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Abstract

We study the problem of computing similarity joins under edit distance on a set of strings. Edit similarity joins is a fundamental
problem in databases, data mining and bioinformatics. It finds many applications in data cleaning and integration, collaborative
filtering, genome sequence assembly, etc. This problem has attracted a lot of attention in the past two decades. However,
all previous algorithms either cannot scale to long strings and large similarity thresholds, or suffer from imperfect accuracy.
In this paper, we propose a new algorithm for edit similarity joins using a novel string partition-based approach. We show
that, theoretically, our algorithm finds all similar pairs with high probability and runs in linear time (plus a data-dependent
verification step). The algorithm can also be easily parallelized. Experiments on real-world datasets show that our algorithm
outperforms the state-of-the-art algorithms for edit similarity joins by orders of magnitudes in running time and achieves

perfect accuracy on most datasets that we have tested.

Keywords String similarity joins - Edit distance - Local hash minima

1 Introduction

Edit similarity joins is a fundamental problem in the database
and data mining literature, and finds numerous applications in
data cleaning and integration, collaborative filtering, genome
sequence assembly, etc. In this problem, we are given a set of
strings {sy, . .., s, } and a distance threshold K, and asked to
output all pairs of strings (s;, s;) such that ED(s;, s;) < K,
where ED(-, -) is the edit distance function, which is defined
to be the minimum number of insertions, deletions and sub-
stitutions to transfer one string to another. There is a long line
of research on edit similarity joins [1-3, 6, 8, 9, 11, 17-20].

A major challenge for most existing algorithms, as pointed
out by the recent work [21], is that they do not scale well
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to long strings and large edit thresholds. Long strings and
large thresholds are critical for applications involving long
sequence data such as big documents and DNA sequences,
where a small threshold K may just give zero output. For
example, in the genome sequence assembly, in which the first
step is to find all pairs of similar reads under edit distance,
the third generation sequencing technology such as single
molecule real time sequencing (SMRT) [12] generates reads
of 1000-100,000 bps long with 12-18% sequencing errors
(i.e., percentage of insertions, deletions and substitutions).
Large threshold is also identified as the main challenge in a
recent string similarity search/join competition [16].

Different from previous algorithms which are determinis-
tic and return the exact answers, in [21] the authors proposed
arandomized algorithm named EmbedJoin, which is more
efficient on long strings and large thresholds. However, the
accuracy (more precisely, the recall, i.e., the number of pairs
found by the algorithm divided by the total number of similar
pairs) of EmbedJoinisonly 95-99% on real-world datasets
testedin [21]. As we shall explain shortly, the imperfect accu-
racy is inherent to EmbedJoin. The main question we are
going to address in this paper is:
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Can we solve edit similarity joins efficiently on long
string and large edit threshold while achieving perfect
accuracy?

Our contribution We propose a novel algorithm named
MinJoin++ to address the above question. In the high level,
MinJoin++ first partitions each string into a set of sub-
strings, and then uses hash join on these substrings to find all
pairs of strings that share at least  common substrings for a
fixed threshold parameter t. At the end, a verification step is
used to remove all false positives.

We design a string partition scheme using local hash min-
ima. The idea of our partition schemes is as follows: We first
assign each letter « in the string s a rank, which is a random
hash value of the g-gram starting from . We then determine
the anchors of string s using the following strategy: a letter
« is an anchor if and only if its rank is the smallest among all
letters in a certain neighborhood of . At the end, we partition
s at all of its anchors.

Via a rigorous mathematical analysis, we show that under
our partition scheme, with properly chosen parameters, any
pair of strings with edit distance at most K will share at least
a constant fraction of partitions with high probability.

We also show that MinJoin++ can be easily imple-
mented in the parallel computation environment.

We have verified the effectiveness of MinJoin++ by an
extensive set of experiments. The experimental results show
that MinJoin++ is able to achieve perfect accuracy on all
tested datasets when there is an exact deterministic algorithm
that can finish within 24 h (so that we get the ground truth).
Moreover, MinJoin++ is faster than all previous algorithms
by orders of magnitudes on datasets of long strings and large
edit thresholds.

More on the motivation and applications As mentioned,

this paper targets long strings, particularly biological sequences

such as genome and protein sequenc
es, whose lengths are from hundreds to tens of thousands.
Edit distance has been widely used in the bioinformatics lit-
erature for comparing the similarity of strings [10, 13].

We would like to comment that MinJoin++ can also be
generalized to handle sequence alignment scores, in which
each insertion, deletion, or substitution carries a weight,
while in edit distance, each operation has a unit cost. Due
to the different weights of the edit operations, we have to
use a more conservative bound of the number of edit oper-
ations. Fortunately, the absolute values of the weights in
the score matrices are typically less than 10. For example,
in the PAM250 matrix for amino acid, only 3 out of 576
entries have absolute values larger than 8. While we are not
aware of any similarity join algorithm designed for the gen-
eral sequence alignment scores, we believe thatMinJoin++
will still significantly outperform the existing algorithms for
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edit similarity joins in the setting that we properly generalize
all these algorithms for alignment scores.

Another scenario in which MinJoin++ excels is finding
near-duplicated pairs of text strings, which arises frequently
in the tasks such as entity resolution and plagiarism detection,
where we are interested in finding pairs of strings such that
one is edited from the other [ 14, 23]. For example, one dataset
that we have used in our experiments contains the titles and
abstracts of research papers. Nowadays it is common for
a paper to have multiple online versions, including work-
shop, conference, journal, and (potentially multiple) arXiv
versions. Identifying near-duplicates would be very useful
for data cleaning and integration. In these applications, edit
distance is naturally more effective measurement than token-
based distance functions such as Jaccard similarity.

1.1 Related work

Many of the existing algorithms on edit similarity joins also
follow the string partition framework. The performance of the
algorithm is largely determined by the number of partitions
generated for each string, and the number of queries made to
the indices (e.g., hash tables) to search for similar strings.

We discuss several state-of-the-art algorithms according
to the experimental studies in [7].

QChunk [11] is an algorithm based on string partition.
OChunk first obtains a global order o of g-grams. It then
partitions each string into a set of chunks with starting posi-
tions 1, g + 1,2g + 1, .. ., and stores the first K + 1 chunks
(according to the order o) in a hash table. Next, for each
string the algorithm queries the hash table with the string’s
first (N — ([(N — K)/q] — K) + 1) g-grams according to o
to check if there is any match, where N is the string length. !

PassdJoin [9]is another algorithm based on string par-
tition. The algorithm partitions each string into (K + 1)
equal-length segments, and records each segment into an
inverted index. Next, for each string the algorithm queries
some of the inverted indices to find similar strings; the num-
ber of queries made for each string is ®@ (K 3), whichis @ (N?)
when K is proportional to N.

VChunk [19] is the algorithm that is closest to
MinJoin++ among all algorithms that we are aware of. In
VChunk, each string is partitioned into at least 2K + 1)
chunks of possibly different lengths, determined by a chunk
boundary dictionary (CBD). More precisely, each string is
cut at positions of appearances of each word in CBD to obtain
its chunks. The CBD is data dependent and the optimal one is
NP-hard to compute. In [19], the authors proposed a greedy
algorithm for computing a CBD in time O (n>N?/K), where

1" Alternatively, for each string we can store the first N — ([(N —K ) /q]—
K) + 1 g-grams in the hash table, and make queries with the first K + 1
chunks.
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n is the number of input strings, and N is the maximum string
length.

