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Predicting the temporal and spatial patterns of South Asian monsoon rainfall within
a season is of critical importance due to its impact on agriculture, water availability,
and flooding. The monsoon intraseasonal oscillation (MISO) is a robust northward-
propagating mode that determines the active and break phases of the monsoon and
much of the regional distribution of rainfall. However, dynamical atmospheric forecast
models predict this mode poorly. Data-driven methods for MISO prediction have
shown more skill, but only predict the portion of the rainfall corresponding to
MISO rather than the full rainfall signal. Here, we combine state-of-the-art ensemble
precipitation forecasts from a high-resolution atmospheric model with data-driven
forecasts of MISO. The ensemble members of the detailed atmospheric model are
projected onto a lower-dimensional subspace corresponding to the MISO dynamics
and are thenweighted according to their distance from the data-drivenMISO forecast in
this subspace.We thereby achieve improvements in rainfall forecasts over India, as well
as the broader monsoon region, at 10- to 30-d lead times, an interval that is generally
considered to be a predictability gap. The temporal correlation of rainfall forecasts is
improved by up to 0.28 in this time range. Our results demonstrate the potential of
leveraging the predictability of intraseasonal oscillations to improve extended-range
forecasts; more generally, they point toward a future of combining dynamical and
data-driven forecasts for Earth system prediction.

South Asian monsoon | ensemble forecasting | data-driven forecasting |

subseasonal-to-seasonal prediction

The South Asian monsoon is one of the most important seasonal features of the global
climate system. Despite modest improvements in recent years, the forecast skill of
monsoon prediction has lagged behind improvements in numerical weather prediction
(1–3). Moreover, accurate forecasts of regional rainfall on intraseasonal timescales, rather
than just the seasonal mean rainfall, are crucial for the agricultural and hydrological
sectors (4).

Monsoon Intraseasonal Variability

It has long been known that the monsoon possesses intraseasonal variability in the form
of active and break phases within the summer monsoon season (5–7). The active phase
is associated with high rainfall over central India, while the break phase is associated with
low rainfall over central India, but high rainfall over northern and southeastern India (6).

These intraseasonal variations are dominant at two spectral peaks, roughly at 45 d
and 20 d (8). They consist of northward-propagating rainfall anomalies, referred to
as monsoon intraseasonal oscillations (MISOs), closely tied to the boreal summer
intraseasonal oscillation (BSISO) (9). MISOs characterize the active and break phases of
the monsoon and much of the regional rainfall patterns (8).

Current state-of-the-art dynamical models poorly predict MISOs (2, 10, 11).
Improving MISO prediction is recognized as a crucial part of improving monsoon
forecasts on intraseasonal timescales (1).

Data-Driven Forecasts

Oscillations in the climate system, due to their near-regularity and low frequency
compared to synoptic-scale weather variability, are recognized as an important source of
predictability beyond the weather timescale (12). This recognition has led to work in
predicting these oscillatory modes using data-driven methods.*

*Here, we use “data-driven” to mean that the forecasts are accomplished entirely by learning from past data. Data-driven
forecasts are also referred to in the literature as statistical, empirical, or machine learning forecasts.

Significance

The South Asian monsoon
affects more than a billion people
in the Indian subcontinent.
The monsoon intraseasonal
oscillation (MISO) determines the
spatial structure of the monsoon
rainfall on subseasonal
timescales, and its accurate
prediction is therefore key for
agricultural and hydrological
planning. Here, we combine
data-driven forecasts of MISO
with an ensemble of dynamical
forecasts of the full system,
leveraging the predictability of
MISO to improve monsoon
forecasts. Our results show
significant improvement
compared to state-of-the-art
dynamical model forecasts,
demonstrating the potential of
data-driven forecasts to improve
subseasonal monsoon prediction.
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There is an extensive literature on data-driven forecasting
of climate oscillations (13), and several works have developed
data-driven (10, 14, 15) or low-order model (9, 16) forecasts
for MISO. Some of these methods demonstrate skill in MISO
prediction up to 50 d, while dynamical models only demonstrate
skill for up to 30 d, and often less (17–19). The superiority of
data-driven forecasts may be due to model error in the dynamical
forecasts, but can also be associated with initial condition error
(20). This gap demonstrates the potential for improved intrasea-
sonal prediction of monsoon rainfall.

Since the intraseasonal oscillations only comprise a fraction of
the total variance of the field of interest, their prediction is not
directly useful (21–24). For instance, MISOs comprise about
14% of the variance in daily rainfall anomalies over India (8),
or about 23% of the variance of 15-d rainfall over the monsoon
region (25). Moreover, there is no way to faithfully infer the
state of the full field from a forecast of an oscillatory mode (13).
This suggests, therefore, the need for a method that combines
the information from a full dynamical model with that of the
data-driven forecasts.

