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A common approach to theory testing in behavioral and experimental economics relies on null hypothesis sig-
nificance testing via (generalized) linear regression models. Here, we showcase order-constrained inference as an
alternative route to theory testing. Order-constrained inference can improve the precision and nuance of
behavioral decision analytics. For example, the method can be leveraged to quantify the evidence in support of,
or against, a given hypothesis. It also offers advanced model selection tools for quantitative competition among
multiple theories. To illustrate our case for order-constrained methods, we re-analyze data from a pre-registered
experiment on incentives, cognitive reflection, and dishonest behavior. Building on this publicly available
dataset, we further highlight the advantages of Bayesian order-constrained inference. We discuss how the
method can deliver more convincing and more nuanced evidence than frequentist null hypothesis significance
testing, pointing to new research avenues for supplementing and expanding on experimental designs in
behavioral economics.

1. Introduction

A common approach to theory testing in behavioral and experi-
mental economics relies on null hypothesis significance testing via
(generalized) linear regression models. This article discusses an alter-
native that “removes the shackles of regression analysis” (Regenwetter
& Cavagnaro, 2019) and thereby facilitates more nuanced theory
testing: order-constrained likelihood-based inference. Experimental
data analytics can benefit greatly from order-constrained inference, for
instance, when this method is leveraged to quantify the evidence in

support of or against a given hypothesis, or to facilitate quantitative
competition among several models. To illustrate our case for
order-constrained inference, we re-analyze publicly available data from
a pre-registered experiment on dishonest behavior (Ludwig & Acht-
ziger, 2021, see also https://osf.io/3va2w). Using this example, we
advocate for order-constrained inference as a tool for researchers to
better tailor their analytical procedure to the theory under investigation.
This allows them to eschew arbitrary auxiliary assumptions on the
theoretical level whose only purpose is to legitimize the statistical model
underlying conventional analyses. In the following, we further highlight
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the advantages of Bayesian order-constrained inference and show how,
in an experimental setting, it can deliver more convincing and more
nuanced evidence than frequentist null hypothesis significance testing.
This also opens new avenues of research for supplementing and
expanding experimental designs in behavioral economics.

2. The case: cognitive misers on the web

Ludwig and Achtziger (2021) investigated the role of unsolicited
online search behavior as a potential source of distortion in the assess-
ment of cognitive performance in a web experiment. They administered
two versions of the Cognitive Reflection Test (CRT; Frederick, 2005;
Toplak et al., 2014). The original version of this brief, entertaining task
is extremely popular and generally well-known, both in the academic
judgment and decision making community and in the general popula-
tion (see Haigh, 2016; Kahneman, 2012; Stieger & Reips, 2016). Correct
responses can be found easily by a simple online search within a matter
of seconds. On the other hand, a slightly modified variant introduced by
Ludwig and Achtziger (2021), while requiring essentially the same
arithmetical steps to find a solution, used different wordings that made it
impossible to find the correct solution by a quick web search shortcut.
Ludwig and Achtziger (2021) counted the number of times participants
changed browser tabs while working on their four-item versions of the
CRT (potentially to search for the correct answers). Ludwig and Acht-
ziger also offered a piece-rate incentive for correct responding to half of
the participants working on either CRT version (the other half received a
fixed-rate bonus payment). This design aimed to assess the impact of
online searches on task performance, as well as study performance and
online searches (hence, potentially, cheating behavior) under
performance-based incentivization.

In the following, we first describe Ludwig and Achtziger’s (2021)
analytical procedures for testing their primary research questions. We
highlight limitations of the chosen analytical approach and identify
questions that the original publication left unanswered. We then turn to
order-constrained likelihood-based inference (Silvapulle & Sen, 2005;
Regenwetter & Cavagnaro, 2019) as an alternative analytical approach
to address the same research questions more directly, with greater
nuance, and with fewer, and better motivated, auxiliary assumptions. In
the style of a tutorial, we walk the reader through the formulation of
order-constrained hypotheses based on the scientific predictions in the
original publication. We provide a step-by-step description of data
pre-processing required to submit Ludwig and Achtziger’'s (2021)
dataset to QTest (Regenwetter et al., 2014; Zwilling et al., 2019), a
public domain software for order-constrained inference. We then walk
through a detailed and fully reproducible report of the QTest analysis.
We explain how these more custom-tailored data analytics form a useful
alternative to the conventional route of analyzing experimental data by
means of regression. Finally, we discuss future directions.

2.1. Regression analysis by Ludwig and Achtziger (2021)

Ludwig and Achtziger (2021) were interested in three main ques-
tions. First, do participants cheat when solving the CRT online? Second,
if so, how does cheating affect assessments of CRT performance? And
third, does a piece-rate incentive increase performance and/or cheating?
In addition, given the extant literature on gender differences in CRT
performance (e.g., Branas-Garza et al., 2019) and dishonest behavior (e.
g., Abeler et al., 2019; Gerlach et al., 2019; Leib et al., 2021), the authors
investigated heterogeneity across genders.

To address these questions, Ludwig and Achtziger (2021, see p. 5)
performed a stepwise proportional odds logistic regression analysis
(McCullagh, 1980; Moffatt, 2016). Essentially, they regressed CRT per-
formance (i.e., a score between 0 and 4) on the experimental treatments
(original vs. new test version; fixed vs. piece-rate incentive) and gender.
In line with the prediction that cheating takes place and boosts perfor-
mance, the number of browser tab changes was significantly related

with performance in the original CRT (for which answers were readily
available on the web) but not in the modified variant (for which re-
sponses were unavailable online). Ludwig and Achtziger interpreted this
finding to mean that participants clicked different browser tabs to search
for the correct answers, and thus, that tab clicks represented cheating
behavior.

Most importantly for the aim of this re-analysis, Ludwig and Acht-
ziger further suggested that the piece-rate incentive in their study
merely increased cheating, rather than improving CRT performance by
virtue of boosting cognitive reflection (see also Branas-Garza et al.,
2019; Yechiam & Zeif, 2022, on incentives and CRT performance). This
argument rested on the descriptive finding that piece-rate incentives,
relative to a fixed bonus payment, appeared to increase performance for
the original CRT, but not for the new CRT (see also Fig. 1 in Ludwig &
Achtziger, 2021).

Consistent with this descriptive finding, the regression models indi-
cated a pattern of interactions between the predictors: The interaction
term for CRT version and incentive treatment was statistically signifi-
cant, indicating that participants responded differently to the incentive
depending on the CRT version. However, when adding the interaction
term for CRT version and cheating (i.e., the click count), the former
interaction was no longer statistically significant (see Table 3 in Ludwig
& Achtziger, 2021). According to the authors, this finding suggested that
performance improvements in the original CRT that were observed
under piece-rate incentives were likely due to more cheating. On the
other hand, they “did not find clear evidence, but only a tendency, that
cheating was more prevalent” (p. 4) in the piece-rate incentive treat-
ment when analyzing cheating as a separate dependent variable.
Consequently, Ludwig and Achtziger (2021, p. 1) reservedly concluded
that “performance-based payment improved CRT performance, but
probably through cheating.”

