
Order-constrained inference to supplement experimental data analytics in 
behavioral economics: A motivational case study☆ 

Jonas Ludwig a,*, Daniel R. Cavagnaro b, Michel Regenwetter c 

a Coller School of Management, Tel Aviv University, Tel Aviv 6997801, Israel 
b College of Business and Economics, California State University, Fullerton, USA 
c Department of Psychology, University of Illinois at Urbana-Champaign, USA   

A R T I C L E  I N F O   

Keywords: 
Order-constrained inference 
Bayesian statistics 
Regression analysis 

A B S T R A C T   

A common approach to theory testing in behavioral and experimental economics relies on null hypothesis sig
nificance testing via (generalized) linear regression models. Here, we showcase order-constrained inference as an 
alternative route to theory testing. Order-constrained inference can improve the precision and nuance of 
behavioral decision analytics. For example, the method can be leveraged to quantify the evidence in support of, 
or against, a given hypothesis. It also offers advanced model selection tools for quantitative competition among 
multiple theories. To illustrate our case for order-constrained methods, we re-analyze data from a pre-registered 
experiment on incentives, cognitive reflection, and dishonest behavior. Building on this publicly available 
dataset, we further highlight the advantages of Bayesian order-constrained inference. We discuss how the 
method can deliver more convincing and more nuanced evidence than frequentist null hypothesis significance 
testing, pointing to new research avenues for supplementing and expanding on experimental designs in 
behavioral economics.   

1. Introduction 

A common approach to theory testing in behavioral and experi
mental economics relies on null hypothesis significance testing via 
(generalized) linear regression models. This article discusses an alter
native that “removes the shackles of regression analysis” (Regenwetter 
& Cavagnaro, 2019) and thereby facilitates more nuanced theory 
testing: order-constrained likelihood-based inference. Experimental 
data analytics can benefit greatly from order-constrained inference, for 
instance, when this method is leveraged to quantify the evidence in 

support of or against a given hypothesis, or to facilitate quantitative 
competition among several models. To illustrate our case for 
order-constrained inference, we re-analyze publicly available data from 
a pre-registered experiment on dishonest behavior (Ludwig & Acht
ziger, 2021, see also https://osf.io/3va2w). Using this example, we 
advocate for order-constrained inference as a tool for researchers to 
better tailor their analytical procedure to the theory under investigation. 
This allows them to eschew arbitrary auxiliary assumptions on the 
theoretical level whose only purpose is to legitimize the statistical model 
underlying conventional analyses. In the following, we further highlight 
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the advantages of Bayesian order-constrained inference and show how, 
in an experimental setting, it can deliver more convincing and more 
nuanced evidence than frequentist null hypothesis significance testing. 
This also opens new avenues of research for supplementing and 
expanding experimental designs in behavioral economics. 

2. The case: cognitive misers on the web 

Ludwig and Achtziger (2021) investigated the role of unsolicited 
online search behavior as a potential source of distortion in the assess
ment of cognitive performance in a web experiment. They administered 
two versions of the Cognitive Reflection Test (CRT; Frederick, 2005; 
Toplak et al., 2014). The original version of this brief, entertaining task 
is extremely popular and generally well-known, both in the academic 
judgment and decision making community and in the general popula
tion (see Haigh, 2016; Kahneman, 2012; Stieger & Reips, 2016). Correct 
responses can be found easily by a simple online search within a matter 
of seconds. On the other hand, a slightly modified variant introduced by 
Ludwig and Achtziger (2021), while requiring essentially the same 
arithmetical steps to find a solution, used different wordings that made it 
impossible to find the correct solution by a quick web search shortcut. 
Ludwig and Achtziger (2021) counted the number of times participants 
changed browser tabs while working on their four-item versions of the 
CRT (potentially to search for the correct answers). Ludwig and Acht
ziger also offered a piece-rate incentive for correct responding to half of 
the participants working on either CRT version (the other half received a 
fixed-rate bonus payment). This design aimed to assess the impact of 
online searches on task performance, as well as study performance and 
online searches (hence, potentially, cheating behavior) under 
performance-based incentivization. 

In the following, we first describe Ludwig and Achtziger’s (2021) 
analytical procedures for testing their primary research questions. We 
highlight limitations of the chosen analytical approach and identify 
questions that the original publication left unanswered. We then turn to 
order-constrained likelihood-based inference (Silvapulle & Sen, 2005; 
Regenwetter & Cavagnaro, 2019) as an alternative analytical approach 
to address the same research questions more directly, with greater 
nuance, and with fewer, and better motivated, auxiliary assumptions. In 
the style of a tutorial, we walk the reader through the formulation of 
order-constrained hypotheses based on the scientific predictions in the 
original publication. We provide a step-by-step description of data 
pre-processing required to submit Ludwig and Achtziger’s (2021) 
dataset to QTEST (Regenwetter et al., 2014; Zwilling et al., 2019), a 
public domain software for order-constrained inference. We then walk 
through a detailed and fully reproducible report of the QTEST analysis. 
We explain how these more custom-tailored data analytics form a useful 
alternative to the conventional route of analyzing experimental data by 
means of regression. Finally, we discuss future directions. 

2.1. Regression analysis by Ludwig and Achtziger (2021) 

Ludwig and Achtziger (2021) were interested in three main ques
tions. First, do participants cheat when solving the CRT online? Second, 
if so, how does cheating affect assessments of CRT performance? And 
third, does a piece-rate incentive increase performance and/or cheating? 
In addition, given the extant literature on gender differences in CRT 
performance (e.g., Brañas-Garza et al., 2019) and dishonest behavior (e. 
g., Abeler et al., 2019; Gerlach et al., 2019; Leib et al., 2021), the authors 
investigated heterogeneity across genders. 

To address these questions, Ludwig and Achtziger (2021, see p. 5) 
performed a stepwise proportional odds logistic regression analysis 
(McCullagh, 1980; Moffatt, 2016). Essentially, they regressed CRT per
formance (i.e., a score between 0 and 4) on the experimental treatments 
(original vs. new test version; fixed vs. piece-rate incentive) and gender. 
In line with the prediction that cheating takes place and boosts perfor
mance, the number of browser tab changes was significantly related 

with performance in the original CRT (for which answers were readily 
available on the web) but not in the modified variant (for which re
sponses were unavailable online). Ludwig and Achtziger interpreted this 
finding to mean that participants clicked different browser tabs to search 
for the correct answers, and thus, that tab clicks represented cheating 
behavior. 

Most importantly for the aim of this re-analysis, Ludwig and Acht
ziger further suggested that the piece-rate incentive in their study 
merely increased cheating, rather than improving CRT performance by 
virtue of boosting cognitive reflection (see also Brañas-Garza et al., 
2019; Yechiam & Zeif, 2022, on incentives and CRT performance). This 
argument rested on the descriptive finding that piece-rate incentives, 
relative to a fixed bonus payment, appeared to increase performance for 
the original CRT, but not for the new CRT (see also Fig. 1 in Ludwig & 
Achtziger, 2021). 

Consistent with this descriptive finding, the regression models indi
cated a pattern of interactions between the predictors: The interaction 
term for CRT version and incentive treatment was statistically signifi
cant, indicating that participants responded differently to the incentive 
depending on the CRT version. However, when adding the interaction 
term for CRT version and cheating (i.e., the click count), the former 
interaction was no longer statistically significant (see Table 3 in Ludwig 
& Achtziger, 2021). According to the authors, this finding suggested that 
performance improvements in the original CRT that were observed 
under piece-rate incentives were likely due to more cheating. On the 
other hand, they “did not find clear evidence, but only a tendency, that 
cheating was more prevalent” (p. 4) in the piece-rate incentive treat
ment when analyzing cheating as a separate dependent variable. 
Consequently, Ludwig and Achtziger (2021, p. 1) reservedly concluded 
that “performance-based payment improved CRT performance, but 
probably through cheating.” 

