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Abstract

Single-photon 3D cameras can record the time-of-
arrival of billions of photons per second with picosecond
accuracy. One common approach to summarize the pho-
ton data stream is to build a per-pixel timestamp histogram,
resulting in a 3D histogram tensor that encodes distances
along the time axis. As the spatio-temporal resolution of the
histogram tensor increases, the in-pixel memory require-
ments and output data rates can quickly become impracti-
cal. To overcome this limitation, we propose a family of lin-
ear compressive representations of histogram tensors that
can be computed efficiently, in an online fashion, as a ma-
trix operation. We design practical lightweight compres-
sive representations that are amenable to an in-pixel imple-
mentation and consider the spatio-temporal information of
each timestamp. Furthermore, we implement our proposed
framework as the first layer of a neural network, which en-
ables the joint end-to-end optimization of the compressive
representations and a downstream SPAD data processing
model. We find that a well-designed compressive repre-
sentation can reduce in-sensor memory and data rates up
to 2 orders of magnitude without significantly reducing 3D
imaging quality. Finally, we analyze the power consump-
tion implications through an on-chip implementation.

1. Introduction
3D cameras based on single-photon avalanche diode

technology (SPAD) are becoming increasingly popular for a
wide range of applications that require high-resolution and
low-power depth sensing, ranging from autonomous vehi-
cles [1] to consumer smartphones [2]. Kilo-to-megapixel
resolution SPAD pixel arrays [30, 31] have the capability of
capturing the time-of-arrival of billions of individual pho-
tons per frame with extremely high (picosecond) time reso-
lution [35]. Unfortunately, this extreme sensitivity and high
speed comes at a cost — the raw timestamp data causes a
severe bottleneck between the image sensor and the image
signal processor (ISP) that processes this data (Fig. 1(a)).
This data bottleneck severely limits the wider use of high-
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Figure 1. Resolving SPAD data bottleneck with learned com-
pression. (a) Conventional SPAD-based 3D cameras stream raw
photon timestamps or summary histograms off the image sensor
which causes a data bottleneck between the image sensor and
the on-camera image and signal processing (ISP) module. (b)
Our method applies a lightweight, on-sensor compressive coding
scheme to the photon timestamp data which is later decoded at the
ISP, resolving the data bandwidth limitation.

resolution SPAD arrays in 3D sensing applications.
One common approach to avoid transferring individual

photon timestamps is to build a histogram in each pixel.
This results in a 3D histogram tensor that is transferred off-
sensor for processing. Although this may be practical at low
spatio-temporal resolutions (e.g., 64x32 pixels with 16 time
bins [18]), it requires higher in-sensor memory. Moreover,
the data rates of this histogram tensor representation also
scale rapidly with the spatio-temporal resolution and max-
imum depth range. For example, a megapixel SPAD-based
3D camera operating at 30 fps that outputs a histogram ten-
sor with a thousand 8-bit bins per pixel would require an
unmanageable data transfer rate of 240 Gbps.

To overcome the above limitations, we seek to design
compressive representations of 3D histogram tensors. In
order to reduce the data rates output by the SPAD cam-
era, the compact representation needs to be built in-pixel
or inside the focal plane array (FPA). This is illustrated in
Fig. 1(b). Due to the limited in-pixel memory and compute,
the compressive representation needs to be built in a stream-
ing manner, with minimal computations per photon. Photon



histogram tensors are very different from conventional RGB
images/video data. Therefore, traditional compression al-
gorithms such as MPEG are not directly applicable.

We propose a family of compressive representations for
3D histogram tensors that can be computed in an online
fashion with limited memory and compute. They are based
on the linear spatio-temporal projection of each photon
timestamp, which can be expressed as a simple matrix op-
eration. Instead of constructing per-pixel timestamp his-
tograms, a compressive encoding maps its spatio-temporal
information into a compressive histogram. To exploit lo-
cal spatio-temporal correlations, a single compressive his-
togram is built for a local 3D histogram block as illus-
trated in Fig. 2. Instead of building and storing the full
3D histogram tensor in-sensor, multiple compressive his-
tograms are built and transferred off-sensor for processing,
effectively reducing the required in-sensor memory and data
rates. Recent works proposed a similar compression frame-
work based on compressive histograms [16] or sketches
[40]. In Sec. 4, we show that these prior works can be
viewed as special cases of our proposed framework.

In this paper, we explore the design space of spatio-
temporal compressive encodings and analyze the trade-offs
between different design choices. Furthermore, we present
a method to integrate our compression framework with
data-driven SPAD data processing methods using convolu-
tional neural networks (CNNs), which enables end-to-end
optimization of the compressive encoding and a SPAD data
processing CNN. We demonstrate the feasibility of com-
pressive histograms through an on-chip implementation.

For our experimental evaluation, we integrate the
compressive histograms framework with a state-of-the-art
learning-based denoising model for SPAD-based 3D imag-
ing [36]. Our results show that the jointly optimized com-
pressive encoding and CNN can consistently reduce data
rates up to 2 orders of magnitude in a wide range of sig-
nal and noise levels. Moreover, for a given compression
level, it can increase 3D imaging accuracy over previous
hand-designed compressive histograms that only exploit
temporal information [16, 40], especially in low signal-to-
background ratio (SBR) scenarios and at higher compres-
sion rates. Furthermore, we show that learned compres-
sive histograms can perform comparably and sometimes
even outperform a theoretical SPAD sensor design where
the full 3D histogram tensor is stored in-sensor and only
per-pixel depths are transferred off-sensor. Finally, we an-
alyze the power consumption of a compressive histogram
implemented on the UltraPhase SPAD processing chip [4].

2. Related Work

Compressive histograms, also called sketches, are an
emerging framework for online in-sensor compression of
SPAD timestamp data [16, 45, 40, 37]. A coarse histogram
is one common compressive histogram approach [16] to re-

duce data rates and in-pixel memory [18, 10, 21]. Despite
their practical hardware implementation, coarse histograms
achieve sub-optimal depth accuracy compared to compres-
sive histograms based on Fourier [40, 41, 16] and Gray [16]
codes. One limitation of these approaches is that the com-
pressive representation only exploits the temporal informa-
tion of the incident timestamp, and disregards the spatial
redundancy. In this work, we generalize the compressive
histogram framework to utilize the spatio-temporal infor-
mation of each timestamp. Moreover, instead of relying
on hand-designed coded projections, in this paper we learn
them as the first layer of a CNN.

Shared In-Pixel Histograms: One common design is to
have multiple neighboring SPAD pixels have a single shared
memory where all timestamps are aggregated into a coarse
histogram (e.g., 4 × 4 [21, 18], 3 × 3 [23]). This approach
throws away the local spatial information (i.e., pixel loca-
tion) of the detected photon timestamps. A compressive
histogram is well-suited for these shared memory designs
because it can be shared among multiple SPAD pixels and
preserves spatial information through the coded projection.

Neural Sensors and Pixel Processor Arrays: Pixel pro-
cessor arrays (PPAs) are an emerging sensing technology
that embeds processing electronics inside each pixel [11].
This new sensing paradigm begins processing the image
at the focal plane array, which allows it to reduce the sen-
sor data rates by transmitting only the relevant information,
and consequently, it increases the sensor’s throughput [11]
which can enable computer vision at 3,000 fps [6, 7]. PPAs
have also become building blocks of novel computational
imaging systems optimized end-to-end for HDR imaging
[28, 43], motion deblurring [33], video compressive sensing
[28], and light field imaging [47]. A compressive histogram
relies on a similar in-pixel processing paradigm. Similar to
previous works, we jointly optimize the sensor parameters
(i.e., the compressive histogram) and the processing algo-
rithm (i.e., the CNN), but to our knowledge, this work is the
first to use this approach for SPAD data compression.

3. Single-Photon 3D Histogram Tensors
SPAD-based 3D cameras consist of a SPAD sensor and

a pulsed laser that illuminates the scene. The photon flux
signal arriving at pixel, p, can be written as:

Φp(t) = aph(t− 2dp/c) + Φbkg
p = Φsig

p (t) + Φbkg
p , (1)

where ap is the amplitude of the returning signal accounting
for laser power, reflectivity, and light fall-off; h(t) is the
system’s impulse response function (IRF) which accounts
for pulse waveform and sensor IRF; dp is the distance to
the point imaged by p; c is the speed of light; and Φbkg

p

is the constant photon flux due to background illumination
(e.g., sunlight). This model assumes direct-only reflections
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Figure 2. Compressive Histogram Formation. Histogram tensors, H , are a 3D spatio-temporal grid whose elements store the number
of photons that arrived within a short time interval. (a) In SPAD-based 3D imaging, the temporal axis of H encodes distances. (b) A
histogram block, Hb, can be expressed as the sum of J one-hot encoding tensors, where each tensor represents a photon timestamp. (c) A
compact representation of Hb can be built by applying K linear projections (i.e., dot product) with pre-designed coding tensors. (d) The
compressive histogram, will be a vector with K elements whose compression capacity is given by Mt·Mr·Mc

K
.

which is a valid approximation, in particular, for scanning-
based ToF 3D imaging systems [3].

TCSPC-based SPAD cameras measure Φp(t) by build-
ing a per-pixel timing histogram, where the ith histogram
bin records the number of photons that arrived in a time in-
terval of length ∆, which follows a Poisson process P:

Φi,p = P(Φsig
i,p +∆Φbkg

p ). (2)

The pulse repetition period, τ , determines the maximum
timestamp value and the length of the histogram vector
Φp = (Φi,p)

Nt−1
i=0 , where Nt = τ/∆. Therefore, one

assumption built into Φp, is that no signal photons had a
timestamp larger than τ , which means that the maximum
distance that Φp can encode is dmax = cτ

2 . Furthermore,
we assume that pile-up distortions are minimized through
various SPAD data acquisition techniques [13, 18, 19, 14].

