan et al., 2012). However, this
simplification requires the diagonal dynamics to be dominant
over the cross axis ones, i.e., the cross-axis coupling dynamics is
relatively weak. Alternatively, a constant proportional–integral–
derivative (PID) type of ILC algorithm (Hao, Zhang, & Li, 2008) has
been proposed that avoids modeling the system dynamics. This
relatively simple ILC method, however, is slow in convergence
(e.g., over 200 iterations in Hao et al., 2008) and the working
bandwidth is low, resulting in poor performance as the speed
of the desired trajectory increases towards the resonant fre-
quency of the system. Although the working bandwidth can be in-
creased by using system dynamics model to optimize the ILC con-
troller (Mandra, Galkowski, Rauh, Aschemann, & Rogers, 2020),
the design of the robustness filter becomes complicated when
the order of the system increases—when the cross-axis coupling
becomes strong and the number of inputs/outputs increases, as
the robustness filter for each input–output channel needs to be
individually designed. Therefore, further development of ILC is
needed to simplify or even avoid the modeling process, without
cle under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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oss of efficiency in convergence and efficacy in high-speed track-
ng, even in the presence of strong cross-coupling dynamics and
xternal disturbance.
Recent development in DD-ILC provides an effective avenue to

ddress these issues in modeling and cross-coupling dynamics.
he input-output data acquired in past iterations are directly
sed to construct the system dynamics model and update the
ontrol input. As such, no additional modeling process is needed,
nd as changes of the system dynamics are directly reflected
nd captured in the past input–output data, both performance
nd robustness of the ILC technique are improved. For example,
he Hessian information has been explored in a DD-ILC tech-
ique to increase the convergence rate (Bolder, Kleinendorst,
Oomen, 2018). The design of the weight matrices, however,

equires a priori expertise knowledge gained from a large number
f experiments. This requirement can be mitigated by estimat-
ng the linearized system dynamics through extra iterations (Yu,
ou, Polycarpou, & Duan, 2020). The number of experiments
eeded has also been reduced through a stochastic-based DD-
LC approach (Aarnoudse & Oomen, 2020). However, only is the
onvergence of the expectation of the tracking error considered—
he variation is not characterized, and the iteration coefficients
eed to be carefully tuned, resulting in conservative performance
nd slow convergence (Aarnoudse & Oomen, 2020). The tech-
ique has been further enhanced to improve the tracking per-
ormance (Wang & Zou, 2023), where the input–output data in
differential format is used to design the learning filter, and

t is shown that both the linear dynamics and the hysteresis
an be accounted for simultaneously (Wang & Zou, 2023). How-
ver, the algorithm is limited to SISO systems only. Therefore,
ow to achieve both rapid convergence and robust performance
or MIMO systems with strong cross-axis coupling remains as
hallenging for DD-ILC.
The main contribution of this paper is the development of

DDRO-ILC method for MIMO systems. Specifically, tracking of
rajectories with a finite discrete spectrum is considered, and
he input-output data obtained in past iterations are formatted
s ‘‘snapshot’’ (Brunton & Kutz, 2022) in frequency domain, and
hen used to approximate the system inverse in the iteration
ain via the singular value decomposition (SVD) technique. A
ast SVD (fSVD) algorithm is proposed to accelerate the com-
utation. Moreover, an optimal gain is designed to maximize
he convergence rate and minimize the tracking error against
andom disturbance. Partial preliminary results of this work have
een presented recently in conference (Zhang & Zou, 2023). We
ubstantially enrich the theoretical results through a rigorous
evelopment of input initialization, convergence analysis, and
terative gain optimization, and an algorithm to accelerate the
umerical computation. Moreover, the previous numerical sim-
lation (Zhang & Zou, 2023) has also been replaced by an ex-
erimental implementation in a 3-axis nanopositioning tracking,
llustrating the proposed approach in a much more convincing
anner.

. Problem formulation

Consider a square MIMO linear time invariant (LTI) system
iven in the frequency domain

(jω) = G(jω)u(jω)+ d(jω), (1)

here ‘jω’ denotes the Fourier transform of a time-domain sig-
al, G(jω) ∈ Cp×p is the transfer function matrix (Skogestad
Postlethwaite, 2007) from the input u(jω) ∈ Cp×1 to the

utput y(jω) ∈ Cp×1, d(jω) ∈ Cp×1 is the output disturbance

e.g., measurement noise), respectively. r

2

emark 1. The proposed approach can be extended to non-
quare systems as an over- or under- actuated system can be
onverted into a square one (Oppenheimer, Doman, & Bolender,
006; Schkoda, 2007; Yan et al., 2021).

ssumption 1. The desired trajectory in any given ith output
hannel contains a finite Ni number of frequencies, i.e., for any
iven i = 1, 2 · · · p, the desired trajectory of the ith output
hannel yi,d(jω) = 0, except at ω = ωq,i, for q = 1, 2, . . . ,Ni.

Such a desired trajectory of a finite discrete spectrum appears
n many tracking applications in practice—Seldom are we asked
o track a white-noise-like desired trajectory. Also, tracking a
requency component in the output becomes infeasible when its
mplitude becomes too small—smaller than the random noise at
hat frequency. Thus, we assume that

ssumption 2. The output disturbance in all output channels are
ndependent, random, and bounded in 1-norm,

up
ω

∥D(jω)∥1 ≜ sup
ω

p∑
i=1

|di(jω)| ≤ εn <∞, (2)

here εn ∈ R+ is a constant, and di(jω) ∈ C is the output
isturbance in the ith (1 ≤ i ≤ p) channel.

efinition 1 (Effective Frequency). ωq,t ∈ Sa,t is an effective
requency – the qth effective frequency in the tth channel for
= 1, 2, . . . ,Nt and t = 1, 2, . . . , p – if the amplitude of the

orresponding desired output |yt,d(jωq,t )| ≥ ϵY ≥ εn > 0 for
iven positive constant ϵY . Sa,t is the set of effective frequencies
n the tth channel, and Sa ≜

⋃
t Sa,t is the set of all effective

requencies.

Below we order the effective frequencies in Sa in the ascending
rder, i.e., ω1 ≤ ω2 ≤ · · ·ωNq , where Nq is the number of effective
requencies in Sa.

ssumption 3. The transfer function matrix of system (1), G(jω),
s proper, stable, and hyperbolic, i.e., for any i, j ∈ N+ (N+: the
et of the natural numbers), the corresponding transfer function,
i,j(jω) ∈ G(jω), is proper, stable and hyperbolic. Also, the trans-
ission zeros (Skogestad & Postlethwaite, 2007) of system (1),

r s ∈ C (r ∈ N+), do not overlap with any of the effective
requencies. i.e., zr /∈ Sa for any given zero zr of system (1).

First, we format the input and output trajectory matrices
eeded in the proposed DDRO-ILC technique. For any given rth
nput–output channel (r = 1, 2, . . . , p), let the effective desired
rajectory matrix, Y r,d(Sa) ∈ CNq×Nq (1 ≤ r ≤ p), and the effective
nput and output matrix in the kth iteration, U r,k(Sa) ∈ CNq×Nq

1 ≤ r ≤ p) and Y r,k(Sa) ∈ CNq×Nq (1 ≤ r ≤ p), respectively, be
iven by:

r,d(Sa) = diag([yr,d(jω1) · · · yr,d(jωNq )])Nq×Nq ,

r,k(Sa) = diag([yr,k(jω1) · · · yr,k(jωNq )])Nq×Nq ,

r,k(Sa) = diag([ur,k(jω1) · · · ur,k(jωNq )])Nq×Nq ,

(3)

here diag{v} denotes a diagonal matrix with the diagonal en-
ries given by the vector v = [v1 v2 · · · vNq ]. Then, the effective
utput tracking error matrix, Ek(Sa), is given by

k(Sa) = Y d(Sa)− Y k(Sa), where

k(Sa) =
[
Y 1,k(Sa) · · · Y p,k(Sa)

]T
pNq×Nq

and

d(Sa) =
[
Y 1,d(Sa) · · · Y p,d(Sa)

]T
pNq×Nq

, k ≥ 0,

(4)

he effective input matrix in the kth iteration, U k(Sa), can be

epresented in terms of U i,k(Sa)(1 ≤ i ≤ p), similarly as the
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bove representation of the effective output matrix Y k(Sa) in
Y i,k(Sa) (1 ≤ i ≤ p).