2.2. Limitations and open questions

Although it seems plausible that cheating plays a causal role in
explaining performance differences between the incentive treatments,
the experimental design limits the strength of conclusion that can be
drawn from Ludwig and Achtziger’s analysis. One reason for this is that
cheating is a measured variable, not an experimentally manipulated one.
More generally, the design leaves room for multiple alternative expla-
nations for the performance improvement. We investigate several such
explanations.

For instance, if one were skeptical as to the informational value of the
cheating indicator, one might fancy an alternative explanation for the
performance difference that leaves out any reference to dishonest
behavior. It is theoretically possible, for example, that the changes to the
items’ wording in the new version (while retaining the basic structural
properties of the task), introduced idiosyncrasies that rendered the new
CRT slightly more difficult.! Possibly, a rather small boost in cognitive
reflection, motivated by the piece-rate incentive, may have sufficed to
significantly increase performance in the original task. However, at
overall higher difficulty of the new CRT, the same incentive-born
increment of cognitive reflection might no longer suffice to translate
into an observable performance improvement. In this sense, it remained
an open question whether the performance differences observed in the
original CRT could be attributed to just cheating, rather than increased
effort, or to a combination of both.

1 This example is to illustrate a theoretical possibility. Ludwig and Achtziger
advocated that the new version was by no means more difficult than the
original CRT (e.g., see their Fig. 1). Notwithstanding, it is virtually impossible
to keep all aspects of the CRT items constant while changing their wording. So,
one cannot rule out that the adaptation introduced some arbitrary changes that
relate to how strongly participants engaged in cognitive reflection while solving
the task.
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Moreover, like all regression modeling, Ludwig and Achtziger’s
(2021) analytical approach relies on the validity of various auxiliary
assumptions (Regenwetter & Cavagnaro, 2019; but see also Alos-Ferrer
etal., 2021). Regenwetter and Cavagnaro (2019) argued that extraneous
assumptions like (log-) linearity or even the assumption of a functional
relationship may well bias the results of empirical analysis. This line of
reasoning implies that adding or relaxing constraints just to convert a
theory into conventionally testable predictions can have serious rami-
fications for the generalizability and replicability of empirical findings
(see Regenwetter, 2020; Regenwetter & Cavagnaro, 2019; Zwilling
et al., 2019, for more detail).

A noteworthy feature of the analytical approach in the original
publication is that it does not consider the two behavioral outcomes of
interest, CRT performance and dishonesty, simultaneously as dependent
variables within one single analytical step. We aim to determine
whether the performance increment observed for the piece-rate incen-
tive relied on increased cheating, rather than more effort, or both. To
that goal, we predict certain patterns of performance and online
searches to hold jointly. In the next section, we present an analytical
approach that facilitates such a more nuanced view. We also review
model selection tools for quantitative competitions among theories.

3. Order-constrained modeling and inference
3.1. The basic idea behind order-constrained inference

Order-constrained inference is a procedure for studying hypotheses
that are characterized by order constraints, such as P; < P; < P3, P, < Ps,
P; < P4 (for five binomial probabilities Py, Py, ..., Ps). Both frequentist
and Bayesian approaches are available. Order-constrained inference in a
frequentist framework allows one to test a conjunction of constraints
like the above, directly, as the null hypothesis, thereby making the sci-
entific hypothesis refutable. Contrast this with, say regression analysis,
where the null hypothesis is the absence of an effect. In a Bayesian
framework, order constrained-inference allows one to select between
different order-constrained hypotheses based on the evidence provided
by data. In each case, a given conjunction of constraints, like those
above, forms one single hypothesis.

Order-constrained inference has several major advantages over
conventional regression. These mostly have to do with stating formal
models that tightly align with a scientific hypothesis. The approach also
supports these models through advanced quantitative data analytics:
First, the approach lets the scholar specify the relationship between
variables, including the possibility of not even requiring a functional
relationship between certain variables at all. Second, it eschews the
standard a-theoretical distributional assumptions embedded in regres-
sion analyses. Third, it makes it possible to consider multiple behavioral
outcomes jointly. Fourth, by aligning its statistical model closely with
the scientific hypothesis, order-constrained modeling allows us to carry
out more nuanced and concise theory testing. Fifth, the associated data-
analytics provide highly nuanced frequentist and Bayesian inference.
Finally, the Bayesian analytics facilitate full-fledged quantitative model
selection in that they move beyond heuristic model-complexity mea-
sures that typically limit themselves to counting parameters and degrees
of freedom. The cost of entry is that, essentially, the data-generating
process must be (adequately approximated by) a product of binomial
processes.

Many scholars have advocated for order-constrained methods as a
tool to improve theory testing, and several software packages are
available to date to conduct order-constrained modeling and inference
for a variety of statistical models (Gu et al., 2019; Heck & Davis-Stober,
2019; Hoijtink et al., 2019; Klugkist et al., 2005; Mulder et al., 2021;
Regenwetter et al., 2014; Sarafoglou et al., 2023a; Zwilling et al., 2019).
For instance, the R package Bain was developed specifically for testing
order-constrained hypotheses in structural equation models (Gu et al.,
2019). In this article, we rely on QTest (Regenwetter et al., 2014;

Zwilling et al., 2019) to evaluate hypotheses about equality of proba-
bilities and order constraints in binomial models.

3.2. The application of order-constrained inference to the Ludwig and
Achtziger (2021) dataset

In this section, we leverage these unique qualities to supplement and
expand on the experimental evidence obtained by Ludwig and Acht-
ziger (2021). We re-analyze their data (as available at https://osf.
io/3va2w) with order-constrained methods to address a key question
for which the authors, in the original paper, were reluctant to draw
strong conclusions: Does CRT performance increase under piece-rate
incentives by virtue of more effort and cognitive reflection, or alterna-
tively, by cheating, or by a combination of the two?

To answer this question, we formulate three models that explain
higher performance under incentives as a result of (a) increased effort,
(b) more cheating, or (c) both. The models specify the expected
behavioral patterns of both CRT performance and online searches
(dishonest behavior). Importantly, one should only consider the models
as supported if the predictions on both behavioral outcomes hold jointly.
We seek convincing evidence for or against conjunctions of constraints
on both behavioral outcomes (see also Davis-Stober & Regenwetter,
2019).

The upcoming tutorial is organized into five steps. First, we look at
the distinct predictions of the three competing explanatory models in
terms of performance and online searches. We formulate hypotheses in
the form of order-constrained probabilities for the behaviors of interest
in each experimental treatment. Second, we describe the data structure
required for order-constrained inference with QTest (Regenwetter et al.,
2014; Zwilling et al.,, 2019), as well as how we recoded and
pre-processed the original data. The third step then walks the reader
through the data input in QTest, as well as the software settings and
options for configuration. Step 4 presents and interprets the results.
Finally, the fifth step sketches further modeling possibilities when taking
gender into account as an additional predictor of performance and
cheating. We conclude with a discussion of the re-analysis.

