
1. Introduction
Internal climate modes and external forcing cause strong interannual-to-decadal fluctuations (hereafter collec-
tively referred to as low-frequency variabilities) in the Indian Ocean sea surface temperature (SST) (Behera & 
Yamagata, 2003; Klein et al., 1999; Saji et al., 1999; Webster et al., 1999) and sea level (Han et al., 2017, 2019; 
Stammer et al., 2013). These variabilities show strong regional differences (Lee & McPhaden, 2008). For exam-
ple, the north Indian Ocean (NIO; north of 5°S) exhibits a basin-wide fall in sea level (Srinivasu et al., 2017; 
Thompson et al., 2016) and upper ocean heat content (Li et al., 2018) during 1993–2003 and a rapid rise there-
after. In contrast, the south Indian Ocean (SIO; 5°–40°S) shows substantial low-frequency variability. Levitus 
et al. (2012) documented this hemispheric asymmetry, with the south Indian Ocean accumulating more heat than 
its northern counterpart and the associated decadal variability. Observational evidence and the model studies 
suggest that these low-frequency variabilities in the SIO are primarily forced by winds over the Indian Ocean 
(e.g., Nidheesh et al., 2013; Srinivasu et al., 2017; Thompson et al., 2016; Trenary & Han, 2013), atmospheric 
teleconnection from the western Pacific (Alexander et al., 2002) and remote forcing from the tropical Pacific 
via the Indonesian throughflow and subsequent Rossby wave radiations (e.g., Kataoka et al., 2014; Nagura & 
McPhaden, 2021; Trenary & Han, 2013; Zhuang et al., 2013).

In addition to the air-sea interaction associated with the climate modes, the oceanic internal variability due to 
nonlinearity of the oceanic system can also cause variabilities in a wide frequency spectrum. The oceanic internal 
variability is shown to contribute significantly to the observed intraseasonal-to-interannual frequency bands of 
the western Indian Ocean (Chatterjee et al., 2013; Jochum & Murtugudde, 2005), the South Equatorial Current 
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(SEC) region (Feng & Wijffels, 2002; Jochum & Murtugudde, 2005; Ogata & Masumoto, 2010, 2011), along 
the 20°–30°S latitudinal band of SIO interior and off the west coast of Australia (Jia, Wu, & Qiu, 2011; Jia, Wu, 
Lan & Qiu, 2011; Trenary & Han, 2012). Earlier modeling efforts that studied intrinsic internal variability of the 
Indian Ocean primarily relied on simpler and coarser-resolution regional models (Chatterjee et al., 2013; Jochum 
& Murtugudde, 2005; Trenary & Han, 2013), which cannot realistically resolve oceanic mesoscale variabilities 
driven by intrinsic instabilities. Further, the proximity of lateral boundaries of the regional models, which are 
often close to the region of active intrinsic variability, limits the fidelity of the modeling framework for such 
studies.

Here, we investigate the role of oceanic internal variability in generating low-frequency variability of the Indian 
Ocean SST and sea level, with a particular focus on the south Indian Ocean, using a high-resolution global ocean 
general circulation model (OGCM). The model configuration and experiments are discussed in Section 2. The 
results are presented in Section 3, and finally, Section 4 concludes our findings.

2. Ocean Model, Experiments and Observation Data Sets
This study uses a global ocean general circulation model based on the Modular Ocean Model (MOM version 5; 
Griffies, 2012). It uses a global tripolar grid (Murray, 1996), with model equations discretized using Arakawa-B 
staggered gridding and assumes hydrostatic and Boussinesq approximations. The model's horizontal resolution 
is eddy-permitting and is set to uniform 1/8°. In the vertical, it uses 42 geopotential levels (z-star), with the top 
22 levels confined within the first 200 m of the water column. Such high horizontal and vertical resolutions 
allow realistic simulation of mean circulation and eddy activities in the SIO and Antarctic Circumpolar Current 
(ACC) regime (Figure S1 in Supporting Information S1). However, model uses a submesoscale parametrization 
to represent the unresolved submesoscale variabilities. More details about the model configuration are provided 
in Supporting Information S1.