Thus, by using the above defined effective input and output
matrix, the ILC algorithm can be represented as

U k+1(Sa) = Qk(Sa)U k(Sa)+ Lk(Sa)Ek(Sa), k ≥ 1, (5)

where Qk(Sa), Lk(Sa) ∈ CpNq×pNq are the corresponding effec-
tive low-pass filter and effective iteration gain matrix, respec-
tively. Below we set Qk(Sa) = I (I: an identity matrix of proper
dimension) and focus on the design of Lk(Sa).

To further characterize the convergence of the proposed algo-
rithm in practice, we define

Definition 2 (Practically Monotonic Convergence). A convergent
sequence {an}∞n=1 is practically monotonically convergent w.r.t. a
given constant Y ∈ R, if

(1) the set A = {n| an ≤ Y} is not empty, and
(2) an ≤ an−1 for all n ≤ n∗(Y), where n∗(Y) is the least element

of the set A.

By the well ordering Theorem (Hungerford, 2012), n∗(Y) al-
ays exists if condition 1 is satisfied. We now state the DDRO-ILC
f MIMO systems.
DDRO-ILC OF LTI SYSTEMS For a LTI system given in Eq. (1),

et Assumptions 1–3 hold, then the DDRO-ILC is to achieve the
ollowing objectives:

P1 Construct and update the effective iteration gain matrix,
Lk(Sa), in each iteration by only using the input–output data
acquired in the previous iteration.

P2 Design the effective iteration gain matrix, Lk(Sa), such that

a Unbiased convergence is achieved, i.e.,
lim
k→∞
∥Ek(Sa)∥2 ≤ H(εn),

where ∥V∥2 denotes 2-norm of matrix V , and H(·) :
R≥0 → R≥0 (R≥0: the set of nonnegative real num-
bers) is a class κ function (Khalil, 2011) such that
limεn→0 H(εn) = 0.

b Practically monotonic convergence is reached w.r.t.
H(εn), i.e., the set A = {k| ∥Ek(Sa)∥2 ≤ H(εn)} ̸= ∅,
and

∥Ek(Sa)∥2 < ∥Ek−1(Sa)∥2, k ≤ k∗(H(εn)),

where k∗(H(εn)) is as n∗(Y) in Definition 2.

P3 Optimize the effective iteration gain matrix, Lk(Sa), such that
the upper bound of the tracking error is minimized, and
the convergence rate is maximized in the upper bound of
the tracking error, i.e., find L∗k(Sa), such that for any given
effective frequency ωa ∈ Sa and any given iteration k,

min
Lk(Sa)
∥Ek(Sa)∥2, and

max
Lk(Sa)

⏐⏐∥Ek(Sa)∥2 − ∥Ek−1(Sa)∥2
⏐⏐

are achieved, where ∥Ek(Sa)∥2 is the upper bound of
∥Ek(Sa)∥2.

Thus by the above Objective P2, we aim to achieve monotonic
onvergence in practical implementation, i.e., before the tracking
rror falls within the bound of H(εn) and the convergence is
erminated, the tracking error is monotonically decreasing.

. Data-driven robust iterative learning control

We present the proposed DDRO-ILC technique by showing
he above three objectives in order. First, the effective iteration
ain matrix Lk(Sa) will be constructed by only using the previous

input–output data (Objective P ).
1

3

3.1. DDRO-ILC algorithm

The proposed DDRO-ILC algorithm is given by

U1(Sa) =Uint (Sa)(Yint (Sa))†Y d(Sa), k = 1,
U k(Sa) =U k−1(Sa)+∆Uk−1,s(Sa)(∆Yk−1,s(Sa))†

Φk−1(Sa)Ek−1(Sa), k ≥ 2,
(6)

where Uint (Sa) ∈ CpNq×pNq and Yint (Sa) ∈ CpNq×pNq are the
effective initialization input and output matrices, respectively:

Uint (Sa) =
[
U int

1 (Sa) · · · U int
p (Sa)

]
,

Yint (Sa) =
[
Y int

1 (Sa) · · · Y int
p (Sa)

]
,

(7)

where U int
i (Sa) ∈ CpNq×Nq and Y int

i (Sa) ∈ CpNq×Nq are the Fourier
transform of the ith effective initialization input and the corre-
sponding output, respectively. As shown in Section 3.2, the initial-
ization input, Uint (Sa), is designed such that both the initialization
input and the output matrices have full rank.

Moreover, in Eq. (6),

∆Uk,s(Sa) =
[
Uint (Sa) ∆U k(Sa)

]
pNq×((p+1)Nq)

,

∆Yk,s(Sa) =
[
Yint (Sa) ∆Y k(Sa)

]
pNq×((p+1)Nq)

,
(8)

with

∆U k(Sa) =

{
U1(Sa)− U int

p (Sa), k = 1
U k(Sa)− U k−1(Sa), otherwise

,

∆Y k(Sa) =

{
Y 1(Sa)− Y int

p (Sa), k = 1
Y k(Sa)− Y k−1(Sa), otherwise

,

and finally, ∆Y
†
k,s(Sa) denotes the Moore–Penrose pseudoinverse

of ∆Yk,s(Sa), Φk(Sa) ∈ CpNq×pNq is the iteration gain matrix to be
designed, respectively.

Comparing Eq. (6) to Eq. (5) shows that in the proposed DDRO-
ILC algorithm, the effective iteration gain matrix Lk(Sa) is given
by

Lk(Sa) = ∆Uk,s(Sa)∆Y†
k,s(Sa)Φk(Sa).

Thus, Lk(Sa) is data-driven if the gain matrix Φk(Sa) is designed
by only using the previous input–output data. Towards that end
we find the Moore–Penrose pseudoinverse of ∆Yk,s(Sa) via the
SVD (Horn & Johnson, 2012) as

∆Yk,s(Sa) = Uk(Sa)Σ k(Sa)VH
k (Sa)

=
[
U1,k(Sa) U2,k(Sa)

][
Σ 1,k(Sa) 0

0 Σ 2,k(Sa)

][
VH

1,k(Sa)
VH

2,k(Sa)

]
= U1,k(Sa)Σ 1,k(Sa)VH

1,k(Sa)

≜ Ûk(Sa)Σ̂ k(Sa)V̂
H
k (Sa),

(9)

where, respectively, Uk(Sa) and Vk(Sa) are unitary matrix, ‘H ’
denotes the Hermitian transpose of the matrix, Σ k(Sa) is the
diagonal matrix containing all the singular values of ∆Yk,s(Sa) in
the descending order,Σ 1,k(Sa) andΣ 2,k(Sa) partitionΣ k(Sa) with
nonzero and zero diagonal entries, i.e.,

Σ̂ k(Sa) = Σ 1,k(Sa)
= diag{[σ1(Σ 1,k(Sa)), . . . , σNτ (Σ 1,k(Sa))]},
with σ1(Σ 1,k(Sa)) ≥ · · · ≥ σNτ (Σ 1,k(Sa)) > 0,

where σi(F ) denotes the ith singular value of matrix F , and
Ûk(Sa) = U1,k(Sa) and V̂k(Sa) = V1,k(Sa) are partitions of
Uk(Sa) and Vk(Sa) according to the dimension of Σ 1,k and Σ 2,k,
respectively. Then the pseudoinverse of ∆Yk,s(Sa) is given by

† ˆ
−1 H (10)
∆Yk,s(Sa) = V̂k(Sa)Σ k (Sa)Ûk (Sa).
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he gain matrix Φk(Sa) is chosen as

k(Sa) = Ûk(Sa)φkÛ
H
k (Sa),

with φk = ρk,1 ⊕ · · · ⊕ ρk,p, and

ρk,i = diag([ϕ1
k,i, . . . , ϕ

F
k,i, . . . , ϕ

Nq
k,i ])Nq×Nq ,

for i = 1, . . . , p, 1 ≤ F ≤ Nq,

(11)

where ⊕ denotes the direct sum operation of two matrices (Horn
& Johnson, 2012), i.e., for A ∈ Cm×m and B ∈ Cn×n, A ⊕ B =
diag([A B])(m+n)×(m+n), and ϕF

k,i(ωj) ∈ R+ (R+: the set of positive
real numbers). Then, the DDRO-ILC algorithm becomes

U1(Sa) =Uint (Sa)(Yint (Sa))†Y d(Sa), k = 1,
U k(Sa) =U k−1(Sa)+∆Uk−1,s(Sa)(∆Yk−1,s(Sa))†

Ûk−1(Sa)φk−1Û
H
k−1(Sa)Ek−1(Sa), k ≥ 2.

