2023 5th IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA) | 979-8-3503-2385-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/TPS-ISA58951.2023.00032

2023 5th IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA)

Explainable Al for Prioritizing and Deploying
Defenses for Cyber-Physical System Resiliency

Indrajit Ray, Sarath Sreedharan, Rakesh Podder, Shadaab Kawnain Bashir and Indrakshi Ray
Computer Science Department, Colorado State University, Fort Collins, Colorado, USA
{Indrajit.Ray, Sarath.Sreedharan, Rakesh.Podder, Shadaab.Bashir, Indrakshi.Ray } @colostate.edu

Abstract—The adoption of digital technology in industrial
control systems (ICS) enables improved control over operation,
ease of system diagnostics and reduction in cost of maintenance
of cyber physical systems (CPS). However, digital systems expose
CPS to cyber-attacks. The problem is grave since these cyber-
attacks can lead to cascading failures affecting safety in CPS.
Unfortunately, the relationship between safety events and cyber-
attacks in ICS is ill-understood and how cyber-attacks can lead to
cascading failures affecting safety. Consequently, CPS operators
are ill-prepared to handle cyber-attacks on their systems. In this
work, we envision adopting Explainable Al to assist CPS oper-
ators in analyzing how a cyber-attack can trigger safety events
in CPS and then interactively determining potential approaches
to mitigate those threats. We outline the design of a formal
framework, which is based on the notion of fransition systems,
and the associated toolsets for this purpose. The transition system
is represented as an Al Planning problem and adopts the causal
formalism of human reasoning to asssit CPS operators in their
analyses. We discuss some of the research challenges that need
to be addressed to bring this vision to fruition.

Index Terms—cyber physical systems, resiliency, AI planning,
natural language processing

I. INTRODUCTION

The adoption of digital technology in industrial control
systems (ICS) enables improved control over operation, ease
of system diagnostics, and reduction in cost of maintenance of
cyber physical systems (CPS). However, digital systems also
expose the OT (Operational Technology) networks of CPS to
cyber-attacks. The SQL Slammer Worm attack on the David-
Besse nuclear power plant in 2003 [1], the StuxNet worm
targeting Siemens Step 7 software controlling a programmable
logic controller [2] or the Black Energy malware exploiting
control system software vulnerability in different ICS [3], are
all examples of cyber-attacks on CPS triggered by the use of
digital systems. Such attacks can have very serious implica-
tions on a CPS’s operation especially when the cyber-attacks
trigger safety events either directly or via triggering cascading
failures in the ICS. The emergence of Advanced Persistence
Threats (APT) that can lie under the radar undetected for a
very long time and Live Off the Land Binaries (LOLBins),
where the attacker uses tools that are already present in the
environment compounds the problem since they help facilitate
lateral movements by attackers that can give rise to cascading
failures. There is thus a critical need for operators of CPS OT
networks to be cyber-prepared for resiliency. The first step
towards this goal is to assess the security posture of the OT