The algorithm EmbedJoin [21] uses a very different
approach. EmbedJoin first embeds each string from the
edit distance metric space to the Hamming space, translat-
ing the original problem to finding all pairs of strings that
are close under Hamming distance. It then uses Locality
Sensitive Hashing to compute (approximate) similarity joins
in the Hamming space. However, the embedding algorithm
employed by EmbedJoin has a worst case distance dis-
tortion K, which can be very large. Although in practice the
distortion is much smaller, it still contributes a non-negligible
percentage of false negatives which prevent a perfect accu-
racy.

Compared with existing algorithms, MinJoin++ has the
following advantages:

— For each string, MinJoin++ only generates O (K) par-
titions and effectively makes the same number of queries
in the join stage, which are significantly smaller than
QOChunk and PassJoin.

— MinJoin++ can compute partitions of all strings in time
O(nN), i.e., linear in the input size, which is even faster
than the computation of CBD in VChunk.

— MinJoin++ is able to reach perfect accuracy (100%) on
datasets when we know the ground truth, compared with
95-99% of EmbedJoin. For large datasets on which we
do not know the ground truth (when exact algorithms are
unable to finish within 24h), MinJoin++ also signifi-
cantly outperforms EmbedJoin in terms of accuracy.

A comparison with MinHash We would like to note that
MinJoin++ is very different from the following folklore
algorithm using MinHash: For each string, we collect all of
its g-grams and hash them to numbers, and then pick the
one with the smallest hash value as the signature for the
subsequent hash join. To improve the accuracy, we can pick
multiple signatures using different hash functions for each
string.

To see the difference, in MinJoin++ the hash values
of the g-grams are used to partition a string to sub-
strings/signatures, while in the MinHash-based algorithm
the g-grams are the signatures themselves. In MinJoin++
we set ¢ to be a small number (more precisely, ¢ =
(~)(10g| (N /K)) where X is the alphabet of the string) in
order to make all g-grams distinct in every small neigh-
borhood of the string. And one partition will give us all
the signatures of the string. While in the MinHash-based
approach, it is not clear how to find the best combination of
the value ¢ and the number of signatures (or, hash functions)
for the purpose of achieving a good accuracy under a small
running time. We are not aware of any theory for guiding the
choices of g and the number of signatures in the MinHash-

based algorithm. In Sect.4.6, we will show experimentally
that MinJoin++ significantly performs the MinHash-based
algorithm in both accuracy and running time.

Other related work There is a large body of work on similar-
ity joins under edit distance. A large number of the existing
algorithms fall into the category called the signature-based
approach, in which we compute for each string a set of sig-
natures, and then apply various filtering methods to those
signatures to select a set of candidate pairs for verification.
All the string partition-based algorithms that we have already
discussed belong to this category. Other algorithms in this
category include GramCount [6], A11Pair [2], FastSS
[3], ListMerger [8], EDJoin [20], and AdaptJoin
[18].

There are a few algorithms that use different approaches,
including the embedding-based algorithm EmbedJoin dis-
cussed previously, the tree-based algorithm M-Tree [4],
the enumeration-based algorithm PartEnum [1], and the
trie-based algorithm TriedJoin [17]. However, except
EmbedJoin, others’ performance is not as good as the best
partition-based approaches.

Dai et al. [5] proposed a convolutional embedding-based
algorithm CNN-ED working on GPUs. However, CNN-ED is
not suitable to run in our CPU computational environment.”
Compared with the preliminary version [22] The algo-
rithm presented in this paper can be seen as an improvement
of the MinJoin algorithm presented in the preliminary ver-
sion [22]. This is also why we name our new algorithm
MinJoin++. The key difference between MinJoin++ and
MinJoinisthatin MinJoin, we always set T = 1, that is,
we will include all pairs of strings who share at least one com-
mon partition as candidate pairs. While in MinJoin++, we
set T = T /20, where T = ®(K) is the targeted number of
partitions we would like to generate for each input strings. In
other words, we require multi-match instead of single-match
when collecting candidate pairs.

Multi-match allows us to filter out those dissimilar pairs
more effectively, leading to a significant saving in the verifi-
cation stage. We try to illustrate the advantage of multi-match
for candidate pair filtering via the following example. Con-
sider two strings:

s1 = ABCDEFGHIJKLMNOP;
52 = QRSTUVWXYZABMNOP.

Let us say that we want to find pairs (u#, v) such that u can be
obtained by performing 3 substitutions on v. In MinJoin,
we partition s1 and s; into 4 substrings each. We then use the
pigeonhole principle to argue that if 51 and s; are similar, then

2 If we run the al gorithm in [5] in our CPU computational environment,
then its embedding step (only) is already 10—100 x slower than the entire
running time of MinJoin++ on the datasets that we use in this paper.
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they share at least 1 substring. For simplicity, let us consider
equal-length partitions:

p(s1) = {ABCD, EFGH, UKL, MNOP};
p(s2) = {QRST, UVWX, YZAB, MNOP}.

Thus s1 and s, share a common substring and will be treated
as a candidate pair for verification, however, (s1, s2) is not
a valid output pair since their distance is larger than 3. In
MinJoin++, we try to partition the two strings to more sub-
strings (i.e., we increase the value 7). In the above example, if
we partition each string to 8 substrings, then any similar pair
of strings will share at least 5 substrings. We again consider
equal-length partitions:

p(s1) = {AB, CD, EF, GH, I, KL, MN, OP};
p(s2) = {QR, ST, UV, WX, YZ, AB, MN, OP}.

We observe that s1 and s> only have 2 common substrings;
therefore, they will not be considered as a candidate pair,
reducing the amount of time needed for verification.

In the edit similarity join problem, we also need to con-
sider insertions and deletions. Moreover, the partitions in
MinJoin/MinJoin++ are not equal length (recall that the
partition is randomized), which makes the analysis more
complicated. We managed to show the correctness of multi-
match via a more delicate theoretical analysis (Sect.2.2) and
demonstrated its superiority through experiments (Sect.4).

We have also added a parallel implementation of
MinJoin++ in Sect.3.2. To this end, we replace the hash
tables in the join stage of MinJoin with simple arrays for
better parallelizing the algorithm.

Our experimental results in Sect. 4 shows thatMinJoin++
outperforms MinJoin by 2 ~ 6 times on large datasets.

1.2 Preliminaries

In Table 1, we list a set of notations which will be frequently
used in this paper.
We will make use of the following tools in probability.

Lemma 1 (Chebyshev’s inequality) For any random vari-
able X > 0 and a constant ¢ > 0, we have

Var[X]

Pr(|X — E[X]| = c] < —
C

Lemma 2 (Chernoff bound) Let X, X», ..., X be inde-
pendent random variables taking values in [0, A] and X =
Zie[k] X;. For any a > 0, we have

a2

PrlE[X] — X > a] <e ka2,
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Algorithm 1 Partition-String (s, 7', IT)

Input: Input string s, number of targeted partitions 7', random hash
function I7 : X7 — (0, 1)

Output: Partitions of s: P = {(pos, len)}, where (pos, len) refers a
substring of s starting at the pos-th position with length len

I: P <9

2: A={ay,..., ap} < Find-Anchor(s, T', IT)

3: foreachi € [1, p— 1] do

4: P <« PU(a;i, ai+1 —a;)

5: end for

2 A string partition scheme using local hash
minima

In this section, we present the string partition algorithm and
analyze its properties.