3.2.1. Hypotheses: order-constrained probabilities

We consider two behavioral outcomes: high performance and
cheating, in each of the four treatments resulting from crossing the
experimental factors CRT version (original vs. new) and incentive (fixed
vs. piece-rate). We use two different cutoffs on the number of correctly
solved items to define high performance. We treat behavior as cheating
if the participant changed tabs during the CRT at least once. In the data
processing and results sections below, we provide more detail on how
we recode the data and how we check the robustness of our results under
different cutoffs for high performance.

Our hypotheses address the probabilities of being categorized as a
high performer or as a cheater, given one of the four treatments. Spe-
cifically, we describe below three competing explanations for higher
performance under incentivization (Models 1- 3): incentives improve
performance (1) through boosting cognitive reflection, (2) through
increased cheating, or (3) through both cognitive reflection and
cheating.

We convert verbal predictions into a stream of rank-ordered, (in-)
equality-constrained probabilities to form models that are amenable to
order-constrained inference. We denote the probability that a randomly
sampled respondent performs highly as P. We write the probability that
a randomly sampled respondent cheats as C. The subscript denotes the
test version (O for original, N for new) and the incentive treatment ($
indicates the presence of piece-rate incentives). Table 1 summarizes
seven sets of order constraints that encapsulate verbal hypotheses as
described below. We show below how we combine constraint sets to
form competing models.

First, let us consider some basic predictions for the probabilities of
high performance and of cheating. These predictions capture the general
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Table 1
Summary of constraint sets and models.
Constraint set Order constraints Model
1* 1 2% 2 3

1 0<Py<Po<1and0 < Pys<Pos<1. o o) o) o) o)
2 0<Cy<Co<1land0 < Cps<Cps<1. O o O O O
3 0<Py<Pyg<land 0 <Py<Ppyg<1. O O O
4% 0<Cy=Cys<1and0<Co=Cos<1. o
4 | Cy - Cns | < 0.05 and | Co - Cos | < 0.05. o
5 0<Py=Pys<land0<Po<Pos<1. o
5 | Py~ Pys | < 0.05and 0 < Po < Pos < 1. o
6 0<Cy<Cys<1land0< Co< Cos<1. o o o
7 (Png — Pn) < (Pog — Po). (©]

Note. P denotes the probability of performing highly and C the probability of cheating. The subscript denotes the test version (O for original, N for new) and the
incentive treatment ($ indicates the presence of piece-rate incentives). The asterisk (*) indicates more restrictive model versions.

idea that prior exposure to the CRT affects participants’ responses
(Haigh, 2016; Stieger & Reips, 2016; Woike, 2019; but see also Bialek &
Pennycook, 2018; Meyer et al., 2018). First, there are reasons to expect
more people to perform highly on the original CRT than on the new
version. Some participants who previously worked on the CRT may
simply remember the correct answers. Similarly, some participants
could remember receiving negative feedback on their incorrect re-
sponses in a previous study, which could encourage deeper reflection. In
contrast, the new version was developed for this study, hence could not
be subject to such memory effects. Therefore, we formulate constraint
set 1 to capture the hypothesis that a randomly sampled person is more
likely to perform highly on the original than the new CRT, within each
incentive structure:

0<Py<Pp<land0< Pys< Pps< 1. €Y

Note that, in order to have a well-stated constraint set on probabilities,
every probability must be bounded from below by either 0 or another
probability, and every probability must be bounded from above by
either 1 or another probability.

Prior exposure could similarly affect cheating rates. If some partici-
pants remember having solved the test before, this could raise suspicion
that the answers can be found online. Moreover, participants could be
more easily tempted to look up the correct answers on the internet when
they remember previous negative feedback. Therefore, we formulate
constraint set 2 to represent the hypothesis that cheating rates are higher
for the original CRT than the new version, within each incentive
structure:

0<Cy<Cp<land0 < Cyg<Cps<1. 2)

We summarize the first two constraint sets in Model 0. Hence, this
model predicts a conjunction of two scientific hypotheses. The first is
that performance is higher in the original version relative to the new
one, within incentive structure. This, in turn, yields a conjunction of
constraints (constraint set 1). The second hypothesis is that cheating is
more common in the original version than in the new one, within
incentive structure, which yields another conjunction of constraints
(constraint set 2).

By combining the probabilities of high performance and cheating in
four experimental treatments, Model O considers altogether eight binary
probabilities. By forming the combination of constraint sets 1 and 2,
Model 0 is a conjunction of twelve inequalities on those eight proba-
bilities. We use QTEesT to evaluate Model O as a single hypothesis. To test
this model, QTest requires the order constraints on the eight probabili-
ties (here: all constraints described in Model 0, that is, constraint sets
1-2) to be converted into a single set of non-redundant constraints. The
QTest input takes the form of a matrix as shown in the Appendix. For
further detail on matrix calculation and more comprehensive examples,
see the Appendix and Regenwetter and Cavagnaro (2019).

Model O is also implied by each of three following models. It

represents two basic predictions that we expect to hold regardless of
whether reflection (Model 1), cheating (Model 2), or both (Model 3) best
explain performance improvements under incentives. Beyond these
common predictions, Models 1-3 encompass different additional con-
straints on how the probabilities of performing highly and cheating
within CRT versions are affected by incentives. Models 1-3 can therefore
be considered as nested submodels of Model 0. As we see next, each
model adds a unique set of further constraints on the probabilities of
high performance and cheating.

Model 1 explains performance improvement under incentives by
more effort. It comprises a conjunction of four scientific hypotheses that
specify constraints on the probabilities of high performance and cheat-
ing across the four treatments. Four sets of order constraints together
capture the hypotheses (see also Table 1). The first two hypotheses are
represented in constraint sets 1 and 2. Third, under Model 1, incentives
should improve performance on both CRT versions through increased
reflection. This should be the case if effort and reflection are the main
drivers of higher performance under incentives. Constraint set 3 predicts
that the probability of scoring high on the CRT increases with incentives
in both CRT versions:

0<Py<Pys<land0 < Pp<Pps<l. 3)

Fourth, under Model 1, cheating should be equally likely to occur in
both incentive treatments. The probability that a randomly sampled
participant cheated should remain unaffected by the incentive treat-
ment, regardless of the test version. This motivates constraint set 4*:

0<Cy=Cys<1and0< Cp=Cps < 1. 4%)

We flag constraint sets and models with an asterisk (*) if they include an
equality constraint. Because the equality constraints in these hypotheses
may be overly restrictive, we also consider versions with a bit of wiggle
space, where we require only approximate equality among the pertinent
probabilities. In the case of constraint set 4, we add constraints on the
two probabilities C within test versions to express that, while Cy, Cng
and Cp, Cpg may lie anywhere within the range of 0 and 1 (subject to
constraint set 2), they should not differ by more than some threshold,
here 5 percentage points, within test version. This gives constraint set 4:

| Cy—Cns 1 <0.05and | Co— Cps | < 0.05. (€]

To sum up, Model 1 is a conjunction of four hypotheses, captured by
constraint sets 1-4, respectively. First, irrespective of incentive struc-
ture, performance improves on the original compared to the new CRT.
Second, more people engage in one or more tab changes under original
CRT than under new CRT. Third, for the same version of the CRT, per-
formance improves under piece-rate incentive relative to fixed rate.
Finally, for a given version of the CRT, the probability of one or more tab
changes does not differ by more than 0.05 between incentive structures.