2.2. Limitations and open questions 

Although it seems plausible that cheating plays a causal role in 
explaining performance differences between the incentive treatments, 
the experimental design limits the strength of conclusion that can be 
drawn from Ludwig and Achtziger’s analysis. One reason for this is that 
cheating is a measured variable, not an experimentally manipulated one. 
More generally, the design leaves room for multiple alternative expla
nations for the performance improvement. We investigate several such 
explanations. 

For instance, if one were skeptical as to the informational value of the 
cheating indicator, one might fancy an alternative explanation for the 
performance difference that leaves out any reference to dishonest 
behavior. It is theoretically possible, for example, that the changes to the 
items’ wording in the new version (while retaining the basic structural 
properties of the task), introduced idiosyncrasies that rendered the new 
CRT slightly more difficult.1 Possibly, a rather small boost in cognitive 
reflection, motivated by the piece-rate incentive, may have sufficed to 
significantly increase performance in the original task. However, at 
overall higher difficulty of the new CRT, the same incentive-born 
increment of cognitive reflection might no longer suffice to translate 
into an observable performance improvement. In this sense, it remained 
an open question whether the performance differences observed in the 
original CRT could be attributed to just cheating, rather than increased 
effort, or to a combination of both. 

1 This example is to illustrate a theoretical possibility. Ludwig and Achtziger 
advocated that the new version was by no means more difficult than the 
original CRT (e.g., see their Fig. 1). Notwithstanding, it is virtually impossible 
to keep all aspects of the CRT items constant while changing their wording. So, 
one cannot rule out that the adaptation introduced some arbitrary changes that 
relate to how strongly participants engaged in cognitive reflection while solving 
the task. 
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Moreover, like all regression modeling, Ludwig and Achtziger’s 
(2021) analytical approach relies on the validity of various auxiliary 
assumptions (Regenwetter & Cavagnaro, 2019; but see also Alós-Ferrer 
et al., 2021). Regenwetter and Cavagnaro (2019) argued that extraneous 
assumptions like (log-) linearity or even the assumption of a functional 
relationship may well bias the results of empirical analysis. This line of 
reasoning implies that adding or relaxing constraints just to convert a 
theory into conventionally testable predictions can have serious rami
fications for the generalizability and replicability of empirical findings 
(see Regenwetter, 2020; Regenwetter & Cavagnaro, 2019; Zwilling 
et al., 2019, for more detail). 

A noteworthy feature of the analytical approach in the original 
publication is that it does not consider the two behavioral outcomes of 
interest, CRT performance and dishonesty, simultaneously as dependent 
variables within one single analytical step. We aim to determine 
whether the performance increment observed for the piece-rate incen
tive relied on increased cheating, rather than more effort, or both. To 
that goal, we predict certain patterns of performance and online 
searches to hold jointly. In the next section, we present an analytical 
approach that facilitates such a more nuanced view. We also review 
model selection tools for quantitative competitions among theories. 

3. Order-constrained modeling and inference 

3.1. The basic idea behind order-constrained inference 

Order-constrained inference is a procedure for studying hypotheses 
that are characterized by order constraints, such as P1 ≤ P2 ≤ P3, P2 ≤ P5, 
P1 ≤ P4 (for five binomial probabilities P1, P2, …, P5). Both frequentist 
and Bayesian approaches are available. Order-constrained inference in a 
frequentist framework allows one to test a conjunction of constraints 
like the above, directly, as the null hypothesis, thereby making the sci
entific hypothesis refutable. Contrast this with, say regression analysis, 
where the null hypothesis is the absence of an effect. In a Bayesian 
framework, order constrained-inference allows one to select between 
different order-constrained hypotheses based on the evidence provided 
by data. In each case, a given conjunction of constraints, like those 
above, forms one single hypothesis. 

Order-constrained inference has several major advantages over 
conventional regression. These mostly have to do with stating formal 
models that tightly align with a scientific hypothesis. The approach also 
supports these models through advanced quantitative data analytics: 
First, the approach lets the scholar specify the relationship between 
variables, including the possibility of not even requiring a functional 
relationship between certain variables at all. Second, it eschews the 
standard a-theoretical distributional assumptions embedded in regres
sion analyses. Third, it makes it possible to consider multiple behavioral 
outcomes jointly. Fourth, by aligning its statistical model closely with 
the scientific hypothesis, order-constrained modeling allows us to carry 
out more nuanced and concise theory testing. Fifth, the associated data- 
analytics provide highly nuanced frequentist and Bayesian inference. 
Finally, the Bayesian analytics facilitate full-fledged quantitative model 
selection in that they move beyond heuristic model-complexity mea
sures that typically limit themselves to counting parameters and degrees 
of freedom. The cost of entry is that, essentially, the data-generating 
process must be (adequately approximated by) a product of binomial 
processes. 

Many scholars have advocated for order-constrained methods as a 
tool to improve theory testing, and several software packages are 
available to date to conduct order-constrained modeling and inference 
for a variety of statistical models (Gu et al., 2019; Heck & Davis-Stober, 
2019; Hoijtink et al., 2019; Klugkist et al., 2005; Mulder et al., 2021; 
Regenwetter et al., 2014; Sarafoglou et al., 2023a; Zwilling et al., 2019). 
For instance, the R package Bain was developed specifically for testing 
order-constrained hypotheses in structural equation models (Gu et al., 
2019). In this article, we rely on QTEST (Regenwetter et al., 2014; 

Zwilling et al., 2019) to evaluate hypotheses about equality of proba
bilities and order constraints in binomial models. 

3.2. The application of order-constrained inference to the Ludwig and 
Achtziger (2021) dataset 

In this section, we leverage these unique qualities to supplement and 
expand on the experimental evidence obtained by Ludwig and Acht
ziger (2021). We re-analyze their data (as available at https://osf. 
io/3va2w) with order-constrained methods to address a key question 
for which the authors, in the original paper, were reluctant to draw 
strong conclusions: Does CRT performance increase under piece-rate 
incentives by virtue of more effort and cognitive reflection, or alterna
tively, by cheating, or by a combination of the two? 

To answer this question, we formulate three models that explain 
higher performance under incentives as a result of (a) increased effort, 
(b) more cheating, or (c) both. The models specify the expected 
behavioral patterns of both CRT performance and online searches 
(dishonest behavior). Importantly, one should only consider the models 
as supported if the predictions on both behavioral outcomes hold jointly. 
We seek convincing evidence for or against conjunctions of constraints 
on both behavioral outcomes (see also Davis-Stober & Regenwetter, 
2019). 

The upcoming tutorial is organized into five steps. First, we look at 
the distinct predictions of the three competing explanatory models in 
terms of performance and online searches. We formulate hypotheses in 
the form of order-constrained probabilities for the behaviors of interest 
in each experimental treatment. Second, we describe the data structure 
required for order-constrained inference with QTEST (Regenwetter et al., 
2014; Zwilling et al., 2019), as well as how we recoded and 
pre-processed the original data. The third step then walks the reader 
through the data input in QTEST, as well as the software settings and 
options for configuration. Step 4 presents and interprets the results. 
Finally, the fifth step sketches further modeling possibilities when taking 
gender into account as an additional predictor of performance and 
cheating. We conclude with a discussion of the re-analysis. 

