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Abstract

Just as we formulate detailed theories of utility or preference, so too should we theorize carefully about strength of preference.
Likewise, because behavior is inherently uncertain, we need a theoretical framework for understanding choice probabilities.
This paper fleshes out the simple premise that more strongly preferred options are more likely to be chosen. The resulting
distribution-free Fechnerian models (DFMs) eschew convenience assumptions underlying popular models like the logit and
probit, revealing which aspects of a core decision theory do or do not remain invariant across different ways of constructing
strengths of preference, as well as across different monotonic links between those strengths of preference and choice prob-
abilities. We formulate DFMs in a unifying polyhedral geometric space that allows for direct comparisons of theories that
can be as categorically different as, say, regret theory, expected utility theory, and lexicographic semiorders. The geometric
representation also provides a nuanced perspective on theoretical parsimony beyond parameter counting. Through a series of
examples, we demonstrate the derivation and mathematical characterization of DFMs for decision theories with and without
utilities and the inferences one can draw from data. We show how DFMs provide a multi-layered quantitative approach to
the identifiability of hypothetical constructs. We highlight specific cases where DFMs protect the researcher against mistaken
conclusions caused by overspecified models.

Keywords Decision-making - Fechnerian models - Nonparametric models - Probabilistic choice - Strength of preference

Introduction

Across a broad range of tasks, human choice behavior is
often inherently uncertain. A decision maker may be unsure
about what to choose. A decision maker may carry out mental
randomizations to make a choice. Different neural pathways
may compete in triggering a response to a stimulus. There
are many possible reasons for choice to be probabilistic.
While probabilistic choice deserves thorough theoretical
attention in its own right, much decision research puts its
emphasis elsewhere. Entire research programs debate how
various attributes of decision stimuli are perceived, com-
pared, and/or combined into preferences or utilities: Some
of these paradigms dissect the fine details of discounting
functions in certain models of intertemporal choice, others
propose and study competing mathematical formulations for
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probability weighting in choice under risk or uncertainty.
More broadly, the specifics of utility functions are of great
concern across a variety of domains. The bulk of that research
stops short of theorizing in equal detail about how those pref-
erences or utilities manifest in observable behavior, such as
choices or judgments. Instead, applications of such theories
to data typically account for choice uncertainty with an off-
the-shelf probabilistic response model like a logit (softmax)
or probit, with little or no discussion of the theoretical under-
pinnings for this parametric form. Essentially, this approach
treats choice variability as a nuisance to be accounted for
in the statistical analysis, rather than treating the underlying
choice uncertainty as a theoretical primitive.

Because probabilistic response models provide the mech-
anisms through which scholars infer preferences, risk atti-
tudes, levels of impatience, attitudes towards ambiguity, etc.,
from observed behavior, probabilistic response models are
both heavily used, and can be pivotal in inferences and con-
clusions that scholars draw from their data. Indeed, many
findings and conclusions in research on functional forms
for discounting, subjective value, probability weighting, or
other hypothetical constructs could hinge on the validity of
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their models for response mechanisms. Whenever we use a
misspecified response model, we may misclassify a patient
decision maker as impatient, misdiagnose arisk seeking deci-
sion maker as risk averse, or mislabel an inadequate policy as
effective. In sum, probabilistic response mechanisms provide
a bridge between theory and data. They deserve thorough
theoretical attention both in their own right and in the role
they play for much decision-making research across basic
and applied paradigms. Understanding that link better can
elucidate consumer behavior, intertemporal or risky choice,
and multi-attribute choice such as medical, health, and legal
decision-making. It can also help connect policy and human
behavior.

This paper considers ways to relax or even remove certain
‘convenience’ assumptions! in a prominent class of proba-
bilistic response models for binary choice data. Convenience
assumptions can be characterized as any assumptions that
serve the role of enabling statistical inference with standard
parametric methods, but which are not grounded in psy-
chological or decision theories. For probabilistic models of
binary choice, such assumptions are rarely, if ever, tested for
empirical accuracy, in part because the field has lacked suit-
able alternatives for modeling uncertainty in choice behavior.
However, auxiliary assumptions should be treated with great
caution because, as Hey (2005, p. 325) warns, “if one makes
the wrong assumptions about the stochastic structure of
the noise, then one usually makes wrong inferences from
the data.” Indeed, a growing body of research documents
the profound impact of such assumptions on the estimated
parameters of decision theories, and ultimately about the
drawn conclusions regarding their descriptive and predictive
performances (Bhatia & Loomes, 2017; Loomes & Sugden,
1995; Buschena & Zilberman, 2000; Stott, 2006; Wilcox,
2008; Blavatskyy & Pogrebna, 2010; Drichoutis & Lusk,
2014; Broomell & Bhatia, 2014; Regenwetter et al., 2017).
In other words, quoting Alds-Ferrer et al. (2021, p. 1), “the
dependence on possibly unwarranted assumptions is not just
an abstract theoretical problem but is known to plague empir-
ical research.” We believe that this comment applies beyond
just empirical research. While there was active work on the
theory of probabilistic choice in the 1950s and 1960s (e.g.,
Block & Marschak, 1960; Becker et al., 1963; Debreu, 1958;
Luce, 1959; Luce & Suppes, 1965), probabilistic response
models are still widely used today as tools of convenience
rather than being given full consideration as critical theoreti-
cal components of a fully specified model of choice behavior.
Rather than add more empirical evidence to the existing lit-

! Throughout, we use “double quotes™ to indicate verbatim quotations
or technical terms that are later defined formally, and we use ‘single
quotes’ to acknowledge vague or ill-defined concepts.
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erature about misspecification and misleading inference, we
take these problems as a given. We provide a mathematical
structure for understanding these problems and emphasize
possible solutions.

The core conceptual premise in this paper is that all
overly specific characterizations of choice uncertainty will
be “wrong” assumptions in that they lack sufficient theoreti-
cal grounding. In particular, they do not give enough attention
to the interplay between hypothetical constructs, psycholog-
ical theory, and empirical measures. These are examples of
“coordination problems” (Kellen et al., 2021) and “construct-
behavior gaps” (Regenwetter & Robinson, 2017). As we
explore better theoretical grounding, we pay careful attention
to the relationship between theoretical parsimony, diagnos-
ticity of stimuli, identifiability of hypothetical constructs, and
invariance of theoretical claims across different assumptions.
Instead of entertaining overly stylized parametric specifica-
tions, in what follows, we formalize the qualitative nature of
choice uncertainty.

Our core theoretical primitive is strength of preference.
We begin with the basic and intuitive theoretical premise that
the more strongly a decision maker prefers one option over
another, the more likely they are to choose it (Alds-Ferrer
& Garagnani, 2022b, a). Much prior research on decision-
making has utilized models based on this premise, most
notably various types of so-called Fechnerian models, such as
the well-known logit and probit models that predominate in
econometric analyses. One of our major mathematical find-
ings is that, in determining a decision theory’s predictions
about behavior, the details of how we construct strengths of
preference can be just as important as the details of how we
construct preferences or utilities. Another major mathemati-
cal finding is that overly specific probabilistic specifications
are prone to artifacts.

There are two main features of commonly used Fechne-
rian models that we eschew here. One is the limitation to
theories that assign utilities to options and define strength of
preference as the arithmetic difference between utilities. For
utility theories, we do not wish to ignore alternative mecha-
nisms for generating strengths of preference. Beyond utility
theories, we do not want to leave out theories that quan-
tify directly how much one choice alternative is preferred
to another without evoking utilities. These include theories
like regret theory (Loomes & Sugden, 1982; Quiggin, 1994)
in risky choice and the tradeoff model (Scholten & Read,
2010) in intertemporal choice. Our theoretical approach can
interface with any theory that derives or predicts strengths of
preference. The other feature that we eschew is the reliance
on parametric distributional assumptions to link strengths
of preference to binary choice probabilities. For example,
the probit model utilizes a normal cumulative distribution
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Table 1 Risk sensitivities,

e Decision maker Risk sensitivity Utility Strength of preference
utilities, and strengths of 5 S0y 5
preference for three hypothetical g ur (%) ur ) ur (2) r(z0) rOx) r@)
decision makers A —04 45.0 62.1 64.0 19.0 17.1 1.9
B 1.2 0.3 1.3 2.4 2.1 1.0 1.1
C 0.8 0.8 2.7 4.5 3.7 1.9 1.8

Note. In this example, strength of preference is the arithmetic difference between utilities

function (CDF), while the logit model utilizes a logistic
CDF. By abstracting away from these features, we create a
‘distribution-free’ modeling framework that identifies what
inferences about a decision maker follow from the Fechne-
rian premise alone, without the added structure imposed by
technical convenience assumptions.

Other papers have studied distribution-free cases of error
models, random preference models, and distribution-free
random utility models (e.g., Becker et al., 1963; Block &
Marschak, 1960; Marschak, 1960; Loomes & Sugden, 1995;
Heck & Davis-Stober, 2019; Regenwetter et al., 2018, 2014;
Zwilling et al., 2019, and many others). In this paper, we
provide a similarly general perspective on models that trans-
late strengths of preference into choice probabilities. We
aim to disentangle the core principles of the Fechnerian
approach from the distributional and auxiliary assumptions
that are not grounded in psychological theory. In doing so,
we expand a broad class of classical models to a general,
polyhedral-geometry representation that is characterized by
linear equality and inequality constraints on binary choice
probabilities. These general models are subject to modern
order-constrained frequentist and Bayesian statistical infer-
ence methods, which are available in public-domain software
(Zwilling et al., 2019; Heck & Davis-Stober, 2019; Regen-
wetter et al., 2014). We also show later how these general
Fechnerian models are mathematically distinguishable from
each other, from other distribution-free models, and from
classical models.

To set the stage, we begin with a toy example that illus-
trates more concretely what we have described so far. It is
also the starting point for a sequence of examples that build
on each other throughout the rest of the paper.

Example 1 Suppose that three different retailers have the
same computer on sale, and that each of them offers a dif-
ferent promotion to attract potential buyers. The first retailer
will enter the buyer into a drawing for a $100 cash prize, in
which they will have a 1/10 chance of winning. The second
retailer will let the buyer spin a prize wheel on which half of
the wheel offers a prize of $40, and the other half nothing.
The third retailer offersa $25 rebate on the purchase price.

Consider two hypothetical buyers, A and B, each consider-
ing two of these retailers at a time. We represent this scenario
as pairwise choices on three gambles, x, y, and z, that are
defined as follows:

x is a 10% chance of winning $100, otherwise nothing,

v is a 50% chance of winning $40, otherwise nothing,

z is a sure win of $25.

Without loss of generality, and for concreteness, suppose
that both decision makers have preferences consistent with
expected utility and constant relative risk aversion (hence-
forth CRRA-EU), but they may differ in their values of
the risk sensitivity parameter, ». Under CRRA-EU, for an
observer with risk sensitivity r, the utility of a gamble g

that pays m with probability ¢ is u,(g) = ¢ x mll_:r_l. Val-
ues of r greater than zero imply risk aversion, and values
of r less than zero imply risk seeking.? For now, we calcu-
late strength of preference between options i and j via the
very commonly used arithmetic difference among utilities,
Sr(ij) = u,r(i) — ur(j). Subsequent examples will consider
other cases. Table 1 shows the risk sensitivities, utilities, and
strengths of preference for these two decision makers (ignore

decision maker C for now).

Both decision makers like z the most and x the least,
but they have different orders of the strengths of preference
between gambles. In particular, A’s preference for y over x
[with S_g.4(yx) = 17.1] is stronger than her preference for
zover y [with S_p4(zy) = 1.9], while B’s preference for z
over y [with S12(zy) = 1.1] is stronger than her preference
for y over x [with S12(yx) = 1.0].

What does it mean if, according to our premise, more
strongly preferred options are more likely to be chosen? It
means that the order of choice probabilities matches the order
of strengths of preference. Here, writing P (i) for the proba-
bility of choosing i from the unordered pair {7, j}, and noting

2 Division by 1 — r is necessary for increasing utility when r > 1.
When r = 1, u,(g) = g x In(m).
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that S(ji) = —S(ij), this principle states that the choice
probabilities of decision maker A satisfy

P(zx) > P(yx) > P(zy) > P(yz) > P(xy) > P(x2),
whereas those of decision maker B satisfy
P(zx) > P(zy) > P(yx) > P(xy) > P(yz) > P(x2).

Intuitively, with enough data, one may be able to infer that B
has a different risk attitude than A based on the order of the
choice probabilities alone.

Now, consider decision maker C, given in the last row of
Table 1. Although this decision maker is risk averse like B, the
order of strengths of preference matches that of A, who is risk
seeking. Therefore, for these lotteries, the order of strengths
of preference alone (according to the arithmetic difference
between utility values in CRRA-EU) is not sufficient to tell
apart a decision maker like C from one like A. For example,
imagine that a scientist is able to infer unambiguously from
data that a fourth decision maker, say, D, satisfies

P(zx) > P(yx) > P(zy) > P(yz) > P(xy) > P(xz).

This order matches that of A (who is risk seeking) as well
as that of C (who is risk averse). Therefore, using only
the assumption that choice probabilities are monotonically
related to strengths of preference, the scientist cannot ascer-
tain whether D is risk seeking or risk averse. In our view, it
is crucially important that the analyst be able to notice this
ambiguity.

Suppose that, instead, the researcher proceeds to estimate
decision maker D’s risk sensitivity parameter r by plugging
the arithmetic difference of CRRA-EU utility values into
a Thurstonian specification of choice probabilities (i.e., a
binary probit model). Then, thanks to the probit, with a large
enough sample size, the researcher may obtain a very tight
confidence interval for the inferred value of r. From that, they
may also be able to infer whether D is risk seeking or risk
averse. This confidence interval captures statistical uncer-
tainty related to sampling variability. However, it leaves out
theoretical ambiguity about how exactly strengths of prefer-
ence translate into choice probabilities. Instead, it presumes
that, in addition to being monotonic, this relationship follows
the cumulative normal distribution of the probit model. Short
of using tools like those we reviewed for decision makers A,
B, and C to determine what inferences are robust, one should
consider conclusions or predictions drawn through the lens of
a probit or logit model to be only as valid as the distributional
convenience assumptions in that probit or logit model.

As the preceding example illustrates, for one and the
same core algebraic decision theory, different distributional
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assumptions may generate different empirical predictions.
These predictions interact with inference from data in that
different assumptions may yield different parameter point
estimates and support different substantive conclusions from
the same empirical data. As Blavatskyy and Pogrebna (2010,
p. 981) state, “when a researcher exogenously picks a
model of stochastic choice, this has a profound effect on
the estimated parameters of decision theories, which ulti-
mately affects the drawn conclusions about their descriptive
validity.” More generally, when fitting a theory of decision-
making to empirical data using a specific probabilistic model
such as a logit or probit, identifiability issues can arise at
many levels. These range from the type of core theory (say
expected utility vs. regret), to functional form (say power
vs. exponential utility), to parameter ranges (say risk seek-
ing or risk averse), to specific parameter point estimates (say
r = 0.5 vs. r = 0.6). This hazard also affects out-of-sample
prediction. As Wilcox (2008, abstract) states, “Economet-
ric comparisons suggest that for the purpose of prediction
(as opposed to explanation), choices of stochastic models
may be far more consequential than choices of structures
such as expected utility or rank-dependent utility.” Even
with a fixed probabilistic model, such as a logit, identifiabil-
ity issues may arise from tradeoffs between the parameters
of the core theory and the parameter of the logit (Krefeld-
Schwalb et al., 2021; Olschewski et al., 2022). In this paper,
rather than adding another voice to the chorus of warnings,
we aim to address these problems by providing a framework
for identifying what predictions or inferences (e.g., risk aver-
sion within CRRA-EU) remain invariant across a universe of
probabilistic choice models that derive choice probabilities
from strengths of preference. More generally, we provide
new perspectives on building a theoretical bridge across the
construct-behavior gap (Regenwetter & Robinson, 2017). To
accomplish that goal, in the following two sections, we first
review and generalize a class of probabilistic models, then
change perspective to ask what theoretical constructs and
properties are or are not identifiable through the lens of these
models. In the process and in later sections, we also offer
new nuance to questions about theoretical parsimony (see,
e.g., Regenwetter et al., 2022) and the coordination problem
in decision research (see, e.g., Kellen et al., 2021).