Model 2, on the other hand, posits that higher performance under
piece-rate incentivization is best explained by more cheating. It does this
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Table 2
Binomial counts of pertinent behavioral outcomes to be input into QTEsr.
Experimental treatment n Performance Cheating
CRT ion - i ti
¢ version - incentive) (high, low) QTest (cheater, honest) QTest
Original CRT - fixed rate 76 29, 47 A, B 15, 61 1,J
Original CRT - piece-rate 83 45, 38 C,D 28, 55 K, L
New CRT - fixed rate 73 31, 42 E, F 13, 60 M, N
New CRT - piece-rate 67 20, 47 G, H 14, 53 O,P

Note. Colum QTest refers to the labels of these binomials used in QTest in the next section, see Fig. 1, Screenshot of QTest 2.1 GUL

with two key changes from Model 1. First, whereas Model 1 predicts
improved performance with piece-rate incentives in both the new and
original CRT (constraint set 3), Model 2 instead predicts improved
performance only in the original CRT, where web searches are likely to
be successful. It does not predict improved performance in the new CRT,
where cheating in search of answers is likely to be futile. Secondly,
whereas Model 1 predicts comparable cheating rates within given CRT
types (constraint set 4 or 4*), Model 2 predicts more frequent cheating
under piece-rate incentives within each CRT type.

We define constraint set 5* (and 5) to capture that (a) new CRT
performance does not differ (much) across incentive treatments, and (b)
original CRT performance increases under incentives.

0<Py=Pys<1land0<Py<Pps< 1. (5%
|PN*PN$I SOOS and 0 §P0§P0$§ 1. (5)

We define constraint set 6 to capture the prediction of more frequent
cheating under piece-rate incentives within each CRT type.

0<Cy<Cys<1land0< Cp< Cos< L. Q)

In all, Model 2 (or 2*) forms the conjunction of four hypotheses
captured by the constraint sets 1 and 2 together with 5 (or 5%) and 6
(Table 1). It differs from Model 1 by replacing constraint sets 3 and 4
with constraint sets 5 (or 5*) and 6. The QTest-compatible input
matrices for Models 2 and 2* are given in the Appendix.

Next, Model 3 captures the hypothesis that performance improves
under incentives through both cheating and cognitive reflection. Model
3 differs from Models 1 and 2 in that it predicts incentives to improve
performance on both CRT versions (constraint set 3; like Model 1, but
unlike Model 2). Model 3 further predicts that incentives increase
cheating rates in both CRT versions (constraint set 6; like Model 2, but
unlike Model 1).

Model 3 also predicts a difference in the performance increment
under incentives between the new and original versions of the CRT.
Model 3 predicts that both cognitive reflection and cheating may drive
performance improvements. However, whereas both factors may affect
performance in the original CRT, only cognitive reflection would be
expected to contribute to performance improvements in the new
version. This is because cheating is unlikely to uncover answers to the
new CRT. Therefore, if performance improves under incentives through
both cheating and cognitive reflection, then the increment should be
higher in the original than in the new CRT. We capture this with
constraint set 7:

(Pns — Pn) < (Pos — Po) @)

Together, Model 3 forms the conjunction of the constraint sets 1-3
and 6-7, see also Table 1.

3.2.2. Data preparation: recoding and pre-processing

Making the dataset amenable to order-constraint analysis with QTest
(Regenwetter et al., 2014; Zwilling et al., 2019) only requires a few
simple steps of recoding and data pre-processing. Order-constrained
inference with QTEest rests on estimating the probabilities of one or more
behavioral outcomes based on the number of ‘successes’ in each of the
binomials of interest.

The original study recorded performance as an ordinal variable with
range [0,4]. To facilitate order-constrained analytics, we have dichot-
omized this measure. To that end, we categorized participants who
solved at least two out of the four decision problems correctly as “high
performers” (successes, coded 1) and participants with one or no correct
response as “low performers” (coded 0). The resulting proportions per
treatment are given in Table 2. In the results section, we report a
robustness check using a different cutoff for high performance (at least
three correct). That analysis generates similar results.

Regarding cheating, this outcome already had the correct form in the
original dataset, as every participant was categorized as either “honest”
(coded 0) or as a “potential cheater” (coded 1). We can simply count the
number of binomial ‘successes’ (in this case: the number of potential
cheaters) per treatment and feed this information into QTEst, see
Table 2.

3.2.3. Feeding and operating QTest: data input and configurations

Fig. 1 shows a screenshot of the QTest 2.1 GUI (Zwilling et al., 2019).
We now review some of its panels more closely. Because QTest was
originally designed to model and analyze risky choice behavior, the
current interface uses somewhat idiosyncratic terminology. Under
Gamble pairs in the upper left, the user specifies the behavioral outcomes
to be modeled. Performance and cheating measures in each treatment
add up to eight binary variables, or eight pairs of ‘gambles.” For instance,
(A, B) refers to high (A) and low performance (B) in the Original CRT —
fixed rate treatment; (O, P) refers to cheaters (O) and honest participants
(P) in the New CRT - piece-rate treatment, and so forth. The labels
(letters A-P) can be adjusted under “Set...”.

Immediately below the definition of Gamble pairs is the Data input
field. The data (see Table 2) can be entered manually or loaded from a
text file. QTest can handle multiple datasets at once. Datasets can be
saved under a unique “Name...” for future reference. Next, in the bottom
row, the panel Random preference” specifies the predicted set of order-
constraints, specified via a matrix (see Appendix) and loaded from a
text file. We do not use any of the other “Probabilistic specifications”
offered by the QTest GUIL

Below (see Table 3) we look at the frequentist p-value and the
Bayesian p-value to evaluate model fit. We also consider the Bayes factor
for the comparison between models. But let us first consider the infor-
mational value of these statistics. The frequentist and Bayesian p-values
for order-constrained inference are derived based on pioneering work in
statistics and mathematical psychology (Davis-Stober, 2009; see also
Gelman et al.,, 1996; Meng, 1994; Silvapulle & Sen, 2005). While
requiring advanced methods to compute, the frequentist p-value follows
the conventional interpretation of p-values in null hypothesis signifi-
cance testing. The Bayesian p-value works similarly. Small frequentist or
Bayesian p-values < 0.05 result in the rejection of the model. In the
terminology of model fitting, a p-value of at least 0.05 indicates an
“adequate fit.” Very well-fitting models will generate a frequentist

2 Just like we are not using “gambles,” so are our models technically not what
is commonly referred to as “random preference” models. Conveniently, our
models can ‘mimic’ random preference models in that one can also specify the
latter via a matrix of order-constraints as input (see Zwilling et al., 2019).
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Fig. 1. Screenshot of the QTest 2.1 GUI (Zwilling et al., 2019).
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The reader is directed to four panels in particular: Gamble pairs, Data (see also Table 2), Random preference, and Hypothesis testing.