This process generates a Nt × Nr × Nc 3D histogram
tensor, H = (Φp)

(Nr−1,Nc−1)
p=(0,0) . In challenging 3D imaging

scenarios with high background illumination, building H
off-sensor requires transferring thousands of photon times-
tamps per-pixel leading to data rates of hundreds of GB/s in
a megapixel sensor. Moreover, building and storing a high-
resolution H in-sensor would require significant memory
(1GB for a megapixel SPAD camera with 1000 time bins
per-pixel), and transferring it would continue to lead to im-
practical data rates of tens of GB/s on a SPAD-based 3D
camera operating at 30fps. Overall, a practical SPAD-based
3D camera would build and store a compact representation
of H in-sensor and then transfer it to a processing chip (e.g.,
FPGA, ISP, embedded computer) where it is processed.

4. Spatio-temporal Compressive Histograms
A natural approach to compress H that exploits its lo-

cal correlations due to smooth depths and photon flux, is to
build a compressive representation of a local 3D histogram

block as illustrated in Fig. 2. To avoid storing or transfer-
ring the photon timestamp stream, the compressive repre-
sentation is built as each timestamp arrives. In this section,
we present an online compression framework for histogram
blocks based on the coded projection of photon timestamps.

Let Hb be the bth histogram block of H with dimen-
sions Mt × Mr × Mc, where Mt ≤ Nt, Mr ≤ Nc, and
Mc ≤ Nc. First, we observe that Hb can be expressed as
the sum of J one-hot encoding tensors, each representing
one photon detection within Hb (Fig. 2b). Specifically, let
tb,j be a Mt×Mr×Mc one-hot encoding tensor represent-
ing the jth photon timestamp detected in histogram block
Hb, whose elements are all 0 except for tb,j,l,p′ = 1, where
l = ⌊Tj mod (∆Mt)

∆ ⌋, Tj is the timestamp value, and p′ is
the pixel where the timestamps was detected. Using this
representation we can write Hb as follows:

Hb =
J−1∑
j=0

tb,j . (3)

Hb can be compressed in an online fashion through the lin-
ear projection of each timestamp tensor; expressed as the in-
ner product with K pre-designed coding tensors, Ck, with
dimensions Mt ×Mr ×Mc, as in Fig. 2. Mathematically,

Ŷb,k = Ck ·Hb =
J−1∑
j=0

Ck · tb,j =
J−1∑
j=0

Ck,l,p′ , (4)

where · denotes element-wise multiplication, and l and p′

are the indices where tb,j,l,p′ = 1. We define Ŷb =

(Ŷb,k)
K−1
k=0 as the compressive histogram of Hb. Compres-

sive histograms, as defined in [16, 40], are a special case of
Eq. 4 where C compresses individual histograms and disre-
gards spatial information (i.e., Mt=Nt, Mr=1, Mc=1) Note
that each timestamp in Eq. 4 is processed efficiently on-
the-fly after each photon detection through a simple lookup



operation. Moreover, individual histogram blocks or times-
tamps are never explicitly stored or transferred off-sensor.

4.1. Practical Coding Tensor Design
Compressive histograms, when implemented as in Eq. 4,

introduce an in-sensor memory overhead because, in addi-
tion to storing Ŷb, C needs to be stored in-sensor for ef-
ficient lookup operations. Therefore, a practical compres-
sive single-photon camera implementation would rely on
parameter-efficient coding tensors that minimize this over-
head. Here, we present two strategies to design practical
coding tensors that are evaluated in Sec. 6.

The memory overhead makes certain coding tensor de-
signs impractical. Consider a set of coding tensors that op-
erate on the full histogram tensor, i.e., Hb = H .In this
case, the number of elements in C will exceed the number
of elements of H . Consequently, although the data rates are
reduced in this scenario since K < (Nt · Nr · Nc), the in-
sensor memory required exceeds the size of the histogram
tensor. To circumvent this issue, we propose two comple-
mentary strategies to design lightweight coding tensors: lo-
cal block-based and separable.
Local Block-based Coding Tensors: As we reduce the
size of the histogram block, Hb, represented by a com-
pressive histogram, the size of the coding tensors decreases.
Therefore, compressing local histogram blocks is not only
beneficial due to local spatio-temporal redundancies, but
also because these local coding tensors have fewer parame-
ters. One example of local block-based coding tensors are
the ones used in temporal compressive histograms [16, 40]
where Hb is a per-pixel histogram.
Separable Coding Tensors: One approach to designing
lightweight coding tensors is to make them separable along
the temporal and spatial dimensions. This approach is
used in parameter-efficient CNN models that use separa-
ble depth-wise convolutional layers [20] to reduce model
size. Formally, we can write a separable coding tensor as
the outer product of two smaller tensors:

Ck = Ctemporal
k ⊗Cspatial

k , (5)

where Ctemporal
k is a Mt × 1 × 1 tensor, and Cspatial

k is a
1 ×Mr ×Mc tensor. This design is also motivated by the
differences between the temporal and spatial correlations
encountered in histogram blocks. In addition to local corre-
lations present in both dimensions, the temporal dimension
also exhibits long-range correlations due to the background
illumination offset (Φbkg

p ) in every histogram bin. There-
fore, Eq. 5 may be able to represent this prior by encoding
the temporal and spatial information independently.

One assumption made in our memory overhead analysis
is that a compressive SPAD-based 3D camera only needs to
store a single C that is shared across the full sensor, which
can be implemented in two general ways. One approach
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Figure 3. Convolutional Compressive Histogram Layer. (a)
Building a compressive histogram for each block in the histogram
tensor, can be viewed as applying K strided convolutional filters
whose weights are the coding tensors. The compressed histogram
tensor will be K Nt

Mt
× Nr

Mr
× Nc

Mc
tensors. (b) To lift the compressed

histogram tensor back to its original domain an unfiltered backpro-
jection operation can be applied on each compressive histogram
which decodes a single block. The decoded histogram tensor can
then be assembled by concatenating all the decoded blocks.

could distribute C across the local memory of all pixels and
then allow communication across pixels as in PPAs [6]. A
second approach could store C in a global memory that can
be accessed by all pixels which could be enabled in 3D-
stacked SPAD cameras [49]. Finally, some of the coding
tensor designs explored in this paper have as few as 640
parameters. In this case, even if C is stored for every 4× 4
group of pixels, the in-sensor memory is still reduced by
20× compared to storing a 1024 bin per-pixel histogram.

4.2. Convolutional Compressive Histogram Layer

A compressive histogram is built for each histogram
block. Therefore, multiple compressive histograms are used
to encode the complete histogram tensor. In this way, the
coding tensors can be viewed as a set of 3D convolutional
filters, which can be implemented as the first layer of a 3D
CNN. For simplicity, we assume that histogram blocks do
not overlap, and therefore, the stride of the convolutional
filters will equal their dimensions. Fig. 3(a) illustrates this
convolutional compressive histogram encoding.

Unfortunately, the compressed histogram tensor repre-
sentation is not directly compatible with 3D CNNs that have
been designed for SPAD-based 3D imaging (e.g., [36, 24]).
To this end, each compressive histogram is lifted back to the
original 3D domain through an unfiltered backprojection:

Ĥb =
K−1∑
k=0

CkŶb,k . (6)



Here Ĥb is the decoded compressive histogram for block
b, which is the weighted linear combination of the cod-
ing tensors. The decoded histogram blocks are then con-
catenated and given as input to the processing 3D CNN.
Fig. 3(b) illustrates this decoding step. The decoding step
in Eq. 6 will occur off-sensor, after the compressive his-
tograms have been moved to the camera compute module
which has access to larger memory and computational re-
sources than sensor module. One benefit of using the unfil-
tered backprojection as the upsampling operator is that if all
coding tensors are mutually orthogonal, in the limit when
K approaches the size of Hb (i.e., no compression), then
Ĥb ≈ Hb. This suggests that at compresion rates close to
unity, an appropriately trained compressive histogram layer
should be approximately equal to an identity transformation
applied to Hb.

To summarize, a compressive histogram layer comprises
an encoding/compression step followed by a decoding step,
which uses the coding tensors as the convolutional filters.
This layer can be appended to the beginning of any CNN
that has been designed to process 3D histogram tensors. Fi-
nally, the coding tensors can be jointly optimized with the
downstream CNN in an end-to-end manner.

5. Datasets and Implementation
In this section, we describe the datasets used for model

training and testing, and also provide implementation de-
tails for the compressive histogram layer and the 3D CNN
used for the experiments.

5.1. Datasets

For training, we generate a synthetic SPAD measurement
dataset containing different scenes at a wide range of illumi-
nation settings. We use a similar synthetic data generation
pipeline used in previous learning-based SPAD-based 3D
imaging works [24, 36, 44]. Using Eq. 2, SPAD measure-
ments can be simulated given an RGB-D image, the pulse
waveform (h(t)), and the average number of detected signal
and background photons per pixel. Please refer to the sup-
plement for a detailed overview of the simulation pipeline.

Simulated Training Dataset: We use the RGB-D images
from the NYU v2 dataset [42]. The simulated histograms
have Nt = 1024 bins and a ∆ = 80ps bin size (12.3m
depth range). The pulse waveform used has a full-width
half maximum (FWHM) of 400ps obtained from [24]. For
each scene, we randomly set the average number of signal
and background photons detected per pixel to [2, 5, or 10]
and [2, 10, 50], respectively. With appropriate normaliza-
tion, the models generalize to other photon levels despite
being trained on this photon-starved dataset. A total of
16,628 histogram tensors with dimensions 1024× 64× 64
are simulated and split into a training and a validation set
with 13,851 and 2,777 examples, respectively.