The rest of the paper is organized as follows. In the next
section, we give an overview of existing Fechnerian models
of binary choice. The “Distribution-Free Fechnerian Mod-
els” section introduces distribution-free Fechnerian models
(DFMs) and discusses their mathematical and geometric
properties. The “DFMs for Utility Theories” section walks
the reader through the development of DFMs for utility-based
decision theories in combination with different theories about
strength of preference. It also contrasts distribution-free mod-
els with logit models of the same core utility theory. The
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“Comparing DFMs with Other Probabilistic Choice Models”
section distinguishes DFMs from “random utility,” “super-
majority,” and “constant error” models. In “Inference from
Data,” we highlight specific examples where DFMs guard
against mistaken conclusions that would result from auxil-
iary distributional assumptions. Following our “Conclusions
and Discussion” section, Appendix 1 defines DFMs for more
general decision theories. It moves beyond utility theories to
demonstrate applications of the framework more generally,
including to theories that violate transitivity. It works through
examples ranging from well-known core theories to novel
axiomatizations of strengths of preference. Two additional
appendices deal with mathematics.

Background: Fechnerian Models of Binary
Choice

Fechnerian models of binary choice are named after Gustav
Theodor Fechner (1801-1887), who was an early pioneer
in experimental psychology and is widely regarded as the
founder of psychophysics. Fechner studied how one can
relate the magnitude of a physical stimulus to the magnitude
of psychological sensation. Seminal papers, such as Fechner
(1860) and later Thurstone (1927), develop probability mod-
els for psychophysics and psychoacoustics that correspond
to what are now known in economics as strong utility models
and random utility models. Many authors in decision theory
use the terms “strong utility model” and “Fechnerian model”
interchangeably. However, as we describe in this section, var-
ious generalizations of the strong utility model, as well as
other seemingly unrelated models, may also be regarded as
Fechnerian models. We now review some of these models and
their relationships. For more, see, e.g., Becker et al. Becker
et al. (1963), Luce and Suppes Luce & Suppes (1965), and
Wilcox Wilcox (2008).

At their core, Fechnerian models of preferential choice
are based on the theoretical primitive that the more strongly
a person prefers one option to another, the more likely they
are to choose it. In the strong utility model (Debreu, 1958;
Luce & Suppes, 1965), the “strength of preference” for one
alternative over another takes the form of the arithmetic dif-
ference between utility values, and this strength of preference
is mapped into a choice probability via a (nondecreasing) dis-
tribution function.

Formally, throughout the paper, let C be a finite set of
unordered pairs of choice alternatives. We think of C as the
collection of pairwise choice stimuli presented to a partici-
pant in a study. Let D = {ij | {i, j} € C}. Notice that D
contains both ordered pairs ij and ji, for each {i, j} € C.

We refer to D as a domain of choice pairs. When a decision
maker must choose either i or j, i.e., whenij € D, let P(ij)
be the probability that the person chooses i.

Definition 1 (Luce & Suppes, 1965) Writing F for a cumula-
tive distribution function with the property that F(0) = 1/2,
and u for a mapping from choice alternatives into utilities
(i.e., a utility function), the collection of binary choice prob-
abilities defined by

P(j) = Flu@) —u(j)], Vij €D. ey
is called the strong utility model for F and u. We say that

a collection of binary choice probabilities is a strong utility
model if it is the strong utility model for some such F and u.

In applications of strong utility models, researchers typi-
cally assume that F belongs to a parametric family that makes
statistical inference, such as parameter estimation, tractable.
The well-known (binary) logit and probit models are two
such special cases that have become standard tools for mod-
eling individual choice. The logit, also known as the softmax
choice rule, follows by assuming that F' in Eq. 1 is a logis-
tic CDF. The probit follows by assuming that F' is a normal
CDF. Such distributional assumptions are not required by
the theory behind strong utility, but they facilitate parame-
ter estimation of decision theories such as expected utility,
rank-dependent utility, and hyperbolic discounting.

The strict utility model (Marschak, 1960), also known
as Luce’s choice rule (Luce, 1959), is another prominent
probabilistic choice model that follows by adding additional
assumptions to Eq. 1. It states that

u(i)

RTGERTTY

Vij € D. 2)
By setting F(x) = (1 — e )" Vand u' (k) = In[u(k)], Eq.2
is equivalent to the strong utility formulation

P(ij) = Flu'(i) —u'(j)], Vij €D.

Many papers add a scaling parameter y and consider choice
probabilities of the form P(ij) = % which is
equivalent to the strong utility formulation above with
u'(k) = y In(u(k)). This model offers the technical con-
venience that one can sometimes estimate the parameters of
the underlying theory using logistic regression (Stewart et al.,
2014; Alempaki et al., 2019). Both the original Luce choice
rule and some recent extensions have an axiomatic ground-
ing (see, e.g., Tserenjigmid, 2021). For a related early result
linking strong utility and strict utility, see Yellott (1977).

@ Springer
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Strong utility models can also be conceptualized naturally
as ‘noise’ models in which the decision maker’s perception
of the difference between the alternatives is distorted. To see
this, notice that, if we let € be a continuous, symmetric, mean-
zero random variable whose CDF is F, and if we write p for
the associated probability measure, then Eq. 1 becomes
P(ij) = p(u@i) — u(j) — € > 0), Vij € D. 3)
It is common to refer to € as the “error term.” This defini-
tion has led to several extensions of strong utility models that
vary in their assumptions about the error term. For instance,
Blavatskyy and Pogrebna (2010) coin the term “Fechner
models of heteroscedastic random errors’ to refer to the class
of models taking the form of Eq. 3 in which € can be het-
eroscedastic. In these models, the standard deviation of the
errors is assumed to depend on certain properties of the deci-
sion problem, such as the number of possible outcomes in the
lotteries (Hey, 1995), the arithmetic difference between the
utilities of the lotteries (Buschena & Zilberman, 2000), or the
range of possible outcomes in the lotteries (e.g., in contextual
utility, see Wilcox, 2008). These variations do not discuss the
distributional form of € but they typically assume that it is
either normal, yielding a heteroscedastic probit model, or
extreme value, yielding a heteroscedastic logit model.

Let 0;; = d(i, j) denote the standard deviation of €
in Eq. 3. Then, we can also write Fechner models of het-
eroscedastic random errors as
M} : Vij € D, )

d(, j)

where F is a CDF.

P(ij)=F[

Definition 2 (Halff, 1976; He & Natenzon, 2019) A model of
the form given in Eq. 4, in which d (i, j) is a distance metric,
is called the moderate utility model for F, u, and d. We say
that a collection of binary choice probabilities is a moderate
utility model if it is the moderate utility model for some such
F,u,and d.

The close connection between the representations in Egs. 3
and 4 means that one can also formalize assumptions regard-
ing the error term in Eq. 3 as assumptions about the strength
of preference through the lens of Eq. 4. In other words, we can
view Fechner models of heteroscedastic random errors alter-
natively as Fechnerian models with homoscedastic random
errors in which the strength of preference is a stimulus-
dependent function of the utility values.

Moving away from strong and moderate utility models, a
constant error model (Harless & Camerer, 1994; Wakker et
al., 1994) assigns a constant probability e to choices of the
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alternative with lower utility. Formally, in the constant error
model for u,

1—e ifu@@) > u(j),
Pij)=1e ifu(j) > uG), (5)
% ifu(i) =u(j),

where 0 < e < % is a constant. With an appropriate for-
mulation of strength of preference, the constant error model
satisfies the theoretical primitive for a Fechnerian model.
Namely, if the strength of preference is

c ifu(@) > u(y),
SUj)={—c ifu(j) > u@,
0 ifu@) =u()),

for some positive constant ¢, then the constant error model
has the property that the stronger the preference the higher
the choice probability. The fact that there are only three
specific strength-of-preference values may not be theo-
retically appealing. However, this example highlights the
fact that the theoretical primitive for Fechnerian models is
strength of preference, and that strength of preference can be
very different from the arithmetic difference between util-
ities. Geometrically, the constant error model represents an
extreme boundary case of strong utility. This is apparent from
Fig.5 in Example 11.

Some, but not all, Fechnerian models can also be charac-
terized as binary random utility models (Block & Marschak,
1960). Formally, a binary random utility model on C is a
collection of binary choice probabilities for which there is
a random vector U on C and a probability measure p, such
that P(ij) = p(U; > U ;). The binary probit model, which
we formulated earlier as a strong utility model, is also a
binary random utility model in which the utilities are inde-
pendent normal random variables. The latter formulation
is also known as a Thurstone Case V model (Thurstone,
1927). Similarly, the binary logit model is a random utility
model in which the utilities are independent extreme-value
random variables. Many papers have explored the nuanced
relationship between strong utility and random utility models
(e.g., Becker et al., 1963; Luce & Suppes, 1965). In gen-
eral, neither family is a subset of the other. That is, there
are binary random utility models that are not strong util-
ity models and there are strong utility models that are not
random utility models. Other papers have explored the poly-
hedral geometry of distribution-free random utility models
(e.g., Doignon et al., 2006; Doignon & Regenwetter, 1997,
Fiorini, 2001, 2004; Regenwetter et al., 2011; Regenwetter
& Davis-Stober, 2012; Regenwetter et al., 2014). This paper
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focuses on distribution-free extensions of Fechnerian mod-
els, including strong, moderate, and strict utility models. We
explore the relationship between these families in a later sec-
tion. We also later illustrate these visually in Figs. 4 and 5.

Many published papers utilize variations of the Fechnerian
models described above. As we have shown, each varia-
tion entails specific functional and distributional assumptions
beyond just the notion that more strongly preferred options
should be more likely to be chosen. While the vast major-
ity of these papers pay relatively little attention to such
assumptions, a few notable exceptions document specific
consequences of the shape of the error term. With the mod-
els and concepts we have reviewed in this section, we can
now provide more specifics on some of those exceptions.
Buschena and Zilberman (2000) use probit models to select
among generalized expected utility models and find that,
for one and the same data set, one would select different
models depending on whether one assumed homoscedastic
or heteroscedastic errors. In the same vein, Drichoutis and
Lusk (2014) find that contextual utility can produce different
characterizations of risk preferences depending on whether
one assumes the CDF to be normal or logistic (i.e., a het-
eroscedastic probit or heteroscedastic logit). Furthermore,
Blavatskyy (2007, 2014) show that truncating the error term
in a strong utility model can force preferences to satisfy first-
order stochastic dominance. These papers provide empirical
evidence for our premise that auxiliary assumptions beyond
the general Fechnerian model can be problematic.

We have reviewed existing models that are “Fechnerian”
in the sense of requiring that the more strongly a decision
maker prefers an alternative, the more likely they are to
choose it. We decomposed these models into assumptions
about the relationship between utilities and strengths of pref-
erence and, in turn, about the relationship between strengths
of preference and binary choice probabilities. In the next
section, we introduce formal concepts for developing a more
general definition of Fechnerian models — one that begins
directly with strength of preference as a theoretical primitive,
and which also does not require the assumption of a paramet-
ric family of CDFs for mapping strengths of preference into
binary choice probabilities.

Distribution-Free Fechnerian Models

We now consider Fechnerian models in a more general sense
than those we specified in Egs. 1, 3, or 4. At their full level
of generality, Fechnerian models use strengths of prefer-
ence, not necessarily derived from utilities, and they permit
any strictly monotonic relationship between the strengths of
preference and the choice probabilities. Therefore, beginning
with the basic premise that the more strongly a person prefers

one option to another, the more likely they are to choose it, we
define what we call “distribution-free Fechnerian models.”
These models bridge the gap between core (algebraic) deci-
sion theories and probabilistic choice data, without explicit
reference to utilities or error distributions.

Definitions

Throughout the rest of the paper, we utilize the following
notational conventions. We use i, j, k, £ to denote generic
choice options and w, x, y, z for specific ones. We are con-
cerned with the predictions of a given decision theory about
observable choice behavior on a given domain D of choice
pairs. For a given decision theory and probabilistic response
model, these predictions take the form of mappings from
choice pairs into probabilities. We call these mappings binary
choice (probability) vectors. By and large, we treat binary
choice probabilities as different from zero or one. These
premises motivate the following formal definition.

Definition 3 Let ]O, 1[ denote the open unit interval and let
10, 1[P denote the collection of all mappings from D into
10, 1[. A mapping P € ]0, 1Pisa binary choice (probabil-
ity) vector on D if P(ij) =1 — P(ji),Vij € D.

For a fixed domain, the binary choice vectors produced
by a given decision theory and probabilistic response model
may depend on free parameters. For example, the predictions
of CRRA-EU, with a logit response model, depend on both
the risk sensitivity parameter of CRRA-EU and the scaling
parameter of the logit. More generally, for a given theory and
probabilistic response model, as we vary parameter values,
we obtain different binary choice vectors. We formalize such
collections with a definition.

Definition 4 A probabilistic model of binary choices on D is
a collection of binary choice vectors on D.

Probabilistic choice models in the literature, such as a
logit specification of CRRA-EU on a fixed domain, com-
prise all of the binary choice vectors that can be derived from
the decision theory (here, CRRA-EU) through the response
model (here, logit). In this way, the response model links the
decision theory to the binary choice probabilities. The next
definition introduces another such link that is more general
than a logit or probit model. It characterizes probabilistic
models in which the binary choice probabilities are mono-
tonically related to the strengths of preference implied by an
underlying decision theory.

Definition 5 Let S be an odd real-valued function on the

domain D, i.e., suppose that S(ij) = —S(ji), Vij € D.
We also refer to S(ij) as the strength of preference for i over
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Jj. A binary choice vector P satisfies the Fechnerian property
for S if and only if

Sij) > Skt) < P(ij) > P(ko), Vij, k¢ € D. (6)
A Fechnerian model (for S) is a collection of binary choice
vectors that satisfy the Fechnerian property.

A special case of the Fechnerian property applies when
i = k: If i is preferred more strongly over j than over &, then
the probability of choosing i from {i, j} is greater than the
probability of choosing i from {i, k}. For the choice options in
Example 1, because decision maker A prefers the sure thing,
z, more strongly to gamble x than to gamble y, the Fechnerian
property says that decision maker A is more likely to choose
the sure thing when it is paired against gamble x than when
it is paired against gamble y.

Having laid out the above preliminaries and definitions,
we are ready to consider some core properties of Fechnerian
models. We prove the following insight in Appendix 2.

Proposition 1 Let S be an odd real-valued function on D
and let P be a binary choice vector on D. The Fechnerian
property implies that
Sij)>0 & P(j) > 3, Vij € D.

The next proposition, which we state without proof, fol-
lows directly from the definitions.