Table 3

Results of order-constrained inference for the competing models in three analyses.

Model Frequentist Bayesian p-value Bayes Factor Comparison to Bayes Factor Comparison to
p-value Encompassing Model Model 0
0.093 0.494 2.8 1
* - 0.078 4.1 1.4
Analysis 1 1 0.037 0.221 4.8 1.7
2% - 0.441 29.0 10.2
2 0.224 0.489 30.3 10.7
3 0.020 0.361 4.8 1.7
0 0.236 0.511 3.5 1
1= - 0.123 9.4 2.7
Analysis 2 1 0.100 0.308 11.0 3.2
(High performance cutoff > 3) 2% - 0.542 65.3 189
2 0.440 0.572 63.8 18.4
3 0.098 0.459 10.8 3.1
0.090 0.480 2.9 1
1* - 0.063 3.9 1.4
Analysis 3 0.151 0.215 4.7 1.7
(N = 255) 2% - 0.469 42.2 14.8
2 0.248 0.508 42.6 15.0
3 0.097 0.384 8.3 2.9

Note. The Models 1%, 2* are nested in their respective parent model and apply an equality constraint instead of allowing for a 0.05 divergence (see Hypotheses).

Computing a frequentist p-value is not possible for these models.

p-value near 1 and a Bayesian p-value around 0.50.

When more than one model adequately fits the data based on the
Bayesian (or frequentist) p-value, we can use the Bayes factor to deter-
mine which model provides the best explanation for the data. More
precisely, the Bayes factor is an evidence ratio. It quantifies the strength
of evidence for or against one model relative to another, given the data.
The QTest software provides the Bayes factor for each model under
consideration (the “constrained” model) relative to a common
“encompassing” model. This encompassing model includes the same
binomial probabilities as the model in question, but only constrains
these probabilities to be between 0 and 1. The larger the Bayes factor,
the stronger the evidence in favor of the constrained model. Following a

common convention in Bayesian statistics (Andraszewicz et al., 2015;
Jeffreys, 1998), we interpret Bayes factors larger than three as evidence
for the model. If the Bayes factor is three, there is three times more
evidence for the constrained model than for the encompassing model.
Similarly, a Bayes factor smaller than one third suggests evidence
against the model in question. If the Bayes factor is one third, the
encompassing model is three times more likely than the constrained
model. For more details on fit statistics and model selection tools, as well
as their interpretation in order-constrained inference, see Regenwetter
and Cavagnaro (2019) or another tutorial by Regenwetter (2020).
Returning to QTesrt, for Hypothesis testing in the upper right side, the
user must input one or more “Theories,” “Specifications,” and “Datasets”
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for analysis. Because we specify one model at a time via a matrix spec-
ification of order-constraints, this analysis employs one “theory” and
one “specification.” While QTest allows to run multiple tests and data-
sets at the same time, some computations can be rather slow. Some
(primarily the Bayes factor computation) will converge only when
setting the underlying algorithms to high “Sample size” in the “Gibbs
sampler.” This sometimes renders larger-size models (i.e., with more
binomial parameters) intractable on a personal computer in reasonable
time. To avoid unnecessary strain on computational demand, we
recommend conducting each Type of test separately and, for the Bayesian
analyses, adjusting Sample size in Gibbs sampling as needed, based on
convergence of the individual test. For instance, smaller Gibbs sample
sizes will usually suffice for the Bayesian p-value than for the Bayes
factor. Use “Change...” in the Gibbs sampling panel to adjust the sampling
size (see also Zwilling et al., 2019, for much more detailed information).
In our analysis, we used five million draws for the Bayesian p-value
computation, and one billion draws for the Bayes factors (see Table 3).
In the frequentist analysis we used the default setting of 50,000 draws
for Chi-bar squared weights simulation sample size.

3.2.4. Results of order-constrained inference with QTEsT

We consider three statistics for each competing model: the fre-
quentist p-value, Bayesian p-value, and Bayes factor. We assess these
statistics on each of four analyses. For each statistic, we first review
results for the main analysis of the full sample, based on the performance
coding described above (high performance if at least two CRT items
were solved correctly, “Analysis 1"). We then move on to two robustness
checks. One of these repeats the analysis using a different cutoff for high
performance (at least three CRT items solved correctly, “Analysis 2").
The second one is based on a subsample (N = 255, “Analysis 3"). Here,
we have excluded all participants who self-reported prior knowledge
with the CRT. Finally, to discuss further modeling options, the next
section considers gender differences in CRT performance and cheating
behavior (“Analysis 4").

Table 3 summarizes the results of order-constrained likelihood-based
inference for Analyses 1-3. Remember that Models 1-3 differ in how
they specify the role of incentives. Model 1 predicts performance
improvement under incentives through more effort. Model 2 predicts the
same performance improvement, but due to cheating. Model 3 posits
that both effort and cheating jointly contribute to better performance
under incentives. In addition, all three models have in common that they
predict more high performers and more cheaters in the original CRT, as
captured by Model 0. Note that because the nested submodels Models 1*
and 2* combine equality and inequality constraints, frequentist tests are
not possible.

Frequentist and Bayesian p-values. Judging by the frequentist p-value,
Models 1 and 3 are rejected, while Model 0 and Model 2 fit the data
(“Analysis 1" panel in Table 3). Hence, the frequentist analysis suggests
that Models 0 and 2 account for the observed behavior adequately.
However, the result does not fully repeat in the robustness checks. In
both Analyses 2 and 3, all models fit the data according to frequentist
analytics. Moreover, the Bayesian p-value does not fully align with the
frequentist analysis. The Bayesian p-value is greater than 0.05 for all
models in all analyses, suggesting reasonable fit throughout. Since
multiple models fit and since the fit varies across robustness checks, it is
unclear, from these analyses alone, which model best describes the data.
In the next steps, we rely on the Bayes factor for model selection.

Bayes factor. The Bayes factor quantifies the amount of evidence in
support of, or against, a given model compared to another model (here
the encompassing model). Consistent with the frequentist and Bayesian
p-value analysis, the Bayes factors indicate that there is evidence in the
data to support each constrained model against the encompassing
model. Model 2 (or Model 2*) has the highest Bayes factor in each of
Analyses 1-3. Its Bayes factor in Analysis 1 is 30.3. This means that there
is around 30 times more evidence for the constrained model than for the
encompassing model. Hence, the hypothesis that just cheating predicted

performance improvements under incentives receives substantial
support.

Since there is also support for other models, we need to carry out
model selection. We can compare two constrained models directly by
taking the ratio of their Bayes factors. This provides a quantitative evi-
dence ratio for one constrained model over another. For instance,
comparing Model 2 to either Model 1 or 3, in Analysis 1, there is 30.3/
4.8 = 6.3 times more evidence in favor of Model 2.