Simulated Test Dataset: For testing we use 8 RGB-D im-
ages from the Middlebury stereo dataset [39]. The simu-
lated histograms have Nt = 1024 bins and a ∆ = 100ps
bin size (15.3m depth range). The pulse waveform used is
a Gaussian pulse with an FWHM of 318ps (σ = 135ps). A
total of 128 test histogram tensors are generated by simu-
lating each scene with the following average number of de-
tected signal/background photons: 2/2, 2/5, 2/50, 5/2, 5/10,
5/50, 10/2, 10/10, 10/50, 10/200, 10/500, 10/1000, 50/50,
50/200, 50/500, and 50/1000.
Real-world Experimental Data: To evaluate the general-
ization of the proposed models, we downloaded raw his-
togram tensor captured in [24] with a line-scanning SPAD-
based 3D camera prototype. Please refer to the supplemen-
tary document for details on this dataset.

5.2. Training and Implementation
To simplify training, the input to all models is a 3D

histogram tensor, even though compressive histograms can
work directly on streams of photon timestamps (Eq. 4).
Compressive Histogram Layer: The encoder is imple-
mented as a 3D convolution with a stride equal to the filter
size, whose learned filters are the coding tensors, Ck. We
constraint Ck to be zero-mean along the time dimension.
The unfiltered backprojection decoder is implemented as a
3D transposed convolution with a stride equal to its filter
size.To help the CNN model generalize to different photon
count levels we apply zero-normalization along the channel
dimension (i.e., K) to the inputs (Ŷb) and the weights (C) of
the transposed convolution, also known as layer-norm [5].
This normalization is also commonly used in depth decod-
ing algorithms [17, 16, 29].
Depth Estimation 3D CNN: To estimate depths from the
decoded histogram tensor we use the 3D deep boosting
CNN model proposed by [36] for single-photon 3D imag-
ing, without the non-local block. Similar to [24, 36] we use
the pixel-wise KL-divergence between the output histogram
tensor and a normalized true histogram tensor as our objec-
tive, and estimate depths using a softargmax.
Training: At each training iteration we randomly sample
patches of size 1024×32×32. We train all models using the
ADAM optimizer [22] with β1 = 0.9, β2 = 0.999, batch
size of 4, and a learning rate of 0.001 that decays by 0.9
after every epoch. We train all models for 30 epochs with
periodical checkpoints, and for a given model we choose
the checkpoint that achieves the lowest root mean squared
error (RMSE) on the validation set.

6. Experiments and Results
In this section, we present the performance at vari-

ous compression levels for different coding tensor designs
jointly optimized with the depth estimation CNN described
in Sec. 5. A coding tensor design is determined by the
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Figure 4. Compression vs. Test Set Metrics. The two left-most plots show the mean absolute error computed over the test set as we
increase compression. Similarly, the two right-most plots show the mean percent of pixels whose absolute depth errors were < 10mm. The
simulated test set images were divided into low (SBR ≤ 0.1) and high (SBR > 0.1) SBR groups to be able to disentangle the impact of
SBR on the performance of each model. The dashed lines show the peak and no compression baselines whose compression levels do not
vary. Each line corresponds to a fixed coding tensor design for which we vary K to control the compression level. Moreover, each point
for a given compression level corresponds to a single set of coding tensors jointly optimized with the depth estimation 3D CNN.

dimensions of Ck (i.e., Mt × Mr × Mc), the size of the
compressive histogram (i.e., K), and if Ck is separable.

6.1. Baselines and Performance Metrics

We compare against the following baselines:
• Temporal Truncated Fourier C [40, 16]: A compres-

sive histogram that uses coding tensors with dimensions
1024×1×1 and whose weights are set using the first K/2
frequencies of the Fourier matrix. In the supplement, we
compare against additional Fourier-based C [16].

• Temporal Coarse Histogram C: Here C is a box down-
sampling operator along the temporal dimensions which
produces a coarse histogram with K bins.

• No Compression Oracle: In this baseline, we assume the
ideal scenario where the histogram tensor is transferred
off-sensor and processed with the depth estimation 3D
CNN. Similar to [36], we train this model with an initial
learning rate of 10−4 and total variation regularization.

• Peak Compression Oracle: This baseline implements
an ideal SPAD camera with sufficient in-sensor memory
to store the histogram tensor and sufficient computation
power to compute per-pixel depths through an “argmax”
along the time axis. To process the noisy 2D depth im-
ages with the 3D CNN, we generate a 3D grid where all
elements are zero except for one element per spatial loca-
tion whose index is proportional to the depth. This model
is trained like the no-compression oracle.

Similar to our proposed approach, all compressive his-
togram baselines described here, implemented their C as
a compressive histogram layer, with fixed weights, whose
outputs are processed by the depth estimation 3D CNN.

Evaluation Metrics: The 3D imaging performance of each
model is summarized using two metrics: (1) the mean ab-
solute depth error (MAE), (2) and the percent of pixels with

absolute depth errors that are lower than 10mm. To under-
stand the performance under these metrics we divide the test
set into different SBR ranges and report the metrics for each
range individually. We also visualize the overall dataset per-
formance as scatter plots (e.g., Fig. 7) where each point
shows the MAE for a given test scene and their color hue
represents the mean SBR of the scene. Outliers with an
MAE larger than 50mm are not visible in the plot, however,
they are included in the calculation of the statistics. Finally,
when comparing different compressive histogram strategies
the compression ratio is fixed. The compression ratio (CR)
is the ratio of the block size and the length of the compres-
sive histogram (i.e., CR = (Mt ·Mr ·Mc·)/K).

6.2. 3D Imaging Performance

Compression vs. Performance: Fig. 4 shows the perfor-
mance of compressive histograms as a function of the com-
pression ratio. The learned coding tensors consistently out-
perform the temporal Fourier-based C. At low SBR and
CR > 100, it becomes essential for the learned coding ten-
sors to utilize spatio-temporal information (i.e., green and
red lines). Moreover, the proposed models can outperform
the peak compression oracle for CR ≤ 64. Overall, learned
spatio-temporal coding tensors provide robust performance
that degrades gracefully as compression increases.
Importance of Learned Coding Tensors: Fig. 5 compares
the depth reconstructions of compressive histograms with
coding tensors that were optimized (ours) against coding
tensors that were fixed and not optimized throughout train-
ing. The extreme quantization in coarse histograms causes
large systematic depth errors. Random unoptimized cod-
ing tensors consistently produce lower-quality depth recon-
structions. A well-designed coding tensor based on Fourier
codes can produce reasonable depth reconstructions at 64x
compression, however, at 128x compression, scene details
become blurred. The proposed learned coding tensors are
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Figure 5. Importance of Learned Coding Tensors. Depth reconstructions at 64x (top) and 128x (bottom) compression for compressive
histogram models whose coding tensors were hand-designed (coarse histogram and Fourier-based), learned (proposed), and not learned
(randomly initialized). The simulated scene had an SBR=0.1, where the mean signal and background photon levels were [50, 500].
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Figure 6. What if we could compute depths in-pixel? Depth
reconstructions at high and low SBR with mean signal and back-
ground photon levels of [10, 10] and [10, 1000], respectively. The
compressive histograms have a compression of 64.

able to generate high-quality reconstructions comparable to
the no-compression oracle. Overall, optimizing the coding
tensors can provide non-trivial performance gains.
What if we could compute depths in-pixel? Fig. 6 com-
pares the depth reconstruction quality of two learned coding
tensors at 64x compression with the peak compression ora-
cle described in Sec. 6.1. At high SBR, all methods recover
the fine and coarse scene details. At low SBR the peak com-
pression oracle fails to reconstruct high-level scene struc-
tures such as the rings in the red box, while the learned cod-
ing tensors better preserve these coarse and fine details.

6.3. Exploring the Coding Tensor Design Space

When does spatio-temporal coding help? Fig. 7 shows
the effect of increasing the spatial dimension of C, at 64x
compression. At high SBR, all methods have similar MAE,
but, coding tensors with smaller spatial dimensions better
preserve fine details (e.g., sticks). On the other hand, at low
SBR, coding tensors with larger spatial dimensions preserve
high-level details such as the pot handle. This difference is
also observed in the scatter plot where the mean and median
of the 256× 1× 1C do not match which indicates multiple
low SBR scenes with high MAE.
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Figure 7. When do spatio-temporal coding tensors help? Each
scatter plot point corresponds to the MAE of a test scene. The
images directly below each model correspond to the depth recon-
structions for two test examples at high and low SBR levels whose
mean signal and background photons per pixel are [10, 10] and
[10, 1000], respectively. For a fixed compression level, the spatial
block size of each model is increased from left to right and K is
adjusted to maintain the same compression level. The coding ten-
sors for all models in this plot are learned and separable.

How does reducing the size of C affect performance?
Fig. 8 shows the effect of reducing the size of C at 128x
compression. The coding tensors size is reduced by train-
ing models with separable coding tensors that operate on
smaller histogram blocks. The performance difference be-
tween full and separable coding tensors (1024 × 4 × 4) is
negligible. As we further reduce the number of parameters
in C, the overall performance degrades. Coding tensors
with fewer parameters that operate on smaller histogram
blocks tend to produce blurrier reconstructions. This can
be observed in the red box where the coding tensors with
less than 10,000 parameters blurs the spikes. Nonetheless,
as discussed in Sec. 4.1, a parameter-efficient C is desirable
due to the limited in-sensor memory. Ultimately, a practical
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Figure 8. How does Reducing Size of C Affect Performance?.
Each scatter plot point corresponds to the MAE of a test scene.
The images directly below each model correspond to the depth
reconstructions for two test scenes at high and low SBR levels
whose mean signal and background photons per pixel are [10, 10]
and [10, 1000], respectively. The size of C is reduced from left to
right by making it separable or reducing the Mt.

compressive SPAD-based 3D camera design requires deter-
mining the trade-off between parameter efficiency and 3D
imaging quality, which may depend on the application.

