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We propose a data-driven robust iterative learning control (ILC) technique to multi-input-multi-output
(MIMO) linear systems. Control of MIMO linear systems, particularly with strong cross-axis coupling,
is challenging as modeling of a MIMO system can be complicated, time-consuming, and often requires
a trade-off between robustness and performance. As such, limitations exist in current ILC techniques.
The aim of this paper is to develop an efficient and easy-to-use data-driven ILC technique to output
tracking of MIMO linear systems under random disturbance. Through the proposed technique, the
complicated modeling process and the robustness-accuracy trade-off are avoided, and the up-to-now
system dynamics is captured by constructing and updating the iteration gain using the input and
output data in the last iteration. It is shown that monotonic convergence of the ILC algorithm is
guaranteed, and an optimal gain can be obtained to maximize the convergence rate and minimize the
residual tracking error. The proposed technique is illustrated through experiments on a three-input
three-output piezoelectric actuator system, with comparison to the adaptive multi-axis inversion-based
iterative control (A-MAIIC) technique. The experimental results show rapid convergence and improved
formance of the proposed technique when the cross-axis coupling is strong.
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1. Introduction

A data-driven iterative learning control (DD-ILC) technique is
proposed for output tracking of multi-input multi-output (MIMO)
systems under random output disturbance. Precision tracking of
MIMO systems is needed in various applications, ranging from
advanced manufacturing (Armstrong & Alleyne, 2021), atomic
force microscope (AFM) (Yan, Wang, & Zou, 2012), robot ma-
nipulation (Yan et al., 2021) to semiconductor fabrication (Dirkx,
van de Wijdeven, & Oomen, 2020). In these applications, iterative
learning control (ILC) becomes a natural choice due to the peri-
odic motion involved (Chen & Tomizuka, 2013). However, existing
ILC techniques face challenges in modeling, trade-off between
performance and robustness, and system dynamics complexity.
This motivates the development of a DD-ILC approach in this
work.

Limitations exist in current ILC techniques to achieve high-
speed precision tracking of MIMO systems. For model-based ILC
techniques (Bristow, Tharayil, & Alleyne, 2006), modeling of a

™ This work was supported by NSF CMMI-1851907, 1IBR-1952823, and PFI-
2234449. The material in this paper was partially presented at the 2023
American Control Conference (ACC), May 31-June 2, 2023, San Diego, California,
USA. This paper was recommended for publication in revised form by Associate
Editor Andrea Cristofaro under the direction of Editor Sophie Tarbouriech.

* Corresponding author.

E-mail addresses: zezhou.zhang@rutgers.edu (Z. Zhang),

qzzou@soe.rutgers.edu (Q. Zou).

https://doi.org/10.1016/j.automatica.2024.111646

MIMO system can be time-consuming and complicated, partic-
ularly when the dimension of the system increases. For example,
both the structure and the order of the model need to be deter-
mined, and the model quality can be sensitive to the measure-
ment noise and the unmodeled dynamics. The complexity of the
modeling process can be alleviated by only modeling the diagonal
dynamics of the system (Yan et al., 2012). Through a frequency-
domain inversion-based framework, efficient and precision out-
put tracking can be achieved (Yan et al., 2012). However, this
simplification requires the diagonal dynamics to be dominant
over the cross axis ones, i.e., the cross-axis coupling dynamics is
relatively weak. Alternatively, a constant proportional-integral-
derivative (PID) type of ILC algorithm (Hao, Zhang, & Li, 2008) has
been proposed that avoids modeling the system dynamics. This
relatively simple ILC method, however, is slow in convergence
(e.g., over 200 iterations in Hao et al, 2008) and the working
bandwidth is low, resulting in poor performance as the speed
of the desired trajectory increases towards the resonant fre-
quency of the system. Although the working bandwidth can be in-
creased by using system dynamics model to optimize the ILC con-
troller (Mandra, Galkowski, Rauh, Aschemann, & Rogers, 2020),
the design of the robustness filter becomes complicated when
the order of the system increases—when the cross-axis coupling
becomes strong and the number of inputs/outputs increases, as
the robustness filter for each input-output channel needs to be
individually designed. Therefore, further development of ILC is
needed to simplify or even avoid the modeling process, without
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loss of efficiency in convergence and efficacy in high-speed track-
ing, even in the presence of strong cross-coupling dynamics and
external disturbance.

Recent development in DD-ILC provides an effective avenue to
address these issues in modeling and cross-coupling dynamics.
The input-output data acquired in past iterations are directly
used to construct the system dynamics model and update the
control input. As such, no additional modeling process is needed,
and as changes of the system dynamics are directly reflected
and captured in the past input-output data, both performance
and robustness of the ILC technique are improved. For example,
the Hessian information has been explored in a DD-ILC tech-
nique to increase the convergence rate (Bolder, Kleinendorst,
& Oomen, 2018). The design of the weight matrices, however,
requires a priori expertise knowledge gained from a large number
of experiments. This requirement can be mitigated by estimat-
ing the linearized system dynamics through extra iterations (Yu,
Hou, Polycarpou, & Duan, 2020). The number of experiments
needed has also been reduced through a stochastic-based DD-
ILC approach (Aarnoudse & Oomen, 2020). However, only is the
convergence of the expectation of the tracking error considered—
the variation is not characterized, and the iteration coefficients
need to be carefully tuned, resulting in conservative performance
and slow convergence (Aarnoudse & Oomen, 2020). The tech-
nique has been further enhanced to improve the tracking per-
formance (Wang & Zou, 2023), where the input-output data in
a differential format is used to design the learning filter, and
it is shown that both the linear dynamics and the hysteresis
can be accounted for simultaneously (Wang & Zou, 2023). How-
ever, the algorithm is limited to SISO systems only. Therefore,
how to achieve both rapid convergence and robust performance
for MIMO systems with strong cross-axis coupling remains as
challenging for DD-ILC.

The main contribution of this paper is the development of
a DDRO-ILC method for MIMO systems. Specifically, tracking of
trajectories with a finite discrete spectrum is considered, and
the input-output data obtained in past iterations are formatted
as “snapshot” (Brunton & Kutz, 2022) in frequency domain, and
then used to approximate the system inverse in the iteration
gain via the singular value decomposition (SVD) technique. A
fast SVD (fSVD) algorithm is proposed to accelerate the com-
putation. Moreover, an optimal gain is designed to maximize
the convergence rate and minimize the tracking error against
random disturbance. Partial preliminary results of this work have
been presented recently in conference (Zhang & Zou, 2023). We
substantially enrich the theoretical results through a rigorous
development of input initialization, convergence analysis, and
iterative gain optimization, and an algorithm to accelerate the
numerical computation. Moreover, the previous numerical sim-
ulation (Zhang & Zou, 2023) has also been replaced by an ex-
perimental implementation in a 3-axis nanopositioning tracking,
illustrating the proposed approach in a much more convincing
manner.