2.1 The algorithm

We start by giving some high level ideas of our partition
scheme. As mentioned, in MinJoin++ we first partition
each string into a set of substrings, and then find pairs of
strings that share at least a pre-defined number (denoted by )
of common partitions as candidates for verification. Consider
a pair of strings x and y (|x| = |y| = N) with edit distance
K. Let p : [N] - [N]U {L} be the optimal alignment
between x and y, where p(i) = j € [N] means that either
x[i] = y[j] or x[i] is substituted by y[j] in the optimal
transformation, and p (i) =1 means that x[i] is deleted in
the optimal transformation. If we pick any 7" = K + 7 indices
1 <iy <--- <ir = Nsuchthat p(i;) 2L ( € [T —
1]), partition x at indices iy, ...,iT—; to T substrings, and
partition y atindices p(i1), ..., p(iT—1) to T substrings, then
by the pigeonhole principle x and y must share at least 7 —
K = t common partition.

Of course, computing an optimal alignment between x and
y before the partition is unrealistic. Our goal is to partition
each string independently, while still guarantee that with a
good probability, any pair of similar strings will share at least
T common partitions.

We present our partition algorithm in Algorithm 1 and
Algorithm 2. Let us briefly describe them in words. Algo-
rithm 1 first calls Algorithm 2 to obtain all anchors (to be
defined shortly) of the input string s, and then cuts s at each
anchor into a set of substrings.

To compute all anchors, Algorithm 2 first hashes all the
substrings of s of length ¢ (i.e., s[1..¢], s[2..g + 1], ...) into
values in (0, 1). Now we have effectively transferred s to an
array h[] of size |s| — g + 1, with each coordinate taking a
value in (0, 1). We call the coordinates within a distance r
of h[i] the r-neighborhood of i. We call r the neighborhood
radius, which is determined by the length of the string |s| and
the number of targeted partition 7. Fori =r+1, ..., (|s| —



MinJoin++: a fast algorithm for string similarity joins under edit distance

285

Table 1 Summary of notations Notation

Definition

[n]

NNYTRe Mz E T e O ox

(n]={1.2,....n}

Edit distance threshold

Set of input strings

i-th string in S

Number of input strings, i.e., n = |S]|

Length of string s

Substring of s starting from the i-th letter to the j-th letter
Maximum string length

Alphabet of strings in S

Length of g-gram

Random hash function X9 — (0, 1)

Neighborhood radius for computing local minimum
Number of targeted partitions; 7 = & (K)
Similarity threshold, T = 7' /20

Algorithm 2 Find-Anchor(s, T, IT)

Input: Input string s, number of targeted partitions 7', random hash
function 7 : X7 — (0, 1)

Output: The set of anchors A on s

1: A« “F

20« [ BB

3: Initialize an empty array i with |s| — ¢ + 1 elements

4: foreachi € [|s| — g + 1] do

50 hlil < (i itg-1)

6: end for

7: foreachi e[l +r,|s| —g+1—r]do

8  Label <1

9: foreachjel[i—r,i+r]andj #ido

10: if h[i] > h[j] then
11: Label < 0

12: Exit the for loop
13: end if

14:  end for

15:  if Label = 1 then
16: A «— AU{i}

17: end if

18: end for

19: A < AU{|s|}

20: return A

q+ 1) —r,wesay hli] a local minimum if its value is strictly
smaller than all other coordinates in the r-neighborhood of i.
Algorithm 2 outputs the corresponding i-th letter in string s
as an anchor. For convenience, we also call a local minimum
coordinate in A[] an anchor.

Intuitively, anchors are the “cutting points”. We use
anchors to conduct an oblivious partition of the strings (i.e.,
we perform the partition on each string independently). If we
choose anchors to be the letters with the smallest hash rank in
aneighborhood of a specific radius, we can ensure that every
pair of strings with at least one long common substring will
be selected as a candidate. More precisely, we will show that
for a pair of strings x, y, if they share a common substring

Table 2 Hash values of 3-grams

3-gram Value 3-gram Value 3-gram Value
CTA 0.01 ACG 0.39 GAA 0.69
GCT 0.05 AAA 0.42 AAT 0.74
TGC 0.12 AAC 0.46 ATC 0.77
TAA 0.21 CCT 0.53 GTC 0.83
ACC 0.25 TCG 0.58 TGG 0.89
CGT 0.31 ATC 0.62 GGA 0.91
GTG 0.33 CGA 0.64 GCG 0.97

o that is long enough, then there must be at least two letters
u, v in o such that # and v are two adjacent anchors in both
x and y, which means that if we use anchors to partition x
and y, then they must share at least one common partition.
On the other hand, we know that for two strings of length N
and edit distance K <« N, they must share many long sub-
strings. Thus by properly choosing the neighborhood radius
r, we can guarantee that two similar strings will share at least
v = T /20 common partitions.

A running example Before analyzing Algorithm 1, we first
give a running example. Table 2 presents the hash values of
all 3-grams in S under the hash function /7. Table 3 presents
a collection of input strings S = {s1, 52, 53, 54, 55} and their
lengths. We want to find all pairs of strings with edit distance
less than or equal to K = 4. We set neighborhood size r = 2,
and try to find all pairs of strings that share at least T = 1
partition.

Table 4 presents the partitions of strings obtained by Algo-
rithm 2. Considering string s1 as an example, its 6-th 3-gram
“CTA” has a smaller hash value than all its neighbors within
distance r = 2 (i.e., “TGC”, “GCT”, “TAA”, “AAC”). Thus
“CTA” is selected as an anchor of si. Same to the 14-th 3-
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Table 3 Input strings

D String Length
S1 ACGTGCTAACGTGCTAACGTG 21

52 AAACGTGCTAACGTGCTAACCT 22

53 TCGAATCGTCGAATCGTCGAA 21

54 TCGAATCGTCGAATCGTGGAA 21

S5 GTGCGAATCGTCGAATCGTCG 21
Table 4 Partitions of strings by Algorithm 1 (7 = 3)

ID Partitions of string r
S ACGTG, CTAACGTG, CTAACGTA 2
52 AAACGTG, CTAACGTG, CTAACCT 2
53 TCGAAT, CGTCGAAT, CGTCGAA 2
54 TCGAAT, CGTCGAAT, CGTGGAA 2
S5 GTGCGAAT, CGTCGAAT, CGTCG 2

gram “CTA”. We then partition 5| to {ACGTG, CTAACGTG,
CTAACGTA}.

We find that strings si, s> share a common partition

“CTAACGTG”, 53, s4 share acommon partition “TCGAAT”,
and s3, s4, 55 share a common partition “CGTCGAAT”,
which give the following candidate pairs: (s, s2), (53, 54),
(s3, 85), (54, §5). After computing the exact edit distance of
each pair, we output (sq, s2), (s3,54), (83,55) as the final
answer (i.e., those whose edit distances are no more than
K =4).
Discussion We would like to discuss a few things regard-
ing our local hash minima-based partition scheme. First, we
require the value of an anchor in the hash array A[] to be
strictly smaller than its 2r neighbors. The purpose of this is
to reduce the number of false positives generated by periodic
substrings with short periods; false positives will increase the
running time of the verification step of the MinJoin++ algo-
rithm. In real-world datasets, periodic substrings are often
caused by systematic errors, and may be shared among dif-
ferent strings. For example, consider the following periodic
substring on genome data “... AAAAAAAA ...” produced
by sequencing errors, if we allow the value of an anchor to
be equal to its neighbors, then we may have many anchors
‘A’ in this substring if the hash rank of ‘A’ is the smallest
among that of all letters in a specific neighborhood radius.
Such singleton partitions will easily cause hash collisions
and form candidate pairs, even for pairs of strings with large
edit distances.