Prediction Using Dynamical and Data-Driven
Forecasts

The idea of combining full-field dynamical forecasts with data-
driven forecasts of intraseasonal oscillations was previously
suggested by various studies (15, 21, 22, 26, 27). While there
have been a number of works that correct dynamical forecasts
of an oscillatory mode using either data-driven forecasts (28–30)
or post-processing (31–33), these did not attempt to correct the
full-field forecasts. In this work, we correct a full-field dynamical
forecast using data-driven forecasts of specific modes.

Strong (21) was perhaps the first to propose a method for
correcting the physical model forecasts, by adding a term nudging
the dynamical equation to the statistical forecast, or by using

a Kalman filter.† However, to our knowledge, this was never
implemented. Recent work (34–36) suggested a multi-model
data assimilation–based approach for similar problems.
In Bach et al. (13) we introduced Ensemble Oscillation Cor-

rection (EnOC), to beneficially combine data-driven forecasts
of oscillations with an ensemble of dynamical forecasts of the
full system. EnOC works by projecting a dynamical ensemble
into a subspace corresponding to the mode of interest, and
weighting the ensemble members by their distance from a data-
driven oscillation forecast in that subspace. See Fig. 1 for a basic
schematic, ref. 13, and SI Appendix, section 1A for more details.

Here, we apply EnOC to the South Asian monsoon by
leveraging the predictability of MISO. Our approach possesses
two crucial features of machine learning applied to weather and
climate problems (37, 38): 1) It is interpretable, in that the
forecast improvements can be attributed to a specific physical
mode; and 2) it does not introduce spurious unphysical features,
since the forecast is always the mean of a subset of the dynamical
ensemble. An additional advantage of EnOC is that in the current
implementation, it is carried out offline,meaning that it is applied
as a post-processing step to model outputs, avoiding the need for
access to the computational and data resources of operational
forecasting centers.

Results

Data-Driven MISO Forecast Skill. First, we quantify the predic-
tion skill of the data-driven MISO forecasts by comparing these
to the MISO mode extracted from observations. We use the bi-
variate correlation coefficient, defined in SI Appendix, section 5A.

Fig. 1. A simplified diagram of the EnOC algorithm, with two dynamical ensemble members for simplicity. Here, the second (purple) ensemble member will
receive a higher weight, since it is closer to the MISO forecast in the subspace. Note that in the real implementation, we reduce the dynamics in the MISO
subspace to the first two principal components of the MISO mode. See SI Appendix, section 1A for more details.

†Ideas attributed to Eugenia Kalnay and Robert Vautard, respectively.
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As per Fig. 2, these forecastsmaintain a bivariate correlation above
0.5 for over 46 d when initialized in August and September, and
for about 28 d when initialized in July. The higher forecast skill
in the later months is consistent with (9, 39). The reason for this
phenomenon should be investigated in future research.

Some of the previous works on MISO prediction (10, 15) did
not test the real-time forecasting context, in which one has to
deal with filtering end effects. This filtering is the reason why
the bivariate correlation coefficient in Fig. 2 does not begin at 1
at a lead time of 0. These results can be compared to ref. 9 and
achieve similar skill.

Improvements in Precipitation Forecasts.We now focus on
the improvements in the full-field precipitation forecasts made
through application of EnOC. In the following results, we use
the 15-d mean rainfall for the skill calculations: That is, at
lead time i, we compare the mean rainfall forecasted over leads
i− 7, i− 6, . . . , i+ 7 to the observations averaged over the same
interval. Due to the highly intermittent nature of rainfall, such
smoothing is often used in the literature (40, 41).We also include
the results with 7-d averaging, which are qualitatively similar, in
SI Appendix, section 6E.

We show results both over India and the wider monsoon
region, which we define as 6–39°N and 66–100°E. The latter
includes India, Bangladesh, Bhutan, Kyrgyzstan, Myanmar,
Nepal, Sri Lanka, Tajikistan, most of Pakistan, southwestern
China, and part of the northern Indian Ocean. This domain is
close to the extended Indian monsoon rainfall region (42) widely
used in studies on the South Asian monsoon.