(12)

Thus, in practice, the input-output data obtained after each iter-
ation will be first pruned to only retain the effective frequency
components, and then used to form the input and the output
matrix as in Eqs. (3)–(4) to obtain the next-iteration input via
Eq. (12). The choice of the iteration gain matrix to ensure the
convergence is addressed later in Section 3.3. Next we discuss the
initialization of the input–output matrix, Uint (Sa) and Yint (Sa).

3.2. Input initialization

We proposed an initialization process by repetitively applying
an initialization input uint

∗,i(t) ∈ Rp to the system for p times,
where each time the initialization input uint

∗,i(t) for i = 1, 2, . . . , p
is in the form of

uint
∗,i(t) =

[
uint
1,i(t) uint

2,i(t) · · · uint
p,i (t)

]T
,

with uint
m,i(t) (1 ≤ m ≤ p) the input applied to the mth input chan-

nel, and the corresponding output y int
∗,i(t) ∈ Rp (for i = 1, . . . , p)

is measured. The input uint
∗,i(t) is designed to guarantee that the

effective initialization input matrix, Uint (Sa) given in Eq. (7), has
full rank in the frequency domain, so is the initialization output
matrix Yint (Sa) (by Assumption 3).

Specifically, in any given ith initialization, the input uint
∗,i(t)

can be chosen as a chirp signal such that its Fourier transform,
U int

i (Sa), contains all the effective frequency components

U int
i (Sa) =

[
Γ 1,i(Sa) · · · Γ p,i(Sa)

]T
pNq×Nq

,

for i = 1, 2, . . . , p,
(13)

where

Γm,i(Sa) = diag
([
uint
m,i(jω1) · · · uint

m,i(jωNq )
])

Nq×Nq
, (14)

for m = 1, 2, . . . , p, i.e., the diagonal matrix Γm,i(Sa) has its
diagonal elements given by the effective frequency components
of uint

m,i(t). Below we give the condition that guarantees the full
rank of the initialization input Uint (Sa).

Lemma 1. The initialization input matrix Uint (Sa) is full rank if and
only if the following matrix Ψ (ωl) ∈ Cp×p

Ψ (ωl) =

⎡⎢⎣uint
1,1(jωl) · · · uint

1,p(jωl)
...

. . .
...

uint
p,1(jωl) · · · uint

p,p(jωl)

⎤⎥⎦
p×p

,

is nonsingular for l = 1, . . . ,Nq.

Proof. See Appendix A □
4

As an example, the initialization input uint
m,i(t) satisfying

Lemma 1 can be designed as a chirp signal as,

uint
m,i(t) =

{
αm,i sin(ωb(t)t), when m = i,
0, otherwise.

with

ωb(t) ∈ Sa, b(t) =
(

t
ts

mod Nq

)
+ 1,

(15)

here αm,i ∈ R+ is a constant, ts is the time for each step, and
mod’ denotes modulo operation (Lin, Lee, & Chang, 2009).

emark 2. For single-input single-output (SISO) systems, the
DRO-ILC algorithm is reduced to the data-driven difference-
nversion-based iterative control (DDD-IC) method in Wang and
ou (2023), where the initiation matrix is simplified to a constant.

.3. Convergence analysis

Next, we show the convergence of the proposed DDRO-ILC
echnique (Objective P2), by finding a recursive form of the it-
rative tracking error first.

emma 2. Let Assumptions 1–3 hold, then the propagation of the
terative tracking error is given by:

k(Sa) = βk−1(Sa)Ek−1(Sa)−∆Dk(Sa),

here

k−1(Sa) = I − (∆Yk−1,s(Sa)−∆Dk−1,s(Sa))

(∆Yk−1,s(Sa))†Uk−1(Sa)φk−1U
H
k−1(Sa),

∆Dk(Sa) =

{
D1(Sa)− Dint

p (Sa), k = 1
Dk(Sa)− Dk−1(Sa), otherwise

,

ith

Dk,s(Sa) =
[
Dint (Sa) ∆Dk(Sa)

]
pNq×((p+1)Nq)

,

int (Sa) =
[
Dint

1 (Sa) · · · Dint
p (Sa)

]
pNq×pNq

,

k(Sa) =
[
Dk,1(Sa) · · · Dk,p(Sa)

]T
,

r,k = diag
[
dk,r (jω1) · · · dk,r (jωNq )

]
,

for r = 1, 2, . . . , p.

(16)

where Dint
i (Sa) ∈ CpNq×Nq is the output disturbance occurred in the

ith (1 ≤ i ≤ p) initialization process.

Lemma 2 can be shown by writing the effective iteration
tracking error Ek(Sa) in the matrix form using the system in
Eq. (1), and presenting the iterative control input U k(Sa) by the
proposed DDRO-ILC in Eq. (12). The complete proof is omitted to
save space.

Next, considering the effect of random output disturbance, we
assume that

Assumption 4. The gain of the system at effective frequencies is
bounded below by the disturbance as

hg ≜ min
ω∈Sa
1≤i≤p

σi(G(jω)) >
(
√
6+ 1)εn
α

,

with

α ≜ σpNq (U
int (Sa)) > 0. (17)
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emark 3. The above Assumption 4 is to ensure that the response
o a given input is large enough such that the output is not
ominant and swallowed by disturbance. Also, in practice, the
mplitude of the initialization input Uint (Sa) can be adjusted to
atisfy Assumption 4.

emma 3. Let Assumptions 1–4 be satisfied, then in any given kth
teration,

(1) The output disturbance is bounded as

∥∆Dk,s(Sa)∥2 ≤
√
6εn,

and initially (i.e., k = 0)

∥Dint (Sa)∥2 ≤ εn. (18)

(2) The pseudo-inverse of the effective output difference
(∆Yk,s(Sa))† is bounded above by

∥(∆Yk,s(Sa))†∥2 ≤
1

αhg − εn
<

1
√
6εn

.

roof. By Eq. (16) and the definition of induced matrix 1- and
− norm (Horn & Johnson, 2012),

∥∆Dk,s(Sa)∥1 = sup
1≤q≤Nq
1≤r≤p

{ p∑
i=1

|dintr (jωq,i)|,
p∑

i=1

|∆dk,i(jωq)|

}

∆Dk,s(Sa)∥∞ = sup
1≤q≤Nq
1≤i≤p

{ p∑
r=1

|dintr (jωq,i)| + |∆dk,i(jωq)|

}

here

dk(jωq,i) =

{
d1,i(jωq)− dintp (jωq,i), when k = 1
dk,i(jωq)− dk−1,i(jωq), when k ≥ 2

nd dintr (jωq,i) and dk,i(jωq) are the output disturbance at the
th effective frequency in the ith output channel, occurring dur-
ng the rth initialization and kth iteration, respectively. Thus by
ssumption 2 (Eq. (2)),

∆Dk,s(Sa)∥1 ≤ sup
1≤q≤Nq
1≤r≤p

{ p∑
i=1

|dintr (jωq,i)|,

p∑
i=1

|dk,i(jωq)| +
p∑

i=1

|dk−1,i(jωq)|

}
≤ 2εn

imilarly, it can be verified that ∥∆Dk,s(Sa)∥∞ ≤ 3εn. Thus, by the
roperty of matrix 2-norm (Horn & Johnson, 2012),

∆Dk,s(Sa)∥2 ≤
√
∥∆Dk,s(Sa)∥1∥∆Dk,s(Sa)∥∞ ≤

√
6εn.