3.2.1. Hypotheses: order-constrained probabilities 
We consider two behavioral outcomes: high performance and 

cheating, in each of the four treatments resulting from crossing the 
experimental factors CRT version (original vs. new) and incentive (fixed 
vs. piece-rate). We use two different cutoffs on the number of correctly 
solved items to define high performance. We treat behavior as cheating 
if the participant changed tabs during the CRT at least once. In the data 
processing and results sections below, we provide more detail on how 
we recode the data and how we check the robustness of our results under 
different cutoffs for high performance. 

Our hypotheses address the probabilities of being categorized as a 
high performer or as a cheater, given one of the four treatments. Spe
cifically, we describe below three competing explanations for higher 
performance under incentivization (Models 1- 3): incentives improve 
performance (1) through boosting cognitive reflection, (2) through 
increased cheating, or (3) through both cognitive reflection and 
cheating. 

We convert verbal predictions into a stream of rank-ordered, (in-) 
equality-constrained probabilities to form models that are amenable to 
order-constrained inference. We denote the probability that a randomly 
sampled respondent performs highly as P. We write the probability that 
a randomly sampled respondent cheats as C. The subscript denotes the 
test version (O for original, N for new) and the incentive treatment ($ 
indicates the presence of piece-rate incentives). Table 1 summarizes 
seven sets of order constraints that encapsulate verbal hypotheses as 
described below. We show below how we combine constraint sets to 
form competing models. 

First, let us consider some basic predictions for the probabilities of 
high performance and of cheating. These predictions capture the general 
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idea that prior exposure to the CRT affects participants’ responses 
(Haigh, 2016; Stieger & Reips, 2016; Woike, 2019; but see also Bialek & 
Pennycook, 2018; Meyer et al., 2018). First, there are reasons to expect 
more people to perform highly on the original CRT than on the new 
version. Some participants who previously worked on the CRT may 
simply remember the correct answers. Similarly, some participants 
could remember receiving negative feedback on their incorrect re
sponses in a previous study, which could encourage deeper reflection. In 
contrast, the new version was developed for this study, hence could not 
be subject to such memory effects. Therefore, we formulate constraint 
set 1 to capture the hypothesis that a randomly sampled person is more 
likely to perform highly on the original than the new CRT, within each 
incentive structure:  

0 ≤ PN ≤ PO ≤ 1 and 0 ≤ PN$ ≤ PO$ ≤ 1.                                         (1) 

Note that, in order to have a well-stated constraint set on probabilities, 
every probability must be bounded from below by either 0 or another 
probability, and every probability must be bounded from above by 
either 1 or another probability. 

Prior exposure could similarly affect cheating rates. If some partici
pants remember having solved the test before, this could raise suspicion 
that the answers can be found online. Moreover, participants could be 
more easily tempted to look up the correct answers on the internet when 
they remember previous negative feedback. Therefore, we formulate 
constraint set 2 to represent the hypothesis that cheating rates are higher 
for the original CRT than the new version, within each incentive 
structure:  

0 ≤ CN ≤ CO ≤ 1 and 0 ≤ CN$ ≤ CO$ ≤ 1.                                        (2) 

We summarize the first two constraint sets in Model 0. Hence, this 
model predicts a conjunction of two scientific hypotheses. The first is 
that performance is higher in the original version relative to the new 
one, within incentive structure. This, in turn, yields a conjunction of 
constraints (constraint set 1). The second hypothesis is that cheating is 
more common in the original version than in the new one, within 
incentive structure, which yields another conjunction of constraints 
(constraint set 2). 

By combining the probabilities of high performance and cheating in 
four experimental treatments, Model 0 considers altogether eight binary 
probabilities. By forming the combination of constraint sets 1 and 2, 
Model 0 is a conjunction of twelve inequalities on those eight proba
bilities. We use QTEST to evaluate Model 0 as a single hypothesis. To test 
this model, QTEST requires the order constraints on the eight probabili
ties (here: all constraints described in Model 0, that is, constraint sets 
1–2) to be converted into a single set of non-redundant constraints. The 
QTEST input takes the form of a matrix as shown in the Appendix. For 
further detail on matrix calculation and more comprehensive examples, 
see the Appendix and Regenwetter and Cavagnaro (2019). 

Model 0 is also implied by each of three following models. It 

represents two basic predictions that we expect to hold regardless of 
whether reflection (Model 1), cheating (Model 2), or both (Model 3) best 
explain performance improvements under incentives. Beyond these 
common predictions, Models 1–3 encompass different additional con
straints on how the probabilities of performing highly and cheating 
within CRT versions are affected by incentives. Models 1–3 can therefore 
be considered as nested submodels of Model 0. As we see next, each 
model adds a unique set of further constraints on the probabilities of 
high performance and cheating. 

Model 1 explains performance improvement under incentives by 
more effort. It comprises a conjunction of four scientific hypotheses that 
specify constraints on the probabilities of high performance and cheat
ing across the four treatments. Four sets of order constraints together 
capture the hypotheses (see also Table 1). The first two hypotheses are 
represented in constraint sets 1 and 2. Third, under Model 1, incentives 
should improve performance on both CRT versions through increased 
reflection. This should be the case if effort and reflection are the main 
drivers of higher performance under incentives. Constraint set 3 predicts 
that the probability of scoring high on the CRT increases with incentives 
in both CRT versions:  

0 ≤ PN ≤ PN$ ≤ 1 and 0 ≤ PO ≤ PO$ ≤ 1.                                         (3) 

Fourth, under Model 1, cheating should be equally likely to occur in 
both incentive treatments. The probability that a randomly sampled 
participant cheated should remain unaffected by the incentive treat
ment, regardless of the test version. This motivates constraint set 4*:  

0 ≤ CN = CN$ ≤ 1 and 0 ≤ CO = CO$ ≤ 1.                                      (4*) 

We flag constraint sets and models with an asterisk (*) if they include an 
equality constraint. Because the equality constraints in these hypotheses 
may be overly restrictive, we also consider versions with a bit of wiggle 
space, where we require only approximate equality among the pertinent 
probabilities. In the case of constraint set 4, we add constraints on the 
two probabilities C within test versions to express that, while CN, CN$ 
and CO, CO$ may lie anywhere within the range of 0 and 1 (subject to 
constraint set 2), they should not differ by more than some threshold, 
here 5 percentage points, within test version. This gives constraint set 4:  

| CN – CN$ | ≤ 0.05 and | CO – CO$ | ≤ 0.05.                                        (4) 

To sum up, Model 1 is a conjunction of four hypotheses, captured by 
constraint sets 1-4, respectively. First, irrespective of incentive struc
ture, performance improves on the original compared to the new CRT. 
Second, more people engage in one or more tab changes under original 
CRT than under new CRT. Third, for the same version of the CRT, per
formance improves under piece-rate incentive relative to fixed rate. 
Finally, for a given version of the CRT, the probability of one or more tab 
changes does not differ by more than 0.05 between incentive structures. 

Model 2, on the other hand, posits that higher performance under 
piece-rate incentivization is best explained by more cheating. It does this 

Table 1 
Summary of constraint sets and models.  