In order to understand the role of internal variability in the generation of low-frequency variability, the model is 
first forced by 6-hourly climatological surface atmospheric fluxes from CORE-II climatological forcing (Large 
& Yeager, 2009). The climatological simulation is carried out for 175 years from a state of rest, and only the 
last 50 years of simulation (126–175) are analyzed in the study to avoid the initial spin-up period. Hereafter 
this climatological simulation is referred to as CLIM. The model is further integrated forward using 3-hourly 
interannual forcing from JRA55do (Tsujino et al., 2018) for 1958–2017 and is referred to as CTRL. However, to 
avoid spin-up transient variabilities in the CTRL simulation owing to the switch in the model forcing, only the 
1962–2017 period is analyzed.

In the subsequent sections, we will frequently use anomalies of the model simulated variables like Sea Surface 
Temperature (SST), sea surface height (SSH), and D20 (depth of the 20°C isotherm; representative of the depth 
of the thermocline) to refer the eddy fields. These anomalies for CLIM and CTRL solutions are calculated by 
removing the average annual cycle derived using the last 50 years of CLIM simulations (126–175th climatolog-
ical years) and then low-passed with a 15-month fifth-order Butterworth filter. Further, the eddy kinetic energy 
(EKE) is calculated based on these low-passed zonal and meridional velocity anomalies from the CLIM solution.

To document the observed variability in the SIO, we use SST from Hadley Centre Sea Ice and Sea Surface 
Temperature data set (HadISST) and sea level anomaly from Archiving, Validation and Interpretation of Satellite 
Oceanographic (AVISO). To maintain consistency with the CTRL simulation, SST observation for the period 
1962–2017 is considered for all the analyses. However, for the sea level anomaly, the entire available gridded 
altimeter record during 1993–2021 is used.

3. Results
The observed variability in the Indian Ocean is a combined response to surface forcing and oceanic internal vari-
ability. The standard deviation maps of observed SST anomaly (SSTA) for the period 1962–2017 and Sea Level 
anomaly (SLA) for the period 1993–2021 at interannual and longer timescales (15-month lowpass filtered) show 
strong variability in the SIO (Figures 1a and 1b). Strong SSTA variability is mainly confined between 10°–38°S 
across the SIO basin and along the Antarctic Circumpolar Current (ACC) front, also known as subtropical front 
(STF), around 40°S. The variability is much weaker in the north Indian Ocean except along the Somali and Arabian 
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coasts, which has been attributed primarily to the meridional migration of Southern Gyre and Great Whirl driven 
by the interannual variability of summer monsoon winds and the embedded instability in the mean current system 
(Beal & Donohue, 2013; Chatterjee et al., 2013; Jochum & Murtugudde, 2005; Wirth et al., 2002). In contrast, 
standard deviation of SLA shows very distinct spatial heterogeneity, with the largest amplitude occurring along 
the STF region near the 40°S latitude band. In the SIO, variability is confined to three distinct regions: over the 
Seychelles−Chagos thermocline ridge region between 5°−20°S (Hermes & Reason, 2008; Yokoi et al., 2008), in 
the subtropical basin between 20°−30°S and along the southwestern boundary of Australia. Additionally, strong 
low-frequency variability exhibits along the west coast of Sumatra and Java between 5°−10°S. While the inter-
annual variability along the Sumatra and Java coast is primarily driven by equatorial winds and the alongshore 
winds associated with dominant climate modes (e.g., Cao et al., 2018; Du et al., 2008; Saji et al., 1999; Susanto 
et al., 2001; Vinayachandran et al., 2021), variability along the STF is driven by Southern Annual mode and the 
instability generated due to bottom torque associated with the ACC (Boer et al., 2013). In the NIO, SLA varia-
bilities co-locate with the SSTA along the western boundary of the Arabian Sea. The other region of relatively 
active interannual variability of sea level is the eddy-dominated Bay of Bengal (Mukherjee et al., 2019; Philips 
et al., 2021 and the references therein).

In this paper, we focus on the SSTA and SLA, which show large amplitude variability across the tropical-subtropical 
SIO, where the role of oceanic internal variability in causing low-frequency variability is not well documented. 