The upper bound of ∥Dint (Sa)∥2 can be verified similarly.
To quantify the lower-bound of ∆Y

†
k,s(Sa), we note that the

ull row rank condition of Yint (Sa) implies that

∥∆Y
†
k,s(Sa)∥2 =

1
σpNq (∆Yk,s(Sa))

, (19)

here σpNq (Yk,s(Sa)) is the least singular value of Yk,s(Sa). As
int (Sa) is nonsingular and by Eq. (8),

pNq (∆Yk,s(Sa)) = σpNq

([
Yint (Sa) ∆Y k(Sa)

])
≥ σpNq (Y

int (Sa))
(20)

Then, by the definition of the least singular value and the tri-
ngle inequality (Horn & Johnson, 2012), σ (Yint (S )) is bounded
pNq a s

5

below as

σpNq (Y
int (Sa)) =σpNq (G(Sa)Uint (Sa)+ Dint (Sa))

≥ min
∥x∥2=1

⏐⏐∥G(Sa)Uint (Sa)x∥2 − ∥Dint (Sa)x∥2
⏐⏐ (21)

here

(Sa) =

⎡⎢⎣B1,1(Sa) · · · B1,p(Sa)
...

. . .
...

Bp,1(Sa) · · · Bp,p(Sa)

⎤⎥⎦
pNq×pNq

(22)

ith

ℓ,g (Sa) = diag
([
Gℓ,g (jω1) · · ·Gℓ,g (jωNq )

])
Nq×Nq

. (23)

ext, we quantify the lower bound of the right-hand side of the
ast inequality above. As G(Sa) is nonsingular, by the property
f singular value (Horn & Johnson, 2012) and Eq. (17), the least
ingular value of G(Sa)Uint (Sa) is bounded as

pNq (G(Sa)Uint (Sa)) ≥ σpNq (G(Sa))σpNq (U
int (Sa))

= ασpNq (G(Sa))

y Eq. (22), (23), G(Sa) has the same structure as Uint (Sa). By the
ermutation process in Eq. (A.1), (A.2), the following matrix G(Sa)

(Sa) = Bp,NqG(Sa)BT
p,Nq
,

s block diagonal with

(Sa) = G(jω1)⊕ G(jω2) · · · ⊕ G(jωNq ).

herefore the block diagonal structure of G(Sa) above implies that

pNq (G(Sa)) = σpNq (G(Sa)) = min
ω∈Sa
1≤i≤p

σi(G(jω)).

ombining with Assumption 4 and Eq. (18) leads to

σpNq (G(Sa)) > εn ≥ ∥Dint (Sa)∥2. (24)

hus, Eq. (24) implies that

min
x∥2=1
∥G(Sa)Uint (Sa)x∥2 > max

∥x∥2=1
∥Dint (Sa)x∥2, (25)

nd combining Eq. (20), (24), (25) with Eq. (21) leads to

pNq (∆Yk,s(Sa)) ≥ σpNq (Y
int (Sa)) ≥ αhg − εn >

√
6εn. (26)

Thus, the proof is completed by substituting Eq. (26) into
q. (19). □

heorem 1 (Convergence condition). At any given frequency ωa ∈

a, let Assumptions 1–4 be satisfied, and let the iteration gain, ϕj
k,i,

or i = 1, . . . , p and j = 1, . . . ,Nq be chosen as,

< ϕ
j
k,i <

2
1+Ω

< 2, (27)

where Ω ∈ (0, 1) is a finite constant defined as

Ω =

√
6εn

αhg − εn
, (28)

hen, the DDRO-ILC algorithm converges,

lim
→∞

∥Ek(Sa)∥2 <
2εn

1− η
≜ H(εn), (29)

here the constant η

η ≜ max
i,j,k

{
|1− ϕj

k,i| +Ωϕ
j
k,i

}
(30)

atisfies 0 < η < 1, for 1 ≤ j ≤ N , 1 ≤ i ≤ p.
q
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roof. By Lemma 2 and the triangle inequality,

Ek(Sa)∥2 ≤ ∥βk−1(Sa)∥2∥Ek−1(Sa)∥2 + ∥∆Dk(Sa)∥2
≤ (ψk−1(Sa)+ ζk−1(Sa))∥Ek−1(Sa)∥2
+ ∥∆Dk(Sa)∥2,

(31)

here

k−1(Sa) =∥I −∆Yk−1,s(Sa)(∆Yk−1,s(Sa))†Φk−1(Sa)∥2,

ζk−1(Sa) =∥∆Dk−1,s(Sa)∆Y
†
k−1,s(Sa)Φk−1(Sa)∥2.

(32)

o seek the bound of the iteration gain ϕ
j
k,i to guarantee the

onvergence, we expand the effective initialization matrix via
VD in Eq. (9). Then, substituting the decomposition results and
q. (11) into Eq. (32) yields

ψk−1(Sa) = ∥I −Φk−1(Sa)∥2 ≤ max
i,j,k

{
|1− ϕj

k,i|

}
, (33)

and

ζk−1(Sa) ≤ ∥∆Dk−1,s(Sa)∥2∥∆Y
†
k−1,s(Sa)∥2∥Φk−1(Sa)∥2

≤ ∥∆Dk−1,s(Sa)∥2∥∆Y
†
k−1,s(Sa)∥2|ϕ

j
k−1,i|,

(34)

for 1 ≤ j ≤ Nq, 1 ≤ i ≤ p, where

|ϕ
j
k,i| ≜ max

i,j,k

{
|ϕ

j
k,i|

}
.

ubstituting Eq. (33), (34) back into Eq. (31) leads to

Ek(Sa)∥2 <

(
|1− ϕj

k−1,i| +

√
6εn

αhg − εn
|ϕ

j
k−1,i|

)
∥Ek−1(Sa)∥2 + 2εn
≤ η∥Ek−1(Sa)∥2 + 2εn

(35)

where by Assumption 4, Ω ∈ (0, 1). Thus the convergence is
guaranteed by choosing the iterative gain as in Eq. (27). This can
be seen as when ϕj

k,i ∈ (0, 1],

η = max
i,j,k

{
1− ϕj

k,i +Ωϕ
j
k,i

}
< 1,

for Ω > 1, 1 ≤ j ≤ Nq, 1 ≤ i ≤ p. Otherwise when
ϕ
j
k,i ∈ (1, 2/(1+Ω)),

η = max
i,j,k

{
−1+ (1+Ω)ϕj

k,i

}
< max

i,j,k

{
−1+ (1+Ω)

2
1+Ω

}
= 1,

or 1 ≤ j ≤ Nq, 1 ≤ i ≤ p. Thus, at the limit,

lim
k→∞
∥Ek(Sa)∥2 ≤ lim

k→∞

{
ηk−1∥E1(Sa)∥2 +

1− ηk−1

1− η
2εn

}
=

2εn
1− η

≜ H(εn).

Clearly the above function H(εn) is a κ function in ε, and
limεn→0 H(εn) = 0. This completes the proof. □

Next we show that the proposed DDRO-ILC algorithm achieves
the practically monotonic convergence.

Corollary 1 (Practically Monotonic Convergence). Let the condi-
tions in Theorem 1 be satisfied, and let the iteration gain be cho-
sen by Eq. (27), then the DDRO-ILC algorithm achieves practically
monotonic convergence.

Proof. See Appendix B. □

Three observations are readily in place:
6

• Both the final tracking error and the convergence rate de-
pend on the choice of the iterative gain ϕj

k,i: As the iterative
gain ϕj

k,i decreases towards zero, the inverse of the con-
vergence rate η approaches to 1 (see Eq. (30)), resulting
in a slow convergence and a large residual tracking error
(see Eq. (29)). This agrees with our expectation as smaller
iterative gain invites more disturbances accumulated in the
output during the iterations, and thereby, larger tracking
error.
• Theorem 1 also reveals that the tracking performance can

be improved by increasing the system gain or choosing a
larger initialization input U int,i(Sa), i.e., a larger hg or α
will lead to a larger lower bound of the minimal system
gain, then a smaller constant Ω in Eq. (28)), and thereby,
a faster convergence and a smaller residual tracking error.
This observation motivates us to seek an optimal choice of
the iteration gain matrix φ∗k—Objective P3.
• As a frequency-domain approach, the DDRO-ILC technique

can account for the non-minimum phase dynamics effect,
as the entire output trajectory is utilized in generating the
iterative input (Devasia & Paden, 1998).