Constraint set Order constraints Model 

0 1* 1 2* 2 3 

1 0 ≤ PN ≤ PO ≤ 1 and 0 ≤ PN$ ≤ PO$ ≤ 1. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 
2 0 ≤ CN ≤ CO ≤ 1 and 0 ≤ CN$ ≤ CO$ ≤ 1. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 
3 0 ≤ PN ≤ PN$ ≤ 1 and 0 ≤ PO ≤ PO$ ≤ 1.  ⃝ ⃝   ⃝ 
4* 0 ≤ CN = CN$ ≤ 1 and 0 ≤ CO = CO$ ≤ 1.  ⃝     
4 | CN – CN$ | ≤ 0.05 and | CO – CO$ | ≤ 0.05.   ⃝    
5* 0 ≤ PN = PN$ ≤ 1 and 0 ≤ PO ≤ PO$ ≤ 1.    ⃝   
5 | PN – PN$ | ≤ 0.05 and 0 ≤ PO ≤ PO$ ≤ 1.     ⃝  
6 0 ≤ CN ≤ CN$ ≤ 1 and 0 ≤ CO ≤ CO$ ≤ 1.    ⃝ ⃝ ⃝ 
7 (PN$ – PN) ≤ (PO$ – PO).      ⃝ 

Note. P denotes the probability of performing highly and C the probability of cheating. The subscript denotes the test version (O for original, N for new) and the 
incentive treatment ($ indicates the presence of piece-rate incentives). The asterisk (*) indicates more restrictive model versions. 
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with two key changes from Model 1. First, whereas Model 1 predicts 
improved performance with piece-rate incentives in both the new and 
original CRT (constraint set 3), Model 2 instead predicts improved 
performance only in the original CRT, where web searches are likely to 
be successful. It does not predict improved performance in the new CRT, 
where cheating in search of answers is likely to be futile. Secondly, 
whereas Model 1 predicts comparable cheating rates within given CRT 
types (constraint set 4 or 4*), Model 2 predicts more frequent cheating 
under piece-rate incentives within each CRT type. 

We define constraint set 5* (and 5) to capture that (a) new CRT 
performance does not differ (much) across incentive treatments, and (b) 
original CRT performance increases under incentives.  

0 ≤ PN = PN$ ≤ 1 and 0 ≤ PO ≤ PO$ ≤ 1.                                       (5*)  

| PN – PN$ | ≤ 0.05 and 0 ≤ PO ≤ PO$ ≤ 1.                                         (5) 

We define constraint set 6 to capture the prediction of more frequent 
cheating under piece-rate incentives within each CRT type.  

0 ≤ CN ≤ CN$ ≤ 1 and 0 ≤ CO ≤ CO$ ≤ 1.                                        (6) 

In all, Model 2 (or 2*) forms the conjunction of four hypotheses 
captured by the constraint sets 1 and 2 together with 5 (or 5*) and 6 
(Table 1). It differs from Model 1 by replacing constraint sets 3 and 4 
with constraint sets 5 (or 5*) and 6. The QTEST-compatible input 
matrices for Models 2 and 2* are given in the Appendix. 

Next, Model 3 captures the hypothesis that performance improves 
under incentives through both cheating and cognitive reflection. Model 
3 differs from Models 1 and 2 in that it predicts incentives to improve 
performance on both CRT versions (constraint set 3; like Model 1, but 
unlike Model 2). Model 3 further predicts that incentives increase 
cheating rates in both CRT versions (constraint set 6; like Model 2, but 
unlike Model 1). 

Model 3 also predicts a difference in the performance increment 
under incentives between the new and original versions of the CRT. 
Model 3 predicts that both cognitive reflection and cheating may drive 
performance improvements. However, whereas both factors may affect 
performance in the original CRT, only cognitive reflection would be 
expected to contribute to performance improvements in the new 
version. This is because cheating is unlikely to uncover answers to the 
new CRT. Therefore, if performance improves under incentives through 
both cheating and cognitive reflection, then the increment should be 
higher in the original than in the new CRT. We capture this with 
constraint set 7:  

(PN$ – PN) ≤ (PO$ – PO)                                                                   (7) 

Together, Model 3 forms the conjunction of the constraint sets 1–3 
and 6–7, see also Table 1. 

3.2.2. Data preparation: recoding and pre-processing 
Making the dataset amenable to order-constraint analysis with QTEST 

(Regenwetter et al., 2014; Zwilling et al., 2019) only requires a few 
simple steps of recoding and data pre-processing. Order-constrained 
inference with QTEST rests on estimating the probabilities of one or more 
behavioral outcomes based on the number of ‘successes’ in each of the 
binomials of interest. 

The original study recorded performance as an ordinal variable with 
range [0,4]. To facilitate order-constrained analytics, we have dichot
omized this measure. To that end, we categorized participants who 
solved at least two out of the four decision problems correctly as “high 
performers” (successes, coded 1) and participants with one or no correct 
response as “low performers” (coded 0). The resulting proportions per 
treatment are given in Table 2. In the results section, we report a 
robustness check using a different cutoff for high performance (at least 
three correct). That analysis generates similar results. 

Regarding cheating, this outcome already had the correct form in the 
original dataset, as every participant was categorized as either “honest” 
(coded 0) or as a “potential cheater” (coded 1). We can simply count the 
number of binomial ‘successes’ (in this case: the number of potential 
cheaters) per treatment and feed this information into QTEST, see 
Table 2. 

3.2.3. Feeding and operating QTEST: data input and configurations 
Fig. 1 shows a screenshot of the QTEST 2.1 GUI (Zwilling et al., 2019). 

We now review some of its panels more closely. Because QTEST was 
originally designed to model and analyze risky choice behavior, the 
current interface uses somewhat idiosyncratic terminology. Under 
Gamble pairs in the upper left, the user specifies the behavioral outcomes 
to be modeled. Performance and cheating measures in each treatment 
add up to eight binary variables, or eight pairs of ‘gambles.’ For instance, 
(A, B) refers to high (A) and low performance (B) in the Original CRT – 
fixed rate treatment; (O, P) refers to cheaters (O) and honest participants 
(P) in the New CRT – piece-rate treatment, and so forth. The labels 
(letters A-P) can be adjusted under “Set…”. 

Immediately below the definition of Gamble pairs is the Data input 
field. The data (see Table 2) can be entered manually or loaded from a 
text file. QTEST can handle multiple datasets at once. Datasets can be 
saved under a unique “Name…” for future reference. Next, in the bottom 
row, the panel Random preference2 specifies the predicted set of order- 
constraints, specified via a matrix (see Appendix) and loaded from a 
text file. We do not use any of the other “Probabilistic specifications” 
offered by the QTEST GUI. 

Below (see Table 3) we look at the frequentist p-value and the 
Bayesian p-value to evaluate model fit. We also consider the Bayes factor 
for the comparison between models. But let us first consider the infor
mational value of these statistics. The frequentist and Bayesian p-values 
for order-constrained inference are derived based on pioneering work in 
statistics and mathematical psychology (Davis-Stober, 2009; see also 
Gelman et al., 1996; Meng, 1994; Silvapulle & Sen, 2005). While 
requiring advanced methods to compute, the frequentist p-value follows 
the conventional interpretation of p-values in null hypothesis signifi
cance testing. The Bayesian p-value works similarly. Small frequentist or 
Bayesian p-values < 0.05 result in the rejection of the model. In the 
terminology of model fitting, a p-value of at least 0.05 indicates an 
“adequate fit.” Very well-fitting models will generate a frequentist 

Table 2 
Binomial counts of pertinent behavioral outcomes to be input into QTEST.  