Second, we use different neighborhood radius r for strings
of different lengths. More precisely, we set r = L%J
where |s| is the length of the string. The purpose of doing
this, instead of choosing a fixed r for all strings, is again to
reduce false positives. Indeed, if we choose the same r for all
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strings, then long strings will generate many partitions, since
in order to achieve perfect accuracy we cannot set  to be too
large at the presence of short strings. Consequently, the large
number of partitions generated by long strings will contribute
to many false positives. This is in contrast to VChunk, who
cuts the string whenever it finds a word in CBD appearing on
the string. Consequently, two strings of very different length
but sharing a relatively long substring are likely to be con-
sidered as a candidate pair, producing a false positive for the
verification.

Third, in the discussion above, we treat the number of sub-
strings after partitioning each input string as a fixed value 7.
However, since our partition scheme is a randomized algo-
rithm, the number of partitions it generates for each input
string is a random variable T’. Fortunately, we can show that
T’ is tightly concentrated around 7. This is also why we call
the parameter 7 the fargeted number of partitions. We will
give the concentration result in Lemma 3 in Sect.2.2.

2.2 The analysis

In this section, we examine the properties of Algorithm 1.
We will analyze (1) how many partitions Algorithm 1 will
generate? And (2) what is the probability for two similar
strings to share at least ¢ common partitions?

To keep the analysis clean, we assume that in any r-
neighborhood of the array /4[], all the coordinates are distinct,
which is true if (1) we assume that all corresponding g-grams
are different, and (2) the hash function IT : X9 — (0, 1) does
not produce a collision when applying to g-grams. The later
is easily satisfied if we maintain an O (log N)-bit precision
(N is the maximum input string length) in the range of I7, in
which case there will not be a hash collision with probability
1—1/N*M For the former, we setg = 3log x| (N/T).Note
that by our choice of r we have r &~ N /(2T). If all letters in
a substring of size r are random, then the probability that two
g-grams in this substring are the same is 1/ X7 = (%)3
By a union bound, with probability 1 — o(1), all g-grams in
a substring of size 2r are different. We emphasize that this
assumption is only used for the convenience of the concen-
tration analysis; Algorithm 1 works regardless of whether
this assumption is true or not.

For simplicity, in the rest of the paper, we often ignore
the floor/ceiling operations whose effect is negligible to the
analysis.

The following lemma states that the number of anchors
produced by Algorithm 2 is tightly concentrated around the
number of targeted partitions 7 .

Lemma 3 Given an input string and a parameter T, for any
¢ > 0, the number of anchors generated by Algorithm 2,
denoted by X, satisfies Pr[|X — T| > +/cT] < 1/c.
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Proof Consider the array A[l..|s| — g + 1] constructed in
Algorithm 2; h[i] is the hash value of the i-th g-gram of s.
Letw=|s|—g+1—-2r.Fori =1,...,w, define a ran-
dom variable X; whose value is 1 if A[i + r] is the smallest
coordinate in the window h[i..i + 2r], and O otherwise. Let
X = Zi [w] X, which is the total number of anchors gener-
ated by Algorithm 2. We next analyze the mean and variance
of the random variable X.

We start by computing its expectation. Recall that we have

set r to be % at Line 2 of Algorithm 2.
E[X]= ) E[X;]= )Y Pr[X;=1]
= ielwl
= =T (1)
C2r4+1
We next compute the variance.
Var[X] = Z Var[X;] + Z Cov[X;, X;]
iew] i#j
1
- Z Var(X;] + > Z ZCov[X,-, X1 @
ie[w] i j#i

We compute the two terms of (2) separately. For the first
term,

> varlxil = Y (EIXP1 - (ELX,1)?)
ielw] iefw]
1 1
- <2r+l - (2r+l)2)
< 3)
2r+1

For the second term of (2), by the definition of the covariance,

Cov[X;, X;] = E[X;X;] - E[X;|E[X/]

=BT o e
We analyze E[X; X ] in three cases.

Case I |i — j| > 2r + 1. It is easy to see that in this
case X; and X; are independent, since their correspond-
ing windows hli..i + 2r] and h[j..j + 2r] are disjoint.
We thus have E[X; X ;] = E[X;]E[X/], and consequently
COV[Xi7 Xj] =0.

Casell |i — j| < r.Inthis case, h[i +r] is inside the window
hlj..j+2r], and symmetrically i[ j +r] is inside the window
hli..i+2r]. Thusif X; = 1, then wemusthave X ; = 0, and if
X; = 1,thenwemusthave X; = 0. Therefore E[X; X ;] = 0,
and consequently Cov[X;, X ;] = —m.

Caselll r < |i — j| < 2r + 1. The analysis for this case is a
bit more complicated. Consider two windows W; = h[i..i +
2r]and W; = h[j..j + 2r] which overlap. We divide their
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Fig. 1 Illustration of windows W;, W; when r < |i — j| < 2r +

1. Black square represents the central coordinate of the window. The
squares in same column correspond to same coordinate in the array A[];
we duplicate them for the illustration purpose

union into three areas; see Fig. 1 for an illustration. Area 2
denotes the intersection of the two windows, and Area 1 and
Area 3 denote the coordinates that are only in W; and Wi,
respectively. It is easy to see that the number of coordinates
in Area 1 and Area 3 are equal; let o (r < o < 2r + 1)
denote this number.

We write

E[X;X;]=Pr[X; =1,X; =1]
=PI‘[X]'=1|X,'=1]~PI‘[X,'=1]
1
2+

=Pr(X;=1|X;=1]

We thus only need to analyze Pr[X; = 1| X; = 1]. Definea
random variable Y such that Y = 1 if the central coordinate
of W; (i.e., h[i 4 r]) is smaller than all coordinates in Area
3. We have

PriX; =1|X;,=1]
=Pr[X;=1|X;,=1Y=1]
xPr[Y =1|X; =1]
+Pr[X; =1]X;=1,Y =0]
xPr[Y =0 X; =1]. 4)

Note that (X; = 1) A (Y = 1) implies that the central
coordinate of W; is smaller than all coordinates in W, which,
however, does not give any information about the relationship
between all coordinates in W;. We thus have

PriX;=1|X;=1,Y =1]=Pr[X; = 1]
1
T e+ 1

)

Onthe otherhand, (X; = 1)A(Y = 0) implies that the central
coordinate of W; is smaller than all coordinates in Area 2, and
is larger than some coordinate in Area 3. We thus know that
the minimum coordinate of W; must lie in Area 3. Therefore
X; = 1if and only if the central coordinate of W; is larger
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than all other coordinates in Area 3. We get
PriX;=1|X;=1,Y=0]=1/a. 6)

Plugging in (5) and (6) to (4), we have

1
1
+—-Pr[Y =01 X; =1]
o
1 1
< -< .
Ta T r+1
Consequently we have
Cov[X;, X;] < ! !
ov[X;, X;] < : —
P+ r+ 1 2r41)2
1
< -—/—7.
Q2r +1)2
Summing up, we have
=—oto ifli—jl<r
2rn?’ JI=
Cov[X;, X;1{ < m ifr<li—jl<2r+1

=0, if i —j|>2r+1

which, together with (3) and (2), give

w 1 1
Var[X] < —— 4+ — w2 s ——
Xl < S Ty T e
1 1
_—.w.zr.—
2 Qr 172
=—— =T 7)
T 2r 41

By (1), (7), and the Chebyshev’s inequality, we have that for
any constant ¢ > 0,

Pr(|X — T| > V/cT] < 1/c.
O

We have empirically verified the concentration result in
Lemma 3 on two real-world datasets (to be introduced in
Sect.4); see Fig.2. It is clear that the number of partitions
Algorithm 1 generates is tightly concentrated around the
number of target partitions 7.