Figure 1. (a and b) are the standard deviation of observed SST (HadISST) for the period 1962–2017 and SLA (AVISO) for the period 1993–2021 (c and d) are the 
model simulated (CTRL) SST and SLA from 1962 to 2017. The overlayed line contour in Panel (d) shows that standard deviation of sea level for the period 1993–2017 
(equivalent to the observation period). Standard deviation is calculated after removing the annual cycle and then filtered with a 15-month lowpass filter.
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Figure 1 shows the standard deviations of SSTA and SLA from the CTRL solution for the 1962−2017 period. 
Note that the CTRL simulation is the complete solution, which includes both forced response and internal varia-
bility. The model could reasonably reproduce the observed variability over the Indian Ocean, particularly for the 
regions of high variabilities in the SIO. However, there are a few notable differences. The overall model simulated 
SSTA shows stronger variability than the observation. This is particularly visible along the Java coast, where 
the model produces much stronger variability than the observation, likely due to the shallower MLD and thus 
stronger SSTA response to wind forcing in the model. In contrast, variability in model SLA is generally weaker 
across the domain. Nevertheless, the model is able to simulate major features of the SSTA and SLA variability 
across the entire basin for further analysis.

3.1. Internal Oceanic Variability
In order to understand the role of internal oceanic variability in generating low-frequency SST and sea level 
variability, we compare solutions from CLIM and CTRL simulations. Considering that surface fluxes that force 
experiment CLIM do not have any variability longer than the annual period, and thus any low-frequency signals 
with periods longer than the annual period is due to low-frequency rectification of the oceanic internal instabil-
ities. Figure 2 shows the ratio of the standard deviations of anomalies of SST, SLA and EKE from CLIM and 
CTRL simulations. The regions where the ratio between the internal variability from CLIM and “total” variability 
from CTRL is more than 0.5 are considered largely influenced by internal variability, because the magnitude of 
internal variability exceeds 50% of the total variability and is comparable to the atmospheric forcing in generating 
the low-frequency variability.
Ratios for both SSTA and SLA (Figures 2a and 2b) show large influence of internal variability in regions between 
20°–40°S, starting from the eastern SIO off the west Australian coast to the western basin with maximum strength 
occurring in a region southeast of Madagascar. In fact, this is the region where strong variability in observed SST 
was noted (see Figure 1a). D20 anomaly also shows active regions of interannual variability co-locating with the 
strong SLA (figure not shown), supporting the dynamic nature involved in the oceanic internal variability. The 
ratio of the EKE provides a clear picture of two dynamically distinct regions: the region off the west coast of 
Australia driven by Leeuwin current/under current and its offshore extension associated with Rossby wave radi-
ations (Furue et al., 2017; Rennie et al., 2007) and the eastward flowing South Indian Counter Current (SICC) 
regime at ∼30°S in the southeast of Madagascar (Figure 2c). These suggest that the generation of instabilities 
driven by the unstable seasonal mean current may have distinct dynamical nature in the eastern and western parts 
of the SIO. Furthermore, it is noteworthy that the internal variability does not contribute to the SSTA and SLA 
Seychelles−Chagos thermocline ridge region and near the Indonesian coast, indicating that the observed varia-
bility in these regions is primarily driven by the direct surface forcing.

3.2. Energy Budget and Instabilities
We further investigate the generation mechanisms of the internal variability through an eddy kinetic energy 
budget analysis following Masina et  al.  (1999) and Chatterjee et  al.  (2013). To calculate the EKE using the 

Figure 2. The ratio of the standard deviations of (a) sea surface temperature, (b) sea level anomaly and (c) eddy kinetic energy derived from CLIM (last 50 years i.e., 
126–175 years) and CTRL (1962–2017) simulation overlaid by a contour of 0.5. Standard deviation is calculated after removing the annual cycle and then filtered with 
a 15-month lowpass filter. The vectors overlayed in Panel (b) represents mean surface currents highlighting SEC and SICC in the SIO.
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solution from CLIM simulation, each field is separated into time mean (overbar) and perturbation (prime). In 
this case, the mean field is the forced response, that is, annual signal, and the perturbation is its anomaly. In other 
words, interannual and longer period (period >15 months) variabilities are represented as perturbations or eddy 
fields. Note that the eddy EKE can also be contributed from the rectification by higher frequency variability 
(periods <15 months); this effect however is negligible compared to the EKE from low frequency variability. The 
EKE budget is given by
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where, 𝐴 𝐾𝑒 is the EKE, ∇ represents horizontal gradient, and 𝐴 𝐴MH and 𝐴 𝐴MV are the horizontal and vertical viscosity 
coefficients. The first term on the left side of the equation is the local rate of change of EKE, the terms 𝐴 𝐴 and 𝐴 𝐵 
represent the horizontal and vertical advection of EKE by mean and perturbation flows. The first two terms in 𝐴 𝐶 
represent divergence by pressure anomaly, and the last term represents the conversion of available eddy potential 
energy into EKE (a measure of baroclinic instability). The first term of 𝐴 𝐷 describes the energy conversion via 
barotropic instability and the second term is the energy conversion due to vertical shear in the mean-field, also 
referred to as Kelvin-Helmholtz instability. Term 𝐴 𝐸 is the deformation of work due to the perturbed velocity field, 
and term 𝐴 𝐹  is the dissipation of EKE. Note that except for the baroclinic conversion term, and to some extent 
the barotropic conversion and horizontal advection of EKE, all other terms of the equation are very small in this 
region and, therefore, are not considered further.