To evaluate whether the overall good performance of Models 1-3 is
due to the constraints they all share, which form Model 0, we can
compare each model against Model 0. We do this as before by taking
ratios of Bayes factors, see the last column in Table 3. From this
perspective, Model 2 best describes the data. In Analysis 1, there is
around ten times more evidence in support of Model 2 against Model
0 (18 times more in Analysis 2). Evidence for Models 1, 1*, and 3
(relative to Model 0) is rather weak. This pattern of results is robust
across the three analyses. In sum, compared to Model 0, there is about
six to nine times more evidence supporting Model 2 than supporting
Model 1, and still five to six times more evidence for Model 2 than for
Model 3. We thus conclude that Model 2 most adequately describes the
data. Its more restrictive version, Model 2%, has very similar Bayes
factors. The latter finding suggests that adding equality constraints
instead of permitting five percentage points of wiggle space does not
substantially alter model performance.

3.2.5. Gender differences: exploring further modeling opportunities

The present dataset offers opportunities to expand the order-
constrained analysis in interesting ways. For instance, Ludwig and
Achtziger (2021) reported that gender was an important predictor of
both performance and cheating. Order-constrained methods can test
precise theories about gender differences in relation to incentives, per-
formance, and cheating. To do so, we split each of the eight probabilities
described above into two, by gender (e.g., the probability that a
randomly selected female/male cheated in the original CRT under
piece-rate incentives). This results in 16 binomials (or QTest “Gamble
pairs™), which, in turn, substantially increases computational cost of
order-constrained inference.

While additional factors can be accounted for in this way, it is
generally advisable to limit the number of binomials in an order-
constrained model. The main reason is that larger models (25 bi-
nomials or more) often become intractable with desktop computing
resources.” In some situations, one can partition the collection of bi-
nomials into smaller subsets such that each model only states constraints
within each subset, but not between binomials of different subsets. In
such a case, one can perform separate analyses on the subsets of bi-
nomials. The product of these Bayes factors is the Bayes factor for the full
model on all binomials. We use this strategy in the following Analysis 4,
see the online supplement for more detail.

Studies related to Ludwig and Achtziger’s experiment have
commonly reported two findings of gender differences. First, males
typically outperform females on the CRT (e.g., Alos-Ferrer et al., 2016;
Branas-Garza et al., 2019; Ring et al., 2016). It is well-known that this
pattern need not translate into higher cognitive abilities of males.
Rather, it points to several problems with the construction of the test
(see also Juanchich et al., 2020; Sirota et al., 2020). By its nature, the
test appears to favor individuals with high confidence in their numerical
ability. Such positive self-appraisal, in turn, is more common among
males. Second, in related studies, males typically cheat more than fe-
males (Abeler et al., 2019; Gerlach et al., 2019; Leib et al., 2021).

3 Earlier work relied on supercomputers to test models of large size that
involved computing very many expensive Bayes factors, e.g., Guo and Regen-
wetter (2014) or Regenwetter et al. (2017); see also Sarafoglou et al., (2023b)
for an alternative approach for efficient order constraint evaluation based on a
bridge sampling procedure.
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Table 4

Additional constraint sets for the analysis of gender differences. F = females, M = males.

Constraint set

Order constraints

Description

8 0 < Pop<Pom<landO < Pogr <Pogm<1andO0 < Pyp<Pnm<1andO0 < Pygr < Pnsm < 1. Directed hypothesis
8b 0<Por=Pom<1land 0 < Pogr=Posm <1and 0 <Pyr=Pxm<1andO < Pysr=Pnsm<1. Typical null hypothesis
8c | Pog—Pom | <0.05and | Pogr—Posm | < 0.05and | Py — Py | < 0.05and | Pygr — Pnsm | < 0.05. Approximate equality
9 0<Cor<Com<1landO < Cosr < Cosm <1and0 < Cnr<Cnm<1andO < Cysr < Cnsm < 1. Directed hypothesis
9b 0<Cor=Com<1land0 < Cosr=Cosm<1and0 < Cyr=Cnm<1andO0 < Cysr=Cnsm < 1. Typical null hypothesis
9c | Cor—Com | <0.05and | Cosr— Cosm | <0.05and | Cyr— Cym | < 0.05 and | Cngr — Cnsm | < 0.05. Approximate equality

We now discuss how to test these two predictions with order-
constrained methods. Table A2 in the online supplement shows how
we recoded the data for this analysis. The dataset and QTest files to
reproduce the following analysis are available on OSF (https://osf.
io/3va2w). We captured the predictions for this analysis with addi-
tional constraint sets, see Table 4. Constraint set 8 represents the idea
that males outperform females on the CRT, in each treatment (e.g., Po
$-females < Pog-males).- Constraint set 9 formalizes the hypothesis that
males cheat more than females, in each treatment. We test the hypoth-
esis that constraint sets 8 and 9 hold jointly. We also test the competing
hypothesis of no gender differences (constraint sets 8b and 9b hold
jointly). This hypothesis predicts equal probabilities for females/males
within treatments. It forms the typical null hypothesis in standard ap-
proaches. Finally, we replace the equality constraints in the former step
by five percent wiggle space to model approximate gender equality
(constraint sets 8c and 9c).

We are interested in two sets of questions. First, how well do the
earlier Models 0-3 perform on separate samples, namely the female
subsample, the male subsample, or both jointly? Second, which of the
three hypotheses on gender differences (directed hypothesis, typical null
hypothesis, approximate equality, see Table 4) best describes the data?
The results of Analysis 4 are summarized in Table 5. Its left panel
(“Evidence for Models 0-3") addresses the first set, the right panel
(“Gender differences™) considers the second.

To tackle the first question, we repeated the main analysis (see above
“Analysis 1") separately for the female/male subsamples. When
considering females and males jointly (see “Analysis 1" and Table 5
column “combined”), the Bayes factor indicates substantial support for
all Models. But the evidence in favor of Model 2 (and 2*) is much
stronger.

From some perspectives, the results shown in Table 5 indicate
important gender differences. Model 1 (and 1*: Incentives increase CRT
performance through reflection rather than cheating) fits the male
subsample reasonably well. But there is circumstantial evidence away
from Model 1 (Bayes factor of about 2 in favor of the encompassing
model) in the female subsample. While Model 2 (and 2*: Incentives
increase CRT performance through cheating rather than reflection) is
supported similarly well in both female and male subsamples, the pro-
cesses captured in Model 1 seem to be more descriptive of males than
females. Strikingly, Model 1 describes males’ performance improve-
ments under incentives better than Model 2, while the reverse is true for

Table 5
Results of order-constrained inference: bayes factors in analysis 4.

females.