networks, what the weak spots are that can be leveraged by
APTs, LOLBins, or other malware to launch cyber attacks
affecting safety, and how to best deploy defenses for resiliency.
One potential approach to this is via Penetration Testing
(or pen-testing). Pen-testing is a widely adopted paradigm for
cyber preparedness evaluation in an IT (Information Tech-
nology) network. Pen-testing, when done well, results in a
comprehensive list of vulnerabilities in the organizational
network that can potentially be exploited by an attacker
including, possibly, physical vulnerabilities that can enable
the launching of cyber-attacks. However, it is a very involved
process with a very broad scope and partly depends on the
rules of engagement with the organization. While several
aspects of pen-testing can be automated, the effectiveness of
pen-testing depends very much on the skill set of the pen-
tester and on the tools used. While pen-testing can produce
a prioritized list of vulnerabilities ordered by their criticality,
differing perspectives of pen-testers on what are the highest
priorities, can result in scope creep. Moreover, pen-testing does
not provide a list of actionable items which would allow what-
if analysis to be conducted. The system administrator has very
little to work with to determine the effectiveness of various
defensive strategies, following a pen-test on their network.
Most importantly, however, pen-testing cannot be exercised
on the live OT network since it can potentially trigger safety
events. Unlike IT networks, OT networks are deterministic and
not designed to accommodate the performance impacts of IT
network appliances. This concern becomes more exacerbated
when considering low-level ICS controller buses where any
effect on determinism within this bus triggered by pen-testing
may cause undesirable effects on the operation of the CPS.
A complementary approach to understanding and mitigat-
ing network vulnerabilities is via attack tree/attack graph
analysis (see, for example, [4]-[11]). Its origins are in fault
tree analysis [12]-[15]. The ICS community has extensively
studied potential problems caused by safety events occurring
because of component failures and accidental human errors.
ICS operations manual frequently provides documentation of
potential safety situations and trains operators to perform
what-if analysis to handle safety events. Fault Tree Analysis
(FTA), a technique developed by H. Watson and Allison
Mearns of Bell Labs for use on the Minute Man Guidance
System in 1962 [12], is one of the most widely used systematic
approaches to determine all credible ways by which an unde-
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sirable failure state may occur in a safety critical ICS. FTA
and related techniques such as Event Tree Analysis can help
to identify critical components, procedures, tasks in ICS, and
combinations of system failures resulting in safety events. FTA
has also been extended for evaluating the frequency/probability
of undesired events occurring that can be utilized for quan-
titative safety and reliability analysis. In the same vein, an
attack graph, also known as a threat graph, exploitability
graph, or vulnerability graph, uses a description of IT assets of
an organization, their configuration, the vulnerabilities present
in those assets and dependencies among those vulnerabilities
to present a picture of how the IT system can be attacked.
Graph analysis techniques can be used on the attack graph to
identify possible attack paths that can be utilized to launch
cyber attacks, including lateral movement attacks. It provides
security professionals with valuable insights into potential
attack vectors and can help prioritize efforts to secure critical
assets effectively.

However, there are several challenges related to the use of
attack graphs for cyber preparedness analysis in OT networks.
Unlike fault trees, there is no uniform formalism for attack
graphs. Different researchers model the abstract notion of an
attack graph in different manners resulting in differing proper-
ties. To the best of our knowledge, there does not exist a formal
attack graph framework that can also model undesirable fault
and failure states in OT networks. Moreover, even today, attack
graph tool support for automated creation, management and
what-if analysis is quite limited. In particular, what-if analysis
tools that provide explanatory feedback about the goodness
of defensive strategies are needed. Explanations are critical
so that the domain experts are convinced that the strategies
suggested by the tool are aligned well with their intuitions
about potential solutions. To achieve this, the human operators
need to be able to relate easily to the machine-generated
explanations, which implies that explanation generators need
to adopt the causal formalism used in human reasoning.

Some other limitations of existing tools include scalability
to large problems and support for model reusability. As a
system changes, for example, when defense placement is
strategized during a what-if analysis, the corresponding attack
graph also changes. Support for incremental updates and reuse
of attack graphs facilitate scalability.

In this paper, we present an Explainable Al approach that
combines the power of Natural Language Processing (NLP)
and Al Planning to enable CPS operators to evaluate and
analyze how a cyber-attack can trigger safety events in the CPS
(that is, the resiliency posture of the CPS) and then interact
with the analysis engine to determine potential approaches
to mitigate the threats. The formal framework, on which this
system is based, is based on the notion of transition systems
[16]. We call this framework Explaianble Resiliency Graph
(ERG). The core design philosophy that we have adopted
for this work, and which has resulted in the choices that we
have made, is that the framework needs to provide human
understandable explanations on how or why it arrived at a
specific analysis result for CPS resiliency. This is a work in

progress and we discuss some of the research challeges that
we are working on this vision.