The following lemma gives another key property of our
local hash minima-based partition. For the convenience of the
analysis, we will assume |s| = w(K¢q) and K = w(logn).
That is, the string length is sufficiently long and the distance
threshold is sufficiently large.

Lemma4 For two strings s,t with ED(s,t) < K, let P
and Py be the partitions outputted by Algorithm 1 (setting
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0
0.8 0.9 1 11 1.2 0.5 1 1.5
Number of Partitions (xT') Number of Partitions (xT')

GEN50kS UNIREF

Fig. 2 The CDFs of numbers of partitions on each string returned by
Algorithm 1 on GEN50kS and UNIREF datasets, with parameters 7 =
100 and T = 25 respectively

T = 200K ) on s and t respectively. The probability that Ps
and Py share at least T /20 common partitions is at least
1—1/n*

Proof Since ED(s,t) < K, we have |t| € [|s|— K, |s|+ K].
Moreover, s and r must share at least 7' /12 common disjoint
substrings, each of which has length L = T/J% To see
this, suppose string s has been partitioned into substrings
of equal length L. The K edits can only “destroy” at most
K of these L substrings. It follows that there are at least
|s|/L — K = T /12 common disjoint substrings of length L
in s and 7.

We next show that for any common substring of s and # of
length L, it must produce a common partition after running
Algorithm 2.

Let y be any common substring of length L. Let ry =
%, and let n = %jjzr? When running Algo-
rithm 2 on s, by an almost identical argument as that for the
proof of Lemma 3 and setting ¢ = 4, we have that the number

of anchors X on y satisfies

Pr(|X —nl = /3n] < 1/3. (3)
For T = 200K and |s| = w(K¢q), we have

L—qg+1—2r
7”:—

2rs + 1
T+1
T/12+ K Is| —q +2
Is| 200K + 1
*Ne———r——— g+ 121 ) —m8—
200K /12 4+ K Is| —q +2
> 10. ©

Plugging (9) to (8), we have with probability at least (1 —
1/3) = 2/3 that

X >n—+3n>4, (10)

which means that with probability 2/3 there are at least four
anchors on y.
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Letay, az, a3, asq be four anchors on y when processing s
using Algorithm 2. Let r; = % Since ED(s, 1) < K
and T = 200K, it holds that |r;, — rg| < 1. In the case that
r; = rg = r,a and a3 must also be anchors when processing
t using Algorithm 2, since an anchor is fully determined by
a neighborhood of radius r.

For the case when |r; —rg| = 1, w.l.o.g., assume that
rg = r and r, = r + 1. Now the probability that a; is still an
anchor when processing ¢, given the fact that a, is an anchor
when processing s, is at least 1 — 1/(r + 1). Same argument
holds for a3. Thus with probability 2/3 —2/(r +1) > 19/30
(note that r = ry = BSEH=T — (1) given |s| = w(gK)
and T = 200K), az and a3 are also anchors when processing
t.

Finally, observe that once s and ¢ share two adjacent
anchors a> and a3, they must share at least one common
partition.

Up to this point, we have shown that for each of the at least
k = T /12 common disjoint substrings, with probability at
least 19/30, it produces a common partition. Define X; €
{0, 1} to be the indicator random variable of the event that
the i-th common substring produces a common partition. We
have that E[X;] > 19« /30. Let X = Z;'(:l X;. The number
of common partitions between the two input strings is at least
X.

By Chernoff bound (Lemma 2), setting a = /4« logn
and noting that « = T/12 = w(logn), with probability at

__4xlogn
least] —e” "« >1

1
— 1. we have

19 T
XzE[X]—\/4K10gnz3—(;6—\/4K10gnzﬁ. o

The following theorem summarizes the property of Algo-
rithm 1.

Theorem 1 Ifwe apply Algorithm 1 on all the n input strings
with T = 200K, then with probability at last 1 — 1/n?, all
pair of strings with edit distance at most K will share at least
T /20 common partitions. The expected running time and the
space of the algorithm are both linear in terms of the input
size.

Proof Since there are at most n” pairs of input strings, and by
Lemma 4 we have for each pair of strings, they share at least
T /20 common partitions with probability at least 1 — 1/n*.
The correctness follows from a union bound.

We next analyze the time and space. We can just show
that the time and space for partitioning one string s (by Algo-
rithm 1) is linear in terms of the string length |s|.

The running time of Algorithm 1 is dominated by that of its
subroutine Algorithm 2. The hash values of all g-grams of s
can be computed by, for example, the rolling hash® in O (|s|)

3 https://en.wikipedia.org/wiki/Rolling_hash.

Algorithm 3 MinJoin++(S, K, T)
., S}, distance threshold K,

Input: Set of input strings S = {sq, ..
number of targeted partitions 7

Output: O < {(si,s;) | si,s; € S;i # j; ED(s;, 5;) < K}

1: O« 0,C<0 > C : collection of candidate pairs

2: Pick a hash function f : ¥* — N

3: Generate a random hash function I7 : X9 — (0, 1)

4: Initialize an empty array A

5: for each s; € S do

6 P < PARTITIONSTRING(s;, T, IT)

7. for each (pos, len) € P do

8 Add (f((si)pas.4pas+len—l)v pos,len,i)to A

9:  end for

10: end for

11: Sortelements in A by the first component (i.e., the hash value f(-)),
and partition elements in A into groups Ay, Az, ..., A; according
to ()

12: for each G € {A|, Ay, ..., A;} do

13:  for each pair of elements (h, pos;, len;, 1), (h, pos;j,len;j, j)
in G do

14: if i # jand ||s;| — |s;|| < K then

15: if |p0s,~ — pos_,~| + }(\s,-l — posi) — (|s_,'| — posj-)| <K
then

16: C«+CU(,))

17: end if

18: end if

19:  end for

20: end for

21: Remove all pairs in C that appear less than 7' /20 times
22: for each (i, j) € C do
23:  if ED(s;, sj) < K then

24: O« 0U(,)
25:  endif
26: end for

time. For Line 7-18 of Algorithm 2, since each number in
h[] is a random hash value, the inner for-loop (Line 9-14)
runs in O (1) time in expectation. Therefore, the total running
time of Algorithm 1 is O(|s|) in expectation.

Clearly, the space usage of Algorithm 1 is also O(|s]). O

3 TheMinJoin++ algorithm

We now present our main algorithm MinJoin++, described
in Algorithm 3. We briefly explain it in words below.