On the second question, we evaluated models that added constraint
sets 8-8c and 9-9c to our Models 0-3, see the right panel of Table 5. It
stands out that the Bayes factors are generally much higher in this
analysis. This is mainly due to the additional constraints making these
models more parsimonious in the right side of the table, compared to the
left. We can look at the right-most three columns of Table 5 in two
different ways. One is to compare values within each column. This
perspective reveals that regardless of our hypothesis about gender dif-
ferences, we find strong support for Model 2 over any of the other
models. The other is to compare values within each row. This compar-
ison shows that, regardless of our hypotheses about CRT version and
incentives, we reach one and the same conclusion about gender differ-
ences: the typical null hypothesis is supported over the directed hy-
pothesis by about 4:1.

Comparing these results to the Bayes factor for Model 2 without any
constraints regarding gender (from Table 3, it is 30.3), we can conclude
that adding constraint sets 8 and 9 does improve the model substantially
(the corresponding Bayes factor for Model 2 in Analysis 4 is 730.8, see
Table 5). In other words, the hypothesis that there are gender differences
in all treatments outperforms the encompassing model that is fully un-
constrained. At the same time, however, comparing the directed hy-
pothesis against the hypothesis of gender equalities (constraint sets 8b
and 9b), we find even stronger support for gender equality. The typical
null hypothesis is favored by around 4:1 over the directed hypothesis,
and around 96:1 (2700/30.3) over Model 2 without any constraints on
gender. Notably, applying Occam’s razor to these models (see e.g.,
Myung & Pitt, 1997), the gender equality hypothesis is rewarded for its
extreme parsimony. This is one of the notable advantages of an inference
framework that comparatively weighs evidence and parsimony against
each other, via Bayes factors among pairs of models, rather than merely
looking for enough evidence to claim the presence of an effect.

This analysis only scratches the surface of possibilities to address
gender differences. Much more nuanced hypotheses are testable with
QTest. For instance, our models spell out conjunctions of constraints
(summarized in Table 4) that capture the hypotheses that (a) there are
gender differences in performance and cheating in all treatments, (b)
there are no gender differences in any of the treatments, and (c) there
are only negligible differences between females and males in all treat-
ments. Models 2* and 2 fit the data particularly well under the hy-
pothesis that all response probabilities are invariant across gender. We

Evidence for Models 0-3 in

Gender differences

Model Female Male subsample combined Directed hypothesis Typical null hypothesis Approximate equality
subsample

0 4.7 1.2 5.4 59.2 277.4 274.6

1* 20.0 0.5 9.5 82.1 403.5 314.8

Analysis 4 1 20.0 0.6 12.4 101.7 472.7 388.3
(Gender differences) 2% 9.7 11.1 107.4 758.0 2868.4 2825.5
2 9.4 11.0 104.4 730.8 2900.1 2837.2

3 3.6 2.2 7.9 70.0 490.6 375.7

Note. The left panel shows Bayes factors for Models 0-3 in female and male subsamples and combined. The right panel contains Bayes factors for Models 0-3 when
constraints are added that capture different hypotheses on gender differences (cf. Table 4).


https://osf.io/3va2w
https://osf.io/3va2w

J. Ludwig et al.

find substantial evidence in favor of this hypothesis. However, this raises
the question whether gender differences may occur in some treatments,
but not in others. If there were a theory about why performance or
cheating should increase more strongly for females or males in one
particular treatment, QTest could evaluate the corresponding collection
of order-constraints.

For instance, performance-based incentives might trigger different
behavioral responses among females and males. Related research re-
ported that females and males reacted differently to competition (Nie-
derle & Vesterlund, 2011). Males were more eager to compete, and their
performance tended to benefit more strongly from competitive envi-
ronments than females’ performance. If performance-based pay pro-
duces a similar gender difference, then CRT performance increments
under incentives should be larger for males than for females.
Order-constrained modeling can capture this pattern by adding further
order-constraints.

For example, 0 < (Pos-female - Po-female) < (Pos-male - Po-male) < 1
captures the idea that incentives produce stronger performance im-
provements for males than for females (on the original CRT). One may or
may not predict this hypothesis also on the new CRT. Females and males
may also differ in how strongly incentives tempt them to cheat. To
capture the idea that incentivization increases cheating more strongly
for males than females, one can spell out similar constraints for cheating
probabilities. It is also possible to require that the difference between
certain probabilities should exceed some threshold.

In our dataset, order-constrained inference offers great flexibility to
model a variety of hypotheses on the behavioral patterns of high per-
formance and cheating on the CRT. Given a plausible theory of gender
differences, it is possible to test highly nuanced and precise predictions.
This emphasizes the great potential of order-constrained inference for
more nuance and precision in theory testing. At the same time, this
flexibility may tempt excessive exploration. We would emphasize that
order-constrained inference is intended to serve as a theory testing tool,
and not for exploratory analysis. Theory testing is where it best plays out
its advantages over conventional approaches. Order-constrained infer-
ence metrics like Bayes factors are uninterpretable in exploratory
settings.

4. Discussion

Together, these results make a convincing argument that cheating
drove the performance increment under incentivization in Ludwig and
Achtziger’s (2021) experiment, rather than increased effort, or both
effort and cheating combined. While Ludwig and Achtziger suggested
that such an interpretation of their data was plausible, the original
publication was lacking the analytical means to provide strong evidence
in support of that claim. Here, relying on order-constrained inference,
we were able to bridge this gap and ground that argument in more
convincing data analytics.

The re-analysis addressed four limitations of the original publication.
First, cheating was a measured variable, not an experimental one.
Therefore, the authors could not rule out alternative explanations for
correlations between performance and cheating behavior. Relying on
Bayesian statistics, order-constrained inference offers advanced tools for
quantitative competition among explanatory models. We leveraged this
unique quality and obtained more convincing evidence in support of the
claim that incentives increased performance merely through cheating.

Second, the re-analysis eschewed standard auxiliary assumptions of
regression analysis (distributional assumptions, functional relation be-
tween variables, see, e.g., Regenwetter & Cavagnaro, 2019). Many sta-
tistical models force auxiliary assumptions that are arbitrary because
they do not follow from the scientific theory under investigation. Adding
or relaxing constraints on the theoretical level just to satisfy the statis-
tical model can negatively affect the interpretation and reproducibility
of empirical analysis (Regenwetter & Cavagnaro, 2019).
Order-constrained inference is built on the far weaker assumption that

the data generating process is a product of binomials. Since this
assumption translates into drawing respondents independently from the
population and counting how many show a given behavior, this
requirement has allowed us to avoid a-theoretical distributional as-
sumptions completely and stay true to Ludwig and Achtziger’s theory.

Third, we have considered two behavioral outcomes jointly within
one analytical step. Order-constrained inference has allowed us to
formulate nuanced hypotheses for these outcomes based on the pre-
dictions in the original publication. By placing constraints on both
outcomes and predicting that the hypotheses will hold jointly, we
improved the precision of the theory test.