Figure 1 provides an example of an ERG for a steam flow
control system in a nuclear power plant. An ERG is built
through a composition of attack graphs representing cyber-
attacks in the CPS and fault trees representing failures. NLP
techniques are used to generate both the attack graph portion of
the ERG as well as the fault tree. Referring to Figure 1 the red
dotted lines indicate the points where composition operations
need to be applied to build the ERG. Al planning techniques
are used to perform this composition.

We develop a novel description language that we call
Resiliency Graph Description Language (RGDL) to represent
the ERG-transition system for formal analysis. RGDL is an
extension of the classical Planning Domain Definition Lan-
guage (PDDL) [17] and leverages all its power for solving
Al planning problems. The reasoning engine is based on
Al Planning (which adopts the causal formalism of human
reasoning for deductions). It identifies plans that shows the
various attack paths in the attack graph part of the CPS that
can eventually lead to cascading failures and safety issues
(following the red dotted lines in Figure 1.

We present sketches of an initial proof-of-concept that
allows the operator to interact with the Al planner to query
the underlying transition system and perform what-if analysis.
This analysis provides actionable suggestions from the tool in-
cluding insights into potential attack vectors and help prioritize
efforts to secure critical assets effectively. These suggestions
comprise of a diverse set of solutions each of which can
potentially take the CPS to a safe and secure state. To help
the operator decide which of the actionable suggestions to im-
plement, the toolset provides explanations in natural language.
Since the CPS can evolve over time (for example, when new
vulnerabilities are identified or new components added) we
provide support for incremental updates to the ERG. Figure 2
gives an overview of the ERG workflow.

II. OVERVIEW OF APPROACH

Attack-resilience for complex CPS involves direct action
to be taken based upon a suspected event, which requires
a mitigation response that includes at a minimum, a semi-
autonomous capability. Such semi-autonomous action needs
to provide context and explanation to human operators that a
cyber-attack is occurring that necessitates the needed action
outside the capability of the ICS as well as assurances that
operational impacts are minimized. Moreover, the human oper-
ators need to be able to relate easily to the machine-generated
explanations. This implies that explanation generator need to
adopt the causal formalism used in human reasoning. Our
work is driven by these requirements of semi-autonomous
capabilities.

ERG-based CPS resiliency analysis can be broadly divided
into four stages discussed below and elaborated upon in the
next section, which also discusses the open research challenges
involved in each step that need to be addressed to bring this
vision to fruition.
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Step 1: Modeling CPS Resiliency — We introduce an entirely
new modeling paradigm for cyber-physical systems,
named Explainable Resiliency Graphs (ERG). Under
this paradigm, we combine the information related
to the security posture of a given network, popu-
larly captured using attack graphs, with information
related to safety events, traditionally represented
through fault trees. This presents an entirely new set
of modeling challenges, including capturing how the
components in each part influence the other, consis-
tently capturing qualitatively different information in
a single unified framework, and supporting analysis
over extremely large resiliency graphs.

Step 2: Automated Extraction of ERG Parameters — Even
with a fully specified modeling paradigm, creating
these graphs for large-scale application domains will
remain a substantial challenge. Our initial works
[18], [19] have shown how to create attack graphs
automatically from CVE vulnerability descriptions
using natural language processing (NLP) and Al
Planning. We refine and adopt that work in this
framework. However, the automatic generation of
fault trees remains a mostly unstudied problem. We
have done a pilot study to leverage state-of-the-art
semantic parsing tools, including pre-trained large
language models to extract formal descriptions of
ERGs. However, we have identified several missing
pieces in this puzzle where we plan to use a novel
human-in-the-loop model acquisition method that
will efficiently query domain experts to identify parts
of the graph that may be incorrect or incomplete and
get acquire the information required to fix them.