2. Problem formulation

Consider a square MIMO linear time invariant (LTI) system
given in the frequency domain

y(o) = G(jou(jo) + d(jo), (1)

where ‘jw’ denotes the Fourier transform of a time-domain sig-
nal, G(jw) € CP*P is the transfer function matrix (Skogestad
& Postlethwaite, 2007) from the input u(jw) € CP*! to the
output y(jw) € CP*!, d(jw) € CP*! is the output disturbance
(e.g., measurement noise), respectively.
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Remark 1. The proposed approach can be extended to non-
square systems as an over- or under- actuated system can be
converted into a square one (Oppenheimer, Doman, & Bolender,
2006; Schkoda, 2007; Yan et al., 2021).

Assumption 1. The desired trajectory in any given ith output
channel contains a finite N; number of frequencies, i.e., for any
given i = 1,2---p, the desired trajectory of the ith output
channel y; 4(jo) = 0, except at w = wq;, forq =1,2,..., N;.

Such a desired trajectory of a finite discrete spectrum appears
in many tracking applications in practice—Seldom are we asked
to track a white-noise-like desired trajectory. Also, tracking a
frequency component in the output becomes infeasible when its
amplitude becomes too small—smaller than the random noise at
that frequency. Thus, we assume that

Assumption 2. The output disturbance in all output channels are
independent, random, and bounded in 1-norm,

p
sup Do)l £ sup Y |di(jo)| < &, < o0, 2)
@ @iz

where ¢, € RT is a constant, and d;j(jw) € C is the output
disturbance in the ith (1 < i < p) channel.

Definition 1 (Effective Frequency). wq: € Sq: is an effective
frequency - the qth effective frequency in the tth channel for
qg=1,2,...,Nandt = 1,2,...,p - if the amplitude of the
corresponding desired output |y; 4(jwg)l > ey > &, > 0 for
given positive constant ey. S, is the set of effective frequencies
in the tth channel, and Sq £ [, Sq, is the set of all effective
frequencies.

Below we order the effective frequencies in S, in the ascending
order, ie,w; <wy; <--- ONg» where Ng is the number of effective
frequencies in S,.

Assumption 3. The transfer function matrix of system (1), G(jw),
is proper, stable, and hyperbolic, i.e., for any i,j € N* (N*: the
set of the natural numbers), the corresponding transfer function,
8ij(jw) € G(jw), is proper, stable and hyperbolic. Also, the trans-
mission zeros (Skogestad & Postlethwaite, 2007) of system (1),
zs € C (r € NT), do not overlap with any of the effective
frequencies. i.e., z; ¢ S, for any given zero z, of system (1).

First, we format the input and output trajectory matrices
needed in the proposed DDRO-ILC technique. For any given rth
input-output channel (r = 1,2, ..., p), let the effective desired
trajectory matrix, Y, 4(Sq) € CNo*Na (1 < r < p), and the effective
input and output matrix in the kth iteration, U, (S,) € CNe*Na
(1 <r <p)and Y, ,(S,) € CNo*Na (1 < r < p), respectively, be
given by:

Yr a(Sq) = diag([yr.aGw1) - -+ Yr.dlwong )Dngxngs
Yr,k(Sa) = diag(D’r,kowl) tee yr,k(ijq )])quNq’ (3)
U; k(Sq) = diag([ur k(1) - - Ur k(ong )Ngxngs

where diag{v} denotes a diagonal matrix with the diagonal en-
tries given by the vector v = [vy vy --- Un, |- Then, the effective
output tracking error matrix, Ei(S,), is given by

E(Sa) = Yd(Sq) — Yi(Sqa), where
Yi(Sa) = [Y1,4(S0) Yp(Sa)y, o, and (@)
Yu(Sa) = [Y1.4(S0) Ypa(S)l v, » K20,

The effective input matrix in the kth iteration, Uy(S,), can be
represented in terms of U;k(Sy)(1 < i < p), similarly as the
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above representation of the effective output matrix Y(S,) in
Yir(Sq) (1 <i<p)

Thus, by using the above defined effective input and output
matrix, the ILC algorithm can be represented as

U4+1(Sa) = Q1(Sa)Uk(Sa) + Li(Sa)Ex(Sa), k = 1, (5)

where Q(Sq), Li(S;) € CPNaxPNa are the corresponding effec-
tive low-pass filter and effective iteration gain matrix, respec-
tively. Below we set Qk(S,) = I (I: an identity matrix of proper
dimension) and focus on the design of Li(S,).

To further characterize the convergence of the proposed algo-
rithm in practice, we define

Definition 2 (Practically Monotonic Convergence). A convergent
sequence {a,}52, is practically monotonically convergent w.r.t. a
given constant Y € R, if

(1) the set A = {n| a, < Y} is not empty, and
(2) a, < ay_4 forall n < n*(y), where n*() is the least element
of the set A.

By the well ordering Theorem (Hungerford, 2012), n*() al-
ways exists if condition 1 is satisfied. We now state the DDRO-ILC
of MIMO system:s.

DDRO-ILC OF LTI SYSTEMS For a LTI system given in Eq. (1),
let Assumptions 1-3 hold, then the DDRO-ILC is to achieve the
following objectives:

Py Construct and update the effective iteration gain matrix,
Li(S,), in each iteration by only using the input-output data
acquired in the previous iteration.

P, Design the effective iteration gain matrix, Li(S,), such that

a Unbiased convergence is achieved, i.e.,
lim [[Ex(Sq)ll2 < H(en),
k—o00

where ||V||, denotes 2-norm of matrix V, and #(-) :
R>o — Rso (Rso: the set of nonnegative real num-
bers) is a class « function (Khalil, 2011) such that
limgnﬁo H(en) = 0.

b Practically monotonic convergence is reached w.r.t.
H(én)v Le, the set A = {k| |[Ex(Sa)ll2 < H(en)} # ¥,
an

IEk(Sa)ll2 < IlEk-1(Sa)ll2, k < k*(#(en)),
where k*(H(ep)) is as n*(Y) in Definition 2.
P3 Optimize the effective iteration gain matrix, Li(S,), such that
the upper bound of the tracking error is minimized, and
the convergence rate is maximized in the upper bound of

the tracking error, i.e., find Lj(S,), such that for any given
effective frequency w, € S, and any given iteration k,

min [|Ex(Sg)ll,, and
Li(Sa)

max |[|Ex(S — |Ex-1(S
max [[E(So)ll2 — 1E-1(Sa)l|

are achieved, where ||Ex(S,)|l, is the upper bound of
||EI<(Sa)||2-

Thus by the above Objective 7,, we aim to achieve monotonic
convergence in practical implementation, i.e., before the tracking
error falls within the bound of #(e,;) and the convergence is
terminated, the tracking error is monotonically decreasing.