The MinJoin++ algorithm has four stages: initializa-
tion (Line 1-4), partition (Line 5-10), join (Line 11-21) and
verification (Line 22-26). In the first stage, we initialize an
empty set C for candidate pairs and an empty array A. We
also generate a hash function I7 for random ranking in the
string partition procedure, and another hash function f for
generating the keys of elements in A. In our experiments,
we used MURMURHASH3 to implement /7 and SEAHASH to
implement f.4

4 See https://en.wikipedia.org/wiki/MurmurHash for MurmurHash3,
and https://docs.rs/seahash/latest/seahash/ for SeaHash.
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In the second stage, we compute the partitions for each
input string using Algorithm 1.

In the third stage, we first partition the elements in A into
¢ groups using the first components of elements (i.e., ¢ is the
number of distinct values of f(-) in elements of A). Next,
for each pair (h, pos;, len;, 1) and (h, posj,len;, j)ineach
group, we perform two quick tests. The first test (Line 14)
says that if the lengths of s; and s; differ by more than K,
then it is impossible to have ED(s;, s;) < K. The second
test (Line 15) concerns the following scenario: if s; and s;
match at indices pos; and pos;, which divide s; and s; into
substrings v = (Si)l..pos,-fl , V2 = (Si)pos;..ls,-l and u; =
(sj)l_,posj_l, = (Sj)p()Sj..|Sj| respectively, and if pos; and
pos are indeed matched in the optimal alignment, then we
must have

ED(vy, 1) +ED(v2, 1) < K,
in which case we have
|(Isi| = pos) — (|s;| — posp)| + | pos — posj| < K.

We add all pairs that pass both tests into the candidate set C.
Finally, we identify all pairs in C that appear at least T' /20
times in the same groups as candidate pairs for the verification
step. It should be noted that matches that fail either of the two
tests (Line 14 and Line 15) are not counted towards the 7' /20
threshold.

In the fourth stage, we verify whether each pair of strings
in C indeed have edit distance at most K, using the stan-
dard dynamic programming algorithm by Ukkonen [15].
Due to this verification step, our algorithm will never output
any false positive. Therefore, by Theorem 1, MinJoin++
correctly output all similar pairs of strings with probability
1 —1/n2.

Time and space analysis Let N be the maximum string
length in the set of input strings S, and n = |S|. By Theo-
rem 1, the running time of the partition is bounded by O (nN).

The total number of pairs fed into the two tests (Line 14
and 15) inherently depends on the dataset. Suppose that the
partitions of all strings are evenly distributed into the ¢ groups
Ay, ... A, wecanupper bound the expected number of pairs

2 2
for the tests by O (%) =0 % .
The verification step can be done in O (|C| N K) where C
is the set of the candidate pairs.

The space usage is clearly bounded by O (nN + |C]), that
is, the size of the input plus the number of candidate pairs.

Theorem 2 Setting T = 200K, the MinJoin++ algorithm
has the following theoretical properties.

— It outputs all pairs of similar strings with probability 1 —
1/n?.

@ Springer

— Assuming that the partitions of all strings are evenly
distributed into the groups Ay, ..., A¢, the expected run-
ning time of MinJoin++ is at most

nkK\?>
0] nN+(T> + |CINK |,

where C is the set of the candidate pairs produced before
the verification step.
— The space usage of MinJoin++ is O(nN + |C]).

3.1 Remarks on the choice of T

Asmentioned, MinJoin++ isarandomized algorithm. The-
orem 2 states that MinJoin++ will output the exact answer
with a very high probability (that is, 1 — 1/n?). To achieve
this accuracy, we have set 7 = 200K, but the value of 7' can
be much lower in practice for three reasons.

First, setting T = 200K in the theoretical analysis is
largely for the simplicity of the calculation. A more care-
ful analysis can bring 7" to ¢ K for a much smaller constant
cr.

Second, on real data, the edits often occur in clusters. If
we partition a string into 7" substrings, then we would expect
that the (at most) K edits may only occur in K /cj partitions
for a constant ¢; > 1. Consequently, similar pairs of strings
are likely to share more common partitions.

Third, in practice, we might not need to aim for an error
probability as small as 1/n%; we can use a smaller T at the
cost of a weaker error probability (or, a very small number
of false negatives).

The above discussion also holds for the MinJoin algo-
rithm in the preliminary version of this paper [22].

In our experiments, we have set 7 = 20 + K /15 for
MinJoin, and T = 20 + K /8 for MinJoin++. The lead-
ing constant 20 is used to make sure that the concentration
inequalities (Chebyshev’s inequality and Chernoff bound)
give good success probabilities even when K is very small.
The coefficient of K for MinJoin is smaller than that
for MinJoin++; this is mainly because MinJoin only
requires a single matching partition between similar pairs
while MinJoin++ requires multiple matching partitions.
For MinJoin++, the constant 8 in K /8 already gives very
good accuracy for datasets tested in this paper. And we
believe that 5-8 are all the constants that need to be tested
for other datasets

3.2 Parallel implementation

MinJoin++ enjoys a straightforward parallel implementa-
tion, and is thus fully scalable in the multi-thread computation
environment.
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First, it is clear that the partition stage (Line 5-10) can
be fully parallelized, since the partition on each string is
independent on other strings. We split the set of input
strings evenly to the M machines/threads. Each thread runs
Partition-String on a subset of input strings.

In the join stage (Line 12-20), we merge the M local
arrays into the global array A using merge-sort across mul-
tiple threads, getting the groups Ay, ..., A;. We then split
groups evenly into the M threads for the tests, and then merge
the local candidate sets into the global candidate set C.

The verification stage can also be fully parallelized by
splitting C evenly between the threads.

4 Experiments

In this section, we present our experimental studies. We
start by describing the datasets and algorithms used in our
experiments. We then give a study of several aspects of
MinJoin++. Next, we compare MinJoin++ with the
state-of-the-art algorithms for edit similarity joins. After that,
we test the parallel implementation of MinJoin++. At the
end, we compare MinJoin++ with the folklore MinHash-
based algorithm.

4.1 The setup

We implemented our algorithms in C++ and performed
experiments on a Dell PowerEdge T630 server with 2 Intel
Xeon E5-2667 v4 3.2GHz CPU with 8 cores each, and 256GB
memory.

Datasets We use the datasets in [21] which are publicly avail-
able.> Table 5 describes the statistics of tested datasets.

UNIREF: A dataset consists of UniRef90 protein sequence
data obtained from UniProt Project.® The sequences
whose lengths are smaller than 200 are removed, and
the first 400,000 protein sequences are extracted.

TREC: A dataset consists of titles and abstracts from 270
medical journals. The title, author, and abstract fields are
extracted and concatenated. Punctuation marks are con-
verted into white space and all letters are in uppercase.
GEN-X-Y’s: Datasets contain 50 human genomes obtained
from the Personal Genomes Project,” where X denotes
the number of strings (range from 20k to 320k), and Y
denotes the string length (S ~ 5k, M ~ 10k, L ~ 20k).
Each string is a substring randomly sampled from the
Chromosome 20 of human genome.

3 See the documentation from the project website of [21]: https:/github.
com/kedayuge/Embedjoin.

© http://www.uniprot.org/.