Step 3:  Developing Analysis, Detection and Interdiction
over Resiliency Graphs — We are in the process of
developing a set of analysis and detection algorithms
that allows the stakeholders to use the ERGs in two
unique modes. As part of a set of tools used to
analyze the security and safety posture, this involves
performing worst-case analysis, identifying points of
failure, and more importantly identifying potential
fixes to these problems. Secondly, the graphs can be
used as a way to monitor for and identify potential
attacks or possible failure cascades. As with the pre-
vious use case, we also develop a method to come up
with suggestions to stop the detected attacks/failures.

Step 4 Developing Explanation Generation Methods for
Experts to Support What-If Analysis —. Developing
powerful algorithms to analyze complex ERGs to
detect possible sources of failure or vulnerability
only forms a part of a system to empower users to
leverage the true potential of the proposed model.
To address this gap, we need to develop explanatory
techniques that will help the users better understand
both the analysis results and the suggestions being
made to them. The explanatory algorithms need to
be designed to address the two important challenges
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Fig. 3: Resiliency graph showing how a ICS control valve
failure occurs via a cyber attack

raised by this topic, namely the complexity of the
model itself and the fact that results will be used for
decision-making by users with different backgrounds
and expertise. The former is the result of both the
complexity and scale of modern-day CPS and our
need to consider so many different factors in a
single model. The second challenge is unavoidable
due to the basic reality that the users who are best
positioned to understand and analyze the security
challenges need not be the same as the ones who are
best suited to analyze safety issues and vice versa.
This means the output generated by this system
would need to be analyzed by a team of people
with different backgrounds. As such, we would need
to generate explanations that help build common
ground between these different users.

III. RESEARCH PATHWAY AND CHALLENGES

In the following, we discuss in more detail the technical
approach, identifying in the process some of the research
challenges the approach opens up. Henceforth, we use the
terms Explainable Resiliency Graphs and Resiliency Graphs
to mean the same structure. For this discussion, we use a very
small example. The resiliency graph, which is very tiny part
of a bigger resiliency graph, is shown in Figure 3

A. Step 1: Modeling of Explainable Resiliency Graphs

Existing works in modeling network attacks have mostly
separated the representation of the security posture of the
network, from other potential sources of failure and safety
events. However, past incidents have shown how attackers
could potentially leverage security holes to initiate cascading
failures, that might in turn affect the integrity of the entire
CPS and even result in casualties. Analyzing such potential
scenarios involves a richer modeling framework than what is
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used in practice. The Explainable Resiliency Graph paradigm
is meant to bridge that gap. We start by trying to unify
information that is generally captured through attack graphs
and fault trees.

Attack graphs [20], are traditionally used to capture po-
tential security vulnerabilities present in a given system, and
for the most part capture how an attacker could potentially
exploit them to compromise various components of the over-
all systems. A fault tree [21] on the other hand has been
traditionally used to model potential sources of failures and
dependencies between different events. While both models
could be represented as transition systems with various states
and potential transitions between them, there are qualitative
differences between them that make a combined model tech-
nically challenging.

For one thing, the transitions within the attack graphs
represent intentional actions carried out by an agent trying
to achieve a specific objective, while transitions within fault
trees represent events that are triggered by various physical or
environmental conditions. Any effective modeling techniques
should still retain such qualitative differences as they could
have a profound impact on the potential consequences.

We adapt the classical Planning Domain Definition Lan-
guage (PDDL) [17] as the base formalism to represent ERGs.
PDDL was introduced as a domain-independent method to
represent and specify goal-directed deterministic planning
problems. However, vanilla versions of PDDL is not well-
suited to retain all the qualitative differences between the
different transitions that are possible under this modeling
paradigm. At the very least, we are interested in separating
three classes of transitions, namely, state transitions due to the
attacker’s actions, those caused due to the user’s actions (either
unintended or coaxed by the attacker), and finally events that
are triggered by the occurrence of other physical or environ-
mental events. We have observed that qualitative difference in
these actions could make a considerable difference in the role
performed in various analyses and corrective actions.