We use the temporal correlation to quantify the skill of
rainfall forecasts. For a given initialization time and lead time,
we compute the correlation of the predicted to observed total
rainfall over a given spatial domain, over the verification period
of 2008 to 2016.
All-India and Monsoon Region.We consider the temporal correla-
tion of rainfall averaged over India and thewidermonsoon region.
We achieve a remarkable improvement in this correlation using
the data-driven MISO forecast for July and August, as shown
in Fig. 3. In July, the improvement in the temporal correlation
reaches over 0.3 in the 23 to 28 d range over the monsoon region.
Over India, the improvement reaches over 0.15 in the 22 to 30 d
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Fig. 2. Correlation coefficient between predicted and observedMISOmode
as a function of lead time, for forecasts starting on the 1st of July, August, and
September, from 2008 to 2016.
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Fig. 3. Top: Temporal correlation of monsoon region and India rainfall
averages over forecasts initialized in July and August, verified against ERA5 re-
analysis. Bottom: Same as Top Right, but verified against India Meteorological
Department (IMD) observations.

range. In August, the improvement over the monsoon region
reaches 0.09, and over India reaches over 0.1.
Although there is no apparent improvement in the temporal

correlation for September, there is improvement in other skill
metrics discussed below. The average improvement for July,
August, and September forecasts over the monsoon region is
statistically significant at the 95% confidence level for the total
10 to 30 d rainfall, using the bootstrap method discussed in
SI Appendix, section 7.
Regional results.We now look at the temporal correlation of
rainfall in the homogeneous rainfall regions of India; see Fig. 4.
SI Appendix, section 3 defines the regions.
For 14- to 20-d lead time forecasts, there are statistically

significant skill improvements (at the 85% confidence level) in all
regions except for Hilly Regions, with the largest improvements
in theWest Central (+0.22), Northwest (+0.12), and Northeast
(+0.12) regions. For 21- to 27-d lead time forecasts, the
skill improvements are statistically significant in the Northwest
(+0.19), Central Northeast (+0.16), and South Peninsular
(+0.10) regions.
Other skill metrics. In SI Appendix, section 6, we evaluate the
forecasts with respect to three other skill metrics: the anomaly
correlation, RMSE skill score, and the skill in predicting the
MISO index defined in ref. 25. The EnOC forecasts are also
improved with respect to these skill metrics.
Consistency of improvements in precipitation forecast skill. To
verify that the improvements in precipitation prediction are
indeed due to improved prediction of MISO, we compute
the correlation between 1) the difference between the errors
in the dynamical and data-driven predictions of the MISO
mode and 2) the difference in the RMSE of uncorrected and
corrected precipitation forecasts. If the improvements in the
EnOC-corrected forecasts of precipitation were due to the skill
of the data-driven MISO forecast, we would expect a positive
correlation. Indeed, over forecasts initialized in July, August, and
September, and lead times from 8 to 39 d, the correlation is 0.37.
For the individual months, we have July (0.29), August (0.52),
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Fig. 4. The difference between the corrected anduncorrected temporal correlation of forecasted rainfall by region. The asterisks indicate statistical significance
at the 85% confidence level using a bootstrap methodology described in SI Appendix, section 7.

and September (0.45). For all these correlations, the two-sided
P-value is < 0.001, with a null hypothesis of no correlation.

As another verification of the consistency of the forecast skill
improvement, we examine the forecasts of low-level (850 hPa)
relative vorticity. MISO modulates relative vorticity over the
monsoon region: in active phases, the vorticity is increased, which
in turn increases the genesis of strong low-pressure systems and
precipitation (43–45).Due to this physical link, onewould expect
the EnOC-corrected ensemble to also have better prediction of
relative vorticity, despite the fact that the data-driven forecast
was based only on precipitation. SI Appendix, Section 6F shows
that this is indeed the case: the EnOC ensembles have improved
temporal correlation over India as well as improved anomaly
correlation over the monsoon region.

Conclusion

The MISO is predictable beyond the predictability limit of
chaotic weather variability, due to its regularity and low frequency
(10). Harnessing this predictability is an important part of
improving monsoon prediction on intraseasonal timescales. We
show that data-driven MISO forecasts can significantly improve
state-of-the-art dynamical precipitation forecasts in the South
Asian monsoon region. The improvements in the temporal
correlation reach 0.15 to over 0.25 on 10- to 30-d lead times.

This methodology could also be applied to other intraseasonal
oscillations, such as the Madden–Julian oscillation, for which
data-driven forecasts are quite skillful (46–48). More generally,
this work demonstrates the power of combining dynamical and
data-driven models for Earth system prediction. Other recent
work on such hybrid forecasting has also been promising (49, 50),
as has the growing field of purely data-driven full-field forecasts on
subseasonal-to-seasonal timescales (50–52). As machine learning
forecasts of weather and climate continue to improve, we envision
the integration of dynamical and data-driven forecasts for both
real-time prediction and data assimilation. Recent work on

multi-model ensemble Kalman filters (35) provides a versatile
method for this application.