Figure 3 illustrates the seasonal average of EKE for austral summer (January−March), autumn (April−June), 
winter (July−September) and spring (October−December) and the dominant instability terms. The distribution 
of EKE shows strong spatial and temporal heterogeneity. Moreover, regions of strong eddy activity co-locate 
well with the areas where the internal variability is large (see Figure 2). Throughout the year, strong EKE is 
found along the southern branch of the SICC south of Madagascar at ∼30°S, and to a lesser extent in the central 
interior basin of SIO between 20°−30°S, and their magnitudes are somewhat stronger during austral spring 
and summer (Figure S2 in Supporting Information S1). Off the west coast of Australia, EKE intensifies during 
austral fall and peaks in winter. A similar strong seasonal EKE along 25°S during summer in the east-central SIO 
was earlier reported by Palastanga et al. (2007) and Jia, Wu, and Qiu (2011). They showed that vertical shear 
of eastward flowing surface SICC and underlying westward flowing SEC, associated with meridional isopycnal 
tilt, cause water column baroclinically unstable with the strongest growing mode in intraseasonal/seasonal peri-
odic band and at mesoscale wavelength (∼200−500 km). In comparison, strong eddy activity with a westward 
phase propagation at intraseasonal timescale is documented during winter in the eastern part of the SIO (Feng & 
Wijffels, 2002; Zhou et al., 2008) and off the Leeuwin Current/Leeuwin Undercurrent region near the west coast 
of Australia (Birol & Morrow, 2001; Furue et al., 2017; Morrow et al., 2003; Rennie et al., 2007). Note here that 
while our analysis shows similar EKE dominated regions in the SIO, the EKE calculated here is from the CLIM 
experiment and thus isolates the effect of ocean internal variability at timescales longer than the annual period. 
This low-frequency variabilities of SST and sea level result from energy cascade from seasonal mean flow to 
lower frequency bands. Further analysis based on the EKE budget equation suggests that, among all the energy 
conversion terms, baroclinic instability (−𝑔𝜌′𝑤′ ) is the most dominating term in the SIO. In fact, as observed in 
EKE, baroclinic instability also shows a similar spatial heterogeneity with the strongest amplitude co-locating 
with the strong EKE region (Figure  3). In contrast, while barotropic instabilities have been suggested to be 
important in some regions of the SIO on intraseasonal and seasonal timescales (e.g., south of Madagascar; Halo 
et al., 2014; Yamagami et al., 2019), they are negligible at inter annual and longer timescales. These instabilities 
get advected to the east in the interior basin by the eastward surface SICC, particularly along the 30°S latitude 
belt.

3.3. Dynamical Mechanisms
Seasonal variation of thermocline structure has been suggested to be related to the generation of baroclinic insta-
bility in the eastern SIO (Feng & Wijffels, 2002; Jia, Wu, & Qiu, 2011). Here, we adopted a similar technique 
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to identify the source of energy conversion in low-frequency spectrum through baroclinic instability across the 
regions of active EKE.
Isotherms in the SIO show strong seasonal variability, particularly in the top 200 m water column. In the interior 
SIO, during austral summer, the isothermal layers are shallow, generally limited within the top 50 m and extend 
poleward across the SIO (Figure 4a: January; Figure S3 in Supporting Information S1). As a result, the out-cropped 
isotherms tilt poleward south of 25°S, thereby increasing meridional gradient of density below the isothermal layer 
and thus, based on thermal wind relation, enhancing the vertical shear of eastward flowing SICC. These isother-
mal tilts lead to strong baroclinic instability, which draws energy from the mean seasonal tilt of the thermocline to 
enhance the EKE of the region. The tilt angle reverses to equatorward between 25° –15°S, causing the thermocline to 
shoal there. This region is marked by strong baroclinicity with an eastward flowing surface SICC and an underlying 
westward flow associated with the northern branch of the subtropical gyre (Furue et al., 2017; Schott et al., 2009) or 
the southern hemispheric supergyre (Ridgway & Dunn, 2007; Speich et al., 2007). The splitting of surface SICC into 
two branches near 30° and 25°S was documented earlier by Menezes et al. (2014). During winter, isotherms migrate 
equatorward, and the isothermal layer becomes deeper than 100 m (Figure 4a, Figure S3 in Supporting Informa-
tion S1) across the SIO. This is particularly conspicuous south of 25°S, where it deepens to more than 200 m. 
Additionally, eastward flowing SICC in the south (30°S) and westward flowing SEC in the north (∼15°S) deepen 
and subsequently weakens the vertical shear of the zonal current and associated EKE in the upper water column.