3. Data-driven robust iterative learning control

We present the proposed DDRO-ILC technique by showing
the above three objectives in order. First, the effective iteration
gain matrix Li(S,) will be constructed by only using the previous
input-output data (Objective P;).
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3.1. DDRO-ILC algorithm

The proposed DDRO-ILC algorithm is given by
U1(Sa) =U™(Sa)(Y™(Sa)) Y ul(S0), k=1,
Uk(Sa) =Uk—1(Sa) + AUk—],s(Sa)(AYk—l.s(Sa))T (6)
D1 1(Sq)Ek—1(Sa), k> 2,

where UM(S,) € CPNo*PNe and Y™(S,) € CPNo*PNa are the
effective initialization input and output matrices, respectively:
U™(Sq) = [UT*(Sa) Ui (Sa)].
Y™(Sq) = [Y"(Sa) Yi'(sa)].
where U™(S,) € CPNo*Ne and Y™(S,) € CPNo*Na are the Fourier
transform of the ith effective initialization input and the corre-
sponding output, respectively. As shown in Section 3.2, the initial-
ization input, Ui, (S,), is designed such that both the initialization

input and the output matrices have full rank.
Moreover, in Eq. (6),

AU(Sq) = [U™(Sa)  AUK(S4)]

(7)

PNgx((p+1)Ng)’

i (8)

AYk,s(Sa) = [Ymt(Sa) AY"(SG)]qux((p+l)Nq) s
with

U1(Sq) — UM(Sy), k=1
AUs,) = |15~ I ) N

Ui(Sq) — Ur—1(Sa), otherwise

Y1(Sq) = Y™(Sy), k=1
avsy) = {1807 V) »

Yi(Sa) — Yi—1(Sa), otherwise

and finally, AY,?S(S,,) denotes the Moore-Penrose pseudoinverse
of AY . s(Sq), Pr(Se) € CPNaxPNa js the iteration gain matrix to be
designed, respectively.

Comparing Eq. (6) to Eq. (5) shows that in the proposed DDRO-
ILC algorithm, the effective iteration gain matrix Li(S,) is given
by

Li(Sa) = AU, (Sa)AY}

k,s

(Sa) fpk(Sa )

Thus, Li(S,) is data-driven if the gain matrix @(S,) is designed
by only using the previous input-output data. Towards that end
we find the Moore-Penrose pseudoinverse of AYj (S,) via the
SVD (Horn & Johnson, 2012) as

AYk,s(Sa) = uk(Sa)Sk(Sa)vf(Sa)
= [uLk(Sa) uz,k(Sa)]

El.k(Sa) 0 V'{k(Sa) 9
0 3] [V ®)
= U k(o) Z 1 k(S)VY 1 (Sa)

A S ~H
£ uk(Sa)Ek(Sa)vk (Sa)»

where, respectively, Ui(S,) and Vi(S,) are unitary matrix, ‘H’
denotes the Hermitian transpose of the matrix, X(S,) is the
diagonal matrix containing all the singular values of AY} (S,) in
the descending order, X1 ((Sq) and X', (S, ) partition Xy(S,) with
nonzero and zero diagonal entries, i.e.,

51(Sa) = 1 4(S0)
= diag{[o1(X'1k(Sa)), - - -, on, (X'1.6(Sa))]},
with  01(X'1k(Sq)) = - -+ = on, (X'1.k(Sa)) > 0,
where oi(F) denotes the ith singular value of matrix F, and
U(Sq) = U1k(Se) and Vi(Sq) = V1k(Sq) are partitions of

UK(Sq) and Vi(S,) according to the dimension of X'y x and X,
respectively. Then the pseudoinverse of AY s(Sq) is given by

AY] (Sa) = Vi(Sa) 5y (Sa)L} (Sa). (10)

k,s
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The gain matrix @(S,) is chosen as

By(Sa) = L(Sa)idly (Sa).
with ¢, = p, 1@ -+ @ py,, and (1)
T 1 F Ng
pk,i - dlag([(pk,i’ e q)k,i’ e (pk,i])NqXNqa
fori=1,...,p, 1<F <Ny,

where @ denotes the direct sum operation of two matrices (Horn
& Johnson, 2012), i.e.,, for A € C™™ and B € C™", A® B =
diag([A B])gntn)x(m-+n), and w,f,i(wj) € RT (R™: the set of positive
real numbers). Then, the DDRO-ILC algorithm becomes

U1(Sa) =U™ (Sq)(Y™(Sa)) Y a(Sa), k=1,
Ui(Sa) =Uk-1(Sq) + AUk—1,5(Sa)(AYx—1,5(Sa))' (12)
T (ST (SOEc1(So), k=2

Thus, in practice, the input-output data obtained after each iter-
ation will be first pruned to only retain the effective frequency
components, and then used to form the input and the output
matrix as in Egs. (3)-(4) to obtain the next-iteration input via
Eq. (12). The choice of the iteration gain matrix to ensure the
convergence is addressed later in Section 3.3. Next we discuss the
initialization of the input-output matrix, U™ (S,) and Y™ (S,).

3.2. Input initialization

We proposed an initialization process by repetitively applying
an initialization input u(t) € RP to the system for p times,

where each time the initialization input ui’ff(t) fori=1,2,...,p
is in the form of

uli(e) = [ufio e o]

with ui”fi(t) (1 < m < p) the input applied to the mth input chan-

m,
nel, and the corresponding output yi”}(t) eRP(fori=1,...,p)
is measured. The input ui’fﬁ(t) is designed to guarantee that the
effective initialization input matrix, U™ (S,) given in Eq. (7), has
full rank in the frequency domain, so is the initialization output
matrix Y"(Sq) (by Assumption 3).

Specifically, in any given ith initialization, the input uﬂﬁ(t)
can be chosen as a chirp signal such that its Fourier transform,
U™ (S,), contains all the effective frequency components

i T
U:-m(Sa) = [F],i(Sa) Fp,i(Sa)]quXNq ) (13)
fori=1,2,...,p,
where
T i(Sq) = diag ([upGor) -+ upti(jeo, )])quzvq , (14)
form = 1,2,...,p, ie, the diagonal matrix I'p i(S,) has its

diagonal elements given by the effective frequency components
of umfi(t). Below we give the condition that guarantees the full
rank of the initialization input U™(S,).