Materials and Methods

Data. Weuse the IMDgridded rainfall dataset (53) for extraction and prediction
of MISO. It is based on interpolation of rain gauge data and is provided at
0.25°×0.25° resolution with daily coverage from 1901 to 2016.

Unless otherwise stated, we use the ERA5 reanalysis as verification for
forecasts. ERA5, and its predecessor ERA-Interim, is generally the most accurate
in precipitation among reanalyses produced by major operational centers and
is accurate in the South Asian monsoon region in particular (54–56). We also
verify against the IMD rainfall observations in Fig. 3.

Extraction of MISO. We extract MISO from the IMD rainfall data using multi-
channel singular spectrum analysis (M-SSA: 57, 58). M-SSA applies principal
component analysis to multivariate delay-embedded time-series data, in order
to identify and extract spatiotemporal modes. More information is provided in
SI Appendix, section 1B.

M-SSAhaspreviouslybeenused toextractMISOs inanumberof studies, from
precipitation, outgoing longwave radiation, and wind fields (8, 10, 44, 59–63).
Krishnamurthy and Shukla (8) demonstrated the existence of twoMISOmodes,
with periods of about 45 d and 20 d, extracted from precipitation data. Here, we
focus on the 45-d northeastward-propagating mode, which is most prominent,
and shown to be statistically distinguishable from rednoise in ref. 10.We closely
follow refs. 8 and 10 in the extraction of the mode, and SI Appendix, section 4
provides some of its characteristics.

Following ref. 10, we furthermore take the two leading spatial empirical
orthogonal functions (EOFs) of the MISO reconstructed component, and
henceforth consider only the dynamics of the corresponding two-dimensional
principal component (PC) time-series.

Projection onto the MISO subspace and data-driven forecasts. The
process of reconstructing a mode using M-SSA involves forward and reverse
filtering in time, posing a problem for real-time forecasting of the mode
(9, 13, 64). In this real-time forecasting context, we must approximate the
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projection onto the MISO subspace, necessarily incurring an error in the initial
conditions used for the data-driven forecast.

Here, we use a simple neural network architecture (described in SI Appendix,
section1C) inorder toproject fromthe full phase spaceonto the two-dimensional
MISO space. To obtain the initial condition for the data-driven MISO forecasts
(step 1 in Fig. 1), we use the current day and past 28 d of IMD rainfall data as
inputs to the network. To project the dynamical ensemble members onto the
MISO space (step 3), we use the current day, past 14 d, and 14 future days of
forecasts for each ensemble member. For lead times less than 14 d, we use the
current day and 28 future days.

We follow refs. 10 and65 in thedata-drivenprediction of theMISOmode.We
look for the closest historical analogs in the two-dimensional MISO space and
average over their trajectories at a given lead time. See SI Appendix, section 1D
for more details.

Note thatEnOCdoesnotdependonaspecificdata-driven forecastingmethod.
Future work could use othermethods for approximating the projection (13, 64),
or use a method designed for real-time forecasting, where an approximate
projection does not need to be used.

Dynamical Forecast System. We apply EnOC to hindcasts from SEAS5, the
European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal
forecasting system (66). The atmospheric component is the Integrated Fore-
casting System (IFS)model, with a configuration similar to ECMWF’s operational
medium- and extended-range forecasts, and NEMO is used for the ocean. We
use hindcasts from 1993 to 2016, initialized on the first of July, August, and
September, which are provided with 25 ensemble members. Note that the first
2 wk of June are an interval of rapid change during the monsoon onset, which
provides a plausible explanation for the fact that data-driven forecasts do not
exhibit satisfactory skill when initialized on June 1st. We have not included
them, therefore, in the forecasts reported herein. The ECMWF forecasts have
been shown to outperform those of other operational centers in predicting Asian
monsoon intraseasonal variability (17, 18, 67), making them a state-of-the-art
baseline.

We perform a simple bias correction of SEAS5 by subtracting its own
climatology dependent on lead and initialization time from 1993 to 2007.
This practice is common in subseasonal-to-seasonal forecasting (68). The years
for bias correction did not overlap with the verification period of 2008 to 2016,
avoiding the problemof artificial skill (69). The years 1993 to 2007 are also used
for tuning them′ parameter of EnOC for each initialization time and lead; see SI
Appendix, section 1A.

Data,Materials, and Software Availability. The rawandprocessed forecasts,
as well as the code for the method have been deposited in Zenodo (70).
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