3.4. Iterative gain optimization

Corollary 2. Let the conditions in Theorem 1 be satisfied, and let
the iteration gain matrix be chosen as φ∗k = I , then

(1) the upper bound of the residual error is minimized, i.e.,

lim
k→∞
∥Ek(Sa)∥2 ≤

2εn
1− η∗

≤
2εn

1− η
(η∗ = Ω),

(2) the convergence rate is maximized for the upper bound of the
tracking error, i.e., η∗ < η when φk ̸= φ∗k .

The Corollary can be shown by considering two cases: 1).
0 < ϕ

j
k,i ≤ 1 for 1 ≤ j ≤ Nq, 1 ≤ i ≤ p, and η =

axi,j,k
{
1− ϕj

k,i +Ωϕ
j
k,i

}
, and 2). ϕj

k,i ≥ 1, for 1 ≤ j ≤ Nq, 1 ≤

i ≤ p, and η = maxi,j,k
{
ϕ
j
k,i − 1+Ωϕj

k,i

}
, and showing that in

both cases the minimal value is attained by setting ϕj
k,i = 1 for

all 1 ≤ j ≤ Nq, 1 ≤ i ≤ p and k ∈ N+. The proof is omitted due
to space limit.

In practice, a non-unit iterative gain can be chosen to account
for input saturation and noise-disturbance, e.g., the gain shall be
reduced when the input amplitude is close to the saturation limit
and increased when the input amplitude is close to the noise
level.

3.5. Fast numerical computation

When implementing the proposed DDRO-ILC algorithm to
high-dimension systems to track trajectories of rich frequency
components, finding the pseudoinverse of the output difference
matrix ∆Yk,s(Sa) can be computationally intensive, as the com-
putation complexity of ∆Y

†
k,s(Sa) via SVD (by using, e.g., the

optimized DGESVD (Anderson et al., 1999)) is at O(p(p+ 1)2N3
q ).

Next, we propose an algorithm to accelerate the computation.
By Eq. (8), (7), ∆Yk,s(Sa) can be rewritten as

∆Yk,s(Sa) =
[
Y int

1 (Sa) · · · Y int
p (Sa) ∆Y k(Sa)

]
=

⎡⎢⎣Υ 1,1(Sa) · · · Υ 1,p(Sa) ∆Y 1,k(Sa)
...

. . .
...

...

⎤⎥⎦ , with
(36)
Υ p,1(Sa) · · · Υ p,p(Sa) ∆Y p,k(Sa)
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Υ n,i(Sa) = diag
([
yintn,i(jω1) · · · yintn,i(jωNq )

])
Nq×Nq

,

∆Ym,k(Sa) =
{
Ym,k(Sa)−Υm,p(Sa), when k = 1,
Ym,k(Sa)− Ym,k−1(Sa), when k ≥ 2,

for m = 1, . . . , p.
where Y j,i(Sa) is diagonal as defined in Eq. (3). Then, by matrix
permutation, ∆Yk,s(Sa) in Eq. (36) can be transformed into a
block matrix Lk,s(Sa) ∈ CpNq×(p+1)Nq , i.e,

Lk,s(Sa) = Pa∆Yk,s(Sa)Pb,

= Mk(ω1)⊕Mk(ω2) · · · ⊕Mk(ωNq ),
(37)

where Pa ∈ RpNq×pNq and Pb ∈ R(p+1)Nq×(p+1)Nq are the cor-
responding permutation matrices (Horn & Johnson, 2012), and
matrix Mk(ωl) ∈ Cp×(p+1) is given by

Mk(ωl) =

⎡⎢⎣yint1,1(jωl) · · · yint1,p(jωl) |

...
. . .

... vk(ωl)
yintp,1(jωl) · · · yintp,p(ωl) |

⎤⎥⎦
p×(p+1)

,

for l = 1, . . . ,Nq, with

vk(ωl) =
[
v1,k(ωl) · · · vp,k(ωl)

]T
, and

vr,k(ωl) =

{
yr,k(jωl)− yintr,p(jωl), when k = 1,
yr,k(jωl)− yr,k−1(jωl), when k ≥ 2,

for r = 1, . . . , p,

(38)

where yr,k(jωl) is defined in Eq. (3). Therefore, the SVD of matrix
∆Yk,s(Sa) can be replaced by SVD of matrix Mk(ωl)s of a much
smaller size. By Eq. (37),

∆Yk,s(Sa) = PH
aLk,s(Sa)PH

b

= PH
a (Mk(ω1)⊕Mk(ω2) · · · ⊕Mk(ωNq ))P

H
b

and the SVD of Mk(ωl) is given by

Mk(ωl) = Ul,k(ωl)Sl,k(ωl)VH
l,k(ωl), 1 ≤ l ≤ Nq.

Thus, the SVD of ∆Yk,s(Sa) can be obtained as

∆Yk,s(Sa) = PH
aUk(Sa)Sk(Sa)VH

k (Sa)PH
b

= PH
aUk(Sa)Sk(Sa)P cPH

c V
H
k (Sa)PH

b

= Uk(Sa)Σ k(Sa)VH
k (Sa), with

(39)

Uk(Sa) = U1,k(ω1)⊕ U2,k(ω2) · · · ⊕ UNq,k(ωNq ),
Sk(Sa) = S1,k(ω1)⊕ S2,k(ω2) · · · ⊕ SNq,k(ωNq ),
Vk(Sa) = V1,k(ω1)⊕ V2,k(ω2) · · · ⊕ VNq,k(ωNq ),

Uk(Sa) = PH
aUk(Sa) , Σ k(Sa) = Sk(Sa)P c ,

Vk(Sa) = PbVk(Sa)P c ,

(40)

where P c ∈ R(p+1)Nq×(p+1)Nq is the corresponding permutation
matrix.

Compared to the original direct computation of the SVD of
∆Yk,s(Sa), the computation complexity of the proposed algo-
rithm becomes O(p(p + 1)2Nq)—two orders of magnitude lower
than that of the original one with respect to Nq, the total number
of effective frequencies.

The proposed DDRO-ILC method is summarized in Algorithm
1.

4. Experimental example

We illustrate and evaluate the DDRO-ILC technique by apply-
ing it to a multi-axis (3-axis) nanopositioning output tracking
experiment. Two systems each of weak and strong cross-axis
coupling, respectively, were considered.
7

Algorithm 1 The DDRO-ILC Algorithm
1: Quantify system noise level, εn, and the lower bound of

system gain, hg .
2: Determine the threshold ϵY , the effective frequency set Sa,

and the trackable desired output Y d(Sa).
3: Generate the initialization input, uint

m,i(t) for i = 1, · · · , p
(Eq. (15)) such that Ψ (ωl) in Lemma 1 is nonsingular.

4: Apply uint
m,i(t) (i = 1, · · · , p) to the system, respectively, and

acquire U int
i (Sa) and Y int

i (Sa).
5: Generate Uint (Sa) and Yint (Sa) from U int

i (Sa) and Y int
i (Sa) by

Eq. (7), and form U1(Sa) by Eq. (6).
6: Generate the permutation matrices Pa, Pb and Pc in

Eqs. (37), (39), (40), respectively.
7: for iteration k ≥ 2 do
8: Apply U k−1(Sa) to the system and acquire Y k−1(Sa),

∆Uk−1,s(Sa), ∆Yk−1,s(Sa) and Ek−1(Sa).
9: Calculate the pseudoinverse of ∆Y†

k−1,s(Sa) by fSVD and
generate Φk−1(Sa) by choosing φk−1(Sa) according to
Corollary 1.