We refer to this novel description language as Resiliency
Graph Description Language or RGDL. In particular, we
define a resiliency graph under RGDL using a tuple of the
form R = (F,A,U,E,I,T), where F represents the set of
state variables used to describe the transition system, A the
actions available to the attacker, U the actions to be performed
by the user, £ events that could occur, I the initial state and
T targets/nodes of importance and interest to the attacker.
Under this definition, F' defines the set of possible states in
the underlying transition system, and A U U U E, the set of
possible transitions.

B. Step 2: Automated Extraction of Resiliency Graph Param-
eters

PDDL-like languages have roots in folk psychological mod-
els of action [22] and have been known to boost explain-
ability [23]. Thus, our choice to use languages that build
on domain description languages like PDDL makes it well-
suited for people to manually specify them. Unfortunately, the
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queried to identify missing information or to correct potential
mistakes.

sheer complexity of modern-day CPS and the interdisciplinary
nature of ERGs make them a bad candidate for pure manual
declaration. On the other hand, a fully automated approach
to extracting these graphs is also not currently possible. To
address this, we use an expert-in-the-loop graph extraction
pipeline that tries to extract as much of the graph automatically
and queries the expert only when it identifies regions in the
graph that may be incorrect or incomplete. Moreover, even
when it queries an expert, the queries are tailored to best match
their expertise and are posed so as to minimize the cognitive
load imposed on them. Figure 4, presents an overview of the
overall extraction pipeline.

In the first phase of the pipeline, we look at the possibility of
extracting parts of the graph from existing knowledge sources.
Among the components considered, relatively more work has
been done in extracting information related to security aspects.
Vulnerability descriptions have proven to be a particularly rich
source of information about attack graphs. Our own previous
work, such as the AGBuilder system [24] has looked at the
possibility of extracting PDDL description from vulnerability
description and other information sources. However, even
with the previous works in this area, extracting a complete
attack graph remains a challenging problem in the context of
complex infrastructure. When we move over to fault trees,
the problem of extracting relevant information is much less
explored. Unlike the security domain, there have been very few
efforts to consolidate information related to potential safety
events, and there is much more variability with regard to the
specifics of the infrastructure. This remains an open area of
further research. Nonetheless, there exist documents related to
standard operating procedures and safety protocols that could
be used to learn relevant information. We are investigating
how to leverage state-of-the-art, large language model-based
semantic parsers to extract formal representation from such
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unstructured textual sources. We denote the incomplete RGDL
description learned in this phase as R.

The next phase of the pipeline takes the extracted model and
tries to identify potential parts that are incomplete or incorrect.
In particular, we perform this analysis by primarily leveraging
two sources of information. First, we try to see if our model
can support and potentially account for historical safety events
and attacks (which are known to still exist in the network). We
use semantic parsers to convert potential textual information
into formal traces that can be validated against R. Whenever
we find a trace (i.e., the path through the transition system) 7,
which cannot be supported by the current model, i.e 7 [~ R,
we generate a set of the hypothesis set R = {Ry,..., R},
where each hypothesis is generated by performing local edits
on the original model and can support the trace in question.

We have observed that at this stage in the workflow we
require expert-in-the loop to correct and refine the extracted
ERG. This would involve presenting parts of the graph (or
its descriptions) and asking the experts to identify potential
mistakes or presenting them with the set of potential hypothe-
ses and asking them to select the model that they believe
may actually be correct. The critical challenges here are to
ensure that queries about a specific part of the model are
only posed to the user with the appropriate expertise and
that the cognitive load posed by the query is minimized. Our
earlier work modeling the expertise of specific users [25],
which could be leveraged to address the former challenge,
while the latter presents a unique set of challenges. While
our group has worked on the use of abstraction as a means
to facilitate presenting relevant parts of the domain model
for correction [26], the heterogeneous nature of the modeling
paradigm presents an additional complexity. Simply presenting
a minimal abstraction of the relevant model component to
the user may not be the easiest way to empower a user to
effectively identify ways to correct the model. Instead, we
will investigate and develop a method that creates abstractions
that are user-specific and takes into account their particular
technical background. For example, when parts of models are
shown to a cybersecurity expert, the system should project
out all but the most critical information about security events.
Effectively, the system will be presenting an abstracted version
of the corresponding attack graph with minimal information
about safety events.