6.4. Evaluation on Real-world Data

Fig. 9 shows the depth reconstructions at 256x compres-
sion of multiple compressive histograms and the no com-
pression baseline on the real-world experimental data from
[24]. In low SBR scenes, such as the outdoor capture of
the ball falling down stairs (first row), Truncated Fourier
blurs the staircase edges, while the learned spatio-temporal
C preserved these details. Compared to the no compression
oracle, compressive histogram models produce less smooth
depth images with some small artifacts. This suggests that
the compressive histogram models could benefit from a spa-
tial regularizer such as the one used when training the no
compression oracle. Additional results and details on this
evaluation are available in the supplement.

6.5. On-chip Implementation and Power Analysis

To validate the feasibility of compressive histograms, we
implement them on the UltraPhase chip which has a 3 × 6
processor core array [4]. At this time, UltraPhase has not
been 3D stacked on a SPAD sensor, thus we only evaluate
its compute and data readout power consumption. Fig. 10
shows the power dissipated by UltraPhase when processing
photon timestamps with different methods and transferring
data off-sensor. Although compressive histograms dissipate
more power on computation (blue), this is less than 0.3% of
the overall power consumption, which is dominated by data
readout. Due to limited memory in UltraPhase (4096 bits
per core), our method learns Cspatial and uses Fourier codes
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Figure 9. Depth Reconstructions of Real-world SPAD Data at
256x Compression. Depth reconstructions of different scenes
captured with a SPAD-based 3D camera prototype [24].
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Figure 10. Compute vs. Data Readout Power. Average power
dissipated by 2x2 SPADs processing 500 timestamps per depth
frame and operating at 30 depth frames per second. Compute
power is obtained from the implementation on the UltraPhase
SPAD processors [4]. Readout power is estimated from the out-
put data rate assuming the readout scheme of the SwissSPAD2
[46]. Coarse histograms use 8-bit precision, while compressive
histograms use 16-bit precision. Note the difference in blue and
orange scales.

for Ctemporal due to their memory efficient implementation.
We also quantize C to 8 bits and find no degradation in
performance. Refer to the supplement for additional details.

7. Discussion
SPAD-based 3D cameras encounter a data bottleneck be-

tween the SPAD array and the compute module when trans-
ferring the photon timestamps. A histogram tensor can help
summarize timestamps at low resolutions, but as megapixel
SPAD arrays become available, histogram tensors also lead
to a data bottleneck. To overcome this limitation we pro-
posed compressive histograms as a compact representation
that can be built on-the-fly, as each photon is detected. As
a consequence, compressive histograms can reduce the in-
sensor memory and data rates because neither the photon
data stream nor a histogram tensor needs to be stored or
transferred. Our results show that high-quality depth in-
formation can be recovered from a learnt compressive his-
togram representation that is up to 2 orders of magnitude
smaller than a histogram tensor representation.
Practical compressive histogram operating points: The



learned separable 256x4x4 and 256x2x2 C, achieved a
good balance between parameter efficiency vs. reconstruc-
tion quality, and require on the order of 10-100kbits of
memory. In an UltraPhase-like chip this would require dis-
tributing C among at least 8x8 cores (4kbits per core). If
the temporal dimension is fixed to Fourier-based Ctemporal

such as the ones from [16, 40], the number of parameters
can be reduced by 10-40x (see Suppl. Sec. 3.3) which en-
ables storing C on a per-pixel basis and made the Ultra-
Phase evaluation possible. Overall, for a 1MP SPAD sensor
with 1000 bins per-pixel, compressive histograms that can
provide more than 50x compression would result in practi-
cal data rates of ∼ 0.6GB/s which USB 3.2 can support.

Trade-off space: Compressive histograms establish a
trade-off between reconstruction fidelity, data bandwidth,
and in-sensor compute and memory resources. For a fixed
bandwidth, a coarse histogram requires arguably the low-
est in-sensor resources but leads to poor reconstructions.
Fourier-based histograms can improve reconstruction fi-
delity, at the expense of increased in-sensor computation
and memory. The proposed generalization of compressive
histograms allows further increasing reconstruction accu-
racy, at the expense of additional in-sensor memory over
Fourier-based methods. Ultimately, the correct trade-off for
a given scenario will be determined by power, application,
and hardware constraints.

Although compressive histograms require more in-
sensor computation than coarse histograms, our method
presents a practical solution from a power consumption and
a real-time application perspective. Power consumption is
primarily determined by data rates. Fig. 10 and Suppl.
Fig. 4 shows that despite compressive histograms dissipat-
ing 100x more processing power than coarse histograms,
their overall power consumption is still lower even when
data rates are only reduced by 2x. The processing time for
building compressive histograms is ∼0.5ms (Suppl. Fig. 5).
From a real-time (i.e., 30 FPS) or a high-speed application
standpoint, this additional processing time is nearly negligi-
ble since it is overlapped with acquisition/exposure time.

From a hardware perspective, the importance of reducing
the memory overhead of C depends on resolution. In low-
resolution SPAD cameras, memory-efficient C are essen-
tial because they are stored among a single or a few pixels.
The proposed method allowed integrating memory-efficient
Fourier codes with learned spatial codes, which were im-
plemented on the 2x2 pixels of UltraPhase (Suppl. Sec. 2).
As resolution increases and C is shared among more pixels,
the memory overhead reduces, and less parameter-efficient
C with increased reconstruction fidelity can be considered.

Bias in Learned C: In the supplement, we show that cod-
ing tensors with Mt = Nt develop a depth range bias.
These coding tensors learn to zero out photons coming from
distances that are less common in the dataset since they are
usually background/noise photons. Interestingly, learned

coding tensors with Mt < Nt avoid this bias and generalize
to depths that are less common in the training set.
Generalization: There are multiple generalization axes in-
cluding signal and ambient light levels, sensor and laser pa-
rameters (e.g., resolution, pulse waveform), and scene re-
sponse complexity (e.g., depth range, indirect reflections).
Our evaluation has probed some of them. Specifically, our
training set only included a subset of the signal and am-
bient light levels that the test set contained. Furthermore,
the model was trained and tested on histogram tensors with
different resolutions. Finally, the dataset bias investigation
showed that models with Nt ≤ 256 generalized well to less
prevalent depths during training (Suppl. Sec. 1).

We further discuss the model’s ability to generalize in
other scenarios. For instance, all learned models (includ-
ing baselines) are unlikely to generalize well to wider laser
pulses, because if the model is trained with a narrow pulse
width, it learns to extract signal information from high fre-
quencies which will only contain noise in the wider pulse.
Similarly, these learned models may generalize to narrower
pulse widths. Furthermore, we anticipate a learned C with
the properties described in [16] to be robust to diffuse indi-
rect reflections but may require data augmentation to gener-
alize to other light transport scenarios.
Why not compute depths in-sensor? SPAD-based 3D
cameras with large in-pixel memory could store per-pixel
histograms and reduce data rates by computing depths in-
pixel (i.e., peak compression oracle). Our results show that
compressive histogram can provide similar reconstruction
quality and outperform this method at low SBR without re-
quiring the storage of the full histogram tensor in-sensor.
Additional Coding Tensor Designs: Although we find
promising empirical results for the coding tensor repre-
sentations described in this paper, the optimal set of cod-
ing tensors will depend on the exact hardware specifica-
tions (e.g, in-pixel memory, system bandwidth) and scene-
dependent parameters (e.g., SBR, geometry, albedo). Addi-
tional lightweight C designs could rely on other factoriza-
tion techniques and weight quantization.
Task-specific Compressive Histograms: Histogram ten-
sors are used in other active single-photon imaging modal-
ities such as fluorescence lifetime microscopy [38], non-
line-of-sight [12, 26, 32], and diffuse optical tomography
[25, 50, 27]. Our framework could be used to find compres-
sive representations optimized for these applications.
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S. 1. Dataset Bias in Learned Coding Tensors with Mt = Nt

In this section, we analyze the training dataset depth bias that is embedded in some coding tensor designs, and its effect
on generalization to scenes with depths that appear less often in the dataset.
Depth Range Bias in Learned Coding Tensors: Supplementary Figures 1 and 17 visualize the temporal dimension for
different coding tensor designs as a matrix. The learned coding tensors that operate on the full temporal dimension (i.e.,
Mt = Nt = 1024) show structure in approximately the first half of the matrix, and in the second half their magnitude is close
to 0. According to the coding tensor design heuristics introduced in [16], these coding tensors may have depth ambiguities in
the second half of the depth range and may not be robust to noise when estimating depths in that range. These learned coding
tensors are consistent with the depth range observed in the NYUv2 training dataset whose depths are concentrated between
0.5-7m (i.e., close to half of the depth range in our simulation) [24]. Our evaluation in the main paper only included test
scenes with depths < 7m, therefore, this bias had little impact on the performance. To further analyze the impact of this bias
on generalization, in the remainder of this section we evaluate the models on a modified Middlebury test set that contains a
global depth offset of 7m, making its depth range 7-10m.

Temporal Axis of Coding Tensors at 128x Compression
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Supplementary Figure 1. Temporal Dimension of C at 128x Compression Visualization of the temporal dimension for different coding
tensors that achieve 128x compression. The matrix visualized for coding tensors of dimension 1024 × 1 × 1 (columns 1 and 2) is an
8 × 1024 matrix, since K = 8 and Mt = 1024. On the other hand, the matrix for the learned separable 256 × 4 × 4 Ck is 32 × 256
since K = 32 and Mt = 256. Similarly, the matrix for the learned separable 1024 × 4 × 4 Ck is a 128 × 1024 matrix. The bias on the
learned coding tensors with Mt = 1024 is displayed on the weights whose magnitude is close to 0 on the right-most side of the matrices.
The functions shown below each matrix correspond to different rows of the matrix.