10: Determine U k(Sa) using Eq. (6) from U k−1(Sa), ∆Uk−1,s(Sa),
∆Y†

k−1,s(Sa), Φk−1(Sa) and Ek−1(Sa)
11: Set k← k+ 1, repeat steps 8 to 10 until the error is within

the bound of H(εn).
12: end for

4.1. Experimental setup

The x–y–z axes nanopositioning system of an AFM system
Dimension ICON, Bruker-Nano Inc.), composed by two piezo-
lectric actuators, was employed as the MIMO system to control.
he system served well as a testbed for its wide application in
anopositioning control ranging from AFM imaging (Wu, Fang,
an, Wang, & Liu, 2021), nanomanipulation (Li, Xi, Wang, & Liu,
019), to nanomanufacturing (Loganathan & Bristow, 2014). All
he control algorithms and inputs were generated in the MATLAB
PC-target environment (Mathworks Inc.) and applied to the
FM system via a DAQ system (NI-6259, National Instruments
nc.). The PID controller of the AFM system was bypassed when
xternal control inputs were applied. The sampling rate was set
t 40 kHz.
To evaluate the efficacy of the proposed technique in account-

ng of cross-axis coupling, a static-gain matrix Cw (see Fig. 1)
as introduced to adjust the cross-axis coupling, i.e., the joint
ystems, Ĝp(s) = CwGp(s), was treated as the system to control,
nd in the implementation the control inputs were multiplied
ith the gain matrix Cw before they were sent out to drive
he piezoelectric actuators. Based on the measured cross-axis
ynamics coupling of the piezo actuators Gp(s), the gain matrix
w was set as

w =

[1 0 0
0 1 0
0 0 1

]
, and Cw =

[ 1 0.8 0.6
0.7 1 0.8
0.8 0.4 1

]
,

for the weak and the strong coupling system, respectively. The
measured frequency responses of these two cases are shown in
Figs. 2. When the coupling was weak, the diagonal input–output
(I/O) response dominated across the entire frequency range ex-
cept for a small region around the resonant peaks (see Fig. 2
[a1-a3]), whereas the impact of the off-diagonal channel dynam-
ics on each of three outputs was much more pronounced when
the coupling was strong (see Fig. 2 [b1-b3]), making the tracking
ore challenging.
A tetrahedron pattern (see Fig. 3 [a]) was chosen as the desired

rajectory at three different pattern-tracking rates, i.e., the rate of
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Fig. 1. Scheme of the 3D-axis nanopositoning system of an AFM with cross-axis
coupling dynamics.

traversing the four triangular faces in order at 2, 20 and 40 Hz. For
comparison, the pattern was also tracked by using the A-MAIIC
and the DC-Gain methods (where the control input was generated
by scaling the desired trajectory in each axis (see Fig. 3 [b])
ith the inverse of the DC-Gain of the diagonal I/O response),
espectively. Specifically, the A-MAIIC algorithm was based on
he original multi-axis inversion-based iterative control (MAIIC)
lgorithm (Yan et al., 2012) by using the previous input–output
ata to adaptively update the diagonal inverse of the system in
he iteration law,

k+1(jω) = uk(jω)+ ζĜ
−1
k (jω)ek(jω), k ≥ 1,

here Ĝ
−1
k (jω) ∈ Cp×p and ζ ∈ Rp×p were given as

ˆ
−1
k (jω) = diag

([
y1,k(jω)
u1,k(jω)

· · ·
yp,k(jω)
up,k(jω)

])
p×p

, and

ζ = diag
([
ζ1 · · · ζp

])
p×p ,

ith ζi (i = 1, . . . , p) are the iteration coefficients. The DC-Gain
ethod was employed to quantitatively illustrate the effects of
oth the vibrational dynamics and the cross-axis coupling on
he output tracking. We also compare the computation time in
he implementation of the DDRO-ILC via the SVD and the fSVD
lgorithm, respectively (see Fig. 3).

.2. Experimental implementation

The DDRO-ILC method was implemented by following Algo-
ithm 1. The optimal iterative gain matrix φ∗k = I was chosen
hroughout the iterations and the threshold value for the distur-
ance level ϵY was chosen at 1 × 10−4, 2 × 10−4 and 5 × 10−4
or the 2 Hz, 20 Hz and 40 Hz patterns, respectively, and the
umber of corresponding effective frequencies to be tracked was
hosen at 430, 400 and 390, respectively. As the rate of the tra-
ectory increased, the effect of noise/disturbances became more
ronounced, thus a larger threshold of ϵY was chosen, resulting in
smaller number of effective frequencies. The initialization input,
int
m,i(t), was designed by Eq. (15) with αm,i = 5.5, i = 1, . . . , p,
here αm,i was designed according to the input amplitude con-
traint (−8.5 to 8.5 in our setup), and α = 5.5 was chosen
y Eq. (17). The A-MAIIC was implemented by choosing ζ =
. During the experiment, the iterations were terminated when
he relative two-norm error E2(%) and the relative maximum
tracking error Emax(%) could not be further reduced, where E2(%)
and Emax(%) were defined as

E2(%) =
∥yd(·)− y(·)∥2
∥yd(·)∥2

× 100%,

Emax(%) =
∥yd(·)− y(·)∥∞
∥yd(·)∥∞

× 100%.

4.3. Results and discussion

The tracking results obtained via the DDRO-ILC technique
are compared for the weak and the strong coupling system in
Figs. 4 [a1-c1] and 5 [a1-c1], respectively. The tracking errors
of the strong coupling system were shown in Fig. 6 [a1-c1]. For
omparison, the tracking results obtained by the A-MAIIC and
 i

8

Fig. 2. Comparison of the frequency response of the x [a1, b1], y [a2, b2] and
z [a3, b3] axis piezo actuator and the related coupling dynamics in the weakly-
and the strongly- coupled system, respectively.

Fig. 3. The desired trajectory of the 3-D tetrahedron pattern [a], and the
corresponding desired trajectory in x, y, and z axes [b-d], respectively.

the DC-Gain methods are shown in Figs. 4 [a2-c2] and 5 [a2-
2], respectively. The corresponding tracking errors of the strong
oupling system are shown in Figs. 6 [a2-c2]. The convergence
rocesses are shown in Fig. 7. The average computation time in
ach iteration of the DDRO-ILC algorithm by using the SVD and
SVD algorithm, respectively, are shown in Fig. 8 for the tracking
n the strong coupling case.
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Fig. 4. Comparison of the tracking of the tetrahedron pattern on the weakly-coupled system obtained by using the DDRO-ILC technique with those by using the
A-MAIIC and DC-Gain techniques at 2 Hz [a1-a2], 20 Hz [b1-b2] and 40 Hz [c1-c2], respectively.

Fig. 5. Comparison of the tracking of the tetrahedron pattern on the strongly-coupled system obtained by using the DDRO-ILC technique with those obtained by
using the A-MAIIC technique at 2 Hz [a1-a2], 20 Hz [b1-b2] and 40 Hz [c1-c2], respectively..

9
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Fig. 6. Comparison of the tracking error on the strongly-coupled system obtained by using the DDRO-ILC technique with those obtained by using the A-MAIIC
technique at 2 Hz [a1-a2], 20 Hz [b1-b2] and 40 Hz [c1-c2], respectively..
4.3.1. Weakly-coupled system case
The experimental results demonstrated that the proposed