Figure 5 shows the output of the extraction process after it
has been refined by domain experts.

C. Step 3: Developing Analysis, Detection and Interdiction
over Resiliency Graphs

Before we discuss the exact analysis and inference problems
we are studying, let us take a quick look at the three main
components used to capture transition within RGDL and talk
about their qualitative nature:

o Attacker Actions A: These correspond to the various
actions that can be performed by the attacker. These
actions will have consistent semantics across all the
problems discussed in this section; namely, an intentional
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(define (domain extended-plc-vulnerability)
(:requirements :strips :typing :disjunctive-preconditions)

(:types
attacker
plc
service

:predicates

(has-access—plcnext ?who — attacker ?target - plc)
(vulnerable-plcnext ?target - plc)

(has-access-wago ?who - attacker ?target - plc)
(vulnerable-wago ?target - plc)

(has-access—phoenix ?who - attacker ?target - plc)
(vulnerable-phoenix ?target - plc)

(code-executed ?who - attacker ?target - plc)
(commands-executed-wago ?who - attacker ?target - plc)
(commands-executed-phoenix ?who - attacker ?target - plc)
(plc—compromised ?Service — service)

(running-service ?Service - service)

(:action exploit-buffer-overflow-DoS-Attack-CVE-2019-19723
:parameters (?attacker - attacker ?target - plc)
:precondition (and

(has-access—plcnext ?attacker ?target)
(vulnerable-plcnext ?target)

:effect (code-executed ?attacker ?target)

(:action exploit-command-execution-wago-CVE-2019-10977
:parameters (?attacker - attacker ?target - plc)
:precondition (and

(has-access-wago ?attacker 7target)
(vulnerable-wago ?7target)
)
reffect (commands-executed-wago ?attacker ?target)

(:action exploit-command-execution-phoenix-CVE-2019-18224
:parameters (?attacker - attacker ?target - plc)
:precondition (and

(has-access—phoenix ?attacker ?target)
(vulnerable-phoenix ?target)

)
:effect (commands-executed—phoenix ?attacker ?target)

(:action compromise-overall-plc
:parameters (?attacker - attacker ?targetl - plc
?target2 - plc ?target3 - plc ?Service - service)
:precondition (and
(code-executed ?attacker ?targetl)
(or
(commands—executed-wago ?attacker ?target2)
(commands—-executed-phoenix ?attacker ?target3)

(running-service ?Service)

:effect (plc—compromised ?Service)

(define (problem extended—plc—problem)
(:domain extended-plc-vulnerability)

tobjects

attacker-1 - attacker
plcnext-controller - plc
wago-pfc200 - plc
phoenix-axc-f2152 - plc
ICS-PLC - service

rinit

; (has—access-phoenix attacker-1 phoenix-axc-f2152)
; (vulnerable-phoenix phoenix-axc-f2152)
(has—access—plcnext attacker-1 plcnext-controller)
(vulnerable-plcnext plcnext-controller)
(has-access-wago attacker-1 wago-pfc200)
(vulnerable-wago wago-pfc200)

(running-service ICS-PLC)

:goal (and
(plc—compromised ICS-PLC)
)

Fig. 5: RGDL model of ERG from Figure 3 automatically
generated
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action performed by an attacker to achieve the attacker’s

objective, which is to compromise some of the targets of

importance to the attacker.