Quantitative Performance Analysis on Depths Between 7-10m: Fig. 2 shows how the performance of different compres-
sive histogram models varies as a function of the compression ratio. The learned coding tensors with Mt = Nt = 1024



(i.e, orange and green lines) consistently display poor performance across all compression levels. Moreover, the variance in
their MAE is very high which is likely due to generalization artifacts. Fourier-based coding tensors (blue line) continue to
achieve reasonable performance at CR < 64 and poor performance for higher compression levels, which is consistent with
the results in the main paper. Finally, the learned coding tensor with Mt < Nt (red line) displays good performance across
all compression and SBR levels, comparable to the results in the main paper, despite the aforementioned dataset bias.

Test Dataset with Large Depths v5 → All depths in test set have a 7m offset making its depth range 7-10.5m
Removed gray-based from here and added 64 bin coarse hist
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Supplementary Figure 2. Compression vs. Test Set Metrics on Large Depths Test Set. Performance on the Middlebury test set with a 7
meter depth offset applied to all depth images before simulation. The two left-most plots show the mean absolute error computed over the
test set as we increase compression. Similarly, the two right-most plots show the mean percent of pixels whose absolute depth errors were
< 10mm. The simulated test set images were divided into low (SBR ≤ 0.1) and high (SBR > 0.1) SBR groups to be able to disentangle
the impact of SBR on the performance of each model. The dashed lines show the peak and no compression baselines whose compression
levels do not vary. Each line corresponds to a fixed coding tensor design for which we vary K to control the compression level. Moreover,
each point for a given compression level corresponds to a single set of coding tensors jointly optimized with the depth estimation 3D CNN.
The learned coding tensors with Mt = Nt = 1024 (orange and green lines) show significantly elevated MAE compared to a learned C
with Mt = 256. This poor performance is due to the depth reconstruction artifacts observed in Suppl. Fig. 3.

Qualitative Performance Analysis on Depths Between 7-10m: Fig. 3 shows the depth reconstruction for multiple baselines
and compressive histograms at 32x and 128x compression. The recovered depth images with learned coding tensors with
Mt = Nt = 1024 display multiple artifacts at both high (1) and low (0.05) SBR for both scenes. These artifacts explain why
we observe elevated MAE in Fig. 2, but at the same time, the percent pixels with errors < 10mm is not incredibly low for
some compression levels. On the other hand, the learned separable 256×4×4C not only obtains artifact-free reconstructions
but also continues to show the same trends observed in the paper. For instance, at 128x compression and SBR=0.05, it is able
to preserve important scene information that is lost when using a Truncated Fourier C.
Summary: In general, it is important to analyze and account for dataset bias in any learning-based model. We find that
this bias can lead to learned coding tensors that only work well for a subset of depths. One way to resolve this problem is
by augmenting the dataset to include examples with depths for the full depth range. However, we find that an even simpler
approach is to consider a coding tensor design that considers a smaller block size, making the tensor convolutional. In
this section, we showed that the learned coding tensors that are robust to this dataset bias, continue to provide the same
performance benefits that were observed in the main paper.
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Supplementary Figure 3. Depth Reconstructions at 32x and 128x Compression for Scenes with Depths Between 7m and 9.5m. Re-
covered depths for two scenes whose depths range between 7m and 9.5m. The compressive histogram models achieve 32x (a) and 128x
(b) compression. The SBR levels of 1 and 0.05 correspond to a scene simulated with an average number of detected photons per pixel of
[10,10] and [10,200]. Learned coding tensors with Mt = Nt = 1024 produce reconstructions with multiple artifacts which indicates that
they have poor generalization for this range of depths, which is consistent with the observed depth range bias observed in Suppl. Fig. 1.



S. 2. On-chip Implementation and Power Consumption Analysis
In this section, we provide further details on the UltraPhase SPAD chip used for the power analysis, our compressive

histograms implementation on it, and a discussion on the role compressive spatio-temporal histograms can play in the scaling
of this in-pixel processing architecture to megapixel SPAD-based 3D cameras with picosecond time resolutions.
UltraPhase SPAD Processing Chip [4]: The UltraPhase chip consists of a 3× 6 array of processing cores, each connected
to 4 × 4 SPAD pixels resulting in a 12 × 24 SPAD camera. Every core is independent, and can execute programs of up to
256 instructions in length at a rate of 140 MOPS and has 4096 bits of available RAM. The system supports a wide range
of instructions, from logic to 32-bit arithmetic operations, data manipulation, and custom inter-core synchronization and
communication. Although the 3× 6 array of processing cores has been fabricated, it has not been 3D stacked on the 12× 24
SPAD camera yet. Therefore, our analysis focuses on the implementation of our proposed methods on the processing cores
and their corresponding power consumption, data rates, frame rates, and processing times.
Implementation: In our current implementation, we assume that one UltraPhase processing core is equivalent to a single
SPAD pixel, even though each processing core will eventually be connected to 4× 4 SPAD pixels. This assumption is made
because the current version of UltraPhase does not keep track of the spatial information of a photon timestamp that was
detected within the 4× 4 region. This assumption will not be necessary for future versions of UltraPhase or UltraPhase-like
chips that are able to keep track of the spatial location of a timestamp that was detected within the SPAD region the processing
core is connected to (e.g., [48]). Nonetheless, since there are 3×6 cores, we are able to validate the proposed spatio-temporal
compressive histograms since we do know the spatial information of a timestamp at the processing core level.

All methods implemented on UltraPhase take as input 10-bit timestamps. A 10-bit timestamp is consistent with the
datasets in the main paper where the full-resolution histogram had Nt = 1024 bins, i.e., the detected timestamps could take
one of 1024 possible values. We implement the following compressive histogram methods on UltraPhase:

1. K-bin Coarse Histogram: Coarse histograms are one of the simplest compressive histograms [16]. When a timestamp
is detected, its value is used to determine the histogram bin index to increment. Each coarse histogram bin has a bit
depth of 8 bits.

2. Memory-efficient Truncated Fourier (1024 × 1 × 1 Ck): A naive implementation of a Truncated Fourier coding
tensor would require storing K 1024× 1× 1 coding tensors which would not fit in the memory of one UltraPhase core.
However, it is possible to compute the values of any Fourier coding tensor from the first quadrant [0, π

2 ] of the cosine and
sine functions using trigonometric identities. The first quadrant corresponds to the one-fourth (first 256 elements) of the
first row of the Truncated Fourier matrix shown in Fig. 1. This means that all truncated Fourier coding tensors can be
generated from only 256 parameters which occupy 2,048 bits of memory when quantized to 8 bits. When a timestamp
arrives, its value is used to generate the K Truncated Fourier coefficients, which are aggregated on a 16-bit compressive
histogram. Please refer to [4] for further details on this implementation.

3. Separable Temporal Fourier and Learned Spatial Coding Tensors (256 × 2 × 2 Ck): This compressive histogram
model uses the proposed separable coding tensors with dimensions 256× 2× 2. The spatial coding tensors (Cspatial

k ) are
learned, while the temporal coding tensors (Ctemporal

k ) are fixed to truncated Fourier coding tensors with Mt = 256. We
leverage the same memory-efficient truncated Fourier implementation described above. All coding tensors are quantized
to 8 bits. The resulting spatio-temporal coding tensors occupy 768 bits and 1,024 bits of memory for K = 8 and K = 16,
respectively ((64 + 2 · 2 · K) · 8bits). For this method, we use 2 × 2 cores. Each core stores a copy of the temporal
coding tensors and its corresponding part of the spatial coding tensor. When a timestamp arrives, its value is used to
generate the K coding tensor coefficients that are added to the 16-bit compressive histograms. Each core builds its own
compressive histograms and before transferring the data off-sensor the compressive histograms of the 2 × 2 cores are
added and transferred. This implementation could be made more memory-efficient if only a single core keeps track of
the compressive histograms.

For the interested reader, we have included the custom assembly implementations of the above methods in the supplementary
material.
Why not use a learned Ctemporal

k : As shown in Suppl. Sec. S. 3.3, for certain coding tensor designs such as a separable
256×2×2Ck, learned temporal coding tensors can outperform truncated Fourier temporal coding tensors. Unfortunately, in
our current per-core implementation storing K learned separable 256×2×2 coding tensors would require (256·K+K)·8bits
of memory per core (16,448 bits for K = 8). The next step in this line of work is to start adopting distributed memory
implementations where the coding tensors are distributed across multiple neighboring cores to reduce the memory overhead
of the coding tensors.



Processing Power Estimation: The UltraPhase chip was characterized by executing specific instructions in an infinite loop
and measuring the average power consumption. The measured average power per instruction per core was 1.06e-11 Watts,
and one instruction requires 3 clock cycles to execute. To estimate the average power consumption of each of the above
methods, their execution time (in clock cycles) is measured, and then we estimate power consumption by assuming the
worst-case scenario, when all the operations involve reading and writing to the RAM and power consumption is at maximum.
Finally, given an average number of photons per depth frame, we compute the average processing power for a set of 2 × 2
cores/pixels that outputs 30 depth frames per second. The resulting numbers are summarized in the table on Suppl. Fig. 5.
Data Transfer/Readout Power Estimation: To estimate the data readout power, we assume a conventional digital I/O
at 3.3V with a load of 5pF operating at the specified bandwidth. This is the same standard readout interface used by the
SwissSPAD2 [46], which is a high-resolution 512 × 512 SPAD array. Given the data rate, power can be estimated as
DATARATE · 5 · 10−12 · (3.32), where DATARATE is in units of bits/second.
Power Consumption Analysis: Fig. 4a shows the processing and data readout power consumption. Although compressive
histogram models dissipate around 100x more power when processing compared to coarse histograms, the processing power
for all methods continues to be only a small fraction of the overall power dissipated. Data readout is the dominant power
consumption source, hence reducing data rates can provide higher power reductions than reducing computation.