Experimental treatment 
(CRT version – incentive) 

n Performance Cheating 

(high, low) QTEST (cheater, honest) QTEST 

Original CRT – fixed rate 76 29, 47 A, B 15, 61 I, J 
Original CRT – piece-rate 83 45, 38 C, D 28, 55 K, L 

New CRT – fixed rate 73 31, 42 E, F 13, 60 M, N 
New CRT – piece-rate 67 20, 47 G, H 14, 53 O, P 

Note. Colum QTEST refers to the labels of these binomials used in QTEST in the next section, see Fig. 1, Screenshot of QTEST 2.1 GUI. 

2 Just like we are not using “gambles,” so are our models technically not what 
is commonly referred to as “random preference” models. Conveniently, our 
models can ‘mimic’ random preference models in that one can also specify the 
latter via a matrix of order-constraints as input (see Zwilling et al., 2019). 
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p-value near 1 and a Bayesian p-value around 0.50. 
When more than one model adequately fits the data based on the 

Bayesian (or frequentist) p-value, we can use the Bayes factor to deter
mine which model provides the best explanation for the data. More 
precisely, the Bayes factor is an evidence ratio. It quantifies the strength 
of evidence for or against one model relative to another, given the data. 
The QTEST software provides the Bayes factor for each model under 
consideration (the “constrained” model) relative to a common 
“encompassing” model. This encompassing model includes the same 
binomial probabilities as the model in question, but only constrains 
these probabilities to be between 0 and 1. The larger the Bayes factor, 
the stronger the evidence in favor of the constrained model. Following a 

common convention in Bayesian statistics (Andraszewicz et al., 2015; 
Jeffreys, 1998), we interpret Bayes factors larger than three as evidence 
for the model. If the Bayes factor is three, there is three times more 
evidence for the constrained model than for the encompassing model. 
Similarly, a Bayes factor smaller than one third suggests evidence 
against the model in question. If the Bayes factor is one third, the 
encompassing model is three times more likely than the constrained 
model. For more details on fit statistics and model selection tools, as well 
as their interpretation in order-constrained inference, see Regenwetter 
and Cavagnaro (2019) or another tutorial by Regenwetter (2020). 

Returning to QTEST, for Hypothesis testing in the upper right side, the 
user must input one or more “Theories,” “Specifications,” and “Datasets” 

Fig. 1. Screenshot of the QTEST 2.1 GUI (Zwilling et al., 2019).  
The reader is directed to four panels in particular: Gamble pairs, Data (see also Table 2), Random preference, and Hypothesis testing. 

Table 3 
Results of order-constrained inference for the competing models in three analyses.   

Model Frequentist 
p-value  

Bayesian p-value  Bayes Factor Comparison to  
Encompassing Model 

Bayes Factor Comparison to  
Model 0 

Analysis 1 

0 0.093 0.494 2.8 1 
1* – 0.078 4.1 1.4 
1 0.037 0.221 4.8 1.7 
2* – 0.441 29.0 10.2 
2 0.224 0.489 30.3 10.7 
3 0.020 0.361 4.8 1.7 

Analysis 2 
(High performance cutoff ≥ 3) 

0 0.236 0.511 3.5 1 
1* – 0.123 9.4 2.7 
1 0.100 0.308 11.0 3.2 
2* – 0.542 65.3 18.9 
2 0.440 0.572 63.8 18.4 
3 0.098 0.459 10.8 3.1 

Analysis 3 
(N = 255) 

0 0.090 0.480 2.9 1 
1* – 0.063 3.9 1.4 
1 0.151 0.215 4.7 1.7 
2* – 0.469 42.2 14.8 
2 0.248 0.508 42.6 15.0 
3 0.097 0.384 8.3 2.9 

Note. The Models 1*, 2* are nested in their respective parent model and apply an equality constraint instead of allowing for a 0.05 divergence (see Hypotheses). 
Computing a frequentist p-value is not possible for these models. 
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for analysis. Because we specify one model at a time via a matrix spec
ification of order-constraints, this analysis employs one “theory” and 
one “specification.” While QTEST allows to run multiple tests and data
sets at the same time, some computations can be rather slow. Some 
(primarily the Bayes factor computation) will converge only when 
setting the underlying algorithms to high “Sample size” in the “Gibbs 
sampler.” This sometimes renders larger-size models (i.e., with more 
binomial parameters) intractable on a personal computer in reasonable 
time. To avoid unnecessary strain on computational demand, we 
recommend conducting each Type of test separately and, for the Bayesian 
analyses, adjusting Sample size in Gibbs sampling as needed, based on 
convergence of the individual test. For instance, smaller Gibbs sample 
sizes will usually suffice for the Bayesian p-value than for the Bayes 
factor. Use “Change…” in the Gibbs sampling panel to adjust the sampling 
size (see also Zwilling et al., 2019, for much more detailed information). 
In our analysis, we used five million draws for the Bayesian p-value 
computation, and one billion draws for the Bayes factors (see Table 3). 
In the frequentist analysis we used the default setting of 50,000 draws 
for Chi-bar squared weights simulation sample size. 

3.2.4. Results of order-constrained inference with QTEST 

We consider three statistics for each competing model: the fre
quentist p-value, Bayesian p-value, and Bayes factor. We assess these 
statistics on each of four analyses. For each statistic, we first review 
results for the main analysis of the full sample, based on the performance 
coding described above (high performance if at least two CRT items 
were solved correctly, “Analysis 1″). We then move on to two robustness 
checks. One of these repeats the analysis using a different cutoff for high 
performance (at least three CRT items solved correctly, “Analysis 2″). 
The second one is based on a subsample (N = 255, “Analysis 3″). Here, 
we have excluded all participants who self-reported prior knowledge 
with the CRT. Finally, to discuss further modeling options, the next 
section considers gender differences in CRT performance and cheating 
behavior (“Analysis 4″). 

Table 3 summarizes the results of order-constrained likelihood-based 
inference for Analyses 1–3. Remember that Models 1–3 differ in how 
they specify the role of incentives. Model 1 predicts performance 
improvement under incentives through more effort. Model 2 predicts the 
same performance improvement, but due to cheating. Model 3 posits 
that both effort and cheating jointly contribute to better performance 
under incentives. In addition, all three models have in common that they 
predict more high performers and more cheaters in the original CRT, as 
captured by Model 0. Note that because the nested submodels Models 1* 
and 2* combine equality and inequality constraints, frequentist tests are 
not possible. 

Frequentist and Bayesian p-values. Judging by the frequentist p-value, 
Models 1 and 3 are rejected, while Model 0 and Model 2 fit the data 
(“Analysis 1″ panel in Table 3). Hence, the frequentist analysis suggests 
that Models 0 and 2 account for the observed behavior adequately. 
However, the result does not fully repeat in the robustness checks. In 
both Analyses 2 and 3, all models fit the data according to frequentist 
analytics. Moreover, the Bayesian p-value does not fully align with the 
frequentist analysis. The Bayesian p-value is greater than 0.05 for all 
models in all analyses, suggesting reasonable fit throughout. Since 
multiple models fit and since the fit varies across robustness checks, it is 
unclear, from these analyses alone, which model best describes the data. 
In the next steps, we rely on the Bayes factor for model selection. 

Bayes factor. The Bayes factor quantifies the amount of evidence in 
support of, or against, a given model compared to another model (here 
the encompassing model). Consistent with the frequentist and Bayesian 
p-value analysis, the Bayes factors indicate that there is evidence in the 
data to support each constrained model against the encompassing 
model. Model 2 (or Model 2*) has the highest Bayes factor in each of 
Analyses 1–3. Its Bayes factor in Analysis 1 is 30.3. This means that there 
is around 30 times more evidence for the constrained model than for the 
encompassing model. Hence, the hypothesis that just cheating predicted 

performance improvements under incentives receives substantial 
support. 