The other region that exhibits strong EKE is the southwest coast of Australia. But unlike the rest of the SIO, EKE 
strengthens here during austral fall and attains its maximum during winter (Figures 3b and 3c and Figure S4 in 

Figure 3. Eddy kinetic energy (EKE; 10 −4 kg s −3) from CLIM solution for the four seasons: (a) summer (January–March), (b) fall (April–June), (c) winter 
(July–September), (d) spring (October–December). (e) are the barotropic energy conversion (10 −4 kg s −3), (f) baroclinic energy conversion (10 −4 kg s −3), (g) 
Kelvin-Helmholtz (10 −4 kg s −3) and (h) advection (10 −4 kg s −3) averaged for the entire period and are integrated over the top 200 m water column. Note that the scale 
for Kelvin-Helmholtz conversion and advection is smaller than the baroclinic and barotropic terms as they contribution from these terms are considerably weaker.
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Supporting Information S1). Finally, EKE disappears during summer. The increase of EKE in fall is associated 
with the strengthening of the poleward Leeuwin Current and the underlying Leeuwin undercurrent (Figure 4b) 
(Feng & Wijffels, 2002; Furue et al., 2017). This causes a very strong vertical shear and isotherms to tilt offshore. 
As a result, the water column becomes baroclinically unstable, resulting in anti-cyclonic surface intensified eddies 
in the Leeuwin Current and cyclonic eddies in the Leeuwin Undercurrent (Rennie et al., 2007). Finally, these 
eddies propagate westward as Rossby waves (Figure S5 in Supporting Information S1) (Feng & Wijffels, 2002; 
Schouten et al., 2002a, 2002b; Rennie et al., 2007). By summer, the strengths of the Leeuwin Current and Leeu-
win Undercurrent become minimum and thus weaken the vertical shear and the associated thermocline tilt.

3.4. Scale Selection
While it is clearly demonstrated that the internal oceanic variability plays an important role in causing the 
low-frequency variability of SST and sea level in the SIO, whether the baroclinic instability can grow at interan-
nual and longer timescales and generate the low-frequency variability is unclear. Note that baroclinic instability 
at short timescales (e.g., intraseasonal) can also rectify into interannual and longer term variability due to nonlin-
earity of the oceanic system. Here, we discuss possible mechanisms for the low-frequency instability to grow.
It has been shown that the vertical shear between the eastward flowing shallow SICC and the underlying westward 
flow associated with the southern hemispheric supergyre is due to the seasonal variation of thermocline tilt and 
therefore, baroclinic instability in the upper water column in the interior SIO. Jia, Wu, Lan, and Qiu (2011) earlier 
noted that, using a 2.5 layer quasi-geostrophic reduced-gravity model, instabilities owing to the vertical shear can 
grow at a wide range of the spectrum (Figure 8 of their paper), but they are associated with specific preferred 
zonal and meridional length scales. Instability can grow rapidly with an e-folding timescale of 100–200 days with 
a zonal length scale of ∼O(200) km, but a much larger meridional length scale of ∼O(1,000) km. On the other 
hand, instabilities can also grow slowly at interannual to longer e-folding timescales, but with a much larger zonal 
length scale of ∼O(1,000) km and a smaller meridional length scale of ∼O(200) km.