Proposition 2 Let S be an odd real-valued function on D, let
P be a binary choice vector on D, and let F be the function
on the range of S given by
F(S@j) = P(j), Vij e D. (N
P satisfies the Fechnerian property (6) for S if and only if F

is strictly increasing. Furthermore, F satisfies F(S(ij)) =
1 — F(—=S(@ij)), forallij € D.

Proposition 2 implies that strong utility and moderate
utility specifications of a core utility theory (Egs.1 and 4,
respectively), with strictly increasing F', are Fechnerian mod-
els in the sense of Definition 5. They generate binary choice
vectors from Eq. 7 with various assumptions about S and F.
Some of these, most notably logit and probit models, restrict
F in Eq. 7 to belong to a parametric family of CDFs.

The Fechnerian property (6) and the resulting relation-
ship in Eq. 7 satisfy Kellen et al.’s (2021) prescriptive
criterion of a “monotonic coordination function.” Kellen et
al. (2021) advocate broadly that, in order to avoid over-
specified relationships between hypothetical constructs and
observable measures, scholars in all areas of psychology
should only assume that observable variables are monotonic
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functions of latent variables, without specifying those mono-
tonic relationships in too much detail. Equation 7 implements
their recommendation for the relationship between latent
strengths of preference and probabilities of observable binary
choices by dropping the additional auxiliary structure that a
parametric CDF would impose. The next definition defines
a Fechnerian model for a generic collection of strength-
of-preference functions, without reference to utilities, and
without distributional assumptions about F, by relying only
on the Fechnerian property (6).

Definition 6 Let S be a collection of odd real-valued func-
tions, each on the domain D. For a given S € S, the
distribution-free Fechnerian model, or DFM, for § is the
collection Mg = {P € ]0, 1[D such that P satisfies the
Fechnerian property for S}, i.e., the union of all Fechnerian
models for S. Likewise, the DFM for S is the collection of
binary choice vectors given by Mg = Ugcs M.

When considering Definition 6, note that a core decision
theory with its parameters held fixed may yield a single
strength-of-preference function S. As the parameters of the
core theory vary, it may yield a collection S of strength-
of-preference functions. For an example involving a utility
theory, consider CRRA-EU with risk sensitivity parameter
r. When strength of preference is the arithmetic difference
of utilities, a fixed value of r yields a fixed mapping S, from
pairs of choice alternatives into strengths of preference, such
as those illustrated in the rows of Table 1. The collection
of such mappings that arise by considering each value of
r in a continuum constitutes a collection S of strength-of-
preference functions.

Geometric Characterization

We now show that a DFM is a well-defined geometric object
whose mathematical properties are surprisingly tractable.
The geometric framework provides tools from polyhedral
combinatorics for understanding these models in ways that
can be difficult to achieve with algebraic formulations alone.
In particular, as we will see in more detail later, the geometric
approach helps to generate powerful substantive theoretical
insights, especially related to theoretical parsimony and con-
struct identifiability.

The first geometric concept we need is that of a hyper-
cube, a generalization of the 2D square and of the 3D cube to
higher dimensions (we will consider examples of these con-
cepts when we discuss Fig. 1). The hypercube is an example
of a more general object called a convex polytope, which
we now define semi-formally. This is an object with ‘flat
surfaces’ and no ‘holes’ or ‘gaps.” One way of character-
izing a convex polytope is through its vertex description:
Take a finite collection of points, so-called vertices, and con-
sider everything ‘between’ any of them, i.e., their convex hull
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(intuitively, the space defined by ‘tightly shrink-wrapping’
the vertices). Being convex means that, for any two points in
the polytope, the line segment connecting those two points is
completely contained in the polytope. A 3D cube is convex,
and it forms the convex hull of its eight ‘corners.” The same
cube is also the space that is ‘sandwiched’ between the cube’s
six (square-shaped) 2D faces. In general, a d-dimensional
convex polytope is also the space ‘sandwiched’ between a
collection of (sometimes very many) (d — 1)-dimensional
facets. For instance, the facets of a 4D hypercube are, them-
selves, 3D cubes. Finding either the vertex description (i.e.,
a complete list of all its vertices and their coordinates) or the
facet description (i.e., acomprehensive list of facets and their
descriptions) of a convex polytope can range from trivial to
computationally intractable. For one and the same polytope,
it is not unusual for one of these, either the vertex description
or the facet description, to be easy to obtain and the other to
be extremely difficult to find.

A probability distribution over a finite set can be thought
of as a convex combination of elements of that set, i.e., a
weighted average with nonnegative weights that sum to one.
This is equivalent to saying that the elements of that set form
the vertex description of a polytope. The convex polytope
is the collection of all such probability distributions: Every
probability distribution over that set forms a point in the poly-
tope. The power of convex geometry concepts like these lies
in the potential for characterizing certain probabilistic mod-
els in useful ways. Here, we accomplish that goal using the
facet descriptions of probabilistic models that form convex
polytopes. Such a description provides a smallest collection
of nonredundant affine inequalities that jointly characterize
the model completely. In other words, they form a small-
est possible set of necessary and sufficient conditions for a
point (here a probability vector) to belong to the polytope
(here a model). Suppose that a scholar has derived affine
inequalities describing a probabilistic model and wants to
determine whether the inequalities characterize the model
completely and efficiently. If that model forms a convex poly-
tope then a collection of affine inequalities is necessary and
sufficient for that model as soon as these inequalities form
a facet description for that polytope, in which case they are
also nonredundant. Facet descriptions typically take the form
of facet-defining inequalities, each of which defines a half-
space. The intersection of an open or closed d-dimensional
probability hypercube 10, 1[¢ or [0, 1]¢ with one or more
d-dimensional half-spaces forms a convex polytope (or is
empty). In addition to mathematical and theoretical insights,
the geometric approach leads to powerful inferential statis-

3 In many cases, in this paper, we consider open hypercubes 10, 1[¢.
For ease of reading, we do not explicitly distinguish verbally between
open and closed hypercubes.

tics capabilities: Contemporary order-constrained statistical
inference methods connect naturally to facet descriptions.

We begin our discussion of geometric properties of Fech-
nerian models with an observation that specifies a common
space for representing probabilistic models of binary choices.
We define a pairwise preference in favor of i over j, denoted
asi > j,viai > j < P(ij) > 1/2. The next proposition,
which we illustrate in Example 2 and Fig. 1, follows naturally
from the concepts we have discussed.

Proposition 3 The ser 10, 1[P forms a unit hypercube of
dimension |D|. The set of all binary choice vectors on D,
which is a proper subset of 10, 1[P, also forms a unit hyper-
cube. It has dimension |D|/2 because P(ij) = 1 — P(ji)
for each distinct pair ij. A minimal coordinate system for
representing this hypercube can be obtained by arbitrarily
selecting, for each unordered pair {i, j}, either the proba-
bility P(ij) or the probability P(ji). Consider any point
in the unit hypercube 10, 1PI72 such that, for each coordi-
nate P (k?) in the minimal coordinate system, P(k{) # 1/2.
This point lies in one 0f2|DV2 distinct half-unit hypercubes,
each of which defines a binary preference relation on choice
options.

Example 2 To illustrate Proposition 3, let Dy be the collection
of all ordered pairs of choice alternatives among the gambles
X, Y, and z of Example 1. Hence, Dy = {xy, yx, xz, zx, yz, zy}.
Using P(xy), P(xz), P(yz) as a coordinate system, Fig. 1
shows two different half-unit cubes embedded in the unit
cube of binary choice probabilities. These are two out of
23 = 8 such half-unit cubes that make up the 3D unit cube.
The half-unit cube on the left is defined by the constraints
that P(xy) < /2, P(xz) < 1/2, and P(yz) < 1/2. It cor-
responds to the binary preference relation y > x, z > x,
and z > y. The half-unit cube on the right (located in the
space above the cube shown on the left) is the space where
P(xy) < 1/2, P(xz) > 1/2, and P(yz) < 1/2 corresponding
to the (intransitive) binary preference relation y > x, x > z,
and z > y. We later review how the left-hand side cube can
be partitioned into 6 distinct tetrahedra (together with addi-
tional lower-dimensional polytopes) corresponding to the six
different orders of strengths of preference that are consistent
with the preference pattern y > x, z > x, and z > y.

The unit hypercube defined in Proposition 3 provides a
common space to test and compare theories of binary choice
(e.g., Cavagnaro & Davis-Stober, 2014; Dai, 2017; Morrison,
1963; Regenwetter et al., 2011, 2014, 2018, Zwilling et al.,
2019). However, decision theorists have not typically worked
in this space because the most commonly used (parametric)
probabilistic specifications do not form convex polytopes and
hence are not amenable to analysis methods from polyhedral
combinatorics. We will see a 3D illustration later, in Example
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Fig.1 Two half-unit cubes in
10, 1[3. The left panel represents
the binary preference pattern
y>x,z>x,andz > y via
P(xy) < /2, P(xz) < 1/2,and
P(yz) < 1/2. The right panel
represents the (intransitive)
binary preference pattern y > x,
x >z,and z > y via

P(xy) <1/2, P(xz) > 1/2, and
P(yz) <12

6 and Fig. 3. As we unpack further below, the distribution-
free Fechnerian specification of any core theory forms a finite
set of convex polytopes in the unit-hypercube, each fully
characterized by an easy-to-derive facet description. As such,
these models are subject to modern and fast order-constrained
methods for drawing inferences from data.

Next, we show an example to illustrate how the facet-
defining inequalities of a DFM follow directly from the
strengths of preference. Following the example, we will state
the general result formally.

Example 3 Consider again the gambles x, y, z of Example 1
and Dy = {xy, yx, xz, zx, yz, zy} as in Example 2. Consider
decision maker A in Table 1, whose strengths of preference
are

0 <S-04(y) =19 < S 04(yx) =17.1
< S_p.4(zx) = 19.0.

Abstracting away from the specific value of r = —0.4, sup-
pose more generally that

S(xz) < S(xy) < S(yz) <0< S(zy) < S(yx) < S(zx).

0.5 0.5

0.75

0.5
0.25

P(yz) 0 o P(xy)

P(xy)

By the Fechnerian property (6), the DFM for S on D
comprises the binary choice vectors in ]0, 1[0 that satisfy

0 < P(xz) < P(xy) < P(yz) < % < P(zy)
< P(yx) < P(zx) < 1. ®)

Taking into account that P(xy) = 1 — P(yx); P(xz) =
1 — P(zx); P(yz) =1— P(zy), like in Example 2 we can
consider just the three probabilities P(xy), P(xz), P(yz) as
a coordinate system. The model is fully characterized by an
irreducible system of four nonredundant affine inequalities,

0 < P(x2) ©)
P(xz) < P(xy) (10)
P(xy) < P(yz) (1)

1
P(yz) < 7 (12)

These form the four facet-defining inequalities of the poly-
tope displayed in the left-most panel of Fig. 2. Inequality 9
states that the polytope is ‘above’ the horizontal plane
defined by P(xz) = 0. Inequality 10 states that the poly-
tope is ‘below’ the ‘diagonally leaning’ plane defined by

0.5

P(yz) 0o P(xy) P(yz) 00 P(xy)

P(yz) 0o P(xy) P(yz) 0o P(xy)

Fig.2 Tetrahedra corresponding to the orders of strengths of preference compatible with the binary preference relation y > x,z > x,and z > y

@ Springer



Computational Brain & Behavior

P(xz) = P(xy). Inequality 11 states that the polytope is ‘on
the left of” the vertical plane defined by P(xy) = P(yz).
Inequality 12 states that the polytope is in the ‘southeast
half” of the unit cube. The polytope is a tetrahedron and the
four facets of that polytope are the four triangular faces of
the tetrahedron.

The following two propositions, both of which are proven
in Appendix 2, state these ideas and properties generally and
formally.

Proposition4 Let S be an odd, real-valued function on a
domain D. Then, the collection of all binary choice proba-
bility vectors that satisfy the Fechnerian property for S, i.e.,
M, forms a convex polytope of dimension less than or equal
to |D|/2, whose facet-defining inequalities follow directly
from Condition 6. If S is one-to-one then the corresponding
polytope has dimension |D|/2.

Proposition 5 If S is a collection of odd, real-valued func-
tions, each on the domain D, then M s forms a finite disjoint
union of convex polytopes of the forms discussed in Propo-
sition 4.

As we explain throughout the rest of the paper, Propo-
sition 5 can be useful for understanding the nuances and
parsimony of theoretical predictions, for mapping out the
identifiability of various theoretical constructs, and even for
designing diagnostic stimuli. The next proposition wraps up
our general geometric results by spelling out that one can par-
tition the entire empirical sample space into polytopes that
represent different orders of strengths of preference (includ-
ing lower dimensional polytopes corresponding to orders of
strengths of preference with ties).

Proposition 6 For a given domain D, and for any binary
choice vector P, there exists an odd, real-valued function S
on D such that P € M. Therefore, there are collections S
such that Mg partitions the |D|/2-dimensional hypercube
of binary choice vectors.

Example 4 Building on the stimuli of Example 1 and the
domain Dy = {xy, yx, xz, zx, yz, zy} of Examples 2 and
3, Fig. 2 illustrates Propositions 4—6. These illustrations also
connect with later results in the paper.

First off, Proposition 4 means that the polytopes in ques-
tion must have dimension less than or equal to [Dy|/2 = 3.
Each panel of the figure visualizes one or two 3-dimensional
DFMs, shown in the subspace of 10, 1[° that is spanned by
the coordinates P (xy), P(xz), and P(yz). Most notably, the
figure shows various 3-dimensional polytopes that form tetra-
hedra. Each one of these polytopes has the point (1/2, 1/2, 1/2),

which corresponds to perfectly calibrated and unbiased
guessing on all paired comparisons, as one of its vertices.
Returning to the model whose facet-description we already
considered in Example 3, the tetrahedron in the left-most
panel of Fig.2 is formed by the (open) convex hull of the
vertex (1/2,1/2, 1/2) and three vertices that are all located in
the plane P(xz) = 0. In the second panel from the left, we
have ‘added’ another such tetrahedron, which is defined by

0< P(xz) < P(yz) < P(xy) < % (13)

This tetrahedron is the DFM for S’ on D satisfying
S'(xz) < S'(yz) < §'(xy) <0 < §'(yx) < §'(zy) < §'(zx).

These two tetrahedra are on opposite sides of a shared facet,
the dark-shaded triangle defined by

0< P(xz) < P(xy) =P(yz) < l

x (14)

i.e., the DFM for S” on D satisfying

§"(xz) < §"(xy) = 8" (yz) <0
< 8" (zy) = " (yx) < 8" (zx).

This triangle is the convex hull of the three vertices shared by
the two tetrahedra. Together, these two tetrahedra and their
shared face form an open pyramid, which is also the con-
vex hull* of the vertex (1/2, 1/2, 1/2) and four vertices located
in the plane P(xz) = 0, two of which are shared by the
two tetrahedra. We provide the mathematical details of the
remaining two panels of Fig. 2 in Appendix 3.

Figure 2 also partially illustrates Proposition 6 in that it
outlines the partition in the left of Fig. 1. The six tetrahedra
shown across the panels of Fig. 2 match the six possible
orders of strengths of preference among S(yx) > 0, S(zx) >
0, and S(zy) > 0. Together with various 2-dimensional and
1-dimensional polytopes, as well as the point (1/2, 1/2, 1/2),
the polytopes form a partition of the (open) half-unit cube
in the left panel of Fig. 1. To fully illustrate the partition of
the entire unit cube in Proposition 6, one needs to consider
also the other seven half-unit cubes that make up ]0, 113
These correspond to the seven ways in which one can switch
the sign of one or more of these strengths of preference, and
thereby make one or more of these binary choice probabilities
greater than 1/2. We later revisit some of the polytopes in

4 From here on, we omit the technical detail that when we refer to
a convex hull, we mean the corresponding open set that excludes the
vertices and faces.
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Fig. 2, as they represent specific situations that we see in
later examples.