Lemma 1. The initialization input matrix UM (S,) is full rank if and
only if the following matrix ¥(w;) € CP*P

w o) e Ul Gey)
Po)=| . :

wige) o o],
is nonsingular for | =1, ..., Ng.

Proof. See Appendix A O
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As an example, the initialization input u"m”fl.(t) satisfying
Lemma 1 can be designed as a chirp signal as,

i op) Om,i Sin(wpp)t), whenm =i,
u, . =
mt 0, otherwise.
with (15)

t
wp(t) € Sq, b(t) = (t— mod Nq> +1,
S

where o;,; € R* is a constant, t; is the time for each step, and
‘mod’ denotes modulo operation (Lin, Lee, & Chang, 2009).

Remark 2. For single-input single-output (SISO) systems, the
DDRO-ILC algorithm is reduced to the data-driven difference-
inversion-based iterative control (DDD-IC) method in Wang and
Zou (2023), where the initiation matrix is simplified to a constant.

3.3. Convergence analysis

Next, we show the convergence of the proposed DDRO-ILC
technique (Objective P,), by finding a recursive form of the it-
erative tracking error first.

Lemma 2. Let Assumptions 1-3 hold, then the propagation of the
iterative tracking error is given by:

Ek(Sq) = Br-1(Sa)Ek-1(Sq) — AD(Sa),

where

Bi-1(Sa) =T — (AYy1,6(Sa) — ADy-1,5(Sa))
(AYi1,5(8a)) Us-1(Sa)br1Uf_1(Sa),

Di(Sq) — D™(S,), k=1
ADk(Sa)= l( a) P ( a) . )
Dy(Sq) — Di—1(Sq),  otherwise
with
ADys(Sa) = [D™(Sa)  AD(Sa)] . ps g -
D™ (S,) = [D™(Sq) D, (Sa)] i, epn,
Di(Sa) = [Dre1(Sa) Dip(Sa)]" (16)
D, = diag [dk.r(jwl) dk,r(ja)Nq )] )

forr=1,2,...,p.

where D" (S,) € CPNoxNa is the output disturbance occurred in the
ith (1 < i < p) initialization process.

Lemma 2 can be shown by writing the effective iteration
tracking error Ei(S,) in the matrix form using the system in
Eq. (1), and presenting the iterative control input U,(S,) by the
proposed DDRO-ILC in Eq. (12). The complete proof is omitted to
save space.

Next, considering the effect of random output disturbance, we
assume that

Assumption 4. The gain of the system at effective frequencies is
bounded below by the disturbance as

6+1
h, 2 min 0i(G(jw)) > M’
£ w€eSq o
1<i<p
with
a 2 oy, (U™(Sq)) > 0. (17)
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Remark 3. The above Assumption 4 is to ensure that the response
to a given input is large enough such that the output is not
dominant and swallowed by disturbance. Also, in practice, the
amplitude of the initialization input U™(S,) can be adjusted to
satisfy Assumption 4.

Lemma 3. Let Assumptions 1-4 be satisfied, then in any given kth
iteration,
(1) The output disturbance is bounded as
| AD (Sa)ll2 < v/6en,
and initially (i.e., k = 0)
ID™(Sa)ll2 < en. (18)

(2) The pseudo-inverse of the effective output difference
(AYs(Sq))! is bounded above by
1

< .
\/égn

”(Ay'k,s(Sa))TL ”2 < —
Olhg —é&n

Proof. By Eq. (16) and the definition of induced matrix 1- and
oo— norm (Horn & Johnson, 2012),

p p
1ADy(So)ll1 = sup {Zmi"%qu,m, Z|Adk,io’wq)|]

1§q§Nq N .
1<r<p i=1 i=1

p
| ADs(Sa)lloc = sup {Zldi”t(iwq,i)lJrIAdk,i(iwq)I]

:g;’;’)q r=1
where
dy.i(jowg) — d™(jwg i), hen k=1
Ady(jay) = | G000~ Gai), - when
diijwg) — di—1,i(jwg), when k> 2

and di“‘(ja)q,f) and dy;(jwq) are the output disturbance at the
gth effective frequency in the ith output channel, occurring dur-
ing the rth initialization and kth iteration, respectively. Thus by
Assumption 2 (Eq. (2)),

1 ADy(Sa)lls < sup {Zld (jeog.0)l

1<q<Nq
1<r<p
p p
PO EDS |dk1,,-(iwq)|}
i=1 i=1
< 2&y

Similarly, it can be verified that || ADy s(Sq)llcc < 3&n. Thus, by the
property of matrix 2-norm (Horn & Johnson, 2012),

14D 5(Sa)ll2 < v/l ADks(Sa) 111l ADis(Sa)ll oo < VBEn.

The upper bound of || D™ (S,)||> can be verified similarly.
To quantify the lower-bound of AY}:,s(Sa)- we note that the

full row rank condition of Y™(S,) implies that
[V NCH P — (19)
kP02 T g (AY 15(Sa))”

where aqu(Yk s(Sq)) is the least singular value of Yy s(S,). As
Y (S,) is nonsingular and by Eq. (8),
Uqu(AYI<,s(Sa)) = OpNy ([Ymt(Sa) AY/{(SG)]) (20)
> opn (Y™ (Sa))

Then, by the definition of the least singular value and the tri-
angle inequality (Horn & Johnson, 2012), aqu(Ym‘(Sa)) is bounded
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below as
opng (Y (Sa)) =0, (G(Sa)U™ (Sa) + D™ (Sq))
= min_ [IG(SU™ (S0}l — D" (So x| @D
where
Bl,l(Sa) Bl,p(Sa)
G(Sq) = : : (22)
Bp,l(Sa) Bp,p(Sa) PNgxpNg
with
Big(Sq) = diag ([Grgliwr1) - - - Gegliwn, )])quNq ) (23)

Next, we quantify the lower bound of the right-hand side of the
last inequality above. As G(S,) is nonsingular, by the property
of singular value (Horn & Johnson, 2012) and Eq. (17), the least
singular value of G(S,)U™(S,) is bounded as

Gqu(g(Sa)Uim(Sa)) = Uqu(g(Sa))Uqu(Uim(Sa))
= aopn,(G(Sa))

By Eq. (22), (23), G(S,) has the same structure as U™(S,). By the
permutation process in Eq. (A.1), (A.2), the following matrix G(S,)

G(Sa) = By, G(Sa)BL
is block diagonal with

G(Sq) = G(jwn) & G(jo2) - - - & Gjoon, ).

therefore the block diagonal structure of G(S,) above implies that

O, (G(5a) = oo, (G(S2) = min 6i(G(je)).