o User Actions U: These are the actions performed by the
users of the system. These actions are important to model;
in many cases, attackers require or leverage user actions
towards achieving their own objectives, for example to
deliver an attack payload. While for some analysis user
actions may be modeled as intentional actions, they may
also be modeled as stochastic transitions that are triggered
in response to attacker actions or because of reaching
certain states. Here the specific probabilities associated
with the transitions may be automatically learned by
using user activity logs.

o Safety Events E: There are various safety or fault events
that may be triggered intentionally by attackers or in
response to other events or even randomly. As with
the user actions, based on the form of the problem
being considered, the events may either be treated as
an intentional action or a stochastic transition. The exact
probabilities here are either learned from the different
procedural documents, from experts, or even from system
logs of previous events.

The Explainable Resiliency Graph provides us with a basis
for developing an extremely diverse set of highly valuable an-
alytical tools. Below we discuss some of the more immediate
and important ones that we have started investigating from the
point of view of both actionability and usefulness in building
a good understanding of the security/safety posture.

a) Worst-Case Analysis: One of the fundamental ques-
tions that we can ask for resiliency analysis is given an ERG,
what is the worst damage an attacker could bring about. Here
we are not only anticipating the potential attack paths that an
attacker could utilize but also trying to account for potential
events and user actions that could inadvertently occur that
may compound and magnify the effectiveness of the attacker.
We perform this analysis by treating each of the three sets
of transitions, A, U, and FE, as intentional actions an attacker
could wield to compromise the targets. This in a sense captures
the extreme case where everything works out in their favor.
This problem will be modeled as a deterministic planning
problem.

b) Average-Case Analysis: As alluded to previously, the
worst-case analysis looks at the most extreme failure scenarios.
In reality, this scenario could be extremely unlikely and would
require a number of factors outside the control of the attacker
to occur. While useful, this may not really reflect the most
common failure and attack modes. To capture this, we can
perform an analysis where only the attacker actions are treated
as intentional actions, but the events and user actions are
treated as stochastic effects that may or may not be triggered
based on probability. This formulation allows us to compute
various information, including most likely attack path, most
likely failure and/or compromised assets, the expected value
associated with each attacker action, and so on. This problem
will be modeled as a probabilistic planning problem.
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¢) Attack-triggerd Cascading Failure Analysis: The pre-
vious analysis corresponds to ones that are performed pre-
emptively to understand the security posture and the potential
of cascading failures in a given system. In addition to such
analysis, we need a real-time method to detect when the CPS
may be under attack. We need to detect whether observed
events may be part of some ongoing attack or simply unrelated
events. We will be building on existing plan recognition
work [27] to support such detection. Like the average case
analysis, we model user actions and safety events as stochastic
transitions and look for the most plausible set of attacker
actions that can explain the given set of observations. An
important aspect where more research is needed, is quantifying
the likelihood of this attack. We can do this quantification
either by using known models of attackers or by ascribing
rational behavior to the attacker, i.e., an attack is less likely
if there exist more effective ways of achieving the possible
attacker goal. We can also perform similar detection of the
start of a catastrophic cascade of safety events and failures.
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Fig. 6: Overview of the explanation process where the user’s
background is taken into account to generate explanations
tailored to a specific user and their expertise.

d) Attack/Failure Interception and Disruption Analysis:
Once an attack or failure is detected, the next course of action
is to come up with a series of steps to stop the attack or
failure. Such plans of recourse will consist of actions that
are outside the set of actions considered within the ERG
itself. For example, it may involve potentially disconnecting
a compromised system from the network or changing user
behavior. Regardless, each of these actions would correspond
to modifying the resiliency graph such that the current attacker
path (or the potential series of failures) is disrupted. As such,
we can carry out the analysis of identifying such plans using
the resiliency graph itself. We have done extensive previous
work on model-space search problems [23], which looks at the
meta-search problem of modifying a given planning model to
get ones with different properties. We are be extending these
works to support updating resiliency graphs.