To illustrate the theoretical significance of Proposition 6,
imagine an extreme case of a decision theory with a free
parameter r, a collection of stimuli, and an associated col-
lection of strength-of-preference functions, for which the
resulting DFM forms the entire unit hypercube. This means
that, as one varies r in the decision theory, one arrives at
every possible order of strengths of preference over the col-
lection of stimuli. This has two major implications: Loosely
speaking, if |D| is ‘large’ then the partition in Proposition 6
will contain ‘numerous’ polytopes, each of which is associ-
ated with a specific range of values of r (or even a unique
value). Partitioning the domain for r into ‘many’ separate
ranges means that the Fechnerian property alone provides a
‘high level of resolution’ into the ‘identifiability’ of ». On the
other hand, if the DFM indeed forms the entire probability
hypercube, for a given set of stimuli, that also makes it vac-
uous in that it cannot be rejected by data when using those
stimuli. A researcher would want to notice this, because it
means that a parametric model such as a logit specification
would make the theory testable exclusively through the extra
constraints imposed by the functional form of that logit and
not through features of the core theory.

The above insights suggest new perspectives on the-
oretical parsimony and identifiability as we consider the
correspondence between polytopes and associated compo-
nents of the core theory. For each component polytope of a
DFM, we can look up the values of the theory’s parameters
that map into that polytope, to see whether individual val-
ues of the parameters can be identified through that DFM
or what ranges of parameter values map into one and the
same polytope. For instance, as we later unpack in Table 2,
for CRRA-EU on the stimuli of Examples 1-4, the poly-
tope characterized by Condition 8 corresponds to —0.465 <

r < 1.017. The polytope characterized by Condition 13
corresponds to r > 1.017. The facet shared by these two
polytopes, which is a two-dimensional polytope character-
ized by Condition 14, corresponds to r = 1.017. Thus, the
parameter value of r = 1.017 is identifiable through the
DFM, while point parameter values for r greater than 1.017,
even though they are distinguishable from those less than or
equal to 1.017, are nevertheless not identifiable without addi-
tional assumptions. More generally, for a given set of stimuli
that define D, the correspondence between parameter values
of a core theory and the associated polytopes constraining
choice probabilities is ‘uneven’ across the parameter space:
For some polytopes, the underlying parameter values that
give rise to the associated order of strengths of preference
may be a unique combination of values, i.e., fully identifi-
able, while for others, there may be many combinations of
parameter values that give rise to the same order of strengths
of preference, hence to the same polytope constraining choice
probabilities.

Beyond identifiability issues, it is also important to con-
sider the parsimony and falsifiability of models. According to
an algebraic heuristic, the number of parameters in a model
is a proxy for its parsimony. This is not literally true. For
example, the constraint 0.5 < p < 0.6 is far more parsi-
monious than 0.1 < p < 0.9, even though both constraints
involve a single parameter p. According to a related algebraic
heuristic, a model is only falsifiable if it has strictly fewer free
parameters than there are degrees of freedom in the data. This
is also not literally true. Both constraints 0.5 < p < 0.6
and 0.1 < p < 0.9 are falsifiable with a single proportion.
Returning to DFMs, a DFM on a domain D can have as many
as |D|/2 free parameters, and there are |D|/2-many degrees
of freedom in the data, so a DFM can have a free parameter
for each stimulus. Nevertheless, as we have seen through the
lens of polyhedral geometry, even full-dimensional DFMs

Table2 Correspondence between values of the risk sensitivity parameter in CRRA-EU and the facet-defining inequalities of polytopes in the DFM,
when the strength of preference is S(ij) = u, (i) — u,(j), i.e., the strong utility assumption

Parameter of
core theory

Utility ranking

Order of positive
strengths of preference

Facet-defining inequalities

r>1.017
1.017 > r > —0.465

u(z) > u(y) > u(x)

S(zx) > S(zy) > S(yx) >0
S(zx) > S(yx) > S(zy) >0

1>1—P(xz)>1—P(yz)>1—P(xy)>%
1>1—P(xz)>1—P(xy)>1—P(yz)>%

—0.465 > r > —0.607
—0.607 > r > —0.658

u(y) > u(z) > u(x)

S(yx) > S(zx) > S(yz) > 0
S(yx) > S(yz) > S(zx) > 0

1>1—-Pkxy)>1—P(xz) > P(yz) >
1>1—-Pkxy)> P(yz)>1—P(xz) >

Bf— BIl—

—0.658 > r > —0.698
—0.698 > r > —0.755

u(y) > u(x) > u(z)

S(yz) > S(yx) > S(xz) >0
S(yz) > S(xz) > S(yx) >0

1> P(yz) > 1 - P(xy) > P(xz) >
1> P(yz) > P(xz) > 1— P(xy) >

[SIERNTES

—0.755 > r > —0.959
—0.959 > r

u(x) > u(y) > u(z)

S(xz) > S(yz) > S(xy) >0
S(xz) > S(xy) > S(yz) >0

1> P(xz) > P(yz) > P(xy) >
1> P(xz) > P(xy) > P(yz) >

[STESTE

Note. We omit the subscript r for brevity
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are falsifiable because they imply inequality constraints on
probabilities. Furthermore, the smaller the volume® of the
corresponding union of convex polytopes, the more parsi-
monious the DFM.

In sum, the geometric approach offers new insights into the
identifiability of hypothetical constructs, as well as a novel
perspective on theoretical parsimony, based on the number
of polytopes that form a DFM, their dimensions, as well
as a DFM’s volume. Because a DFM is directly connected
to the stimuli under consideration, our approach also better
accommodates that, ultimately, identifiability and parsimony
should be considered in the context of the stimuli being used.
These themes will accompany our development of DFMs in
the next section and beyond.

DFMs for a Utility Theory

Motivated by the classical Fechnerian models that we dis-
cussed in Background, we now consider DFMs for utility
theories and how they relate to some other probabilistic
choice models. We rely on CRRA-EU to serve as illustrative
case studies of how DFMs connect to a range of research
programs. Since utility theories do not generate strengths
of preference directly, one must theorize about how util-
ity relates to strength of preference. We translate different
assumptions about this relationship into the resulting DFMs.
These considerations open up insights into a broad spec-
trum of theoretical questions: Under a given fixed core utility
theory, what predictions are invariant across distributional
assumptions within a fixed strength of preference theory?
Equivalently, which core constructs of the utility theory are
identifiable without distributional assumptions, through the
mere assumption of the Fechnerian property? What predic-
tions remain invariant across different strength of preference
theories and to what extent can one distinguish different
strength of preference theories from each other? In the exam-
ple of CRRA-EU, these questions translate into questions
aboutrisk attitudes, the degree to which they constrain behav-
ior without reliance on additional assumptions, the degree to
which they are identifiable without such assumptions, and
the ways in which risk attitudes and a strength of preference
theory interact. Likewise, we could ask, under a given fixed
strength of preference theory, to what extent different core

> For a probability model that forms a convex polytope, the recipro-
cal of the volume of that polytope is the upper bound on the Bayes
factor that one can obtain in comparing the model against an uncon-
strained reference (Klugkist and Hoijtink, 2007; Zwilling et al., 2019).
In particular, Constraint Set 14 characterizes a 2-dimensional polytope
in 3-dimensional space, for r = 1.017. This polytope has volume zero
in 10, 1[3. This means that there is no upper limit as to how much evi-
dence a very large, very well-fitting data set can provide in favor of the
DFM for CRRA-EU restricted to r = 1.017.

utility theories are identifiable without distributional assump-
tions.

A major goal along the way is to better understand the
polyhedral geometry of DFMs. We explore the geometric
relationships between different DFMs, as well as other model
classes such as random utility, supermajority, and constant
error. We discuss the role of these geometric representations
for testing a utility theory, estimating its parameters, and
comparing it to other theories (both empirically and theoret-
ically). Those insights are, in turn, closely intertwined with
theoretical parsimony. In particular, DFMs permit the statis-
tical complexity of a model to grow hand-in-hand with the
complexity of the data generating process as one adds more
and more stimuli to an experimental design, a feature not
shared by parametric Fechnerian models.

Strong Utility DFM

Perhaps the most prominent way to introduce strength of
preference induced by a utility function is to define it via the
arithmetic difference between utility values, as in the strong
utility model of Definition 1.

Definition 7 Let u be a utility function on a domain on D.
An assignment S of strengths of preference to elements of D
satisfies the strong utility assumption with respect to u if

S@j) =u@@) —u(j), VijeD. (15)
The DFM for S in Eq. 15 is called the strong utility DFM on

D for u. We say that a DFM on D is a strong utility DFM if
it is the strong utility DFM for some such u.

Note that Definition 7 extends naturally to an entire util-
ity theory by considering all utility functions associated with
that theory (e.g., by varying free parameters in the theory), all
S associated with those utility functions through Eq. 15, and
taking the union of those DFMs. Through the lens of Defini-
tion 6, one may view a strong utility DFM as the collection
of binary choice vectors satisfying the Fechnerian property
under the strong utility assumption. Equivalently, through the
lens of Proposition 2 and Definition 1, one may view a strong
utility DFM as the union of all strong utility models that can
arise by varying F in Eq. 1 and requiring that F to be strictly
increasing.

Example 5 We develop a strong utility DFM for CRRA-EU,
building on Examples 1-4. As we vary r in CRRA-EU, the
utilities of x, y, and z vary. The strong utility assumption
therefore assigns different strengths of preference to elements
of Dy, depending on r. Writing S, (ij) = u, (i) — u,(j) for
the strength of preference induced by CRRA-EU with fixed
r, S = {8, },er comprises the strength-of-preference assign-
ments under all possible values of  on the real number line R.
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The resulting M s is the strong utility DFM for CRRA-EU
on this domain.

Since r takes values in a continuum, understanding Mg
would seem to be a formidable task. However, by Proposi-
tion 5, Mg is a finite disjoint union of convex polytopes.
Moreover, by Proposition 4, each polytope corresponds to
an order of strengths of preference whose facet-defining
inequalities follow directly from the Fechnerian property.
This means that, to write down the constraints on choice
probabilities that characterize Mg, we only need to find the
(finitely many) orders of strengths of preference, for the stim-
uliin Dy, that can be generated from CRRA-EU via the strong
utility assumption (15) as we vary r. There are a variety of
approaches for doing this, ranging from analytical deriva-
tions to computational approximations (see, e.g., Pitt et al.,
2006).

For simplicity, in this example, we followed the approx-
imation route: We generated the orders of strengths of
preference for the DFM by running a grid search of r between
—3 and +3, with a precision of 0.001. Table 2 lists these
orders along with the corresponding values of r. To keep
the table concise, we only show the order among posi-
tive strengths of preference. In each case, the full order of
strengths of preference follows from the fact that S(ij) =
—S(ji). For example, the order of strengths of preference
forr > 1.017 is

S(zx) > S(zy) > S(yx) > 0> S(xy) > S(yz) > S(x2).

The table is organized by decreasing values of r from top
to bottom. As r varies, we get different orders of strengths of
preference in different rows of the table. In addition, we group
together orders of strengths of preference that are compatible
with the same ranking of utility values, shown in the second
column of the table. Recall from Example 2 and Fig. 1 that
such groupings have a geometric interpretation in terms of
half-unit cubes. Polytopes corresponding to the same ranking
of utility values are nested in the same half-unit cube. They
have a common vertex (not included in the open polytope)
at a corner of the probability cube, in which P (ij) € {0, 1}
for all ij. This would correspond to deterministic choice in
accordance with the ranking of utility values. For example,
the first two rows in Table 2 characterize the two tetrahedra in
the second panel from the leftin Fig. 2. These are nested in the
half-unit cube in the left panel of Fig. 1, and they share the
vertex P(xy) = P(xz) = P(yz) = 0. That vertex, in turn,
corresponds to deterministic choice of y over x, of z over x,
and of z over y.

For each order of strengths of preference, Table 2 also
shows the facet-defining inequalities of the corresponding
polytope in the coordinate system we selected earlier. The
facet-defining inequalities follow from the orders of positive
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strengths of preference as follows (see also Proposition 4
and Example 3). First, for ij € {xy, xz, yz}, replace S(ij)
with P(ij). Then, for k¢ ¢ {xy, xz, yz}, replace S(k{) with
1 — P(£k). Finally, add a strict upper bound of 1 and a strict
lower bound of 1/2 to the system of inequalities. The lower
bound follows from the fact that the strengths of preference
in the table are strictly positive.

Note that the table omits orders of strengths of prefer-
ence that contain ties. These occur at point values of » that
join the open intervals shown in the table. Geometrically,
such orders also correspond to lower-dimensional polytopes
that join two or more higher dimensional polytopes, so that
their union is convex. For example, »r = 1.017 joins the
open intervals shown in the first two rows of the table, and
yields S(zx) > S(zy) = S(yx) > 0. The corresponding
constraints on binary choice probabilities, in the coordinate
system we selected earlier,are | > 1—P(xz) > |—P(yz) =
1 — P(xy) > 1/2. These constraints characterize a triangu-
lar face that joins the two tetrahedra corresponding to the
first two rows of the table, which appear in the second panel
from the left in Fig.2. Notice how the geometry pinpoints
r = 1.017 as an identifiable knife-edge parameter value that
generates a far more restrictive, lower-dimensional polytope,
using nothing more than the strong utility assumption (15)
applied to CRRA-EU.

In all, on this particular set of choice stimuli, the
strong utility DFM for CRRA-EU comprises eight open,
3-dimensional, convex polytopes: one for each order of
strengths of preference (without ties) shown in Table 2. It also
includes seven lower-dimensional polytopes corresponding
to orders of strengths of preference with ties. Four of these
correspond to cases with equality between two nonzero
strengths of preference, and therefore equality between two
choice probabilities that are also different from 1/2. These
polytopes are (open) 2-dimensional faces (triangles) that join
two tetrahedra in the DFM. The other three lower dimen-
sional polytopes correspond to the cases where one of the
choice probabilities equals 1/2. This happens at very spe-
cific values of r where the utilities of two alternatives are
equal to each other, so that the corresponding strength of
preference is zero. In those cases, the other two strengths of
preference are equal to each other. Consequently, the corre-
sponding choice probabilities are also equal to each other but
may vary freely between zero and 1/2. These polytopes are
(open) 1-dimensional edges that join two neighboring tetra-
hedra (i.e., line segments). The left panels of Fig. 3 depict the
union of all 15 polytopes from two different angles of view.

We can review these insights through the lens of the
coordination problem (e.g., Kellen et al., 2021) and Bhatia
and Loomes’ (2017) distinction of “preference noise” (e.g.,
fluctuating utility values) and “response noise” (e.g., choice
‘errors’). There are specific values of r in which we obtain
equality among strengths of preference (r values of 1.017,
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Fig.3 Probabilistic
specifications of CRRA-EU:
strong utility DFM (left panels)
and strong utility logit (right
panels), from two different
angles of view (upper and lower
panels)

0.5
01
P(xy)

—0.607, —0.698, —0.959) while having strict inequalities
among utilities. There are other values of r at which one or
more strengths of preference are zero and where utilities are
equal to each other (r values of —0.465, —0.658, —0.755).
This shows the ‘unevenness’ of the relationship between r
values and choice probabilities when viewed through the
lens of a strong utility DFM, and hence the ‘uneven’ coor-
dination between constructs and behavior without additional
auxiliary constraints imposed by parametric distributional
assumptions (see also Broomell & Bhatia, 2014, for a related
discussion of parameter identifiability). Regarding Bhatia
and Loomes’ “preference noise,” as long as that noise con-
centrates all its probability mass in a range that stays within
one line in Table 2, the order of strengths of preference in a
strong utility DFM is not affected, and hence neither are the
order-constraints on the choice probabilities.