As observed in Fig. 4b, the proposed spatio-temporal compressive histograms with K = 16 can provide comparable depth
reconstruction quality to a 256 bin coarse histogram, while reducing data rates and consequently data readout power by 8x.
To emulate 8-bit quantization for the compressive histogram models, at test time, we quantize the coding tensors to 8-bits.

Power analysis for 2x2 SPAD processing cores running at 30 fps and 550 photons
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8-bit Trunc. Fourier

1024 × 1 × 1 𝐂𝐤
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𝐾 = 8
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8-bit Trunc. Fourier
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𝐾 = 16

3.8 KB/s (Ours)
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Supplementary Figure 4. UltraPhase power analysis for 2×2 pixels. (a) Average power dissipated by 2×2 cores/pixels when processing
550 photon timestamps per pixel per depth frame at 30 frames per second. The processing power is estimated from each methods imple-
mentation on 2 × 2 cores of UltraPhase. The data readout power is estimated from the output data rate and assuming the same readout
scheme of the SwissSPAD2 [46]. Coarse histograms have 8-bit precision, while compressive histograms have 16-bit precision, which
means that a coarse histogram with twice as many coefficients will have the same data rate. The y-axis is in log scale and is displayed for
the processing and readout power independently. (b) Simulated depth reconstructions for each method on a scene with an average of 550
photons detected per pixel (50 signal photons and 500 background photons). The coding tensor weights for the compressive histogram
models shown here are quantized to 8-bits at test time.

Limitations of the Implementation and Analysis: For the purposes of this paper, we are able to get important insights
from our implementation on UltraPhase which assumes each processing core is equivalent to a SPAD pixel. However, having
access to the fine-grained spatial information of each timestamp is crucial to exploit the full potential of our proposed method.
For instance, a spatio-temporal coding tensor operating on 4 × 4 SPAD pixels can store a compact compressive histogram
that preserved spatial details, while a coarse histogram that aggregates timestamps from the 4× 4 pixels will lose the spatial
information.
Scaling to Megapixel SPAD Arrays: In an UltraPhase-like architecture, the amount of memory per core is unlikely to
significantly increase as we scale to megapixel SPAD arrays due to pixel pitch reasons. Currently, the processing core is
107x107 microns and memory covers around 30% of that area [4]. The pixel pitch for the 4× 4 SPADs connected to a core
is 28 micron. However, as we scale the megapixel SPAD arrays the pixel pitch will reduce, which means the processing core
area will also reduce or it will operate on a larger number of SPAD pixels. Alternatively, the processing core can reduce
in size by reducing its computation capabilities (e.g., MegaPhase cores in [4] are 55x55 microns). Therefore, as we scale
towards megapixel SPAD processing arrays, we can expect the shared memory across a neighborhood of SPAD pixels to be
on the order UltraPhase per-core memory. This extreme memory constraint can inform and further motivate exploring more
lightweight coding tensor designs and reducing their memory overhead through distributed memory implementations.



Power analysis for 2x2 SPAD processing cores running at 30 fps 550 photons per frame v2

Coding Tensor 

Model

Compressive 

Histogram 

Length (K)

Compressive 

Histogram

Coefficient 

Bit-Depth

Processing Time 

Per Photon

[clock cycles]

Data Readout

Per Pixel/Core Per 

Frame [Bytes]

Processing Time 

Per Frame with 550 

Photons [seconds]

Data Rate 

at 30fps

[KB/second]

Average Processing 

Power at 30fps

[micro Watts]

Estimated Readout 

Interface Power

[micro Watts]

Coarse Histogram 

(16 bins)
𝐾 = 16 8-bits 30 16 3.93e-05 1.92 2.74e-04 0.84

Coarse Histogram 

(64 bins)
𝐾 = 64 8-bits 24 64 3.14e-05 7.68 1.75e-04 3.35

Coarse Histogram 

(256 bins) 
𝐾 = 256 8-bits 24 256 3.14e-05 30.72 1.75e-04 13.38

8-bit Truncated 

Fourier

1024 × 1 × 1
𝐾 = 8 16-bits 210 16 2.74e-04 1.92 1.34e-02 0.84

8-bit Truncated 

Fourier

1024 × 1 × 1
𝐾 = 16 16-bits 330 32 4.32e-04 3.84 3.32e-02 1.67

8-bit Learned + 

Fourier (Ours)

256 × 2 × 2
𝐾 = 8 16-bits 241 16 3.15e-04 1.92 1.76e-02 0.84

8-bit Learned + 

Fourier (Ours)

256 × 2 × 2
𝐾 = 16 16-bits 361 32 4.73e-04 3.84 3.98e-02 1.67

Supplementary Figure 5. UltraPhase power analysis for 2×2 cores processing 550 photons per depth frame at 30 frames per second.
This table shows the processing time and data rates for different methods and computes the average processing power and the estimated
data readout power. One clock cycle is 2.38ns in duration, and single instruction executes in 3 clock cycles. The processing time per frame
is obtained by NUM PHOTONS*PROCESSING TIME PER PHOTON*2.38ns. If we operate at 30 fps, that means that the total exposure
time per depth frame is 33ms, and then we are only dissipating processing power for a subset of the 33ms. Hence the average processing
power at 30 fps will be given by scaling the processing power by the processing time and then dividing by 33ms.



S. 3. Supplemental Analysis of the Coding Tensor Design Space
In this section, we present additional results related to the ablation study on the coding tensor design space. These results

include the effect of the spatial block dimensions, the effect of the size of C, and the performance difference between coding
tensors whose temporal dimension is learned vs coding tensors whose temporal dimension is initialized and fixed to truncated
Fourier codes.

S. 3.1. When does spatio-temporal coding help?
Figures 6 and 7 show the quantitative and qualitative performance of learned separable coding tensors as we vary their

spatial block dimension from 1 × 1 up to 8 × 8. At low compression (32x) and high SBR levels, all models are able to
produce high-quality reconstructions that recover both coarse and fine details of the scene. At low compression (32x) and
extremely low SBR, models with a spatial block larger than 1×1 are able to better preserve some of the coarser scene details
such as the sticks. However, quantitatively, the overall performance difference is small. At high compression and high SBR,
models with a 2× 2 and 4× 4 spatial block are able to recover fine details that are blurred in the 8× 8, which are particularly
noticeable in Fig. 7. Finally, in the most challenging scenario where we have high compression and low SBR, it becomes
essential to use a coding tensor that aggregates information from neighboring spatial locations. In this scenario, although all
methods blur some fine scene details, the coding tensors with large spatial dimensions better preserve coarser details such as
the pot handle and the sticks.
Why does 256×1×1 fail at 128x compression? As observed in Fig. 6, the coding tensor with dimensions 256×1×1 fails
when only K = 2 coding tensors are learned. Although, it is possible to reconstruct depths from a compressive histogram
with as few as 2 coded projections [16], finding two coding tensors that can lead to an unambiguous depth range without
further regularization can be challenging.
Summary: Overall, coding tensors that exploit spatial correlations are more robust to low SBR settings. However, at high
SBR, operating in a large spatial neighborhood can make it harder to resolve fine scene details. Moreover, increasing the
spatial block dimension further increases the number of parameters of the coding tensor which, as discussed in the main
paper, is less practical. In this analysis, we find that coding tensors with spatial block of 2×2 and 4×4 achieve good balance
of robustness to noise at low SBR, while being able to reconstruct fine scene details at high SBR.
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Supplementary Figure 6. Effect of Spatial Tensor Dimension for Mt = 256 Each point in the scatter plots show the MAE for a given test
scene and their color hue represent the mean SBR level used in that simulation. The horizontal black line, white circle, gray box, and error
bars correspond to the median, mean, quartiles, and 1.5x the inter-quantile range, respectively. Outliers with an MAE larger than 50mm
are not visible in the plot, however, they are included in the calculation of the statistics. The images directly below each model correspond
to the depth reconstructions for two test examples at low and high SBR levels whose mean signal and background photon detections per
pixel are [10, 10] and [10, 1000], respectively. For a fixed compression level, the spatial block size of each model is increased from left to
right and K is adjusted to maintain the same compression level. The coding tensors for all models in this plot are learned and separable for
spatial blocks larger than 1× 1.



128x Compression
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Supplementary Figure 7. Effect of Spatial Tensor Dimension for Mt = 1024 Each point in the scatter plots show the MAE for a given test
scene and their color hue represent the mean SBR level used in that simulation. The horizontal black line, white circle, gray box, and error
bars correspond to the median, mean, quartiles, and 1.5x the inter-quantile range, respectively. Outliers with an MAE larger than 50mm
are not visible in the plot, however, they are included in the calculation of the statistics. The images directly below each model correspond
to the depth reconstructions for two test examples at low and high SBR levels whose mean signal and background photon detections per
pixel are [10, 10] and [10, 1000], respectively. For a fixed compression level, the spatial block size of each model is increased from left to
right and K is adjusted to maintain the same compression level. The coding tensors for all models in this plot are learned and separable for
spatial blocks larger than 1× 1.