1<i<p
Combining with Assumption 4 and Eq. (18) leads to
20Ny (G(Sa)) > £n = [D™(Sa)]l2- (24)
Thus, Eq. (24) implies that
min [|G(Sa)U™ (Sa)xll2 > max D™ (Sa)xlla, (25)
Ixll2=1 Ixll2=1
and combining Eq. (20), (24), (25) with Eq. (21) leads to
OpNg(AY k5(Sa)) = opng (Y™ (Sa)) = ahy, — &5 > V/6en. (26)

Thus, the proof is completed by substituting Eq. (26
Eq. (19). O

) into

Theorem 1 (Convergence condition). At any given frequency w, €
Sa, let Assumptions 1-4 be satisfied, and let the iteration gain, (p,’< o

fori=1,... pandj: 1,..., Ng be chosen as,
0<g,; < 5o <2, (27)
where 2 € ( 1) is a finite constant defined as
6
Q= &, (28)
ahg —&n

then, the DDRO-ILC algorithm converges,

. En 4
le“So | Ex(Sa) — = H(en), (29)

where the constant i
72 max {11 - ¢, + 20| (30)

satisfies 0 <7 < 1, for 1 <j < Ng, 1 <i<p.
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Proof. By Lemma 2 and the triangle inequality,

IEx(Sa)llz2 < 1Br—1(Sa)ll2IEx—1(Sa)ll2 + [l ADk(Sq)ll2
< (Yr—1(Sa) + &k—1(Sa)IEr—1(Sa)ll2 (31)
+ | ADk(Sa)ll2,

where
1;[fk—l(Sa) :”I - AY]( 15(811)(A$[k—1,s(§a))1L Qk—l(SG)HL

32
é‘k—l(Sa) :”ADI{—LS(Sa)Ayl 15(Sa)¢k—l(8a)”2~ ( )

To seek the bound of the iteration gain ¢ ; to guarantee the
convergence, we expand the effective initialization matrix via
SVD in Eq. (9). Then, substituting the decomposition results and
Eq. (11) into Eq. (32) yields

Viea(Sa) = I = DSl < max {11 - . (33)
and
Gi1(Sa) < 1 AD-15(S)ll21AY L (Sa)ll2ll Br—1(Sa)ll2
< 1 AD-15(Sa)ll2 | AY_ (Sll2 ey 4.
for 1 <j <Ny, 1<i<p,where

ekl = max {1}

3), (34) back into Eq. (31) leads to

f |(/7;<11>

Substituting Eq. (3

IEx(Sa)ll2 < ( — ¢ 1l +
g

lEk—1(Sa)ll2 + 2en

< NIEx-1(Sa)ll2 + 2¢y

where by Assumption 4, 2 € (0, 1). Thus the convergence is
guaranteed by choosing the iterative gain as in Eq. (27). This can
be seen as when € (0, 1],

7= max {1
for.Q>1

ki € (1,2/(1+ 82)),

ﬁ:m_ax{—l-l—( +.Q)§0§”}

ij,k

(35)

k,i
— it 2] <1

1 <j < Ng 1 < i < p. Otherwise when

2
A+ (14 2)—— | =1,
<I}}?kx{ +a+ )1+.Q}

for 1 <j <Ny, 1<i<p.Thus, at the limit,

—k—
_ n
Jlim Ex(Sa)ll2 < hm{ = ||E1(sa)||z+—] - 2en}

2¢e
= nﬁ £ H(en).
1-7
Clearly the above function #(e,;) is a « function in ¢, and
lim,, .o H(e,) = 0. This completes the proof. O

Next we show that the proposed DDRO-ILC algorithm achieves
the practically monotonic convergence.

Corollary 1 (Practically Monotonic Convergence). Let the condi-
tions in Theorem 1 be satisfied, and let the iteration gain be cho-
sen by Eq. (27), then the DDRO-ILC algorithm achieves practically
monotonic convergence.

Proof. See Appendix B. O

Three observations are readily in place:
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e Both the final tracking error and the convergence rate de-
pend on the choice of the iterative gain ¢ ;: As the iterative

gain <p,’<‘i decreases towards zero, the inverse of the con-
vergence rate 77 approaches to 1 (see Eq. (30)), resulting
in a slow convergence and a large residual tracking error
(see Eq. (29)). This agrees with our expectation as smaller
iterative gain invites more disturbances accumulated in the
output during the iterations, and thereby, larger tracking
error.

e Theorem 1 also reveals that the tracking performance can
be improved by increasing the system gain or choosing a
larger initialization input Ujy i(Sq), i.e., a larger ﬁg or o
will lead to a larger lower bound of the minimal system
gain, then a smaller constant §2 in Eq. (28)), and thereby,
a faster convergence and a smaller residual tracking error.
This observation motivates us to seek an optimal choice of
the iteration gain matrix ¢;—Objective Ps.

e As a frequency-domain approach, the DDRO-ILC technique
can account for the non-minimum phase dynamics effect,
as the entire output trajectory is utilized in generating the
iterative input (Devasia & Paden, 1998).

3.4. Iterative gain optimization

Corollary 2. Let the conditions in Theorem 1 be satisfied, and let
the iteration gain matrix be chosen as ¢; = I, then

(1) the upper bound of the residual error is minimized, i.e.,

2en - 2en

lim [[Ex(Sq)ll2 < (n* =),
k— 00

(2) the convergence rate is maximized for the upper bound of the
tracking error, i.e, n* <7 when ¢, # ¢;.

The Corollary can be shown by considering two cases: 1).
0<ga{“.§1forl§j§Nq,lfifp,andﬁz

max j k {1 — (p,’” + .Q(p,’“ ,and 2). wf“ >1,for1 <j<Ng 1<
i < p,and 7 = max;;y ga{” -1+ _ng;{“} and showing that in

both cases the minimal value is attained by setting ¢ ; = 1 for
al1<j<Ng, 1<i<pandke N*. The proof is omitted due
to space limit.

In practice, a non-unit iterative gain can be chosen to account
for input saturation and noise-disturbance, e.g., the gain shall be
reduced when the input amplitude is close to the saturation limit
and increased when the input amplitude is close to the noise
level.

3.5. Fast numerical computation

When implementing the proposed DDRO-ILC algorithm to
high-dimension systems to track trajectories of rich frequency
components, finding the pseudoinverse of the output difference
matrix AYy s(Sq) can be computationally intensive, as the com-
putation complexity of AYLS(SH) via SVD (by using, e.g., the
optimized DGESVD (Anderson et al,, 1999)) is at O(p(p + 1)°N).
Next, we propose an algorithm to accelerate the computation.