Before we proceed to the next model class, we com-
pare the strong utility DFM with a typical logit specification
of the same utility theory, defined as P(ij) = [l +
e v w@=u(N]=1 "where y > 0 is a scaling parameter. We
refer to this model as the strong utility logit specification of
the utility theory.® It is a Fechnerian model because it can be

6 Other models taking the form of Eq. 7, with different assumptions
about how strengths of preference are related to utilities, may also be
regarded as logit specifications whenever F is a logistic CDF. Similarly,
models of the form of Eq. 7 may be regarded as probit specifications
whenever F is a normal CDF.

1
Xos-
o
0
05 © T 05 01 05 0
P(yz) P(xy) P(yz)

written in the form of Eq. 7, where F is a logistic CDF with
scaling parameter y, and S is the strength of preference under
the strong utility assumption (i.e., the arithmetic difference
of utility values). This restriction on F is what distinguishes
the strong utility logit from the strong utility DFM.

Example 6 The right panels of Fig. 3 depict’ the binary
choice probability vectors that can be obtained from the
strong utility logit specification in CRRA-EU for -3 < r <
3and 0 < y < 10 for the same stimuli we have considered
in earlier examples. Comparing the panels on the left (DFM)
with those on the right (logit) shows how restrictive the strong
utility logit is relative to the strong utility DFM. The DFM,
having three free parameters, is full-dimensional within the
cube, while the logit, having just two free parameters, defines
atwo dimensional surface (looking like a twisted, wavy piece
of foil) that is nested within the DFM.

More generally, by virtue of having a fixed number of free
parameters regardless of the number of choice pairs in the
domain, parametric models like this logit become increas-
ingly restrictive relative to the DFM as the number of choice
pairs increases. The contrast between the strong utility logit
and the strong utility DFM for CRRA-EU becomes par-
ticularly striking when we think about external validity of

7 The pictures approximate a continuous shape with a discrete set of
points.
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such models: What does it mean for the model to apply to
a hundred different types of choices, not just those exam-
ined in the laboratory? If one were to consider these models
in, say, a hundred-dimensional space spanned by a coordi-
nate system of 100 distinct gamble pairs, the strong utility
logit of CRRA-EU remains a two-dimensional shape in 100-
dimensional space, whereas the strong utility DFM forms a
union of polytopes of many different dimensions, ranging
from 1-dimensional to 100-dimensional. It is a mathematical
fact that, with enough data and enough stimuli, the strong
utility logit will eventually be rejected on virtually any con-
ceivable data. This feature is not shared by the DFM. As we
have already alluded to, the arbitrary restrictiveness of the
strong utility logit makes the process of inference from data
simpler computationally, but it can also lead to false con-
clusions such as biased parameter estimates, incorrect model
selection, or misclassification of qualitative features like risk
seeking/aversion. We unpack this issue further in Inference
from Data. We also show how a DFM allows us to avoid
various inherent downsides of parametric specifications.

Moderate Utility DFMs

Different DFMs for the same core utility theory arise from
different assumptions about the relationship between utility
and strength of preference. For example, for the case where
choice alternatives are gambles, Wilcox (201 1) defines a con-
textual utility model of the form

u(i) —M(j)}

(16)
a,-j — bij

PGj)=F [
where i and j are gambles, a;; is the utility of (a degenerate
gamble with) the largest possible reward in either i or j,
b;j is the utility of (a degenerate gamble with) the smallest
possible reward in either i or j, and F is a CDF with F(x) =
1 — F(—x), hence F(0) = 1/2.

This model motivates the following definition.

Definition 8 Let u be a utility function on gambles. An
assignment S of strengths of preference to elements of a
domain D satisfies the contextual utility assumption with
respect to u if

u(@) —u(j)

S(ij) = —

. VijeD, (17)
a,j —b,'j

where q;; is the utility of (a degenerate gamble with) the
largest possible reward in either i or j, and b;; is the utility
of (a degenerate gamble with) the smallest possible reward
in either i or j. The DFM for S satisfying Eq. 17 is the
contextual utility DFM on D for u. We say that a DFM on D
is a contextual utility DFM if it is the contextual utility DFM
for some such u.
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Like Definition 7, so does Definition 8 extend naturally to
an entire utility theory. When researchers fit contextual utility
models to data, they typically treat F in Eq. 16 as a parametric
CDF, and consider all permissible utility functions u in that
theory. For example, Wilcox (2011) assumes a logistic CDF,
resulting in a specification that could be called a contextual
utility logit. Drichoutis and Lusk Drichoutis & Lusk (2014)
assumes a normal CDF, yielding what we would call a con-
textual utility probit specification. These contextual utility
models are also Fechnerian models in the sense of Definition
5. They are special cases of the contextual utility DFM for
the function u, which, in turn, comprises all contextual utility
models for u obtained by varying F in Eq. 16, and requiring
that F to be strictly increasing.

Example 7 To illustrate the contextual utility DFM on D for
CRRA-EU, we first generated the orders of strengths of pref-
erence that arise as we vary r from —3 to +3 in increments of
0.001. Table 3 lists the resulting utility rankings and orders
of strengths of preference, together with their corresponding
ranges of values of r. For brevity, as with Table 2, we only
show the orders among positive strengths of preference, and
we omit orders with ties. The second column of the table
shows all six orders of strengths of preference that are possi-
ble within each utility ranking in the first column. Recall that
these groupings correspond to partitions of a half-unit cube
into six tetrahedra (see Figs. 1 and 2, for example). Columns
3 and 4 show the values of r, if any, that yield the corre-
sponding order of strengths of preference under strong and
contextual utility, respectively.

The table also provides insight into the polyhedral geom-
etry of these two models. Each model is a union of tetrahedra
— one for each permissible order of strengths of preference
— along with the lower-dimensional polytopes that ‘glue’
the tetrahedra together. Columns 3 and 4 of the table show
that, as r varies, each model generates 8 different orders of
strengths of preference — hence 8 tetrahedra. Six tetrahe-
dra are shared by the two DFMs, although in some cases for
different values of r (e.g., the first two rows in the second
grouping). Each DFM also includes two tetrahedra that the
other does not.

The contextual utility assumption represents one very spe-
cific way of infusing ‘context’ into strengths of preference
derived from utilities. It is also limited to cases where choice
alternatives are gambles. For generic choice alternatives and
a much broader notion of stimulus-dependent contexts, we
can build on the general moderate utility model of Eq. 4.

Definition 9 Let u be a utility function. An assignment S of
strengths of preference to elements in a domain D satisfies
the moderate utility assumption with respect to u if

S(ij):%;t)(j), Vij €D, (18)
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Table 3 Risk sensitivity parameter values that generate each possible order of strengths of preference, under weak, strong, and contextual utility
in Examples 5, 7, and 9. Angled brackets indicate orders that are not compatible with moderate utility (Example 8)

Utility ranking and
associated risk sensitivity

Positive strengths of preference under weak utility,
and compatible orders of strengths of preference

Risk sensitivity parameter
values under strong utility

Risk sensitivity parameter
values under contextual utility

parameter values

(D) > 1, () > 1, (x)
r > —0.465

S(yx), S(zx), S(zy)

S(zx) > S(zy) > S(yx)
S(zx) > S(yx) > S(zy)
S(zy) > S(zx) > S(yx)
S(yx) > S(zx) > S(zy)
(S(yx) > S(zy) > S(zx))
(S(zy) > S(yx) > S(zx))

r>1.017
1.017 > r > —0.465

r > —0.186

—0.186 > r > —0.465

ur(y) > ur(z) > ur(x)
—0.465 > r > —0.658

S(yx), $(zx), S(yz)

S(yx) > S(zx) > S(yz)
S(yx) > S(yz) > S(zx)
S(yz) > S(yx) > S(zx)
S(zx) > S(yx) > S(y2)
(S(zx) > S(yz) > S(yx))
(S(y2) > S(zx) > S(yx))

—0.465 > r > —0.607
—0.607 > r > —0.658

—0.465 > r > —0.542
—0.542 > r > —0.554
—0.554 > r > —0.658

ur(y) > up(x) > uy(2)
—0.658 > r > —0.755

S(yx), S(x2), S(y2)

S(yz) > S(yx) > S(xz)
S(yz) > S(xz) > S(yx)
S(yx) > S(yz) > S(xz)
S(xz) > S(yz) > S(yx)
(S(yx) > S(xz) > S(yz2))
(S(xz) > S(yx) > S(yz))

—0.658 > r > —0.698
—0.698 > r > —0.755

—0.658 > r > —0.698
—0.698 > r > —0.755

up(x) > ur(y) > ur(z)
—0.755 > r

S(xy), S(xz), S(yz)

S(xz) > S(yz) > S(xy)
S(xz) > S(xy) > S(y2)
S(yz) > S(xz) > S(xy)
S(xy) > S(xz) > S(yz)
(S(yz) > S(xy) > S(x2))
(Sxy) > S(yz) > S(x2))

—0.755 > r > —0.959
—0.959 > r

Note. We omit the subscript r from strengths of preference for brevity

where d(i, j) is a distance metric. If S satisfies the moderate
utility assumption with respect to u, for some d, then the
DFM for S is the moderate utility DFM on D for u and d.
We say that a DFM on D is a moderate utility DFM if it is
the moderate utility DFM for some such u and d.

The contextual utility DFM is one example of a moderate
utility DFM. By considering other distance metrics in Eq. 18
one can construct many other moderate utility DFMs either
for one utility function or, more broadly, for an entire core
theory. We refer to the DFM for the family S, that one obtains
by considering all possible distance metrics d in Eq. 18 as
the comprehensive moderate utility DFM for u. Likewise, the
comprehensive moderate utility DFM for a utility theory is
the union of the comprehensive moderate utility DFMs over
utility functions in that theory. Through the lens of Proposi-
tion 2 and Definition 2, the comprehensive moderate utility
DFM for a given u (or a given utility theory) can also be
viewed as the union of all moderate utility models for that u
(or that theory), as one considers all F' and d in Eq. 4, and as
one requires F to be strictly increasing.

A necessary set of inequality constraints for moderate util-
ity DFMs follows from the fact that Eq. 4 is equivalent to

a strengthened version of moderate stochastic transitivity,3
given by

1 1
P(@j) > = P(jk) > =
(lj)_2 A (J)_2

P(ik) > min{P(ij), P(jk)}
= or s
P(ik) = P(ij) = P(jk)

vij, jk,ik e D. (19)

This equivalence, proved by He & Natenzon (2019), implies
that any moderate utility DFM must satisfy moderate stochas-
tic transitivity (in both its strengthened and conventional
form). However, most moderate utility DFMs are far more
restrictive than moderate stochastic transitivity (19). This is
because they typically do not accommodate all conceivable
preference rankings. Rather, they are constrained by those
rankings of utility values that the core utility theory permits.
We now illustrate this and other features of moderate utility
DFMs on the example of CRRA-EU.

8 Technically, moderate stochastic transitivity treats D as the set of all
ordered pairs of choice options from a master set of choice alternatives,
even if some of those pairs were never used as stimuli.
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Example8 As we have seen in earlier examples, CRRA-
EU permits four utility rankings among the choice options
x, ¥, z. These are listed in the left-most column of Table 3.
In general, for three choice options, any such utility ranking
permits six different orders of strengths of preference. Within
each group of six orders, two are incompatible with moder-
ate stochastic transitivity. In the example of Dy, the second
column of Table 3 marks the incompatible cases with angled
brackets, two of which are also illustrated in the right-most
panel of Fig. 2. To see why they are incompatible, note that,
for any D, the strengthened moderate stochastic transitivity
in Eq. 19, together with the Fechnerian property (6), implies
that

SEj)=0 A S(jk)=0
S(ik) > min{S(ij), S(jk)}
= or
S(ik) = S@j) = S(jk)

Vij, jk,ik e D.  (20)

Returning to Dy, we have seen in column 3 of Table 3
that 24 orders of strengths of preference are compatible
with CRRA-EU on Dy, when allowing any conceivable
strength-of-preference function. Eliminating those that vio-
late Implication 20 leaves 16 that are also compatible with
moderate stochastic transitivity. Thus, the moderate utility
DFM for CRRA-EU on Dy comprises 16 tetrahedra, together
with some of the lower dimensional polytopes that join
them”.

A moderate utility DFM embodies weaker assumptions
than a strong or contextual utility DFM regarding how utili-
ties relate to strengths of preference. It specifies a functional
form, but not a specific function. The tradeoff for this gener-
ality is that, under a moderate utility DFM, there is no direct
correspondence between strengths of preference and param-
eter values in the core theory: A given parameter value in the
core theory is compatible with multiple orders of strengths
of preference.

Next, we consider a DFM for utility theories based on
an even broader class of strength-of-preference assignments.
These may violate the moderate utility assumption.

Weak Utility DFM

We can also derive a DFM for a utility theory from the simple
assumption that the strength of preference for the option with
the higher utility is greater than zero.

Definition 10 Let u be a utility function. An assignment S of
strengths of preference to elements in a domain D satisfies

9 Eq.20 also rules out some orders of strengths of preference with ties,
which are not shown in Table 3. The corresponding lower dimensional
polytopes are not included in the DFM.
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the weak utility assumption with respect to u if

SGEj) >0 < u@)>u(j), VijeD. (21)
If S satisfies the weak utility assumption with respect to u

then the DFM for S is a weak utility DFM for u on D.

Every strong, contextual, or moderate utility DFM is also
a weak utility DFM because the strong, contextual, and
moderate utility assumptions each imply the weak utility
assumption. The union of all weak utility DFMs, for a given
utility function # and domain D, is itself a DFM. We call this
the comprehensive weak utility DFM for u. It is the DFM for
the family S, of all S satisfying the weak utility assumption
for u, and it comprises all binary choice vectors P € [0, 1P
with the property that
Pl 1

(ij) > 7 ©

u@@) > u(j), VijeD. (22)

A collection of probabilities satisfying Condition 22 is known
as a weak utility model (Block & Marschak, 1960; Luce &
Suppes, 1965). Thus, the comprehensive weak utility DFM
for a function u can be viewed as the union of all weak util-
ity models for that function. We can extend the above more
broadly to a weak utility DFM (or the comprehensive weak
utility DFM) for an entire theory by considering all utility
functions associated with the theory.

For a collection of binary choice probabilities, the exis-
tence of a function u that satisfies Condition 22 is equivalent
to weak stochastic transitivitylo (Block & Marschak, 1960),
henceforth WST, given by

PGij)>% A P(jk) =3
= P(ik)>3 Vij, ik, jkeD. (23)

Therefore, any weak utility DFM must satisfy weak stochas-
tic transitivity. Geometrically, a weak utility DFM is a union
of half-unit-hypercubes. We illustrate this by deriving the
comprehensive weak utility DFM for CRRA-EU on Dy in
the next example.