Since there is also support for other models, we need to carry out 
model selection. We can compare two constrained models directly by 
taking the ratio of their Bayes factors. This provides a quantitative evi
dence ratio for one constrained model over another. For instance, 
comparing Model 2 to either Model 1 or 3, in Analysis 1, there is 30.3/ 
4.8 = 6.3 times more evidence in favor of Model 2. 

To evaluate whether the overall good performance of Models 1–3 is 
due to the constraints they all share, which form Model 0, we can 
compare each model against Model 0. We do this as before by taking 
ratios of Bayes factors, see the last column in Table 3. From this 
perspective, Model 2 best describes the data. In Analysis 1, there is 
around ten times more evidence in support of Model 2 against Model 
0 (18 times more in Analysis 2). Evidence for Models 1, 1*, and 3 
(relative to Model 0) is rather weak. This pattern of results is robust 
across the three analyses. In sum, compared to Model 0, there is about 
six to nine times more evidence supporting Model 2 than supporting 
Model 1, and still five to six times more evidence for Model 2 than for 
Model 3. We thus conclude that Model 2 most adequately describes the 
data. Its more restrictive version, Model 2*, has very similar Bayes 
factors. The latter finding suggests that adding equality constraints 
instead of permitting five percentage points of wiggle space does not 
substantially alter model performance. 

3.2.5. Gender differences: exploring further modeling opportunities 
The present dataset offers opportunities to expand the order- 

constrained analysis in interesting ways. For instance, Ludwig and 
Achtziger (2021) reported that gender was an important predictor of 
both performance and cheating. Order-constrained methods can test 
precise theories about gender differences in relation to incentives, per
formance, and cheating. To do so, we split each of the eight probabilities 
described above into two, by gender (e.g., the probability that a 
randomly selected female/male cheated in the original CRT under 
piece-rate incentives). This results in 16 binomials (or QTEST “Gamble 
pairs”), which, in turn, substantially increases computational cost of 
order-constrained inference. 

While additional factors can be accounted for in this way, it is 
generally advisable to limit the number of binomials in an order- 
constrained model. The main reason is that larger models (25 bi
nomials or more) often become intractable with desktop computing 
resources.3 In some situations, one can partition the collection of bi
nomials into smaller subsets such that each model only states constraints 
within each subset, but not between binomials of different subsets. In 
such a case, one can perform separate analyses on the subsets of bi
nomials. The product of these Bayes factors is the Bayes factor for the full 
model on all binomials. We use this strategy in the following Analysis 4, 
see the online supplement for more detail. 

Studies related to Ludwig and Achtziger’s experiment have 
commonly reported two findings of gender differences. First, males 
typically outperform females on the CRT (e.g., Alós-Ferrer et al., 2016; 
Brañas-Garza et al., 2019; Ring et al., 2016). It is well-known that this 
pattern need not translate into higher cognitive abilities of males. 
Rather, it points to several problems with the construction of the test 
(see also Juanchich et al., 2020; Sirota et al., 2020). By its nature, the 
test appears to favor individuals with high confidence in their numerical 
ability. Such positive self-appraisal, in turn, is more common among 
males. Second, in related studies, males typically cheat more than fe
males (Abeler et al., 2019; Gerlach et al., 2019; Leib et al., 2021). 

3 Earlier work relied on supercomputers to test models of large size that 
involved computing very many expensive Bayes factors, e.g., Guo and Regen
wetter (2014) or Regenwetter et al. (2017); see also Sarafoglou et al., (2023b) 
for an alternative approach for efficient order constraint evaluation based on a 
bridge sampling procedure. 
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We now discuss how to test these two predictions with order- 
constrained methods. Table A2 in the online supplement shows how 
we recoded the data for this analysis. The dataset and QTEST files to 
reproduce the following analysis are available on OSF (https://osf. 
io/3va2w). We captured the predictions for this analysis with addi
tional constraint sets, see Table 4. Constraint set 8 represents the idea 
that males outperform females on the CRT, in each treatment (e.g., PO 

$-females ≤ PO$-males). Constraint set 9 formalizes the hypothesis that 
males cheat more than females, in each treatment. We test the hypoth
esis that constraint sets 8 and 9 hold jointly. We also test the competing 
hypothesis of no gender differences (constraint sets 8b and 9b hold 
jointly). This hypothesis predicts equal probabilities for females/males 
within treatments. It forms the typical null hypothesis in standard ap
proaches. Finally, we replace the equality constraints in the former step 
by five percent wiggle space to model approximate gender equality 
(constraint sets 8c and 9c). 

We are interested in two sets of questions. First, how well do the 
earlier Models 0–3 perform on separate samples, namely the female 
subsample, the male subsample, or both jointly? Second, which of the 
three hypotheses on gender differences (directed hypothesis, typical null 
hypothesis, approximate equality, see Table 4) best describes the data? 
The results of Analysis 4 are summarized in Table 5. Its left panel 
(“Evidence for Models 0–3″) addresses the first set, the right panel 
(“Gender differences”) considers the second. 

To tackle the first question, we repeated the main analysis (see above 
“Analysis 1″) separately for the female/male subsamples. When 
considering females and males jointly (see “Analysis 1″ and Table 5 
column “combined”), the Bayes factor indicates substantial support for 
all Models. But the evidence in favor of Model 2 (and 2*) is much 
stronger. 

From some perspectives, the results shown in Table 5 indicate 
important gender differences. Model 1 (and 1*: Incentives increase CRT 
performance through reflection rather than cheating) fits the male 
subsample reasonably well. But there is circumstantial evidence away 
from Model 1 (Bayes factor of about 2 in favor of the encompassing 
model) in the female subsample. While Model 2 (and 2*: Incentives 
increase CRT performance through cheating rather than reflection) is 
supported similarly well in both female and male subsamples, the pro
cesses captured in Model 1 seem to be more descriptive of males than 
females. Strikingly, Model 1 describes males’ performance improve
ments under incentives better than Model 2, while the reverse is true for 

females. 
On the second question, we evaluated models that added constraint 

sets 8–8c and 9–9c to our Models 0–3, see the right panel of Table 5. It 
stands out that the Bayes factors are generally much higher in this 
analysis. This is mainly due to the additional constraints making these 
models more parsimonious in the right side of the table, compared to the 
left. We can look at the right-most three columns of Table 5 in two 
different ways. One is to compare values within each column. This 
perspective reveals that regardless of our hypothesis about gender dif
ferences, we find strong support for Model 2 over any of the other 
models. The other is to compare values within each row. This compar
ison shows that, regardless of our hypotheses about CRT version and 
incentives, we reach one and the same conclusion about gender differ
ences: the typical null hypothesis is supported over the directed hy
pothesis by about 4:1. 

Comparing these results to the Bayes factor for Model 2 without any 
constraints regarding gender (from Table 3, it is 30.3), we can conclude 
that adding constraint sets 8 and 9 does improve the model substantially 
(the corresponding Bayes factor for Model 2 in Analysis 4 is 730.8, see 
Table 5). In other words, the hypothesis that there are gender differences 
in all treatments outperforms the encompassing model that is fully un
constrained. At the same time, however, comparing the directed hy
pothesis against the hypothesis of gender equalities (constraint sets 8b 
and 9b), we find even stronger support for gender equality. The typical 
null hypothesis is favored by around 4:1 over the directed hypothesis, 
and around 96:1 (2700/30.3) over Model 2 without any constraints on 
gender. Notably, applying Occam’s razor to these models (see e.g., 
Myung & Pitt, 1997), the gender equality hypothesis is rewarded for its 
extreme parsimony. This is one of the notable advantages of an inference 
framework that comparatively weighs evidence and parsimony against 
each other, via Bayes factors among pairs of models, rather than merely 
looking for enough evidence to claim the presence of an effect. 