By Eq. (8), (7), AY} s(Sq) can be rewritten as

AV s(Sa) = [YT(Sa) YI(Sa)  AY(Sd)]

Tl,](Sa) Tl,p(Sa) Ayl,k(Sa) . (36)
= : , with

Tp,l(Sa) Tp,p(Sa) Ayp,k(ga)
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T'.(Sa) = diag ([yniGeon) - yiGon)])y o, -
Y k(Se) — Ximon(Sa), when k =1,

Aym,k(ga) _ m.k( a) m,p( a)
Ymi(Sa) = Ymi-1(Sqe), when k> 2,

form=1,...,p.
where Y i(S,) is diagonal as defined in Eq. (3). Then, by matrix
permutation, AYy (S,) in Eq. (36) can be transformed into a
block matrix Iy s(S,) € CPNa*(P+DNg j e
LI{,S(Sa) = PaAYk,s(Sa)Plh
= My(@1) ® My(@2) - - - & Mi(wn,),
where P, € RPNoxPNg apd P, e RP+DNex(P+1DNg gre the cor-

responding permutation matrices (Horn & Johnson, 2012), and
matrix My(w;) € CP*?+1 is given by

(37)

yGo) - Y Ge) |
Miod=| t o |
int (3 int
Vpalor) - yp(wr) R IR
forl=1,..., Ny, with
T (38)
() = [v1k(@r) vpk(@r)] , and
yralio) = ysGeor),  whenk =1,
vy (o) = . .
V(o) = Yre—1(jen), when k > 2,
forr=1,...,p,

where y; (joy) is defined in Eq. (3). Therefore, the SVD of matrix
AYy s(Sq) can be replaced by SVD of matrix My(w;)s of a much
smaller size. By Eq. (37),

AYk,s(Sa) = Pgmk,s(sa)l)g

= P(My(w1) ® Mi(an)--- @ Mk(qu))Pg

and the SVD of M (wy) is given by

M(@1) = Uy (@)Sil@)Vi(w), 1 <1< N

Thus, the SVD of AY 4(S,) can be obtained as

AY5(Sa) = Py 4(Sa)Si(Sa) B (Sa)Py

= P! 31,(S0)Sk(Sa)P P B (S,)P) (39)
= Uk(Sa) Zi(Sa)V} (Sa), with

U(Sq) = Up (@1) @ Uz k(@2) - - - @ Uny k(wny )

Si(Sa) = S1.r(w1) ® S k(w2) - - - B Sy k(wny ),

B(Sq) = Vik(@1) @ Var(wz) - - - & Vi, k(on,), (40)
UK(Sa) = Py (Sa) . Zi(Sa) = Si(Sa)Pe,

Vi(Sqa) = PpBi(Sa)Pe,

where P, € RPHDNex(P+1Ng i the corresponding permutation
matrix.

Compared to the original direct computation of the SVD of
AY} s(Sq), the computation complexity of the proposed algo-
rithm becomes O(p(p + 1)2Nq)—two orders of magnitude lower
than that of the original one with respect to Ng, the total number
of effective frequencies.

The proposed DDRO-ILC method is summarized in Algorithm
1.

4. Experimental example

We illustrate and evaluate the DDRO-ILC technique by apply-
ing it to a multi-axis (3-axis) nanopositioning output tracking
experiment. Two systems each of weak and strong cross-axis
coupling, respectively, were considered.
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Algorithm 1 The DDRO-ILC Algorithm

1: Quantify system noise level, ¢,, and the lower bound of
system gain, ﬁg.

2: Determine the threshold ey, the effective frequency set S,
and the trackable desired output Y4(S,).

3: Generate the initialization input, uim”fi(t) fori = 1,---,p
(Eq. (15)) such that ¥(w;) in Lemma 1 is nonsingular.
4: Apply u;Zfi(t) (i=1,---,p) to the system, respectively, and

acquire U™ (S,) and Y!™(S,).

5: Generate U™(S,) and Y™(S,) from UM(S,) and Y™(S,) by
Eq. (7), and form U(S,) by Eq. (6).

6: Generate the permutation matrices P,, P, and P, in
Egs. (37), (39), (40), respectively.

7: for iteration k > 2 do

8: Apply Uy_1(Sq) to the system and acquire Yy_1(S,),
AUy_1,5(Sa), AYy_1,5(Sq) and Ey_1(Sq).

9:  Calculate the pseudoinverse of AYL],S(SH) by fSVD and
generate ®;_1(S,) by choosing ¢,_;(Ss) according to
Corollary 1.

10:  Determine U(S,) using Eq. (6) from Uy_1(Sq), AUk—1.5(Sq),
AYE_ (Sa). Pr-1(Sa) and Ey_1(Sq)

11:  Set k < k+ 1, repeat steps 8 to 10 until the error is within
the bound of H(&y,).

12: end for

4.1. Experimental setup

The x-y-z axes nanopositioning system of an AFM system
(Dimension ICON, Bruker-Nano Inc.), composed by two piezo-
electric actuators, was employed as the MIMO system to control.
The system served well as a testbed for its wide application in
nanopositioning control ranging from AFM imaging (Wu, Fang,
Fan, Wang, & Liu, 2021), nanomanipulation (Li, Xi, Wang, & Liu,
2019), to nanomanufacturing (Loganathan & Bristow, 2014). All
the control algorithms and inputs were generated in the MATLAB
XPC-target environment (Mathworks Inc.) and applied to the
AFM system via a DAQ system (NI-6259, National Instruments
Inc.). The PID controller of the AFM system was bypassed when
external control inputs were applied. The sampling rate was set
at 40 kHz.

To evaluate the efficacy of the proposed technique in account-
ing of cross-axis coupling, a static-gain matrix C, (see Fig. 1)
was introduced to adjust the cross-axis coupling, i.e., the joint
systems, Gp(s) = C,Gp(s), was treated as the system to control,
and in the implementation the control inputs were multiplied
with the gain matrix C, before they were sent out to drive
the piezoelectric actuators. Based on the measured cross-axis
dynamics coupling of the piezo actuators G,(s), the gain matrix
C,, was set as

1 0 0 1 08 06
C,=10 1 0],andC, =07 1 038],
0 0 1 08 04 1

for the weak and the strong coupling system, respectively. The
measured frequency responses of these two cases are shown in
Figs. 2. When the coupling was weak, the diagonal input-output
(I/O) response dominated across the entire frequency range ex-
cept for a small region around the resonant peaks (see Fig. 2
[a1-a3]), whereas the impact of the off-diagonal channel dynam-
ics on each of three outputs was much more pronounced when
the coupling was strong (see Fig. 2 [b1-b3]), making the tracking
more challenging.