Figure 4. (a) Vertical sections of climatological zonal currents (shaded) and temperature (contour) averaged over 60°−100°E in the interior south Indian Ocean. 
(b) Vertical section of climatological meridional current (shaded) and temperature (contour) averaged at 30°S off the west coast of Australia. Note that all the 
climatological fields are derived from averaging the last 50 years of simulation (126–175) from CLIM experiment.
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The region of strong baroclinic instabilities in the interior SIO is much narrow in meridional direction compared 
to the zonal (∼10°−20°) extent (Figure  4). Thus, they are associated with a slower growth rate, and larger 
zonal-scale interannual to longer timescale instabilities. These slowly growing instability modes fit well with 
the lower-order modes of the Rossby waves of similar wavelength and frequency. In fact, the propagation speed 
of these low-frequency phases is estimated to be around 2.5–3.0 cm/s (Figure S5 in Supporting Information S1) 
which agrees well with the theoretical speed of the first baroclinic mode of Rossby waves at these latitudes given 
by 𝐴 𝛽𝑐2𝑛∕𝑓

2 (Figure S5c in Supporting Information S1), where 𝐴 𝛽 is the meridional rate change of the Coriolis 
parameter 𝐴 𝑓 and 𝐴 𝑐𝑛 is the characteristic speed of the 𝐴 𝑛 ’th vertical mode gravity waves. Further, it can also be seen 
that at 25°S, the westward propagation of phases radiates from the east and is most prominent within the east 
of 80°E (Figure S5 in Supporting Information S1). Whereas, at 30°S, the westward Rossby wave propagation is 
evident mainly west of 80°E. These spatial heterogeneities in Rossby wave propagation at different latitude bands 
correspond well with the region of active baroclinic instability observed earlier (see Figure 3). This supports that 
the baroclinic instability-driven internal variability in the low-frequency spectrum in the SIO is likely due to the 
preferentially growing instability mode.

4. Conclusions
In this study, we investigate the role of oceanic internal variability in the observed interannual and near-decadal 
variability of the Indian Ocean using a high–resolution global MOM5 model simulations. CLIM simula-
tion shows strong interannual to near-decadal variability in the 10°–40°S latitude band of the Indian Ocean 
(SIO). Considering that the annual atmospheric variability only forces the CLIM solution, the simulated 
low-frequency variability is driven by the internal oceanic variability. However, internal variability exhibits 
a strong spatial and temporal heterogeneity across this region. The modulation of isothermal tilts associated 
with vertical shear of the geostrophic zonal currents results in a baroclinically unstable upper water column, 
leading to enhanced EKE of this region. The SIO exhibits three distinct active low-frequency EKE regions: 
south of 25°S in the west, between 25°−15°S in the east-central basin and on the southwest coast of Australia. 
While the vertical shear in the eastward SICC associated with a strong thermocline tilt is responsible for 
the baroclinic instability in the southwest, the baroclinic zonal current with eastward flowing surface SICC 
and underlying westward current associated with supergyre cause vertical shear and baroclinic instability in 
the central interior basin. Along the southwest coast of Australia, EKE attains its peak during winter and is 
modulated by the strength of the Leeuwin Current and Leeuwin Undercurrent system. These instabilities then 
preferentially grow for the zonal scale of ∼1,000 km with an e-folding timescale of interannual periods and, 
thus, cause low-frequency variability in the SIO latitudinal band. Further, as these disturbances match the 
scale of the lower-order modes of Rossby waves, they propagate westward, carrying the energy to the western 
part of the basin.

Notably, earlier Jochum and Murtugudde  (2005) reported that the region of active internal variability in the 
low-frequency spectrum is the SEC regime between 10°−20°S, which is north of active internal variability region 
found in this study. The most likely reason for this discrepancy is due to their simpler regional model configura-
tion with closed southern and eastern boundaries at 25°S and 130°E, respectively. This indicates that the influ-
ence of the Pacific that feeds the SEC and the Southern Ocean, which force the SICC and supergyre, and thereby, 
the baroclinicity in the SIO, is the key to the observed internal variability of this region.

Since the internal variability is known to influence surface variables, it can impact the air-sea interactions such 
as the Subtropical Indian Ocean Dipole (SIOD) and possibly the Southern Annual Mode and predictability of the 
regional climate. Hence, further analysis is needed to understand the implication of these internal variabilities to 
the regional climate through a fully coupled atmosphere and ocean modeling experiments.

Data Availability Statement
Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) used here are freely available at Met 
Office Hadley Centre observations datasets via https://www.metoffice.gov.uk/hadobs/hadisst/. AVISO data used 
here is available from https://doi.org/10.48670/moi-00148. All the figures are prepared using Python version 
3.8.5 (https://www.python.org).
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