DRO-ILC method improved the tracking performance over the
revious A-MAIIC method. As shown in Figs. 4 [a2], at the low rate
f 2 Hz, the effect of the dynamics and the coupling effects were
elatively small. Both the DDRO-ILC and the A-MAIIC technique
an achieve precision tracking (see Figs. 4 [a1, a2]), and the
racking performance of the proposed DDRO-ILC method was
etter than that of the A-MAIIC method. The 2-norm tracking
rror of the proposed DDRO-ILC method was about 10 times
maller than those of the A-MAIIC method, reduced from 4.83%,
.49% and 4.50% to 0.37%, 0.59% and 0.38% for the x, y and z
xis tracking, respectively. As the pattern rate was increased to
0 Hz (see Figs. 4 [b1, b2]), the dynamics effect became more

pronounced (see the DC-Gain tracking results in Figs. 4 [b2]),
resulting in large tracking errors. However, by using the proposed
DDRO-ILC technique, the tracking error of the A-MAIIC technique
was substantially reduced by over 3 and 4 times in E2(%) and
Emax(%), respectively, clearly showing an improvement in robust-
ness. This enhancement stemmed from the account of the system
dynamics and the cross-axis coupling through the data-driven
system inverse employed in the proposed DDRO-ILC technique,
i.e., the cross-coupling effect was directly compensated for by
inverting the whole system dynamics via pseudoinverse (see
Eq. (10)), whereas it was treated as disturbances in the A-MAIIC
technique. Such an improvement was further demonstrated in
Figs. 4 [c1-c2] for tracking the pattern at higher rate of 40 Hz,
where both the cross-coupling and the dynamics effect became
more pronounced (see Figs. 4 [c2]). With both the E2(%) and the
Emax(%) maintained below 4%, precision tracking was still attained
by using the DDRO-ILC technique. Thus, the proposed DDRO-ILC
technique was effective for output tracking of MIMO systems.
10
4.3.2. Strongly-coupled system case
The efficacy of the proposed approach was more evidently

demonstrated in the strongly-coupled case, where the cross-
coupling effect dominated the outputs of the x and the y axes (see
Fig. 2 [b1–b3]). Outstanding performance and precision tracking
were still achieved by using the proposed DDRO-ILC technique
(see Figs. 5 [a1–c1] and 6 [a1–c1]). For example, at the low
rate of 2 Hz pattern rate, both the relative E2(%) and the rel-
ative Emax(%) were less than 1% and 2%, respectively. Even in
the tracking at 40 Hz pattern rate where the effects of both
the dynamics and cross-axis coupling became more pronounced,
the DDRO-ILC technique still preserved precision tracking, with
the E2(%) and the Emax(%) less than 3% and 4%, respectively.
In contrast, as the Assumption of the diagonal-dynamics being
dominant vanished, the tracking results of the A-MAIIC approach
deteriorated (see Figs. 5 [a2–c2] and 6 [a2–c2]). This precision
tracking for a MIMO system of strong cross coupling was achieved
without modeling the system dynamics a priori—such a mod-
eling process itself can be time consuming and complicated for
strongly-coupled systems. Moreover, the variations of the system
dynamics were automatically accounted for via the input–output
data during the iterations. Also, as shown in Fig. 7, the DDRO-
ILC algorithm converged rapidly and reached practical conver-
gence in three iterations for both the weakly-coupled and the
strong-coupled systems in high speed tracking. Thus, the pro-
posed DDRO-ILC technique was efficient and effective for output
tracking of strong-coupling MIMO systems.

Finally, the experimental results also showed that the com-
putation efficiency was improved by using the proposed fSVD
algorithm. As shown in Fig. 8, the computation time was reduced
by over 19.7%, 19.2% and 18.7% for the tracking of pattern rate
at 2 Hz, 20 Hz and 40 Hz, respectively. The decrease of the
computation reduction as the pattern rate increased was due to
the reduction of the number of effective frequencies (with the
reduction of the SNR at higher frequency), as the computation
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Fig. 7. The relative 2-norm overall error in the 40 Hz tracking in 20 iterations
for the weakly-coupled [A] and the strongly-coupled [B] system, respectively,
obtained when using the DDRO-ILC technique.

Fig. 8. Comparison of the average computation time during each iteration when
sing the the SVD or the fSVD algorithm in the implementation of the DDRO-LIC
echnique to track the pattern at the rate of 2 Hz, 20 Hz and 40 Hz, respectively,
n the strongly-coupled system.

omplexity is bounded as O(p(p+ 1)2N3
q ) and O(p(p+ 1)2Nq) for

VD and fSVD algorithm, respectively (see Section 3.5). Thus, the
omputation efficiency becomes more beneficial when tracking
rajectories of richer spectrum.

. Conclusion

A data-driven robust optimal iterative learning control (DDRO-
LC) approach for output tracking of MIMO linear systems was
roposed. The input–output data measured in the previous it-
ration were utilized to approximate the system inverse and
pdate the control input. It was shown that the convergence of
he output tracking was guaranteed in the presence of cross-
xis coupling dynamics and random output disturbance, and the
teration control gain can be optimized to minimize the residual
racking error and maximize the convergence rate. An algorithm
o accelerate the input calculation via singular value decom-
osition was also proposed. Experimental implementation on
utput tracking of a 3-axis nanopositioning system demonstrated
hat the proposed DDRO-ILC technique had enhanced both the
obustness and the tracking performance over the previous A-
AIIC method. For future work, the technique can be extended to
ccount for more complicated dynamics and in more complicated
racking scenarios, including static nonlinearity in Hammerstein
ystems, MIMO nonlinear dynamic systems, and tracking under
rift and time-delay effects.

ppendix A. Proof of Lemma 1

roof. We proceed by constructing a matrix Pint (Sa) ∈ CpNq×pNq

s
int (Sa) = Ψ (ω1)⊕Ψ (ω2) · · · ⊕Ψ (ωNq ),

such that Pint (Sa) is similar to Uint (Sa). This can be verified as by
Eq. (7),(13),(14), Uint (Sa) can be represented by Γ j,i(Sa) as

Uint (Sa) =

⎡⎢⎣Γ 1,1(Sa) · · · Γ 1,p(Sa)
...

. . .
...

Γ (S ) · · · Γ (S )

⎤⎥⎦ ,
p,1 a p,p a pNq×pNq

11
where Γ j,i(Sa) is as given in Eq. (14). Then, it can be verified that
by matrix permutation (Davis, 2006) that there exists a matrix
Bp,Nq ∈ RpNq×pNq , such that

Pint (Sa) = Bp,NqU
int (Sa)BT

p,Nq
, (A.1)

with

Bp,Nq =

p∑
i=1

Nq∑
j=1

(e(p)i ⊗ e(Nq)
j )(e(Nq)

j ⊗ e(p)i )T , (A.2)

where e(p)i denotes the ith canonical basis vector of Rp (the ith
column of the size m identity matrix), and ⊗ is the Kronecker
product (Horn & Johnson, 2012). As the permutation matrix is
orthogonal (Horn & Johnson, 2012), by Eq. (A.1), Pint (Sa) is similar
to Uint (Sa).

Thus, as Pint (Sa) is block diagonal and similar to Uint (Sa),
nonsingularity of Ψ (ωl) implies that both Pint (Sa) and Uint (Sa) are
nonsingular.

Reversely, if Uint (Sa) is nonsingular, Pint (Sa) being similar to
Uint (Sa) implies that Pint (Sa) is also nonsingular, so is each block
diagonal submatrix of Pint (Sa), Ψ (ωl). This completes the
proof. □

Appendix B. Proof of Corollary 1

Proof. First by Theorem 1, A = {k| ∥Ek(Sa)∥2 ≤ H(εn)} ̸= ∅, and,
by Eq. (35), the propagation of ∥Ek(Sa)∥2 can be bounded by

∥Ek(Sa)∥2 − ∥Ek−1(Sa)∥2 < (η − 1)∥Ek−1(Sa)∥2 + 2εn. (B.1)

Also, by Definition 2,

∥Ek(Sa)∥2 > H(εn) =
2εn

1− η
, for ∀k < k∗(H(εn)), (B.2)

where k∗ is as in Definition 2. Thus, the proof is completed by
combining Eq. (B.2) with Eq. (B.1)

Ek(Sa)∥2 − ∥Ek−1(Sa)∥2 < (η − 1)
2εn

1− η
+ 2ε = 0,

for ∀k < k∗(H(εn)). □

References

Aarnoudse, Leontine, & Oomen, Tom (2020). Model-free learning for massive
MIMO systems: Stochastic approximation adjoint iterative learning control.
IEEE Control Systems Letters, 5(6), 1946–1951.

Anderson, Edward, Bai, Zhaojun, Bischof, Christian, Blackford, L Susan,
Demmel, James, Dongarra, Jack, et al. (1999). LAPACK users’ guide. SIAM.

rmstrong, Ashley A., & Alleyne, Andrew G. (2021). A multi-input single-output
iterative learning control for improved material placement in extrusion-
based additive manufacturing. Control Engineering Practice, 111, Article
104783.