A tetrahedron pattern (see Fig. 3 [a]) was chosen as the desired
trajectory at three different pattern-tracking rates, i.e., the rate of
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I output

Control | AFM
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Fig. 1. Scheme of the 3D-axis nanopositoning system of an AFM with cross-axis
coupling dynamics.

traversing the four triangular faces in order at 2, 20 and 40 Hz. For
comparison, the pattern was also tracked by using the A-MAIIC
and the DC-Gain methods (where the control input was generated
by scaling the desired trajectory in each axis (see Fig. 3 [b])
with the inverse of the DC-Gain of the diagonal I/O response),
respectively. Specifically, the A-MAIIC algorithm was based on
the original multi-axis inversion-based iterative control (MAIIC)
algorithm (Yan et al,, 2012) by using the previous input-output
data to adaptively update the diagonal inverse of the system in
the iteration law,

. . ~—1 . .
Uy 1(jo) = w(jo) + £6, (jole(jw), k> 1,
where f;,:](jw) € CP*P and ¢ € RP*P were given as
P . y1.k(o) Yp,k(iw)
G, (jw) = diag (I:u:_i(jw) “I;-W‘”)])pxp’ and
C = dlag ([;1 é-p])pxp ’

with ¢ (i = 1, ..., p) are the iteration coefficients. The DC-Gain
method was employed to quantitatively illustrate the effects of
both the vibrational dynamics and the cross-axis coupling on
the output tracking. We also compare the computation time in
the implementation of the DDRO-ILC via the SVD and the fSVD
algorithm, respectively (see Fig. 3).

4.2. Experimental implementation

The DDRO-ILC method was implemented by following Algo-
rithm 1. The optimal iterative gain matrix ¢; = I was chosen
throughout the iterations and the threshold value for the distur-
bance level ey was chosen at 1 x 1074, 2 x 107* and 5 x 10~
for the 2 Hz, 20 Hz and 40 Hz patterns, respectively, and the
number of corresponding effective frequencies to be tracked was
chosen at 430, 400 and 390, respectively. As the rate of the tra-
jectory increased, the effect of noise/disturbances became more
pronounced, thus a larger threshold of €y was chosen, resulting in
a smaller number of effective frequencies. The initialization input,
u”"( ), was designed by Eq. (15) with ayp; = 5.5, i=1,..., p,
where am,i was designed according to the input amplitude con-
straint (—8.5 to 8.5 in our setup), and « = 5.5 was chosen
by Eq. (17). The A-MAIIC was implemented by choosing ¢ =
1. During the experiment, the iterations were terminated when
the relative two-norm error E»(%) and the relative maximum
tracking error E;;x(%) could not be further reduced, where E(%)
and E;x(%) were defined as

By = WO =Y0lz 600
ya(-)ll2

Eo (%) = 1yaC) = y(Hllee 1609
Iya(- oo

4.3. Results and discussion

The tracking results obtained via the DDRO-ILC technique
are compared for the weak and the strong coupling system in
Figs. 4 [al-c1] and 5 [al-c1], respectively. The tracking errors
of the strong coupling system were shown in Fig. 6 [al-c1]. For
comparison, the tracking results obtained by the A-MAIIC and
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Fig. 2. Comparison of the frequency response of the x [al, b1], y [a2, b2] and
z [a3, b3] axis piezo actuator and the related coupling dynamics in the weakly-
and the strongly- coupled system, respectively.
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Fig. 3. The desired trajectory of the 3-D tetrahedron pattern [a], and the
corresponding desired trajectory in x, y, and z axes [b-d], respectively.

the DC-Gain methods are shown in Figs. 4 [a2-c2] and 5 [a2-
c2], respectively. The corresponding tracking errors of the strong
coupling system are shown in Figs. 6 [a2-c2]. The convergence
processes are shown in Fig. 7. The average computation time in
each iteration of the DDRO-ILC algorithm by using the SVD and
fSVD algorithm, respectively, are shown in Fig. 8 for the tracking
in the strong coupling case.
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Fig. 4. Comparison of the tracking of the tetrahedron pattern on the weakly-coupled system obtained by using the DDRO-ILC technique with those by using the
A-MAIIC and DC-Gain techniques at 2 Hz [a1-a2], 20 Hz [b1-b2] and 40 Hz [c1-c2], respectively.
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Fig. 5. Comparison of the tracking of the tetrahedron pattern on the strongly-coupled system obtained by using the DDRO-ILC technique with those obtained by
using the A-MAIIC technique at 2 Hz [a1-a2], 20 Hz [b1-b2] and 40 Hz [c1-c2], respectively..
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Fig. 6. Comparison of the tracking error on the strongly-coupled system obtained by using the DDRO-ILC technique with those obtained by using the A-MAIIC

technique at 2 Hz [a1-a2], 20 Hz [b1-b2] and 40 Hz [c1-c2], respectively..

4.3.1. Weakly-coupled system case

The experimental results demonstrated that the proposed
DDRO-ILC method improved the tracking performance over the
previous A-MAIIC method. As shown in Figs. 4 [a2], at the low rate
of 2 Hz, the effect of the dynamics and the coupling effects were
relatively small. Both the DDRO-ILC and the A-MAIIC technique
can achieve precision tracking (see Figs. 4 [al, a2]), and the
tracking performance of the proposed DDRO-ILC method was
better than that of the A-MAIIC method. The 2-norm tracking
error of the proposed DDRO-ILC method was about 10 times
smaller than those of the A-MAIIC method, reduced from 4.83%,
4.49% and 4.50% to 0.37%, 0.59% and 0.38% for the x, y and z
axis tracking, respectively. As the pattern rate was increased to
20 Hz (see Figs. 4 [b1, b2]), the dynamics effect became more
pronounced (see the DC-Gain tracking results in Figs. 4 [b2]),
resulting in large tracking errors. However, by using the proposed
DDRO-ILC technique, the tracking error of the A-MAIIC technique
was substantially reduced by over 3 and 4 times in E>(%) and
Emax(%), respectively, clearly showing an improvement in robust-
ness. This enhancement stemmed from the account of the system
dynamics and the cross-axis coupling through the data-driven
system inverse employed in the proposed DDRO-ILC technique,
i.e.,, the cross-coupling effect was directly compensated for by
inverting the whole system dynamics via pseudoinverse (see
Eq. (10)), whereas it was treated as disturbances in the A-MAIIC
technique. Such an improvement was further demonstrated in
Figs. 4 [c1-c2] for tracking the pattern at higher rate of 40 Hz,
where both the cross-coupling and the dynamics effect became
more pronounced (see Figs. 4 [c2]). With both the E;(%) and the
Emax(%) maintained below 4%, precision tracking was still attained
by using the DDRO-ILC technique. Thus, the proposed DDRO-ILC
technique was effective for output tracking of MIMO systems.