This analysis only scratches the surface of possibilities to address 
gender differences. Much more nuanced hypotheses are testable with 
QTEST. For instance, our models spell out conjunctions of constraints 
(summarized in Table 4) that capture the hypotheses that (a) there are 
gender differences in performance and cheating in all treatments, (b) 
there are no gender differences in any of the treatments, and (c) there 
are only negligible differences between females and males in all treat
ments. Models 2* and 2 fit the data particularly well under the hy
pothesis that all response probabilities are invariant across gender. We 

Table 4 
Additional constraint sets for the analysis of gender differences. F = females, M = males.  

Constraint set Order constraints Description 

8 0 ≤ PO-F ≤ PO-M ≤ 1 and 0 ≤ PO$-F ≤ PO$-M ≤ 1 and 0 ≤ PN-F ≤ PN-M ≤ 1 and 0 ≤ PN$-F ≤ PN$-M ≤ 1. Directed hypothesis 
8b 0 ≤ PO-F = PO-M ≤ 1 and 0 ≤ PO$-F = PO$-M ≤ 1 and 0 ≤ PN-F = PN-M ≤ 1 and 0 ≤ PN$-F = PN$-M ≤ 1. Typical null hypothesis 
8c | PO-F – PO-M | ≤ 0.05 and | PO$-F – PO$-M | ≤ 0.05 and | PN-F – PN-M | ≤ 0.05 and | PN$-F – PN$-M | ≤ 0.05. Approximate equality 
9 0 ≤ CO-F ≤ CO-M ≤ 1 and 0 ≤ CO$-F ≤ CO$-M ≤ 1 and 0 ≤ CN-F ≤ CN-M ≤ 1 and 0 ≤ CN$-F ≤ CN$-M ≤ 1. Directed hypothesis 
9b 0 ≤ CO-F = CO-M ≤ 1 and 0 ≤ CO$-F = CO$-M ≤ 1 and 0 ≤ CN-F = CN-M ≤ 1 and 0 ≤ CN$-F = CN$-M ≤ 1. Typical null hypothesis 
9c | CO-F – CO-M | ≤ 0.05 and | CO$-F – CO$-M | ≤ 0.05 and | CN-F – CN-M | ≤ 0.05 and | CN$-F – CN$-M | ≤ 0.05. Approximate equality  

Table 5 
Results of order-constrained inference: bayes factors in analysis 4.    

Evidence for Models 0–3 in Gender differences  

Model Female 
subsample 

Male subsample combined Directed hypothesis Typical null hypothesis Approximate equality 

Analysis 4 
(Gender differences) 

0 4.7 1.2 5.4 59.2 277.4 274.6 
1* 20.0 0.5 9.5 82.1 403.5 314.8 
1 20.0 0.6 12.4 101.7 472.7 388.3 
2* 9.7 11.1 107.4 758.0 2868.4 2825.5 
2 9.4 11.0 104.4 730.8 2900.1 2837.2 
3 3.6 2.2 7.9 70.0 490.6 375.7 

Note. The left panel shows Bayes factors for Models 0–3 in female and male subsamples and combined. The right panel contains Bayes factors for Models 0–3 when 
constraints are added that capture different hypotheses on gender differences (cf. Table 4). 
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find substantial evidence in favor of this hypothesis. However, this raises 
the question whether gender differences may occur in some treatments, 
but not in others. If there were a theory about why performance or 
cheating should increase more strongly for females or males in one 
particular treatment, QTEST could evaluate the corresponding collection 
of order-constraints. 

For instance, performance-based incentives might trigger different 
behavioral responses among females and males. Related research re
ported that females and males reacted differently to competition (Nie
derle & Vesterlund, 2011). Males were more eager to compete, and their 
performance tended to benefit more strongly from competitive envi
ronments than females’ performance. If performance-based pay pro
duces a similar gender difference, then CRT performance increments 
under incentives should be larger for males than for females. 
Order-constrained modeling can capture this pattern by adding further 
order-constraints. 

For example, 0 ≤ (PO$-female - PO-female) ≤ (PO$-male - PO-male) ≤ 1 
captures the idea that incentives produce stronger performance im
provements for males than for females (on the original CRT). One may or 
may not predict this hypothesis also on the new CRT. Females and males 
may also differ in how strongly incentives tempt them to cheat. To 
capture the idea that incentivization increases cheating more strongly 
for males than females, one can spell out similar constraints for cheating 
probabilities. It is also possible to require that the difference between 
certain probabilities should exceed some threshold. 

In our dataset, order-constrained inference offers great flexibility to 
model a variety of hypotheses on the behavioral patterns of high per
formance and cheating on the CRT. Given a plausible theory of gender 
differences, it is possible to test highly nuanced and precise predictions. 
This emphasizes the great potential of order-constrained inference for 
more nuance and precision in theory testing. At the same time, this 
flexibility may tempt excessive exploration. We would emphasize that 
order-constrained inference is intended to serve as a theory testing tool, 
and not for exploratory analysis. Theory testing is where it best plays out 
its advantages over conventional approaches. Order-constrained infer
ence metrics like Bayes factors are uninterpretable in exploratory 
settings. 

4. Discussion 

Together, these results make a convincing argument that cheating 
drove the performance increment under incentivization in Ludwig and 
Achtziger’s (2021) experiment, rather than increased effort, or both 
effort and cheating combined. While Ludwig and Achtziger suggested 
that such an interpretation of their data was plausible, the original 
publication was lacking the analytical means to provide strong evidence 
in support of that claim. Here, relying on order-constrained inference, 
we were able to bridge this gap and ground that argument in more 
convincing data analytics. 

The re-analysis addressed four limitations of the original publication. 
First, cheating was a measured variable, not an experimental one. 
Therefore, the authors could not rule out alternative explanations for 
correlations between performance and cheating behavior. Relying on 
Bayesian statistics, order-constrained inference offers advanced tools for 
quantitative competition among explanatory models. We leveraged this 
unique quality and obtained more convincing evidence in support of the 
claim that incentives increased performance merely through cheating. 

Second, the re-analysis eschewed standard auxiliary assumptions of 
regression analysis (distributional assumptions, functional relation be
tween variables, see, e.g., Regenwetter & Cavagnaro, 2019). Many sta
tistical models force auxiliary assumptions that are arbitrary because 
they do not follow from the scientific theory under investigation. Adding 
or relaxing constraints on the theoretical level just to satisfy the statis
tical model can negatively affect the interpretation and reproducibility 
of empirical analysis (Regenwetter & Cavagnaro, 2019). 
Order-constrained inference is built on the far weaker assumption that 

the data generating process is a product of binomials. Since this 
assumption translates into drawing respondents independently from the 
population and counting how many show a given behavior, this 
requirement has allowed us to avoid a-theoretical distributional as
sumptions completely and stay true to Ludwig and Achtziger’s theory. 

Third, we have considered two behavioral outcomes jointly within 
one analytical step. Order-constrained inference has allowed us to 
formulate nuanced hypotheses for these outcomes based on the pre
dictions in the original publication. By placing constraints on both 
outcomes and predicting that the hypotheses will hold jointly, we 
improved the precision of the theory test. 