Bolder, Joost, Kleinendorst, Stephan, & Oomen, Tom (2018). Data-driven mul-
tivariable ILC: enhanced performance by eliminating L and Q filters.
International Journal of Robust and Nonlinear Control, 28(12), 3728–3751.

ristow, D. A., Tharayil, M., & Alleyne, A. G. (2006). A survey of iterative learning
control. IEEE Control Systems Magazine, 26(3), 96–114.

runton, Steven L., & Kutz, J. Nathan (2022). Data-driven science and engineering:
Machine learning, dynamical systems, and control. Cambridge University Press.

hen, Wenjie, & Tomizuka, Masayoshi (2013). Dual-stage iterative learning
control for MIMO mismatched system with application to robots with joint
elasticity. IEEE Transactions on Control Systems Technology, 22(4), 1350–1361.

avis, Timothy A. (2006). Direct methods for sparse linear systems. SIAM.
evasia, Santosh, & Paden, B. (1998). Stable inversion for nonlinear

nonminimum-phase time-varying systems. IEEE Transactions on Automatic
Control, 43(2), 283–288.

irkx, Nic, van de Wijdeven, Jeroen, & Oomen, Tom (2020). Frequency response
function identification for multivariable motion control: Optimal experiment
design with element-wise constraints. Mechatronics, 71, Article 102440.

http://refhub.elsevier.com/S0005-1098(24)00139-0/sb1
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb1
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb1
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb1
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb1
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb2
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb2
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb2
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb3
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb3
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb3
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb3
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb3
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb3
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb3
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb4
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb4
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb4
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb4
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb4
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb5
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb5
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb5
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb6
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb6
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb6
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb7
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb7
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb7
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb7
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb7
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb8
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb9
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb9
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb9
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb9
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb9
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb10
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb10
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb10
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb10
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb10


Z. Zhang and Q. Zou Automatica 164 (2024) 111646

H
ao, Xiaohong, Zhang, Lei, & Li, Hengjie (2008). A new PD type iterative learning
control in active control for vibration. In 2008 7th world congress on intelligent
control and automation (pp. 922–926). IEEE.

Horn, Roger A., & Johnson, Charles R. (2012). Matrix analysis. Cambridge
University Press.

Hungerford, Thomas W. (2012). Abstract algebra: An introduction. Cengage
Learning.

Khalil, H. K. (2011). Nonlinear systems. Prentice-Hall.
Li, Mi, Xi, Ning, Wang, Yuechao, & Liu, Lianqing (2019). Advances in atomic force

microscopy for single-cell analysis. Nano Research, 12(4), 703–718.
Lin, Pei-Yu, Lee, Jung-San, & Chang, Chin-Chen (2009). Distortion-free secret

image sharing mechanism using modulus operator. Pattern Recognition, 42(5),
886–895.

Loganathan, Muthukumaran, & Bristow, Douglas A. (2014). Bi-harmonic can-
tilever design for improved measurement sensitivity in tapping-mode atomic
force microscopy. Review of Scientific Instruments, 85(4), Article 043703.

Mandra, Slawomir, Galkowski, Krzysztof, Rauh, Andreas, Aschemann, Harald, &
Rogers, Eric (2020). Iterative learning control for a class of multivariable dis-
tributed systems with experimental validation. IEEE Transactions on Control
Systems Technology, 29(3), 949–960.

Oppenheimer, Michael W., Doman, David B., & Bolender, Michael A. (2006).
Control allocation for over-actuated systems. In 2006 14th mediterranean
conference on control and automation (pp. 1–6).

Schkoda, Ryan (2007). Dynamic inversion of underactuated systems via squaring
transformation matrix.

Skogestad, Sigurd, & Postlethwaite, Ian (2007). Multivariable feedback control:
analysis and design: vol. 2, Citeseer.

Wang, Zhihua, & Zou, Qingze (2023). Simultaneous hysteresis-dynamics compen-
sation in high-speed, large-range trajectory tracking: A data-driven iterative
control. International Journal of Robust and Nonlinear Control, 33(1), 489–506.

Wu, Yinan, Fang, Yongchun, Fan, Zhi, Wang, Chao, & Liu, Cunhuan (2021).
An automated vertical drift correction algorithm for AFM images based on
morphology prediction. Micron, 140, Article 102950.

Yan, Leon Liangwu, Banka, Nathan, Owan, Parker, Piaskowy, Walter Tony,
Garbini, Joseph L, & Devasia, Santosh (2021). MIMO ILC using complex-kernel
regression and application to precision SEA robots. Automatica, 127, Article
109550.

Yan, Yan, Wang, Haiming, & Zou, Qingze (2012). A decoupled inversion-
based iterative control approach to multi-axis precision positioning: 3D
nanopositioning example. Automatica, 48(1), 167–176.
12
Yu, Xian, Hou, Zhongsheng, Polycarpou, Marios M., & Duan, Li (2020). Data-
driven iterative learning control for nonlinear discrete-time MIMO systems.
IEEE Transactions on Neural Networks and Learning Systems, 32(3), 1136–1148.

Zhang, Zezhou, & Zou, Qingze (2023). Data-driven robust optimal iterative
learning control of linear systems with strong cross-axis coupling. In 2023
American control conference. IEEE.

Zezhou Zhang received the B.S. degree and M.S. degree
in automation from the University of Electronic Science
and Technology of China, Chengdu, China, in 2016 and
2019. He is currently pursuing the Ph.D. degree in me-
chanical engineering at the Department of Mechanical
and Aerospace Engineering, Rutgers University, Piscat-
away, NJ, USA. His research interests are data-driven
modeling and control with applications in precision
tracking and motion control.

Qingze Zou received his Ph.D. in mechanical engi-
neering from the University of Washington, Seattle,
WA, USA in 2003, MS. in mechanical engineering from
Tsinghua University, Beijing, China in 1997, and BS.
in Automatic Control from the University of Electronic
Science and Technology of China, Chengdu, China in
1994. He is a Professor of mechanical and aerospace
engineering at Rutgers, the State University of New
Jersey, Piscataway, NJ, USA. Previously he had taught at
the Iowa State University, USA. His research interests
include learning-based precision tracking and motion

control, control of high-speed scanning probe microscopy, nanoscale acoustic
noise control, stomata dynamics modeling and measurement, and robotic reman-
ufacturing. Dr. Zou received the NSF CAREER Award in 2009, and the O. Hugo
Schuck Best Paper Award from the American Automatic Control Council in 2010.
He was an Associate Editor of ASME Journal of Dynamic Systems, Measurement
and Control, IFAC-Control Engineering Practice, and IFAC-Mechatronics, and a
Technical Editor of IEEE/ASME Transactions on Mechatronics. Currently he is a
Senior Editor of IEEE/ASME Transactions on Mechatronics, and the lead Guest
Editor of the 4th and 5th focused section on the TMECH/AIM emerging topics.
He is a Fellow of ASME.

http://refhub.elsevier.com/S0005-1098(24)00139-0/sb11
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb11
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb11
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb11
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb11
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb12
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb12
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb12
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb13
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb13
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb13
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb14
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb15
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb15
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb15
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb16
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb16
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb16
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb16
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb16
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb17
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb17
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb17
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb17
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb17
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb18
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb18
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb18
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb18
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb18
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb18
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb18
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb19
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb19
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb19
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb19
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb19
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb20
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb20
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb20
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb21
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb21
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb21
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb22
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb22
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb22
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb22
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb22
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb23
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb23
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb23
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb23
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb23
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb24
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb24
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb24
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb24
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb24
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb24
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb24
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb25
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb25
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb25
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb25
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb25
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb26
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb26
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb26
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb26
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb26
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb27
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb27
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb27
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb27
http://refhub.elsevier.com/S0005-1098(24)00139-0/sb27

	Data-driven robust iterative learning control of linear systems
	Introduction
	Problem FORMULATION
	Data-driven robust iterative learning control
	DDRO-ILC algorithm
	Input initialization
	Convergence analysis
	Iterative gain optimization
	Fast numerical computation

	EXPERIMENTAL example
	EXPERIMENTAL setup
	EXPERIMENTAL IMPLEMENTATION
	Results and discussion
	Weakly-coupled system case
	Strongly-coupled system case


	Conclusion
	Appendix A. Proof of Lemma 1
	Appendix B. Proof of Corollary 1
	References