Finally, unbalanced data (e.g., large differences in experimental
group sizes) may cause problems in conventional analysis (e.g., related
to heteroscedasticity, see Klein et al., 2016). In order-constrained
inference, different sample sizes merely imply that the samples differ
in how much evidence they can generate for or against one model versus
another, at a maximum. The higher the sample size, the higher the
power to reject a hypothesis in a frequentist test and the higher the
potential Bayes factors. Relying on Bayesian statistics, our analysis of
gender differences showcases how order-constrained inference can be
leveraged to improve the level of nuance and precision in experimental
data analytics with unbalanced samples, especially Occam’s razor, ac-
cording to which statistical fit should be balanced against theoretical
parsimony.

This analysis also highlights the potential of order-constrained
methods to generate new hypotheses. For instance, our analysis seems
to suggest that females’ performance improvement under incentives is
best explained by more reflection (Model 1). On the other hand, more
cheating (Model 2) captured males’ performance improvement better
than any of the alternative models. We can combine this into a new
hypothesis, essentially predicting that Model 1 applies to females (e.g.,
because their inclination to cheat is generally lower), while Model 2
applies to males (who, in addition to cheating more than females, might
also be more strongly tempted to do so by the financial incentive).
Running an order-constrained analysis posthoc on the same data would
be hard to interpret because the data would be used twice: Once in
generating the hypothesis, and again in calculating analytical metrics.
Such an analysis would not be interpretable. Instead, it would be best to
subject this new hypothesis to a new experiment.

Like any other methodology, our approach also has limitations. First,
we dichotomized the ordinal performance measure to facilitate order-
constrained modeling with QTEst. In the process, some valuable infor-
mation may have gotten lost. We sought to address this limitation by
providing a robustness check based on a different cut-off for high per-
formance. While we acknowledge that dichotomization presents a lim-
itation, we also emphasize that, on the other hand, our approach
completely avoids making any scale assumptions, in contrast to routine
conventional analysis. A second limitation concerns assumptions about
independence between the probabilities of performing highly and of
cheating. Because participants who cheated on the CRT can be expected
to also have a higher probability of performing highly, it is reasonable to
assume some level of dependence among these behavioral outcomes.
While assumptions of independence between binomials may be viewed
as a limitation of the methodology more generally, it is important to note
that inter-dependent empirical observations present a challenge for
almost any analytical approach. For a more comprehensive discussion of
different forms of independence, and their implications for analysis and
theory development, see e.g., Regenwetter and Cavagnaro (2019, pp.
138-140), and Regenwetter and Davis-Stober (2018).

Beyond the methodological contribution, our results inform an
ongoing debate, in experimental research on dishonesty, about the link
between financial incentives and cheating (Abeler et al., 2019; Gerlach
et al., 2019; Kajackaite & Gneezy, 2017). In some experimental para-
digms (e.g., sender-receiver game with cheap-talk element, Gneezy,
2005) lying will typically increase with incentives. But studies with
many other procedures, like the coin-flip or matrix tasks (Abeler et al.,
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2014; Mazar et al., 2008), rarely report a similar increase (see also Future online research with the CRT should consider these influences.
Fischbacher & Follmi-Heusi, 2013). Our re-analysis supports an impor-
tant role of financial incentives in predicting dishonest behavior.

We emphasize that CRT performance improvements under in- Declarations of Competing Interest
centives, in Ludwig and Achtziger’s (2021) dataset, were best explained
by more cheating. This adds an interesting perspective on in- None.
consistencies recently reported regarding the relation between financial
incentives and CRT performance (see Branas-Garza et al., 2019; Data availability
Yechiam & Zeif, 2022). To the extent that cheating occurred not only in
Ludwig and Achtziger’s experiment, but also in other CRT web studies, Data, code, and materials are available on the OSF, see https://osf.
participants’ dishonest behavior could have distorted the findings. io/3va2w/
Appendix

QTesr input: text files

The order of eight probabilities is the same in all files: 4 x Performance (denoted by P), 4 x Cheating (denoted by C), and ordered within these
groups according to the experimental treatments: Original-fixed, Original-piece-rate, New-fixed, New-piece-rate.

Po Pos Pn Pns Co Cos Cn Cns

The text files (see Fig. A1) first state the number of rows (constraints) and columns (probabilities) in the document. While we list 15 constraints in
Model 2, there are additional constraints implicit in our model, such as Pyg > 0. Indeed, QTEstT requires the order-constraints to be non-redundant. To
better understand the composition of these files, let us consider the example of Model 2. The individual constraints contained in Model 2 (constraint
sets 1-2 and 5-6, see Table 1) can be spelled out as seen in Table A1.

Note that rows 13 and 14 are redundant. Constraint set 1 requires Pyg to be smaller than Ppg (row 1 in Table A1). Because row 11 specifies that Pog
<1, row 13 contains a redundant constraint. The same is the case for row 14. Because constraint set 6 requires that Co < Cpg (row 9), and row 15 states
that Cpg < 1, the constraint in row 14 is redundant. Removing the two rows results in a matrix with 15 rows, as shown in Fig. A1. Note that the order of
the rows is irrelevant, but the order of columns is fixed.
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Fig. Al. Screenshots of matrix-formated data input for QTest. The figure shows Models 0, 2 and 2* as examples (see also Table 1). All text files are available on
the OSF.

Table Al
Model 2 in matrix format.
Row Constraint set Constraint Po Pog Py Pns Co Cos Cn Cns Upper bound
1 1 (~1 *Ppg) + (1 * Pyg) <0 0 -1 0 1 0 0 0 0 0
2 1 (-1 *Po) + (1 *Py) <0 -1 0 1 0 0 0 0 0 0
3 2 (=1 *Cog) + (1 *Cng) <O 0 0 0 0 0 -1 0 1 0
4 2 (-1*Co)+ (1 *Cw) <0 0 0 0 0 -1 0 1 0 0
5 5 (1*Pg)+ (-1 *Ppg) <0 1 -1 0 0 0 0 0 0 0
6 5 (=1 *Py) + (1 * Pyg) < 0.05 0 0 -1 1 0 0 0 0 0.05

(continued on next page)
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Table A1 (continued)

Row Constraint set Constraint Po Pog Py Pns Co Cos Cn Cns Upper bound
7 5 (1 *Py) + (=1 * Png) < 0.05 0 0 1 -1 0 0 0 0 0.05
8 6 (1*Cn)+(—1*Cng) <0 0 0 0 0 0 0 1 -1 0
9 6 (1% Co) + (-1 *Cog) <0 0 0 0 0 1 -1 0 0 0
10 (1*Pg)<1 1 0 0 0 0 0 0 0 1
11 (1 *Pog) <1 0 1 0 0 0 0 0 0 1
12 (-1*Py) <0 0 0 -1 0 0 0 0 0 0
13 (-1 *PNg) <0 0 0 0 -1 0 0 0 0 0
14 (1*Co) <1 0 0 0 0 1 0 0 0 1
15 (1*Cog) <1 0 0 0 0 0 1 0 0 1
16 (-1*Cy) <0 0 0 0 0 0 0 -1 0 0
17 (-1 *Cng) <O 0 0 0 0 0 0 0 -1 0
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