7 https://www.personalgenomes.org/us.
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Table 5 Statistics of tested datasets (from [21])
Datasets n Avglen MinLen MaxLen |X|
UNIREF 400,000 445 200 35,213 25
TREC 233,435 1217 80 3947 37
GEN50kS 50,000 5000 4829 5152 4
GEN20kS 20,000 5000 4829 5109 4
GEN20kM 20,000 10,000 9843 10,154 4
GEN20kL 20,000 20,000 19,821 20,109 4
GEN80kS 80,000 5000 4814 5109 4
GEN320kS 320,000 5000 4811 5154 4

Algorithms We compare MinJoin++ with the state-of-the-
art algorithms for string similarity joins under edit distance,
including PassJoin[9], QChunk[11], VChunk [19], and
EmbedJoin [21]. We also compare MinJoin++ with the
original MinJoin algorithm in the preliminary version of
this paper [22]. Exceptin Sect. 4.5, MinJoin++ always uses
a single thread of execution.

All codes are downloaded from the corresponding project
websites.

We choose the parameter 7 forMinJoin++and MinJoin
following the discussion in Sect.3.1. We always choose the
best parameters of other tested algorithms. QChunk has two
parameters: g (the size of g-gram) and indexing method.
We found that the indexchunk always performs better than
indexgram on all datasets, and we always choose the best
q for each experiment. VChunk has a parameter scale to
tune. PassJoin has no parameter. EmbedJoin has three
parameters m, r, z. We choose the parameters based on the
recommendation of [21]: We select the best combinations
of parameters to achieve at least 95% accuracy on UNIREF
and TREC datasets, and at least 99% accuracy on GEN50kS
dataset; and we select r = z =7, m = 15 — |log, x| on the
rest of datasets, where x % is the edit threshold.
Measurements We use three metrics to measure the perfor-
mance of tested algorithms: time, space, and accuracy.

We note that except MinJoin++, MinJoin and
EmbedJoin, which are randomized and may have false neg-
atives, all other tested algorithms are deterministic and output
the exact number of similar pairs. For parameters on which
there is at least one deterministic algorithm that can finish
within 24 h, we use this output size as the ground truth. For
parameters on which there is no deterministic algorithm that
can finish within 24h, we use the output of the maximum
size among MinJoin++, MinJoin and EmbedJoin as
the “ground truth”. The accuracy of an algorithm is defined
to be the ratio between its output size and the ground truth.
We will mark the accuracy on points where it is not 100%.

Each result for the randomized algorithms is an median
of 11 independent runs with different randomness.
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Fig.5 Running time distribution of input reading (R), string partition (P), join (J), and verification (V) of MinJoin++, varying K

4.2 Experiments for MinJoin++

We first investigate the influence of parameter 7 on the run-
ning time and accuracy, and then present the running time
distribution of the four stages of MinJoin++.

Influence of parameter 7 Figures 3 and 4 show how param-
eter T influences the accuracy and the running time of
MinJoin++. Aspredicted by theory, both time and accuracy
increase when T increase. We also tested different distance
thresholds K. We observe that when K becomes larger, we
need a larger T to achieve the perfect accuracy, which is also
consistent with the theory where we need to pick 7 = @ (K).
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Running time distribution We present in Fig. 5 the running
time of MinJoin++ on (1) input reading, (2) string parti-
tion, (3) join, and (4) verification when varying the distance
threshold K. It is clear that the time on input reading will
not change when varying K. We observe that the time on
join increases slightly when K increases, that on partition is
stable, and that on verification increases considerably when
K increases.

4.3 A comparison with the state-of-the-art

We now compare MinJoin++ with the state-of-the-art
algorithms for edit similarity joins, including QChunk,
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PassJoin, VChunk, EmbedJoin, and the preliminary
version MinJoin. We will first make use of datasets
UNIREF, TREC and GEN50kS for a basic comparison.
These datasets are of modest size so that all algorithms can
finish within 24 h. We then use larger genomics datasets to
test the scalability of all algorithms.

Influence of the distance threshold K Fig.6 presents the
running time of different algorithms on UNIREF, TREC and
GEN50kS when varying K. Compared with EmbedJoin,
MinJoin and MinJoin++ have clear advantage on the
accuracy. The running time of MinJoin++ is slightly better
than MinJoin on most points. MinJoin++ and MinJoin
performs slightly worse than EmbedJoin on UNIREF, sim-
ilar on TREC, and slightly better on GEN50kS.

All three randomized algorithms (MinJoin++,MinJoin,

EmbedJoin) have significant advantage over the determin-
istic algorithms. MinJoin++ outperforms the best deter-
ministic algorithm by a factor of 2 in UNIREF (K = 25),
8 on TREC (K = 50), and 52 on GEN50kS (K = 150).
The running time of PassJoin increases quickly when
K becomes large; this is consistent with the theory, which
predicts that the query time in PassJoin for each string
is proportional to K3. VChunk performs relatively well on
UNIREF, but much worse on TREC and GEN50kS. This
may be because the preprocessing time of VChunk has a
quadratic dependence on string length N, which is larger in
TREC and GEN50kS than UNIREF.
Influence of the input size n Figure7 presents the run-
ning time of different algorithms on UNIREF, TREC and
GEN50kS when varying the number of input strings n. The
relative accuracy and running time between EmbedJoin,
MinJoin, and MinJoin++ are similar as that in Fig.6
(varying K).

The running time of MinJoin++ outperforms the best

deterministic algorithm by a factor of 2 on UNIREF (n =
400,000), 10 on TREC (n = 200,000), and 25 on GEN50kS
(n = 50,000). The trends of running time of all algorithms
increase near linearly in terms of n, except VChunk whose
performance deteriorates significantly when n increases on
TREC and GEN50kS, which may again due to the expensive
preprocessing step.
Scalability of the algorithms We next test all algorithms on
larger datasets. Figure 8 presents the results of the running
time when we scale string length up to 20,000 and the dis-
tance threshold K up to 16% of the string length. Figure9
presents the results when we scale the number of strings up
to 320,000, and K up to 16% of the string length. The first
plot of Fig.9 is just a repeat of that of Fig.8. Note that the
running time is in logarithmic scale.

We note that some algorithms cannot produce some of
the points, which may be because they cannot finish within
24, or there are some implementation issues (e.g., memory
overflow). As mentioned earlier, in cases when there is no

deterministic algorithm that can finish in time, the accuracy
of algorithms is computed using the best result returned by
EmbedJoin, MinJoin++ and MinJoin as the “ground
truth”.

We observe that MinJoin++ generally outperforms
EmbedJoin by 6 ~ 12 times, and outperforms MinJoin
by 2 ~ 6 times. The advantage of MinJoin++ over
MinJoin increases when the number of strings n or the
string length N becomes larger. This is because when n
or N increases, the filtering procedure of MinJoin++ is
more powerful than MinJoin. Recall that for MinJoin++
and MinJoin, the verification time increases much faster
than other parts of the algorithms. Similar as that on small
datasets, the accuracy of EmbedJoin is about 96-99%. On
the majority of points, both MinJoin++ and MinJoin
achieve perfect accuracy. On those who are not, the accu-
racy of MinJoin++ and MinJoin is at least 99.7%.

All the deterministic algorithms do not scale well on

these large datasets. On the smallest dataset GEN20kS,
PassJoin and QChunk can run up to the 8% distance
threshold, while VChunk can only go up to the 4% distance
threshold. Their running times increase significantly when
K increases. Only PassJoin can produce some points on
GEN20kLand GEN80kS. On GEN320kS, none of the deter-
ministic algorithms can finish within 24 h.
Memory usage We have also compared the memory usage
of all tested algorithms. Figures 10 and 11 present the mem-
ory usage of different algorithms on UNIREF, TREC and
GEN50kS when varying distance threshold K and the num-
ber of input strings n. While the difference on the memory
usage is not as large as running time, MinJoin++ still per-
forms the best among all algorithms. The performance of
PassJoin is sensitive to K, and is much worse than other
algorithms when K is large.