10

4.3.2. Strongly-coupled system case

The efficacy of the proposed approach was more evidently
demonstrated in the strongly-coupled case, where the cross-
coupling effect dominated the outputs of the x and the y axes (see
Fig. 2 [b1-b3]). Outstanding performance and precision tracking
were still achieved by using the proposed DDRO-ILC technique
(see Figs. 5 [al-c1] and 6 [al-c1]). For example, at the low
rate of 2 Hz pattern rate, both the relative E;(%) and the rel-
ative Ena.x(%) were less than 1% and 2%, respectively. Even in
the tracking at 40 Hz pattern rate where the effects of both
the dynamics and cross-axis coupling became more pronounced,
the DDRO-ILC technique still preserved precision tracking, with
the E;(%) and the Enaix(%) less than 3% and 4%, respectively.
In contrast, as the Assumption of the diagonal-dynamics being
dominant vanished, the tracking results of the A-MAIIC approach
deteriorated (see Figs. 5 [a2-c2] and 6 [a2-c2]). This precision
tracking for a MIMO system of strong cross coupling was achieved
without modeling the system dynamics a priori—such a mod-
eling process itself can be time consuming and complicated for
strongly-coupled systems. Moreover, the variations of the system
dynamics were automatically accounted for via the input-output
data during the iterations. Also, as shown in Fig. 7, the DDRO-
ILC algorithm converged rapidly and reached practical conver-
gence in three iterations for both the weakly-coupled and the
strong-coupled systems in high speed tracking. Thus, the pro-
posed DDRO-ILC technique was efficient and effective for output
tracking of strong-coupling MIMO systems.

Finally, the experimental results also showed that the com-
putation efficiency was improved by using the proposed fSVD
algorithm. As shown in Fig. 8, the computation time was reduced
by over 19.7%, 19.2% and 18.7% for the tracking of pattern rate
at 2 Hz, 20 Hz and 40 Hz, respectively. The decrease of the
computation reduction as the pattern rate increased was due to
the reduction of the number of effective frequencies (with the
reduction of the SNR at higher frequency), as the computation
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Fig. 7. The relative 2-norm overall error in the 40 Hz tracking in 20 iterations
for the weakly-coupled [A] and the strongly-coupled [B] system, respectively,
obtained when using the DDRO-ILC technique.
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Fig. 8. Comparison of the average computation time during each iteration when
using the the SVD or the fSVD algorithm in the implementation of the DDRO-LIC
technique to track the pattern at the rate of 2 Hz, 20 Hz and 40 Hz, respectively,
on the strongly-coupled system.

complexity is bounded as O(p(p + 1)*N;) and O(p(p + 1)*N,) for
SVD and fSVD algorithm, respectively (see Section 3.5). Thus, the
computation efficiency becomes more beneficial when tracking
trajectories of richer spectrum.

5. Conclusion

A data-driven robust optimal iterative learning control (DDRO-
ILC) approach for output tracking of MIMO linear systems was
proposed. The input-output data measured in the previous it-
eration were utilized to approximate the system inverse and
update the control input. It was shown that the convergence of
the output tracking was guaranteed in the presence of cross-
axis coupling dynamics and random output disturbance, and the
iteration control gain can be optimized to minimize the residual
tracking error and maximize the convergence rate. An algorithm
to accelerate the input calculation via singular value decom-
position was also proposed. Experimental implementation on
output tracking of a 3-axis nanopositioning system demonstrated
that the proposed DDRO-ILC technique had enhanced both the
robustness and the tracking performance over the previous A-
MAIIC method. For future work, the technique can be extended to
account for more complicated dynamics and in more complicated
tracking scenarios, including static nonlinearity in Hammerstein
systems, MIMO nonlinear dynamic systems, and tracking under
drift and time-delay effects.

Appendix A. Proof of Lemma 1

Proof. We proceed by constructing a matrix P (S,) € CPNaxPNg
as

]P’i"t(Sa)

U(w1)® ¥(wr) - @ Plon,),

such that P™(S,) is similar to U™ (S,). This can be verified as by

Eq. (7),(13),(14), UM™(S,) can be represented by I; i(S,) as
F],l(Sa) Fl,p(Sa)

U™(S,) = : : :

I'p,l(Sa) Fp,p(Sa) PNgxpNg
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where I'j i(S,) is as given in Eq. (14). Then, it can be verified that
by matrix permutation (Davis, 2006) that there exists a matrix
Bp.n, € RPNa*PNa, such that

P™(Sa) = By,n, U™ (Sa)B, p, (A1)
with
& (Ng)y, (Ng)
DI CRE-T AL Ch-T O (A2)
i=1 j=1

where e,(.p ) denotes the ith canonical basis vector of RP (the ith
column of the size m identity matrix), and ® is the Kronecker
product (Horn & Johnson, 2012). As the permutation matrix is
orthogonal (Horn & Johnson, 2012), by Eq. (A.1), P™(S,) is similar
to UME(S,).

Thus, as PM(S,) is block diagonal and similar to U™(S,),
nonsingularity of ¥(w;) implies that both P (S,) and U™(S,) are
nonsingular.

Reversely, if U™(S,) is nonsingular, P™(S,) being similar to
UM(S,) implies that P™(S,) is also nonsingular, so is each block
diagonal submatrix of P"(S,), W(w;). This completes the
proof. O

Appendix B. Proof of Corollary 1

Proof. First by Theorem 1, A = {k| ||[Ex(Sa)ll2 < H(en)} # @, and,
by Eq. (35), the propagation of ||E,(S,)||> can be bounded by

IEx(Sa)ll2 — IEk-1(Sa)ll2 < (7 — DIEk-1(Sa)ll2 + 2¢n. (B.1)
Also, by Definition 2,
2e
IEx(Sa)ll2 > H(en) = 1 _",, for Vk < k*(H(en)), (B.2)

where k* is as in Definition 2. Thus, the proof is completed by
combining Eq. (B.2) with Eq. (B.1)

2en

-

IEk(Sa)ll2 — IIEx=1(Sa)ll2 < (77 — 1)1 +2=0,

for Vk < k*(H(ey)). O
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