D. Step 4: Developing Explanation Generation Methods for
Experts to Support What-If Analysis

We are in the process of developing explanatory algorithms
to support solutions generated for each of the problems de-
scribed in the previous step. We are leveraging our previous
works in developing explanation generation for planning-based
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systems and for decision-support systems [28], [29]. We adapt
existing planning formalisms and extend those to develop
explanation generation methods.

a) Generating Explanations Tailored to the Expert’s
Background: One of the critical challenges that we are faced
with in our work is that any observation made about the
system would probably be made by a team of experts with
distinct backgrounds. This means that we need to generate
multiple explanations each tailored to the unique background
of the user. At the same time, we also need to make sure
that over time the system is able to build a common ground
between the users so they can agree on the final decision. This
is a challenging problem and we welcome the community’s
suggestions in this matter.

For the time being, we are leaning on a strategy similar to
the one discussed for Step 2, as part of the system to query
the experts about the model. Specifically, we use abstractions
of the graph that takes into account the particular technical
background of each user. The abstraction will only contain
information about parts outside their field of expertise to the
degree it is needed to make sense of the specific analysis. The
explanations will be generated using this abstraction. The user
will also have the ability to concretize the model incrementally
thus adding more information about other components of the
system. This would allow each user to understand more about
the overall system.

b) Supporting What-If Analysis to Strengthen Resiliency
Graph: Our objective here is to not just generate explanations
that allow the users to better understand the properties of the
current system, but also to provide them the ability to update
the system, so as to fix any potential issues that may have
been detected as part of the analysis. The planned approach
involves two closely related processes. First, the system is
going to identify a set of ways through which the overall
system could be made more robust. Next, the options would be
presented to the user along with explanations as to how these
changes would improve the overall system. The experts then
can decide which of the changes they want to implement. For
analysis, we can use methods similar to the one developed
for the previous steps. We are interested in more than just
disrupting a specific path. So, we consider broader goals like
making the system more robust as measured under the worst-
case analysis or the average-case one. Here, we will also have
the additional objective of identifying multiple diverse ways of
updating the graph to achieve the desired objective. By giving
the users different options, they would be able to reason about
the trade-offs of going with one set of updates over another.

IV. CONCLUSIONS

As more and more industrial control systems (ICS) become
digitized they become targets of malicious cyber attacks. The
potential for disruptions in these cyber physical systems (CPS)
can be attributed to the dependence and the vulnerability of
the networks interconnecting the physical plants and control
centers. Such attacks can have very serious implications on
a CPS’s operation especially when the cyber-attacks trigger

safety events either directly or via triggering cascading failures
in the ICS. Therefore, there is a significant need for deeper
insights into cyber risks to cyber physical systems — insights
that help operators to determine what the weak spots are that
can be leveraged by APTs, LOLBins, or other malware to
launch cyber attacks affecting safety, and how to best deploy
defenses for resiliency of these CPSs.

In this paper, we present an Explainable Al approach that
combines the power of Natural Language Processing (NLP)
and Al Planning to enable CPS operators to evaluate and
analyze how a cyber-attack can trigger safety events in the
CPS (that is, the resiliency posture of the CPS). The approach
consists of a model, called Explainable Resiliency Graph, that
expresses the dependencies between cyber attack and ICS
failure. The model is supported by NLP and AI planner based
tools for automated generation of the model for a specific CPS
as well as tools that allow the operator to interact with the Al
planner to query the underlying ERG transition system and
perform what-if analysis. This analysis provides actionable
suggestions from the tool including insights into potential
attack vectors and help prioritize efforts to secure critical assets
effectively. These suggestions comprise of a diverse set of
solutions each of which can potentially take the CPS to a
safe and secure state. To help the operator decide which of
the actionable suggestions to implement, the toolset provides
explanations in natural language.
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