Finally, unbalanced data (e.g., large differences in experimental 
group sizes) may cause problems in conventional analysis (e.g., related 
to heteroscedasticity, see Klein et al., 2016). In order-constrained 
inference, different sample sizes merely imply that the samples differ 
in how much evidence they can generate for or against one model versus 
another, at a maximum. The higher the sample size, the higher the 
power to reject a hypothesis in a frequentist test and the higher the 
potential Bayes factors. Relying on Bayesian statistics, our analysis of 
gender differences showcases how order-constrained inference can be 
leveraged to improve the level of nuance and precision in experimental 
data analytics with unbalanced samples, especially Occam’s razor, ac
cording to which statistical fit should be balanced against theoretical 
parsimony. 

This analysis also highlights the potential of order-constrained 
methods to generate new hypotheses. For instance, our analysis seems 
to suggest that females’ performance improvement under incentives is 
best explained by more reflection (Model 1). On the other hand, more 
cheating (Model 2) captured males’ performance improvement better 
than any of the alternative models. We can combine this into a new 
hypothesis, essentially predicting that Model 1 applies to females (e.g., 
because their inclination to cheat is generally lower), while Model 2 
applies to males (who, in addition to cheating more than females, might 
also be more strongly tempted to do so by the financial incentive). 
Running an order-constrained analysis posthoc on the same data would 
be hard to interpret because the data would be used twice: Once in 
generating the hypothesis, and again in calculating analytical metrics. 
Such an analysis would not be interpretable. Instead, it would be best to 
subject this new hypothesis to a new experiment. 

Like any other methodology, our approach also has limitations. First, 
we dichotomized the ordinal performance measure to facilitate order- 
constrained modeling with QTEST. In the process, some valuable infor
mation may have gotten lost. We sought to address this limitation by 
providing a robustness check based on a different cut-off for high per
formance. While we acknowledge that dichotomization presents a lim
itation, we also emphasize that, on the other hand, our approach 
completely avoids making any scale assumptions, in contrast to routine 
conventional analysis. A second limitation concerns assumptions about 
independence between the probabilities of performing highly and of 
cheating. Because participants who cheated on the CRT can be expected 
to also have a higher probability of performing highly, it is reasonable to 
assume some level of dependence among these behavioral outcomes. 
While assumptions of independence between binomials may be viewed 
as a limitation of the methodology more generally, it is important to note 
that inter-dependent empirical observations present a challenge for 
almost any analytical approach. For a more comprehensive discussion of 
different forms of independence, and their implications for analysis and 
theory development, see e.g., Regenwetter and Cavagnaro (2019, pp. 
138–140), and Regenwetter and Davis-Stober (2018). 

Beyond the methodological contribution, our results inform an 
ongoing debate, in experimental research on dishonesty, about the link 
between financial incentives and cheating (Abeler et al., 2019; Gerlach 
et al., 2019; Kajackaite & Gneezy, 2017). In some experimental para
digms (e.g., sender-receiver game with cheap-talk element, Gneezy, 
2005) lying will typically increase with incentives. But studies with 
many other procedures, like the coin-flip or matrix tasks (Abeler et al., 
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2014; Mazar et al., 2008), rarely report a similar increase (see also 
Fischbacher & Föllmi-Heusi, 2013). Our re-analysis supports an impor
tant role of financial incentives in predicting dishonest behavior. 

We emphasize that CRT performance improvements under in
centives, in Ludwig and Achtziger’s (2021) dataset, were best explained 
by more cheating. This adds an interesting perspective on in
consistencies recently reported regarding the relation between financial 
incentives and CRT performance (see Brañas-Garza et al., 2019; 
Yechiam & Zeif, 2022). To the extent that cheating occurred not only in 
Ludwig and Achtziger’s experiment, but also in other CRT web studies, 
participants’ dishonest behavior could have distorted the findings. 

Future online research with the CRT should consider these influences. 
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Appendix 

QTEST input: text files 

The order of eight probabilities is the same in all files: 4 x Performance (denoted by P), 4 x Cheating (denoted by C), and ordered within these 
groups according to the experimental treatments: Original-fixed, Original-piece-rate, New-fixed, New-piece-rate.  

PO PO$ PN PN$ CO CO$ CN CN$                                                                                                                                                                                

The text files (see Fig. A1) first state the number of rows (constraints) and columns (probabilities) in the document. While we list 15 constraints in 
Model 2, there are additional constraints implicit in our model, such as PN$ ≥ 0. Indeed, QTEST requires the order-constraints to be non-redundant. To 
better understand the composition of these files, let us consider the example of Model 2. The individual constraints contained in Model 2 (constraint 
sets 1–2 and 5–6, see Table 1) can be spelled out as seen in Table A1. 

Note that rows 13 and 14 are redundant. Constraint set 1 requires PN$ to be smaller than PO$ (row 1 in Table A1). Because row 11 specifies that PO$ 
≤ 1, row 13 contains a redundant constraint. The same is the case for row 14. Because constraint set 6 requires that CO ≤ CO$ (row 9), and row 15 states 
that CO$ ≤ 1, the constraint in row 14 is redundant. Removing the two rows results in a matrix with 15 rows, as shown in Fig. A1. Note that the order of 
the rows is irrelevant, but the order of columns is fixed.

Fig. A1. Screenshots of matrix-formated data input for QTEST. The figure shows Models 0, 2 and 2* as examples (see also Table 1). All text files are available on 
the OSF.  

Table A1 
Model 2 in matrix format.  

Row Constraint set Constraint PO PO$ PN PN$ CO CO$ CN CN$ Upper bound  

1 1 (−1 * PO$) + (1 * PN$) ≤ 0 0 −1 0 1 0 0 0 0 0 
2 1 (−1 * PO) + (1 * PN) ≤ 0 −1 0 1 0 0 0 0 0 0 
3 2 (−1 * CO$) + (1 * CN$) ≤ 0 0 0 0 0 0 −1 0 1 0 
4 2 (−1 * CO) + (1 * CN) ≤ 0 0 0 0 0 −1 0 1 0 0 
5 5 (1 * PO) + (−1 * PO$) ≤ 0 1 −1 0 0 0 0 0 0 0 
6 5 (−1 * PN) + (1 * PN$) ≤ 0.05 0 0 −1 1 0 0 0 0 0.05 

(continued on next page) 
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Table A1 (continued ) 

Row Constraint set Constraint PO PO$ PN PN$ CO CO$ CN CN$ Upper bound  

7 5 (1 * PN) + (−1 * PN$) ≤ 0.05 0 0 1 −1 0 0 0 0 0.05 
8 6 (1 * CN) + (−1 * CN$) ≤ 0 0 0 0 0 0 0 1 −1 0 
9 6 (1 * CO) + (−1 * CO$) ≤ 0 0 0 0 0 1 −1 0 0 0 
10  (1 * PO) ≤ 1 1 0 0 0 0 0 0 0 1 
11  (1 * PO$) ≤ 1 0 1 0 0 0 0 0 0 1 
12  (−1 * PN) ≤ 0 0 0 −1 0 0 0 0 0 0 
13  (−1 * PN$) ≤ 0 0 0 0 −1 0 0 0 0 0 
14  (1 * CO) ≤ 1 0 0 0 0 1 0 0 0 1 
15  (1 * CO$) ≤ 1 0 0 0 0 0 1 0 0 1 
16  (−1 * CN) ≤ 0 0 0 0 0 0 0 −1 0 0 
17  (−1 * CN$) ≤ 0 0 0 0 0 0 0 0 −1 0  
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