S. 3.2. How does reducing the size of the coding tensor affect accuracy?
Figures 8, 9, and 10 show the quantitative and qualitative performance of different learned coding tensors as we reduce the

number of parameters from left to right. The number of parameters is reduced by either making the coding tensors separable
or making their temporal dimension smaller. At low compression levels (32x compression), coding tensors with as few as
2,560 parameters perform comparably to larger coding tensors with 100x more parameters. At higher compression levels
(128x compression), the size of the coding tensors starts having a more pronounced effect on depth image quality. At higher
SBR levels (i.e., SBR ≥ 0.1), the larger coding tensors are able to better recover fine scene structures such as the spikes in
Fig. 8 or the toy reindeer antlers in 10. Nonetheless, coding tensors with as few as 8,704 parameters can continue to perform
comparably to coding tensors with millions of parameters.
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32x Compression
Full C

(8,388,608 params)

Separable C

(532,480 params)

Separable C

(34,816 params)

Separable C

(2,560 params)

Full C

(2,097,152 params)

Separable C

(133,120 params)

Separable C

(8,704 params)

Separable C

(640 params)

Supplementary Figure 8. How does Reducing Size of C Affect Performance?. Each point in the scatter plots show the MAE for a given
test scene and their color hue represent the mean SBR used in that simulation. The horizontal black line, white circle, gray box, and error
bars correspond to the median, mean, quartiles, and 1.5x the inter-quantile range, respectively. Outliers with an MAE larger than 50mm
are not visible in the plot, however, they are included in the calculation of the statistics. The images directly below each model correspond
to the depth reconstructions for two test examples at low and high SBR levels whose mean signal and background photons per pixel are
[10, 10] and [10, 1000], respectively. For a fixed compression level, the size of the coding tensors is reduced from left to right by making
the coding tensors separable and also reducing the temporal dimension. All coding tensors are learned.
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Supplementary Figure 9. How does Reducing Size of C Affect Performance at 32x Compression? Each scatter plot point corresponds
to the MAE for each test scene. The depth images directly below each model correspond to the reconstruction of one test scene whose
mean signal and background photons per pixel are [50, 500]. The size of the coding tensors is reduced from left to right by making the
coding tensors separable and also reducing the temporal dimension.
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Supplementary Figure 10. How does Reducing Size of C Affect Performance at 128x Compression? Each scatter plot point corresponds
to the MAE for each test scene. The depth images directly below each model correspond to the reconstruction of one test scene whose
mean signal and background photons per pixel are [50, 500]. The size of the coding tensors is reduced from left to right by making the
coding tensors separable and also reducing the temporal dimension.



S. 3.3. Learned vs. Fourier-based Temporal Compressive Representations

In this section, we compare the performance of separable coding tensors whose Ctemporal
k is either learned or fixed to a

truncated Fourier coding tensor during training.
Temporal Gray Fourier C [16]:In addition to comparing with the Truncated Fourier coding tensors proposed in [40], we
also compare against another Fourier-based coding tensor design proposed in [16], which we refer to as Gray Fourier. A Gray
Fourier compressive histogram uses coding tensors with dimensions 1024 × 1 × 1. The coding tensors are a Fourier matrix
where every two rows the frequency of the sinusoidal signal doubles as illustrated in Suppl. Fig. 17. Similar to our proposed
approach, this C is implemented as a compressive histogram layer, with fixed weights, whose outputs are processed by the
depth estimation 3D CNN.

Fourier + Learned C: In this separable coding tensor design, the temporal coding tensors (Ctemporal
k ) are fixed to truncated

Fourier coding tensors, and the spatial coding tensors (Cspatial
k ) are learned. The temporal coding tensors in this design can be

represented with a small number of parameters that do not scale with K as discussed in Suppl. Sec. S. 2, hence, the in-sensor
memory overhead they introduce is smaller than a fully learned coding tensor.
Results: Supplementary Figures 11 and 12 show the overall test set performance and qualitative depth reconstructions for
multiple compressive histogram models at 64x and 128x compression, respectively. As discussed in previous sections, coding
tensors that exploit spatial information (e.g., 256×4×4 or 256×2×2) provide higher quality reconstructions, especially, at
lower SBR levels. At 64x compression (Suppl. Fig. 11), models with Fourier or learned Ctemporal

k perform comparably at all
SBR levels. At 128x compression (Suppl. Fig. 12), a fully learned coding tensor with dimensions 256 × 2 × 2 can provide
some performance improvements for low SBR scenes over the Fourier + Learned 256× 2× 2 coding tensor. Nonetheless, at
128x compression, the 256× 4× 4 coding tensors provide the best performance.
Summary: Fourier-based temporal coding tensors have a memory-efficient implementation that does not scale with K. Using
our flexible spatio-temporal compressive histogram framework, we can design coding tensors whose temporal dimension is
fixed to Fourier codes and the spatial coding tensors are learned. This results in a practical compressive histogram model that
can be implemented in existing SPAD pixels as shown in Suppl. Sec. S. 2 while providing robust performance across SBR
and compression levels. Fully learned coding tensors can still provide some improvements in the most challenging situations
(high compression and low SBR), however, they require additional in-sensor memory. Nonetheless, this additional in-sensor
memory may be negligible in implementations where a large number of SPAD pixels share the same copy of the coding
tensors.
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Supplementary Figure 11. Learned vs. Fourier Temporal Coding Tensors at 64x Compression. Each scatter plot point corresponds
to the MAE for each test scene. The depth images directly below each model correspond to the reconstruction of one test scene whose
mean signal and background photons per pixel are [50, 500] and [10, 1000]. All models use separable coding tensors. **The number of
parameters for all coding tensors based on Fourier codes is calculated assuming the memory efficient representation described in Suppl.
Sec. S. 2.
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Supplementary Figure 12. Learned vs. Fourier Temporal Coding Tensors at 128x Compression. Each scatter plot point corresponds
to the MAE for each test scene. The depth images directly below each model correspond to the reconstruction of one test scene whose
mean signal and background photons per pixel are [50, 500] and [10, 1000]. All models use separable coding tensors. **The number of
parameters for all coding tensors based on Fourier codes is calculated assuming the memory efficient representation described in Suppl.
Sec. S. 2. The models trained with 256× 1× 1 coding tensors at this compression level are not able to converge and are not able to learn
how to reconstruct the scene. This is likely due to the fact that only K = 2 coding tensors are used, which as discussed in Suppl. Sec. S.
3.1, can make the optimization challenging.



S. 4. Evaluation on Real-world Data
To evaluate the generalization of the proposed models, we downloaded raw histogram tensor data captured by [24] with

a SPAD-based 3D camera prototype. The dataset was captured with a line scanning system composed of a co-located
picosecond laser and a 1D LinoSPAD array with 256 SPAD pixels [8]. The histogram tensors have Nt = 1536 time bins, a
spatial resolution of 256×256, and a bin size ∆ = 26ps. The raw histogram tensors are downsampled to be 1024×128×128
to make the time domain compatible with the learned coding tensors that use Mt = 1024 and also to avoid out-of-memory
errors.

Fig. 13 and 14 show the depth reconstructions for the oracle baselines and multiple compressive histograms at 256x and
128x compression, respectively. All models are able to produce plausible depth reconstructions, suggesting good generaliza-
tion to real-world data. However, all compressive histogram models display small artifacts throughout the image that could
be due to high noise levels or generalization problems. These artifacts seem to be avoided by the oracle baselines (no com-
pression and peak compression) by over-smoothing the images. This over-smoothing is due to the total variation regularizer
that we used for the oracle baselines but not for the compressive histogram models, which we found produced the better
oracle models on the synthetic datasets. Therefore, these results suggest that a spatial regularizer can be used to improve
the compressive histogram model’s generalization on real-world data. Nonetheless, despite these minor artifacts, the depth
reconstructions suggest good generalization by all models to these challenging scenarios.
Comparison with Fourier-based C: We observe that the models that used a Gray-based Fourier or a Truncated Fourier
C produced blurrier depth reconstructions than the learned C models. This can be observed at 128x compression in the
lamp scene where the wires merge into a single blob, or in the staircase scene where the stair edges are blurred. At 256x
compression, the blurring in the staircase scene is even more significant, likely due to low SBR since the scene is outdoors.
On the other hand, the models with a learned C produce sharper depth reconstructions at the same compression level, despite
being trained in the exact same manner.
Comparison with Coarse Histogramming: Although, the depth images for the coarse histogramming coding tensor shown
in Fig. 14 look reasonable qualitatively, they have large absolute depth errors when comparing them to the other approaches.
A coarse histogram will often produce a quantized depth image [40, 16], however, the depth estimation 3D CNN learns
to smooth and upsample the coarse histogram and produce more plausible depth images. Nonetheless, coarse histograms
consistently produce less accurate depth reconstructions than other compressive histogram approaches.
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Supplementary Figure 13. Depth Reconstructions of Real-world SPAD Data at 256x Compression. Depth reconstructions of different
scenes captured with a SPAD-based 3D camera prototype [24]. The first two rows show a high-resolution intensity image of the captured
scene and a point cloud visualization of the raw histogram tensor of that same scene. Gray Fourier and Truncated Fourier correspond to
the compressive histogram methods proposed in [16] and [40], respectively. For more details on these methods see Suppl Sec. S. 3.3.
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Supplementary Figure 14. Depth Reconstructions of Real-world SPAD Data at 128x Compression. Depth reconstructions of different
scenes captured with a SPAD-based 3D camera prototype [24]. The two rows show a high-resolution intensity image of the captured scene
and a point cloud visualization of the raw histogram tensor of that same scene.



S. 5. Further Datasets and Implementation Details
S. 5.1. Simulating SPAD Measurements

In this section, we provide a detailed description of how SPAD measurements are simulated for the synthetic datasets used
in this paper.

Given an RGB-D image, pulse waveform (h(t)), and the mean number of detected signal (Φsig
mean) and background (Φbkg

mean)
photons per pixel, we set the photon detection parameters for Eq. 2 as follows. First, we calculate the amplitude of the
illumination signal arriving at each pixel (ap in Eq. 1) by using the reflectance at that pixel and accounting for the intensity
radial fall-off due to distance. Similar to [24, 36], the NYUv2 training set reflectance was estimated using intrinsic image
decomposition on the blue channel of the RGB image, and the Middlebury testing set reflectance was estimated using the
mean of the RGB channels. Intrinsic image decomposition can lead to more accurate reflectance estimates for non-lambertian
surfaces. Consequently, given ap, h(t), the per-pixel depths, and the average number of signal photon per pixel, we can scale
the average number of signal photons arriving at each time bin such that

∑
p

∑
i Φ

sig
i,p = Φsig

mean. Similarly, we can emulate
the per-pixel background illumination (Φbkg) using the RGB channel mean and scaling it such that it matches the desired
mean number of background photons per pixel. Finally, we can add dark counts to the per-pixel background illumination
component. This step is only done on the training set using a calibration dark count image obtained from the hardware
prototype in [24]. We observe that the models trained with this dark count component generalize well to histogram tensors
without the dark counts, as shown in our test results.