Example 9 Consider CRRA-EU on the domain Dy from
Example 1. On this domain, as r varies, CRRA-EU can
generate four different utility rankings. These are shown in
the first column of Table 3. Under the weak utility assump-
tion (21), each utility ranking determines a set of positive
strengths of preference. These are shown in the second col-
umn of Table 3. In turn, by the Fechnerian property, each set

10 Technically, weak stochastic transitivity treats D as the set of all
ordered pairs of choice options from a master set of choice alternatives,
even if some of those pairs were never used as stimuli.
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of positive strengths of preference determines a half-unit-
cube in ]0, I[DO. For example, for r > —0.465 the utility
ranking under CRRA-EU is u,(z) > u,(y) > u,(x). Under
weak utility, this is equivalent to S(zy), S(zx), S(yx) > O,
which corresponds to P(zy), P(zx), P(yx) > 1/2. Recall
that the half-unit cube given by these constraints is shown in
the left panel of Fig. 1 (but in a different coordinate system).
Likewise, as r is allowed to vary freely, CRRA-EU gener-
ates three other utility rankings corresponding to three other
half-unit cubes. In all, the comprehensive weak utility DFM
for CRRA-EU on this domain comprises the four half-unit
cubes corresponding to the four rankings of utility values in
the first column of Table 3.

Comparing DFMs with Other Probabilistic
Choice Models

Other families of probabilistic models for utility theories
have been proposed in the literature, some with mathematical
and conceptual formulations that may be hard to differenti-
ate from DFMs. We now compare these models with DFMs
in a common geometric framework. The polyhedral geome-
try representation helps to disentangle these families in ways
that may not be apparent when viewing them algebraically.

Distribution-Free Random Utility and Random
Preference Models

As we have seen earlier, a binary random utility model on
C is a collection of binary choice probabilities for which
there is a random vector U on C and a probability mea-
sure p, such that P(ij) = p(U; > Uj). We have seen
the special case of independent normal random utilities as a
random utility formulation of a probit model. We can derive
a general distribution-free random utility model for a util-
ity theory by permitting any (joint) probability distribution
over the parameter(s) of the core theory and defining P (ij)
to be the probability of those parameter values for which
u(i) > u(j) (see, e.g., Marley & Regenwetter 2016; Regen-
wetter et al., 2014; Zwilling et al., 2019). The corresponding
random preference model allows for any probability distri-
bution over permissible preference states and defines P (ij)
to be the probability of those preference states > in which
i > j (for more details, including more precise mathemati-
cal definitions, see the references above). For simplicity, we
state the next example also semi-formally.

Example 10 Like in earlier examples, consider again CRRA-
EU on the same stimuli. According to the general distribution-
free random utility model for CRRA-EU, there exists a
probability distribution Pr over r such that the binary choice

probabilities are marginals of that distribution, namely
P@j) = Pri{r | uy(i) > ur(j)}.

In words, the probability of choosing i over j is the marginal
probability that r takes a value for which u, (i) > u,(j). The
equivalent random preference model for CRRA-EU consid-
ers the preference patterns >, associated with the values of
r and defines

P(j) = Pr({r|i>,j}.

In words, the probability of choosing i over j is the marginal
probability that r takes a value for which i is preferred to j.

As we have seen in Table 2, there are four different util-
ity rankings associated with CRRA-EU, on these stimuli.
Accordingly, the random preferences (and distribution-free
random utility) model forms the convex hull of four vertices.
In the coordinate system given by P(xy), P(xz), P(yz),
these four vertices have coordinates

(0, 0, 0), which corresponds to the preference pattern
y > X, z > x, z > y having probability 1,
(0, 0, 1), which corresponds to the preference pattern
y > Xx, > x, y > z having probability 1,
(0, 1, 1), which corresponds to the preference pattern
y > X, X > z, ¥y > z having probability 1,
(1, 1, 1), which corresponds to the preference pattern

X >y, x >z, y > z having probability 1.

Figure4 shows the strong utility DFM for CRRA-EU and
the random preference model for the same stimuli from two
different angles of view. The convex hull of the above four
vertices is outlined with thick lines. As we have seen before,
the strong utility DFM consists of eight tetrahedra (as well as
some lower dimensional polytopes). Four of its tetrahedra are
nested inside the random preference model. These are lightly
shaded. The other four tetrahedra, which are dark shaded, lie
outside the convex polytope that forms the random preference
model. Notice that there are unshaded regions in the random
preference model, visible from the angle of view in the right
side panel of the figure. As the figure illustrates, the strong
utility DFM and the random preference model overlap, but
neither is nested in the other.

Modal Choice, Supermajority, and Constant Error
Models

Some DFMs are closely related to other model classes in
the literature. Most notably, the weak utility model (22) is
also known as the modal choice specification or the majority
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Pyz) P(xy)

Fig.4 Strong utility DFM and random preference model of CRRA-EU
from two angles of view. The random preference model is the tetrahe-
dron whose edges are the thick lines in the figure. The intersection of
the strong utility DFM and the random preference model is shaded light

specification of u. It is a special case of a broader class of
“supermajority” specifications and “distance-based” proba-
bilistic specifications of u (Regenwetter etal., 2014; Zwilling
etal.,2019), all of which also form geometric objects, in most
cases, collections of convex polytopes. These models assume
the existence of a fixed deterministic core preference pattern
or utility function and derive constraints on choice probabil-
ities through various assumptions about probabilistic errors
in responses. We illustrate these, and their relationship with
DFMs, with another example.

Example 11 Once again, consider CRRA-EU on the domain
from Examples 1-10, but with the additional constraint that
r > —0.465, where u,(z) > u,(y) > u,(x). Figure 5 shows
six different probabilistic models for CRRA-EU with this
constraint and these stimuli. For better visibility of these
shapes, the figure offers a different angle of view than ear-
lier figures. Each panel of the figure shows one gray-shaded
object to denote the model of interest. The gray-shaded pyra-
mid in the upper left panel is the strong utility DFM. We have
discussed it already in Examples 3 and 4, including the fact
that it is the disjoint union of the two tetrahedra in the left
two panels of Fig. 2 together with a triangle that forms a
shared facet. The upper right panel’s gray shape (in Fig. 5) is
the comprehensive moderate utility DFM. It also forms a dis-
joint union of polytopes we have seen before, namely the four
tetrahedra in the left three panels of Fig. 2 and their shared
facets. The gray shape in the center left panel is the com-
prehensive weak utility DFM. Its contours are also shown
with dashed outlines in the other panels of the figure to facil-
itate the visual comparison between models. Like the strong
utility DFM and the comprehensive moderate utility DFM,
the comprehensive weak utility DFM can be partitioned into
a disjoint union of polytopes, in this case according to all
possible orders of strengths of preference that are compati-
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gray. The parts of the DFM that are not in the random preference model
are shaded dark gray. Unshaded regions in the random preference model
are choice probabilities that are consistent with the random preference
model but ruled out by the strong utility DFM

ble with u(z) > u(y) > u(x). The center right panel shows
the 0.75-supermajority specification of CRRA-EU with the
same constraint on r and the same stimuli. Notice that the
dashed outline of the comprehensive weak utility DFM is
also an outline of the 0.50-majority specification since those
models are identical. The bottom left panel shows the con-
stant error model (Harless & Camerer, 1994; Wakker et al.,
1994) for u(z) > u(y) > u(x), with error rate e in Eq. 5 con-
strained tobe 0 < ¢ < 0.5. That constant error model forms a
1-dimensional line segment connecting the points with coor-
dinates (0, 0, 0) and (%, %, %) in the coordinate system given
by P(xy), P(xz), and P(yz). This line segment also forms
a l-dimensional edge shared by the two (respectively four
or six) tetrahedra composing the strong (respectively mod-
erate or weak) utility DFM in the upper left (respectively
upper right or center left) panel. The bottom right panel
shows the random preference model of CRRA-EU, with the
same constraint on r. Since u,(z) > u,(y) > u,(x) for all
r > —0.465, it follows that the random preference model
places all probability mass on a single preference pattern >
givenbyz > y, y > x, z > x,nomatter what probability dis-
tribution we consider over values of » > —0.465. That means
that this particular random preference model forms a single
point at coordinates (0, 0, 0) in the probability cube with this
coordinate system. In other words, it predicts ‘deterministic’
behavior on these stimuli: choose y over x with probability
1, z over x with probability 1, and z over y with probability 1.

Inference from Data

DFMs recast inference about a core decision theory in terms
of inference about orders of binary choice probabilities. They
allow the scientist to test various hypotheses about the core
theory by evaluating equivalent hypotheses regarding orders
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Fig.5 Six probabilistic
specifications for CRRA-EU
with r > —0.465; left to right,
top to bottom: strong utility
DFM and comprehensive
moderate utility DFM;
comprehensive weak utility
DFM and 0.75-supermajority
specification; constant error
model and random preference
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of binary choice probabilities. These hypotheses can pertain
to parameter values or qualitative features of the core theory,
or even the viability of the theory itself. Put differently, as
long as the analyst can infer the order of binary choice proba-
bilities, they can draw equivalent conclusions about the core
theory under investigation.

The concept map in Fig. 6 decomposes the relationship
between data and theory into a sequence of steps. Earlier,
we discussed how to move from a theory to order con-

P(xy) P(yz) 11 P(xy)

P(xy) P(yz) 11 P(xy)

P(xy) P(yz) 11 P(xy)

straints on choice probabilities, and back. We now consider
the fact that choice probabilities are not observable directly.
To draw inferences from data, the first step is to infer the
order of binary choice probabilities, subject to any restric-
tions imposed by the theory. These restrictions are encoded
in the polytope(s) that characterize(s) the distribution-free
model. The second step uses the Fechnerian property to iden-
tify the order of strengths of preference from the order of
binary choice probabilities. The third and final step uses a
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Fig.6 Concept map relating data to parameters of the core theory

strength-of-preference function to link the order of strengths
of preference with parameters of the core theory. Although
the strength-of-preference function typically maps parame-
ters of the core theory into strengths of preference, one can
also use the pre-image of this function to infer the compat-
ible parameter values of the core theory from an order of
strengths of preference.

The next example demonstrates these steps in a simple,
exaggerated, hypothetical case where sample sizes are so
large that choice probabilities can be inferred from choice
proportions without a statistical analysis. For the sake of
simplicity and continuity, we keep the domain of choice pairs
from our running examples, and the corresponding DFMs for
CRRA-EU under strong and strict utility, respectively. Later,
we discuss how this type of inference extends naturally to
experiments utilizing larger pools of stimuli, and with fewer
repetitions on each choice pair.

Example 12 Suppose that a decision maker has made repeated,
independent choices from each pairwise combination of the
gambles x, y, and z of Example 1 Let pr(ij) denote the
proportion of times that i was chosen from {i, j}. (Thus,
1 — pr(ij) is the proportion of times that j was chosen
from {i, j}.) For concreteness, we consider the case when
pr(yz) = .90, pr(yx) = .75, and pr(xz) = .60 and thus
the order pr(yz) > pr(yx) > pr(xz) > 1/2 among
choice proportions. If, for the sake of argument, the sample
size is large enough that pr(ij) is almost indistinguishable
from P(ij), then the order of choice probabilities must be
P(yz) > P(yx) > P(xz) > 1/2. By the Fechnerian prop-
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erty, this is equivalent to S(yz) > S(yx) > S(xz) > O.
Through the lens of CRRA-EU, from Table 2, this order
of strengths of preference corresponds to a coefficient of
relative risk aversion between —0.658 and —0.698. What’s
more, by Table 3, this inference holds irrespective of whether
one assumes strong utility or contextual utility. However,
notice that this invariance also makes the functional form for
strength of preference nonidentifiable from these data.

As this example shows, when the data perfectly align with
an order of choice probabilities predicted by a theory, and the
sample size is sufficiently large, we can look up the ranges
of parameter values in the core theory, such as by consult-
ing Tables 2 and 3 for CRRA-EU. Typically, that order of
strengths of preference will correspond to a best-fitting range
of parameter values in the core theory, rather than a best-
fitting unique parameter value. In the example, while we
do not infer a unique value of the parameter r, we obtain
a precise interval estimate of —0.658 < r < —0.698. In the
same example, if the data were to support S(zx) > S(yx) >
S(zy) > 0 (matching decision makers A and C from Exam-
ple 1) then, under strong utility, we would infer that the
coefficient of risk aversion is between —0.465 and +1.017
(see row 2 of Table 2). Such cases fail to generate a precise
estimate of the risk sensitivity parameter. They also cannot
disambiguate whether the decision maker is risk seeking or
risk averse. Those insights are valuable because they protect
scholars from drawing overly precise conclusions that are
imposed by distributional assumptions not grounded in the
theory.

On the other hand, when data mismatch all orders permit-
ted by a theory, they refute the entire theory, provided that the
sample size is sufficiently large. In the example above, any
set of data that strongly favors S(zy) > S(zx) > S(xy) > 0
will challenge CRRA-EU under any DFM on the same stim-
uli, since this order of strengths of preference is impossible
in that theory even under the weak utility assumption (21).
This feature of inference under DFMs can facilitate model
selection. When multiple theories are under consideration,
the data may refute one theory but not another. For exam-
ple, the order S(zx) > S(yz) > S(xy) (matching decision
maker B from Example 1) refutes contextual utility CRRA-
EU, but is compatible with strong utility CRRA-EU for
—0.959 <r < —0.755.

This type of inference also leads to testable, out-of-sample
predictions about new choice problems for which data are not
yet available. Consider, for example, two additional pairwise
choice stimuli {s, ¢} and {w, v}, where

s is a 75%chance of winning $30, otherwise nothing,
t is a 65%chance of winning $32, otherwise nothing,
w is a 40%chance of winning $50, otherwise nothing,

v is a 25%chance of winning $60, otherwise nothing.
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Without any sample data, using CRRA-EU with -2 < r <
2, the strong utility DFM allows five different order con-
straints on the choice probabilities P(st) and P(wv). These
constraints, and their associated values of r, are as follows:

0.5> P(st) > P(wv)
0.5> P(wv) > P(st)

1— P(st) > P(wv) >0.5
P(wv) >1— P(st) >0.5
P(wv) > P(st) >0.5

In the examples we have considered so far, the large sam-
ple size contributed to the ease and precision of inference.
Notice that models with distributional assumptions, like a
logit or probit, do not benefit from large sample sizes the

for —2.000 < r < —1.652,
for —1.652 <r < —1.578,
for —1.578 <r < —1.521,
for — 1.521 <r < —1.216,
for —1.216 < r < +2.000.

However, if, as in Example 12, we have inferred from a large
sample using stimuli {x, y}, {x, z} and {y, z} thatr is between
—0.698 and —0.658, then we can eliminate the first four
cases. This is because the strong utility DFM for CRRA-
EU predicts P(wv) > P(st) > 0.5 throughout the range
—0.658 > r > —0.698.

We can refine the model’s predictions further by consider-
ing what orders of strengths of preference are possible jointly
for all five stimuli, when —0.658 > r > —0.698, namely,

S(wv) > S(yz) > S(yx) > S(xz) > S(st) > 0,
for —0.698 < r < —0.682,
S(wv) > S(yz) > S(yx) > S(st) > S(xz) > 0,
for —0.682 < r < —0.658.

Replacing strengths of preference with choice probabilities
and incorporating point estimates from Example 12, we get

1> P(wv) >09>0.75> 0.6 > P(st) > 0.5,
for —0.698 < r < —0.682,
1> P(wv) >09 > 075> P(st) > 0.6 > 0.5,
for —0.682 < r < —0.658.