4.4 Short strings and limitation of MinJoin++

As we have shown above, the advantage of MinJoin++
against the state-of-the-art algorithms increases when the
lengths of the strings grow. On the other hand, the perfor-
mance of MinJoin++ indeed degenerates when the strings
lengths decrease. This does not come at a surprise since
MinJoin++ is a partition-based randomized algorithm. As
with almost all randomized algorithms, MinJoin++’s cor-
rectness depends on various concentration inequalities (or,
the law of large numbers). We have to create a sufficient
number of partitions for each string. If the string length is
small, then the partition process will create many short strings
which may lead to a significantly larger number of false pos-
itive pairs for the verification step and substantially increase
the running time. On the other hand, when the string length
increases, the matching of substrings will become more accu-
rate, thereby decreasing the number of candidate pairs for
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Fig.6 A comparison on running time, varying K. MinJoin++ and MinJoin achieve perfect accuracy (i.e., 100%) on all points.
of EmbedJoin is in the range of (95.5-99.5%)
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verification. This is a unique feature of MinJoin++ and is
different from most previous algorithms for edit similarity

joins.

We have conducted experiments for MinJoin++ on short
strings. Figure 12 presents the running time of MinJoin++
on strings of different lengths. For each percentage p% in
the x-axis, we create a new dataset by taking the prefix of
of each string s in the original dataset. We observe
on the GEN50kS dataset that when the length of the string
goes below 5K where K is the distance threshold, the run-

length

pls|
100

@ Springer

ning time increases significantly. This is because substrings
generated by the partition procedure in MinJoin++ are too

short. Consequently, the join procedure returns a significantly

larger number of candidate pairs for verification, since short
substrings easily get matches (i.e., cause hash collisions).
We also observe on the TREC dataset that if the majority
of string lengths fall below 500, then the running time also
increases significantly. This is a result of the “law of large
numbers” effect, which asserts that regardless of the value of
K, we must create a sufficient number of partitions to ensure
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the correctness. If the absolute value of string length is too
small, then we will again generate many short substrings.

We have also compared MinJoin++ with the state-of-
the-art algorithm EmbedJoin on strings of different lengths
on GEN50ksS. Figure 13 presents the results. We observe that
the trends of the two algorithms are very different: the run-
ning time of EmbedJoin increases when the string lengths
increase, while that of MinJoin++ decreases when the
string lengths increase. When the string length is larger than
7K ,MinJoin++ outperforms EmbedJoin in most exper-
iments.

number of strings x10°

TREC (K = 40)

1.5 2
number of strings x10*4

GEN50kS (K = 100)

4.5 Parallel implementation of MinJoin++

Figures 14, 15 and 16 show the running time of the parallel
implementation of MinJoin++ on all datasets mentioned
above. One can see that MinJoin++ scales well in the multi-
thread environment, particularly on large genomics datasets
with large distance thresholds. All curves are convex, because
the sequential part of the algorithm (input reading) and the
partially parallelizable part (e.g., the merge of sorted lists at
Line 11 of Algorithm 3) consumes a larger proportion of the
overall running time as the number of threads increases.

@ Springer



296

N. Karpov et al.

100 T

Time (s)

% of length

% of length

TREC GEN50kS
Fig. 12 Running time of MinJoin++ on TREC and GEN50kS, varying lengths of strings
50 50 3 100 T
- Minjoin++ \ - Minjoin++ i —=- Minjoin++
40 --«- Embed]oin 401 \ --«- Embed]oin 80 \ --=- Embed]oin
e — T o i i
\ P - i e
©30 ©30 T 60 g
) o |- AT ) i ‘.\""’
oy = 201 \,‘ E a0 ke
10 _.--\—\.‘\’_"'x --------- T 10 \'\_\ 20 A\\'V __________
T e s | T M— - -
%0 30 40 50 60 %0 30 40 50 60 020 30 40 50 60
% of length % of length % of length
K =100 K =200 K =300
Fig. 13 Performance of MinJoin++ and EmbedJoin on GEN50kS, varying lengths of strings
107 —v- K =100
9. 208 %= K =200
§ —— K =300
E E 15 s K = 400
2 ol !
= & AN =
5
4
3

1 2 4 8 1 2 4 8
# of threads # of threads
UNIREF TREC
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# of threads
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Figure 17 gives the running time distribution of MinJoin++ 4.6 A comparison with MinHash

in the multi-thread setting on UNIREF, TREC, and GEN50kS.
It is clear that input reading takes the same amount of time
when the number of threads vary. The string partition and the
verification stages scales perfectly. The join stage is partially
parallelizable mainly due to the merging of sorted lists.

Finally, we would like to compare MinJoin++ with a
folklore MinHash-based algorithm. In the MinHash-based
algorithm is straightforward: we convert each string into a
set which consists of the hash values of all g-grams of the

string, and then pick the smallest value as the signature of the
string for the subsequent hash join. To boost the accuracy, we
can use £ such MinHash functions, and get £ signatures for
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Fig. 17 Running time distribution of input reading (R), string partition (P), join (J), and verification (V) of MinJoin++, varying the number of

threads

each string. Applying ¢ hash functions to get the signatures is
expensive. A standard optimization method is to use only one
hash function, and then select the top-£ smallest hash values
as the signatures. This is what we use in our experiments.

The reason that we discuss it separately is that this folklore
algorithm has two parameters, ¢ and ¢, for which we do not
have any guideline for the tuning. We thus try to present
its performance by testing different combinations of these
parameters.

Figure 18 shows the running time and accuracy of the
MinHash-based algorithm when varying the number of hash
functions ¢ and the length of signature ¢. The running time is

shown as a multiple of MinJoin++ at 100% accuracy. We
find that the running time and accuracy of the MinHash-
based algorithm depend on the two parameters g and ¢:
When increasing parameter £, both running time and accu-
racy increase; when increasing parameter ¢, the running time
first decreases and then increases a little bit, and the accuracy
decreases. We observe that the accuracy and running time are
sensitive to parameters, and there is no principle yet on how
to select them for edit similarity joins. This is in contrast to
MinJoin++ where the only parameter is 7 (the targeted
number of partitions). And we have already discussed how
to choose T theoretically and practically. Most importantly,
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even we choose the best combination of ¢ and ¢, the run-
ning time of the MinHash-based algorithm is still more than
10 times of that of MinJoin++ at 100% accuracy. We thus
conclude that MinJoin++ outperforms the MinHash-based
algorithm in all aspects.

5 Conclusion

In this paper, we have presented MinJoin++, an algorithm
for edit similarity joins based on string partition using local
hash minima. MinJoin++ has rigorous mathematical prop-
erties, and significantly outperforms previous methods on
long strings with large edit thresholds. We feel that local
hash minima-based string partition is a natural and elegant
way for solving the edit similarity join problem: it can be
applied to each string independently by a linear scan, with-
out any synchronization between strings or global statistics
of the datasets. Moreover, despite being a randomized algo-
rithm, MinJoin++ can achieve perfect accuracy on all of
the datasets that we have tested when there is an exact deter-
ministic algorithm that can finish within 24h. We believe
MinJoin++ is the right choice for edit similarity joins in
many applications.
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