Summary: Overall, the SPAD measurement simulation pipeline used in this paper is the one originally developed by [24],
and later used in [36, 44]. The only significant difference is that our simulated test set includes additional mean signal and
background photon count settings.

S. 5.2. Training and Implementation Details

In this section, we provide further training and implementation details.
All models in this paper are implemented in PyTorch [34]. The input to all the models is a 3D histogram tensor. Recall

that due to the linearity of compressive histograms, encoding the histogram tensors is equivalent to encoding each individual
photon timestamp and summing them up. Hence, models deployed with a compressive histogram layer can also take as input
a stream of photon timestamps and build the compressive histogram.

Compressive Histogram Layer: The compressive histogram layer is implemented as a single-layer encoder and decoder.
The encoder is a 3D convolution with a stride equal to the filter size. The coding tensors, Ck, are the learned filters. All coding
tensors are constrained to be zero-mean along the time dimension. This constraint makes the expected encoded value for
background photons distributed uniformly along the time dimension be 0 [40]. The outputs of the encoder are the compressive
histograms Ŷb. The decoder is an unfiltered backprojection that is implemented as a 3D transposed convolution with a stride
equal to its filter size.To help the CNN model generalize to different photon count levels we apply zero-normalization along
the channel dimension (i.e., K) to the inputs (Ŷb) and the weights (C) of the transposed convolution as follows:

ZN(Ŷb) =
Ŷb − E(Ŷb)∥∥∥Ŷb − E(Ŷb)

∥∥∥
2

, ZN(C) =
C− E(C)

∥C− E (C)∥2
(7)

where the mean and L2 norm are computed over the channel dimension. This normalization is also known as layer nor-
malization [5]. Eq. 7 is inspired by the zero-normalized cross-correlation depth decoding algorithm used in ToF imaging
[17, 15, 16] and structured light [29, 9].

Depth Estimation 3D CNN Model: To estimate depths from the decoded histogram tensor we use the 3D deep boosting
CNN model proposed by [36] for single-photon 3D imaging. Different from [36], our implementation does not include
a non-local block after the feature extraction stage. The output of the model is a denoised histogram tensor, Hout, from
which depths are estimated using a softargmax function along the time dimension. Similar to [24, 36] we use the pixel-wise
Kullback-Leibler (KL) divergence between the denoised histogram tensor and a normalized ground truth histogram tensor,
Hgt, as our objective function. This loss can be written for each pixel, p, as:

LKL(H
gt
p ,H

out
p ) =

Nt−1∑
i=0

Hgt
i,p log

(
Hgt

i,p

Hout
i,p

)
(8)



Training: At each training iteration we randomly sample patches of size 1024 × 32 × 32 from the training set. We train
all models using the ADAM optimizer [22] with default parameters (β1 = 0.9, β2 = 0.999), batch size of 4, and an initial
learning rate of 0.001 that decays by 0.9 after every epoch. We train all models for 30 epochs with checkpoints every half
an epoch, and for a given model we choose the checkpoint that achieves the lowest root mean squared error (RMSE) on the
validation set.



S. 6. Analysis of the Memory Overhead of Coding Tensors
Compressive histograms have the potential to greatly reduce off-sensor data transmissions and the amount of in-sensor

memory required compared to a conventional histogram tensor representation. However, the general compression framework
introduced in Section 4 requires the in-sensor storage of the K coding tensors (C = (Ck)

K−1
k=0 ) that are used for compression.

This means that a large C may introduce a significant amount of in-sensor memory overhead, making these designs for C
less practical. In this section, we provide a quantitative analysis of this memory overhead for different coding tensor designs.

Recall that H and C are Nt ×Nr ×Nc and K ×Mt ×Mr ×Mc tensors, respectively. Let, N = Nt ·Nr ·Nc be the total
number of elements in the histogram tensor. Moreover, let M = Mt ·Mr ·Mc the size of a single coding tensor which is also
the size of the histogram block, Hb that we are compressing. For the remainder of this analysis, we assume the following:
1. We assume that all histogram blocks Hb that are compressed are non-overlapping. This means that the total number of

compressive histograms that are transferred off-sensor is B = N/M .

2. We assume that only a single C is stored inside the sensor. This C will be shared among all SPAD pixels.

3. We assume that the elements of C and H are represented using the same number of bits.
Table 1 provides the expected compression ratios for off-sensor data transmission and in-sensor storage. These two

compression ratios will differ due to the memory overhead incurred by compressive histograms when having to store the
coding tensors C. It is clear that a compressive histogram for a histogram block whose size equals the size of the histogram
tensor (i.e., M = N ), would actually require more in-sensor memory than the histogram tensor making this compressive
histogram design impractical.

Histogram Tensor Compressive Histograms Compression Ratios
Off-sensor Data Transmission N B ·K N/(B ·K)

In-sensor Storage N (K ·B) + (K ·M) = K · (B +M) N/(K · (B +M))
Table 1. Data Transmission and In-sensor Storage Requirements. This table shows the off-sensor data transmission and in-sensor
storage requirements for a histogram tensor of size N and a set of B compressive histograms that use K coding tensors of size M for
compression. The compression ratio column shows the amount of compression that can be achieved for off-sensor data transmission and
in-sensor storage.

Compression Ratios for Full Coding Tensors: Fig. 15 shows the expected compression ratios for different histogram
tensor and coding tensor sizes. As we reduce the number of compressive histograms to represent the histogram tensor, the
size of the coding tensors will increase and consequently we achieve lower in-sensor compression. Since the coding tensors
do not need to be transferred off-sensor, the data rate compression ratio continue to increase as we reduce the number of
compressive histograms because the overall size of the compressive representation does decrease when K is fixed. Overall,
a good balance between reducing in-sensor memory and data transmission seems to be achieved when using 10,000-100,000
compressive histograms to represent a histogram tensor with 1e9 element (e.g., a 1 megapixel SPAD array with 1000 bins per
pixel). In this case, the size of a single coding tensor (M ) should range between 10, 000−100, 000 for 64 ≤ K ≤ 512. Some
of the coding tensors with K ≥ 64 that were evaluated in this paper approximately match this size range, e.g., M = 16, 384
for 1024× 4× 4 or for 256× 8× 8.
Compression Ratios for Separable Coding Tensors: Fig. 16 shows the expected compression ratios for different histogram
tensor and coding tensor sizes for a separable coding tensor that is 16x smaller than a full coding tensor. A separable
coding tensor that is ∼ 16x smaller is consistent with the separable coding tensors used in the main paper. For instance, a
256× 4× 4 Ck is ∼ 16x smaller if we make its temporal and spatial dimensions separable. In this scenario, a good balance
between in-sensor storage and data transmission compression is achieved when using 1,000-100,000 compressive histograms
to represent a histogram tensor with 1e9 elements. In this case, the size of a single separable coding tensor should range
between 625 − 62, 500 for 64 ≤ K ≤ 512. Some of the separable coding tensors with K ≥ 64 that were evaluated in this
paper approximately match this size range: M = 272 (256× 4× 4), M = 1040 (1024× 4× 4).
Summary: Parameter-efficient coding tensors can reduce the in-sensor memory overhead that compressive histograms in-
troduce. In this section, we show that the local block-based separable coding tensor designs explored in this paper are able to
reduce the memory overhead for histogram tensors of size N ≥ 1e7. Additional lightweight C designs could rely on other
factorization techniques such as low-rank approximations. Moreover, as shown in Suppl. Sec. S. 2, weight quantization can
be an extremely effective technique in further compressing C. Finally, C designs whose parameters can be computed on the
fly, such as Fourier-based (Suppl. Sec. S. 2) or Gray codes [16], are a practical design when multiple C need to be stored
across the SPAD array. Ultimately, a practical coding tensor representation will be determined by the hardware constraints
of a given SPAD camera.



Compression Ratios Using Full Coding Tensors
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Supplementary Figure 15. Simulated Compression Ratios for Full Coding Tensors. Each heatmap shows the compression ratio for a
fixed K for different histogram tensor sizes (B) and number of compressive histograms (B) that are used. The compression ratios for
in-sensor storage (left column) and data transfer (right column) are computed using the equations in Table 1.

Compression Ratios Using Separable Coding Tensors that are 16 x smaller
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Supplementary Figure 16. Simulated Compression Ratios for Separable Coding Tensors. Each heatmap shows the compression ratio
for a fixed K for different histogram tensor sizes (B) and number of compressive histograms (B) that are used. We assume that a separable
coding tensor is 16x smaller than a full coding tensor, which is consistent with the separable coding tensors used in the paper. The
compression ratios for in-sensor storage and data transfer are computed using the equations in Table 1 replacing M with M/16.



S. 7. Additional Coding Tensor Visualization

Temporal Axis of Coding Tensors at 64x Compression
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Supplementary Figure 17. Temporal Dimension of C at 64x Compression Visualization of the temporal dimension for different coding
tensors that achieve 64x compression. The matrix visualized for coding tensors of dimension 1024 × 1 × 1 (columns 1 and 2) is an
16 × 1024 matrix, since K = 16 and Mt = 1024. On the other hand, the matrix for the learned separable 256 × 4 × 4 Ck is 64 × 256
since K = 64 and Mt = 256. Similarly, the matrix for the learned separable 1024 × 4 × 4 Ck is a 256 × 1024 matrix. The functions
shown below each matrix correspond to different rows of the matrix. The Gray Fourier matrix corresponds to the compressive histogram
method proposed in [16].
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