From the above, it follows that the model predicts P(wv) >
0.9 across the entire inferred range of r. For the other new
stimulus, {s, ¢}, the model predicts different constraints for
different subranges. In the subrange —0.698 < r < —0.682,
it predicts 0.6 > P(st) < 0.5. For the remaining subrange
—0.682 < r < —0.658, it predicts 0.75 > P(st) > 0.6 (and
forr = —0.682, up to rounding, it yields the point prediction
P(st) =0.6).

In sum, for the new stimulus {w, v}, the strong utility
DFM for CRRA-EU makes a single, rejectable prediction,
P(wv) > 0.9. For the other new stimulus, {s, ¢}, it makes
the rejectable prediction 0.75 > P (st), while also providing
the opportunity to further refine the range estimate of r.

way that DFMs do. For example, there is no combination
of parameters of CRRA-EU and the logit model that yields
exactly P(xz) = .90, P(yz) = .75, and P(xy) = .60.
Therefore, choice proportions pr(xz) = .90, pr(yz) = .75,
and pr(xy) = .60, with enough data, will reject the logit
specification of CRRA-EU. More generally, even choice
proportions that perfectly match an order of strengths of pref-
erence permitted by a core theory, because they mismatch the
specific probabilities permitted under a logit, will reject the
theory, under that logit, in a large enough sample.

In practice, inference about the underlying order of
strengths of preference typically requires a statistical analy-
sis because there are not enough observations to infer choice
probabilities unambiguously from the data. This applies even
when the choice proportions align perfectly with an order of
choice probabilities predicted by the theory, and hence with
an order of strengths of preference. Here, a statistical analysis
may determine which other orders of strengths of preference
can or cannot account for the same data as well, in addition
to the one that matches perfectly. Similarly, when the choice
proportions mismatch all orders of choice probabilities per-
mitted by the theory, a statistical analysis can identify any
permissible orders that provide an acceptable explanation
of the data when taking into account sampling variability.
Such analyses require specialized, order-constrained statis-
tical methods (Silvapulle & Sen, 2011). For example, public
domain software such as QTEST (Regenwetter et al., 2014;
Zwilling et al., 2019) or multinomineq (Heck & Davis-
Stober, 2019) allows the user to identify the best order of
choice probabilities for a given set of data, compute fre-
quentist or Bayesian p values for specific orders of choice
probabilities or collections thereof, and compute Bayes fac-
tors for selecting between specific orders or collections of
orders of strengths of preference. Regenwetter and Cav-
agnaro (2019) provide a related tutorial. See also Dunn and
Rao (2019) for a related approach based on state trace and
signed difference analyses.
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With the statistical methods described above, one can
identify the best order of strengths of preference to explain a
given set of binary choice data. That best order may or may
not be strongly supported. If the data support multiple orders
of strengths of preference, a Bayesian analysis can assign
appropriate weights to the corresponding parameter ranges
in a way that reflects their relative support.

This type of analysis also extends naturally to model selec-
tion. DFMs for different models on the same set of stimuli
differ in the collections of orders of strengths of preference
that they permit. The methods and software described above
also allow the user to compute Bayes factors for selecting
between such collections (Heck & Davis-Stober, 2019; Sil-
vapulle & Sen, 2011; Zwilling et al., 2019), regardless of
whether they are distinct, overlapping, or nested among each
other, and irrespective of sample size.

Just as larger sample sizes can improve precision of infer-
ence under a DFM, so too can larger domains of choice
stimuli. The DFM for a given theory on a larger domain
may include more possible orders of strengths of preference,
which may also partition the core theory’s parameter space
into smaller parts. This, in turn, brings potential for far greater
precision in parameter estimation, as long as one can deter-
mine all relevant orders of strengths of preference. However,
this precision can only be unlocked with precise estimation
of the order of strengths of preference, which, in turn, is facil-
itated by a larger sample size for each stimulus. At the same
time, scholars often wish to limit the total number of trials in
the experiment. Therefore, as a compromise, we recommend
experimental designs with at least several repetitions on each
of a manageable number of choice pairs.

More specifically, for frequentist analyses, since one needs
to estimate each binomial, a rule of thumb would be to have
at least 20 observations per choice pair. For parametric mod-
els like logit and probit, this is not the case because one does
not need to estimate each binary choice probability directly.
Instead, such analyses often have only a single observa-
tion per choice pair. While the Bayesian analyses for DFMs
permits a single observation per choice pair as well, more
research is needed to understand the conditions under which
such an analysis would clearly distinguish between compet-
ing orders of strengths of preference. Following up on the
above compromise, and based on our own experience with
order-constrained inference, if using Bayesian methods, we
recommend at least a handful of observations per choice pair.

A Note of Caution

We briefly explore the viability of a potential heuristic
method for identifying the best order of strengths of prefer-
ence to explain a given set of binary choice data. An analyst
could first directly estimate the parameters of a core theory
using a logit. They might then look up the order of strengths
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Fig.7 Maximum likelihood estimates under DFM and logit specifica-
tions of a hypothetical decision theory. Note. To superimpose the data
on the same plot with the models, axes represent probabilities in the
case of the models and proportions in the case of the data

of preference consistent with that parameter estimate and
relax the distributional assumption of the logit by taking the
full range of parameter values that yield the same order. This
approach may seem computationally appealing because it
involves fitting fewer parameters, and it circumnavigates var-
ious other computations associated with the distribution-free
approach. However, that approach need not generate the truly
best fitting order of strengths of preference. We illustrate this
insight with a simple example.

Example 13 Let C consist of just two pairs of choice alter-
natives, labeled {a, b} and {c, d}, and consider a core theory
with a single binary parameter § € {0, 1}. Suppose this the-
ory predicts S(ab) = 100, S(cd) = 10 foré = 0, and
Sab) = —10, S(cd) = 100 for 6 = 1. Table 4
lists the orders of strengths of preference for this theory,
along with the constraints on choice probabilities given by
the corresponding facet-defining inequalities. It also lists the
associated parameter values. The polytopes characterizing
the DFM for this theory are 2-dimensional and shown in
Fig. 7. The triangle in the upper-right represents S(ab) >
S(cd) > 0 and § = O through P(ab) > P(cd) > 1/2. The
triangle in the upper-left represents S(cd) > S(ba) > 0 and
8 = 1 through P(cd) > P(ba) > 1/2.

While the logit specification of this theory satisfies the
same inequality constraints on the choice probabilities, it
is far more restrictive in that it also assumes P(ij) =
[1 4 e 7SUD=1 for all (i, j), with y > 0. As y varies,
the logit probabilities form the curves within the triangles
in Fig. 7. Fixing 6 = 0, as y ranges from O to infinity,
the logit specification traces a curve beginning at the mid-
point of the square, where P(ab) = P(cd) = 1/2, and
converging to the upper-left vertex, where P(ab) = 0 and
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Table4 DFM for a hypothetical

f s hs of pref
decision theory with binary Order of strengths of preference

Facet-defining inequalities Parameter of core theory

parameter & S(ab) > S(cd) > 0

S(cd) > S(ba) > 0

1> P(ab) > P(cd) > % §=0
1> P(cd) > 1 — P(ab) > % §=1

P(cd) = 1. Fixing § = 1, as y ranges from 0 to infinity, the
logit specification traces a curve beginning at the midpoint
of the square and converging to the upper-right vertex, where
P(ab) = P(cd) = 1.

Now, suppose that, in an experiment with 20 choices per
pair of alternatives, a was chosen 13 times from {a, b}, while
¢ was chosen 16 times from {c, d}. These choice proportions,
pr(ab) = .65 and pr(cd) = .8, are represented by the black
dot in Fig. 7. Under the logit specification, the maximum
likelihood estimates, shown with a * in Fig. 7, are § = 1
and y = 1.7978. Therefore, through the lens of a logit, the
most likely order of strengths of preference appears to be
S(ed) > S(ba) > 0,asthisis the order associated with § =
1. Yet, under the DFM, the maximum likelihood estimate of
the binary choice probabilities is P(ab) = P(cd) = 0.725,
shown as a B in Fig. 7, which is located on a facet of the
triangle corresponding to § = 0. In all, this example shows
that one cannot in general use a parametric approach to infer
the order of strengths of preference in a DFM.

Conclusions and Discussion

Thanks to decades of research, scholars’ understanding of
preferences, utilities, or strengths of preference can be math-
ematically grounded in a decision theory. Likewise, statistical
inference may be mathematically grounded in a formal prob-
ability model of the data generating process. Yet, a gap
between constructs and behavior persists. When decision
theory guides decision analysis, such as assessing a stake
holder’s risk tolerance, loss aversion, or patience, there often
remains at least one weak link between data and theory. The
deductive path from theory to data, and the inferential path
from data back to theory, commonly lead through at least one
a-theoretical link that is primarily driven by computational
convenience, intuition, or even just disciplinary tradition.
This is the link between hypothetical constructs such as the
strength of preference on the one hand, and data generating
choice probabilities on the other hand. In this paper, we have
fleshed out a compelling theoretical characterization of that
link: the Fechnerian property. It states that, the stronger the
preference for i over j, the more likely that i is chosen over
Jj. The Fechnerian property enables the researcher to either
eliminate or at least better understand some a-theoretical aux-
iliary convenience assumptions that would otherwise infuse
an ad hoc element into their analysis. It thereby enables the
analyst to extract more robust information, e.g., about risk tol-

erance, loss aversion, or patience. The Fechnerian property
is an example of a monotonic coordination function between
strength of preference and choice probability in the spirit
of Kellen et al.’s (2021) prescriptive recommendation for
improving psychological science broadly. While there is a
long tradition for looking at both theoretical and empirical
underpinnings of the Fechnerian property in decision-making
(e.g., Luce, 1959), this is not a large active area of research
(with Alés-Ferrer & Garagnani, 2021, a notable exception).

For some decision theories, such as regret theory, the
Fechnerian property fully closes the loop between decision
theory and choice probabilities. This is because regret theory
provides uniquely defined strengths of preference. In such
a case, the researcher only requires auxiliary assumptions
at the statistical inference stage, such as iid sampling, for
instance. When one analyzes data without the bottleneck of
ad hoc models like logits or probits, one can better understand
which inferences are robust across a spectrum of Fechnerian
response mechanisms.

However, in many domains, unlike regret theory or the
tradeoff model, strength of preference is not yet an inher-
ent part of decision theory. Many utility theories, including
those for risky or intertemporal choice, only provide math-
ematically grounded pairwise preferences among options,
or mathematically grounded utilities of individual choice
alternatives. Through the lens of our paper, the coordina-
tion function linking those primitives to observable behavior
depends on the actual definition of strengths of prefer-
ence. We have considered several very specific strength of
preference theories, such as, most prominently, strong and
contextual utility. However, deeply understanding the the-
oretical primitive of strength of preference appears to us a
wide-open question. Existing research in all areas of deci-
sion theory can provide precedents and guidance: Cumulative
prospect theory uses functional forms with free parameters to
accommodate either individual differences or within-person
fluctuations within a theory. The same applies to many
other core theories across many decision theoretic paradigms
and tasks. Future work on strength of preference theories
could allow for within- and between-person heterogeneity
as well, most naturally by considering functional forms of
strength of preference that also feature their own free param-
eters. The DFM framework makes it possible to track the
testability, identifiability, and parsimony of such models the-
oretically via their geometric structure, as well as empirically
and statistically via order-constrained inference methods. In
an effort to bridge the construct-behavior gap in existing
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research, studying strength of preference seems to us key
to understanding decision-making in a very broad spectrum
of decision tasks and research paradigms.

While the Fechnerian model class builds on orders of
strengths of preference as a theoretical primitive, other
models have provided more direct links from utilities or
binary preferences to choice probabilities, most notably
distribution-free random utility and random preference mod-
els. Interestingly, some Fechnerian models, such as logit and
probit models, besides being nested in the DFMs, are also
nested in certain distribution-free random utility models. This
leads us to another important feature of ad hoc models, which
we have touched upon earlier. With every additional stimu-
lus used in a study, the complexity of the data generating
process increases. However, for standard Fechnerian models
like logit and probit, when combined with commonly used
theories like Expected Utility Theory, or, say, Cumulative
Prospect Theory, the parameter space has a fixed, low dimen-
sion. For instance, Tversky and Kahneman’s (1992) original
version of Cumulative Prospect Theory evokes five parame-
ters. In conjunction with a logistic specification (Eq. 2), and
depending on the types of stimuli being used, this creates at
most a five-dimensional model in the space of binary choice
probabilities. In contrast, if the model is aimed at explain-
ing the choice among hundreds or even thousands of pairs of
potential choice alternatives, the data generating model is a
potentially thousand-dimensional unit-hypercube. It is con-
ceptually very difficult to imagine how a six-dimensional
model can accommodate thousand-dimensional behavioral
lab and/or field data. With a rich enough set of stimuli and
enough data, rejecting such a model is almost a forgone con-
clusion. This is, perhaps, one of the rationales for the common
saying that “all models are wrong, but some are useful,” often
attributed to statistician George Box. We would advocate that
more useful models and models with higher face-validity
are those whose complexity grows hand-in-hand with the
complexity of the data generating process. Indeed, DFMs,
distribution-free random utility models, random preference
models, as well as “aggregation-" and “distance-based” prob-
abilistic specifications (Regenwetter et al., 2014), all have
the property that their number of parameters often equals the
number of degrees of freedom in the empirical choice data.
Furthermore, all of those models form collections of convex
polytopes in a shared geometric space and all are amenable
to order-constrained statistical inference.

While the parametric flexibility of DFMs is an asset when
it comes to face-validity, it can come at a cost in terms of
computational complexity. For a set of n choice pairs, where
|D| = 2n, there are 2" possible preference relations, and for
each preference relation there are n! many orders of strengths
of preference. For example, there are more than 3 billion pos-
sible orders of strengths of preference for 10 choice pairs.
This can make the process of precomputing and enumerat-
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ing all orders of strengths of preference for a given theory
extremely laborious. On the other hand, each predicted order
of strengths of preference corresponds to a range of param-
eter values in the core theory. For example, in Tables 2 and
3, we have provided the ranges of values of r corresponding
to orders of strengths of preference generated by CRRA-EU.
Even for just 10 choice pairs, the benefit is that the Fechnerian
property can potentially partition the core theory’s parameter
space into as many as 3 billion distinct parts. In all, the flip
side of the computational cost of DFMs is that even a modest
number of well-designed stimuli can give very high resolu-
tion to the actual combinations of parameter values that may
have generated a set of binary choice data.

In contrast to parameter estimation, theory testing can
benefit from an experimental design with a large number
of choice pairs that drastically restrict the permissible orders
of strengths of preference under a core theory. The higher
the dimension of the space, and the smaller the number of
orders of strengths of preference, the smaller the volume of
the resulting union of convex polytopes. This means that,
even though the resulting union of polytopes may be n-
dimensional in n-dimensional space, it may be extremely
parsimonious. Furthermore, studies aimed at discriminating
between two or more theories, say discounting vs. trade-
off in intertemporal choice, benefit from carefully designed
stimuli that imply not just very restrictive but also distinct
unions of convex polytopes. In other words, a good experi-
mental design for model selection minimizes model mimicry
by minimizing the number of orders of strengths of prefer-
ence shared by the theories. While we used an enumeration
of orders of strengths of preference in our examples, other
methods, such as axiomatic approaches, may help to derive
such diagnostic stimuli more directly. These approaches may
also help circumnavigate the computational cost of precom-
puting orders of strengths of preference and the associated
facet-defining inequalities. Relatedly, future work may incor-
porate adaptive experimental designs to minimize the number
of trials needed in an experiment (see, e.g., Cavagnaro et al.,
2010). That work must also navigate various issues of com-
putational complexity.

Standard Fechnerian models like logit and probit do not
require computing constraints on permissible binary choice
probabilities explicitly. The constraints are imposed directly
by the distributional assumptions, which essentially re-param-
breaketerize the space of permissible binary choice probabil-
ities according to one or more scaling parameters, in addition
to the parameters of the core theory. This makes statistical
inference under such models computationally more efficient
than under a DFM, but also arbitrary and potentially mislead-
ing, as we have illustrated. Modern methods in operations
research have started to look at computing Bayes factors
for convex polytopes whose fact-defining inequalities are
unknown (Smeulders etal., 2017). This would alleviate many
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of the computational bottlenecks in computing Bayes factors for
high-dimensional DFMs. However, that work is so far custom-
designed for specific polytopes. Future work may find inno-
vative ways to expand such approaches to more general
classes of models like the DFMs we have considered here.

All things considered, we do not contend that DFMs
should replace parametric models in all circumstances. While
we consider most parametric models as over-specified, some
applications may not be concerned with worries about
over-specification. Furthermore, good experimental designs
featuring many choice stimuli that are informative for the
research question under investigation can potentially allevi-
ate some of the identification problems of parametric models
that we have described here. However, the surest way to eval-
uate whether a given design permits robust inference under a
parametric Fechnerian model is to cross-check it against the
distribution-free model for the same design. Another strength
of parametric models such as the logit and probit is that they
extend naturally from binary choice to multiple choice. Just
as scholars have considered distribution-free random util-
ity and random preference models for multiple choice and
best-worst choice (see Marley & Regenwetter, 2016, for a
review), future work could consider extending DFMs to such
paradigms.

Appendix 1. DFMs for more general decision
theories

In this section, we illustrate how DFMs work for theories
without utility functions. We walk the reader through exam-
ples ranging from DFMs for well-known core theories to
ideas for novel axiomatizations of strengths of preference.
We start with a case where a decision theory generates
strengths of preference directly.

Example 14 We briefly consider regret theory, as spelled out
by Loomes et al. (1991) with choice options that follow the
blue-print of Loomes and Sugden’s Table I (p. 430). The
bottom three rows of our Table 5 indicate three choice alterna-
tives,'! x, v, z. The right three columns denote three different
states of the world, SWy, SW>, SW3, and their probabilities.
A decision maker who chooses x will receive $5 if the state of
the world is S W1, which has probability 0.2 of occurring, and
$2 otherwise. A person who chooses y receives $4 if states of
the world SW; or SW; happen, or $1 if S W3 happens, which
has a probability of 0.3 of occurring. Anyone who chooses z
will receive $3 irrespective of the state of the world.

Let i, and j, denote the outcomes of options i and
j in SW,,, and let p,, denote the probability of the state

I Retooling the same labels x, v, z for new options allows for a shared
coordinate system across figures to compare the geometric structure.

Table 5 Stimuli for regret theory

State of the world and probability

SW SWo SW3
Option p1 =02 p2=0.5 p3 =03
X $5 $2 $2
y $4 $4 $1

$3 $3 $3

SWy,. According to this version of regret theory, letting
W be an odd function that is increasing in its first argu-
ment and that satisfies W (a, ¢) > V(a, b) + ¥ (b, ¢), when
a > b > ¢ are monetary amounts, the strength of
preference fori over j is S(ij) = Z?,lzl PmV¥Y(m, jm). Con-
sider Wiy, jm) = (im — jm)>. This yields S(xy) = —3.5,
S(xz) = 0.8, and S(yz) = —1.7. The resulting DFM forms
a tetrahedron, which, using the analogous coordinate sys-
tem P(xy), P(xz), P(yz) as before, is characterized by the
constraints

1>1—Pxy)>1—P(yz) > P(xz) > % (24)

These inequalities document how regret theory, on this
domain, produces strengths of preference that are not com-
patible with the weak utility assumption. Namely, they imply
P(xz) > 1/2, P(zy) > 1/2, and P(yx) > 1/2, which violates
WST.

The inequalities in Condition 24 are the facet-defining
inequalities of the tetrahedron in the upper-left panel of Fig. 8.
That tetrahedron is nested in the half-unit cube shown in the
upper-right panel of Fig. 8 (the same as the right panel of
Fig. 1, in a different angle of view, which is also the majority
specification of an intransitive preference pattern). It also has
no overlap with WST, shown on the lower panels of Fig. 8,
which we explain in Examples 15 and 16. The insight that
this DFM is not contained in WS7T, together with the earlier
insight that DFMs need not contain WST (see, e.g., Fig. 1),
implies the following formal result.

Proposition 7 Let Mg be a DFM as defined in Definition 6.
In general, WST ¢ Ms ¢ WST.

We proceed to DFMs for axiomatic theories that likewise
need not evoke the concept of utility. We start with the axioms
of transitivity and asymmetry. For the rest of this section, we
assume that D contains all pairs of options of a given finite
choice set.

Let WST* denote WST (Condition 23) with the added
constraint that P(ij) # 1/2 for all ij € D. Defining, as
before,

1
i~j & S()>0 & PG)>5. VijeD. (5

@ Springer
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it is well known that WST* is equivalent to transitivity of
the preference relation >, namely,

i-j AN j=k = i>k  Vij,jk ikeD.
Writing i % j to denote that i > j does not hold, since
S@j) > 0= S(ji) # 0, the preference relation > defined
in Condition 25 is asymmetric, i.e., i > j = j  i. This
gives us the tools to better understand the geometry asso-
ciated with WS7T and WST*, and axiomatic theories more
broadly (for early related work, including geometric visual-
izations of WST and other types of stochastic transitivity,
see Morrison, 1963).

Example 15 If S(ij) # 0, Vij € D thenthe preference rela-
tion > defined in Condition 25 is complete, i.e., for all distinct
choice options 7, j it holds that eitheri > jor j > i. A com-
plete, asymmetric, transitive binary relation is a strict linear
order (ranking, permutation) of the choice options. WST*
rules out P(ij) = 1/2, and therefore implies S(ij) # O
through Condition 25. As a consequence, WS7 * could be
labeled the DFM for the collection of all strict linear orders
through the lens of Condition 25. For three choice alterna-
tives, this DFM forms a disjoint union of six open half-unit
cubes (lower-left panel of Fig. 8). The figure uses the coor-
dinate system P(xy), P(xz), P(yz). Characterizing the six
component cubes of WS7T ™ involves facet-defining inequal-
ities of the form P(ij) > 1/2, or P(ij) > 0, or P(ij) < 1
(each with suitably selected i ).

While Example 15 constructed the DFM for complete,
asymmetric, transitive preference relations, we now consider
the DFM for a slightly different combination of axioms.

Example 16 When S(ij) is also allowed to be zero, the rela-
tion > need not be complete. A binary relation > is negatively
transitive if and only if i ¥ jAj # k = i # k, for
all i, j, k. If > is defined as in Condition 25 then WST
holds if and only if > is negatively transitive. Asymmetric
negatively transitive binary relations are strict weak orders.
WST allows P(ij) = 1/2 for some pairs and therefore
allows S(ij) = 0 for some pairs. Consequently, WS7T could
be labeled the DFM for the collection of all strict weak
orders through the lens of Condition 25. In the case of three
choice alternatives, there are 13 strict weak orders. Here,
the DFM consists of the disjoint union of the six half-unit
open cubes we just reviewed for the six strict linear orders,
together with six open 2-dimensional half-unit squares and
the point (1/2,1/2, 1/2). Figure8 shows the 3-dimensional
polytopes of this model in the lower-left panel, and the lower-
dimensional polytopes in the lower-right panel, all in the
coordinate system P(xy), P(xz), P(yz). Line segments of
the form P(ij) = P(jk) =12 < P(ik) < 1 (written in a
suitable coordinate system) are not included in this model

@ Springer

because the corresponding preferences violate negative tran-
sitivity (i.e.,i % jand j 3 kbuti > k). These line segments
represent “semiorders” with transitive preference and intran-
sitive indifference (Luce, 1956), which we sketch in the next
example. That example moves beyond all examples we have
seen so far in that it explores how to convert axioms, here
those for interval orders and semiorders, into novel axioms
about strengths of preference.

Example 17 A binary relation > is an interval order if and
only!? if

i>=j AN k>=2] = [i>=€ Vv k>jl

An interval order > is a semiorder if and only if

i>=j AN j>=k] = [i>=€ Vv £>k]
These two axioms could inspire novel axioms about strengths
of preference, such as

[SGiH)>0 A Skt)>0] =
max(S(i¢), S(kj)) = min(S@j), S(kL)),

respectively

[SG))>0 A S(k)>0] =
max(S(if), S(¢k)) > min(S(ij), S(jk)).

We finish this section with a generalization of hierarchical
decision strategies, such as “lexicographic semiorders” (see,
e.g., Tversky, 1969).

Example 18 One can readily imagine DFMs for various sorts
of lexicographic decision processes, say in consumer choice.
Consider a shopper comparing two computers or televisions
who follows a hierarchy of attributes, say, price, then screen
resolution, followed by screen size, etc. When considering an
attribute, they stop the decision process when that attribute
meets a stopping criterion, otherwise proceed to the next
attribute. For instance, writing S,, (i j) for the strength of pref-
erence for i over j according to attribute n, suppose that

Si(xy) =2; S(xy) =0; Sz(xy) =1; Si(xy) =50;
Ss(xy) = —1; Se(xy) = —20;
and
Si(wz) =1; Sa(wz) =60; S3(wz) =1;
Sa(wz) = =30; Ss5(wz) =15; Se(wz) = 10.

12 Throughout this example, for notational and conceptual simplicity,
we omit universal quantifiers.
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Fig.8 Regret DEM of Example
14 (upper-left panel), half-unit
cube for intransitive preference
V=X, X>Z,2>Y
(upper-right panel), and
geometric representations of
WST™* (lower-left panel) and
WST (union of lower panels).
Note. Dashed lines in the
lower-right panel are for
enhancing 3D visualization and
have no special meaning 04

0.5
P(xy)

0.5
P(xy)

Suppose the decision maker has some decision threshold §
and sequentially, i.e., lexicographically, considers attributes
until |S,,(ij)] > & for some m, then adopts the strength
of preference according to that attribute. A decision maker
with § = 0 stops the search process at the first attribute
for both {x, y} and {w, z}, with overall strengths of pref-
erence S(xy) = S;(xy) =2 and S(wz) = S1(wz) = 1 and,
hence P(xy) > P(wz). A decision maker with § =
10 has strengths of preference S(xy) = S4(xy) = 50 and
S(wz) = S2(wz) = 60 and, hence P(xy) < P(wz). One
can also design novel DFMs in which attribute-wise strengths
of preference are somehow accumulated to weigh reasons in
favor or against one option over another, similar to the “per-
ceived relative argument” model of Loomes (2010).

Appendix 2. Proofs
Proof of Proposition 1
Sij) >0<% S@i) <0
< S(ji) < SGj)
< P(ji) < P(ij)
< 1 —P(@ij) < P@j)

1
P@j —.
« P >3

0.5 1 0.5

P(yz) P(yz)

05
P(yz)

0.5

P(yz)

P(xy)

Proof of Proposition 2 Let S be an odd, real-valued function
on the domain D and let D’ be any maximal subset of D, such
that S is one-to-one on D, i.e., for any distinct ij and k£ in
D', S(ij) # S(kt).Inparticular, if S is a one-to-one function
onDthen D' = D.Let D, = {ij € D'|SG3j) > 0}
If ij € D’ then S(ij) # 0 and therefore ji € D', since
S(ji) = —S8(ij). Therefore, for each ij € D', exactly one

.. L , ;D
of ij or ji isin D 5t Asa 09nsequence, Dyl = T..We
denote |Dy, | as n. Since S is one-to-one on D, there is a
unique one-to-one function f : X = {1,2,...,n} — D’S+,

which orders the elements of D’S+ by decreasing strength
of preference, i.e., such that S(f(x)) > S(f(x + 1)) for
1 < x <n—1. According to the Fechnerian property (6) for
S, a binary choice vector P is in Mg if and only if

1> P(f(1)), (26)

P(f(x) > P(f(x+ 1) forl <x <n—1, 27)
1

P (f(n) > o (28)

by construction. Each of these n + 1 inequality constraints
defines a half-space in R”. The intersection of these half-
spaces is contained in ]0, 1[" and, therefore, forms a con-
vex polytope of dimension n. Because they form n + 1
nonredundant constraints describing a convex polytope,
Inequalities 2628 are facet-defining for that polytope. This

@ Springer
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construction of a polytope and of facets does not depend
on the initial choice of D’. As D’ varies, the facet-defining
inequalities (26-28) are stated in terms of different coordi-
nates in R", but in conjunction with the equivalence S(ij) =
S(kl) < P(ij) = P(k{), they form the same convex poly-
tope in ]0, 1[D. O

Proof of Proposition3 Let S;,S;, € S be strength-of-
preference functions on D, and suppose P € Mg, N Mg,.
Then, by definition

S1Gj) > S1(kl) & P(ij) > P(kl) & $2(ij) > S2(ke).

Therefore, by the construction in the proof of Proposition 4,
Mg, and Mg, form identical polytopes nested in ]0, 1[D.
Since there are only finitely many rankings (with possible
ties) of @ many choice probabilities from largest to small-
est, there are also only finitely many such convex polytopes
possible. O

Proof of Proposition 4 Now, suppose that S is maximal. Since
we have already shown that the convex polytopes under
consideration are disjoint, we only need to show that they
form a complete partition of ]0, 1[D. Let P € ]0, 1[D
be a binary choice vector on D. To show that there exists
a Fechnerian model family Mg containing P, define a
strength-of-preference function S on D by S(ij) = P(ij) —
1/2, for all ij € D. Then P satisfies Condition 6, hence P
is a Fechnerian model for S. O

Appendix 3. Facet-defining inequalities for
panels 3 and 4 of Fig. 2

In the third panel from the left, the left tetrahedron is defined
by

1
0< P(xy) < P(xz) < P(yz) < 5 < P(zy) < P(zx)

< P(yx) < 1,

ie., S(xy) < S(xz) < S(yz2) <0 < S(zy) < S(zx) <
S(yx). In that panel, the right tetrahedron is defined by

0< P(yz) < P(xz) < P(xy) < % < P(yx) < P(zx)
< P(zy) <1,
ie., S(yz) < S(xz) < S(xy) <0 < S(yx) < S(zx) <

S(zy). These are on opposite sides of the line segment defined
by 0 < P(yz) = P(xz) = P(xy) < % which is also the

convex hull of (0,0,0) and (4, 4. 4).

@ Springer

In the right-most panel of Fig. 2, the left tetrahedron is
defined by

0 < P(xy) < P(yz) < P(xz) < % < P(zx) < P(zy)

< P(yx) < 1,

ie., S(xy) < S(yz) < S(xz) <0 < S(zx) < S(zy) <
S(yx). In that panel, the left tetrahedron is defined by

0< P(yz) < P(xy) < P(xz) < % < P(zx) < P(yx)
< P(zy) < 1,

ie., S(yz) < Sxy) < S(xz) < 0 < S(zx) < S(yx) <
S(zy). These are on opposite sides of the triangle defined by
0 < P(yz) = P(xy) < P(x2) < 3.
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