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Evaluating the Task Generalization of Temporal
Convolutional Networks for Surgical Gesture and
Motion Recognition using Kinematic Data

Kay Hutchinson!, Ian Reyes?, Zongyu Li', and Homa Alemzadeh!

Abstract—Fine-grained activity recognition enables explain-
able analysis of procedures for skill assessment, autonomy, and
error detection in robot-assisted surgery. However, existing recog-
nition models suffer from the limited availability of annotated
datasets with both kinematic and video data and an inability to
generalize to unseen subjects and tasks. Kinematic data from
the surgical robot is particularly critical for safety monitoring
and autonomy, as it is unaffected by common camera issues
such as occlusions and lens contamination. We leverage an
aggregated dataset of six dry-lab surgical tasks from a total of
28 subjects to train activity recognition models at the gesture
and motion primitive (MP) levels and for separate robotic arms
using only kinematic data. The models are evaluated using the
LOUO (Leave-One-User-Out) and our proposed LOTO (Leave-
One-Task-Out) cross validation methods to assess their ability
to generalize to unseen users and tasks respectively. Gesture
recognition models achieve higher accuracies and edit scores than
MP recognition models. But, using MPs enables the training of
models that can generalize better to unseen tasks. Also, higher
MP recognition accuracy can be achieved by training separate
models for the left and right robot arms. For task-generalization,
MP recognition models perform best if trained on similar tasks
and/or tasks from the same dataset.

Index Terms—Medical Robots and Systems, Recognition, Kine-
matics

I. INTRODUCTION

N robot-assisted surgery (RAS), modeling and analysis at

the gesture and action levels of the surgical hierarchy []1],
[2] is performed to gain a better understanding of surgical
activity and improve skill assessment [3]], [4]], error detection
[S]-[8], and autonomy [9]. Towards these applications, auto-
mated segmentation and classification of surgical workflow
has been an active area of research [10]. [11] and [12]
provide comprehensive summaries of the recent works at
the gesture and action levels. However, previous works and
comparisons among them have been restricted by differing
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gesture definitions [11] and limited diversity in the numbers
of subjects, trials, and tasks across the existing datasets.

Recent works in gesture recognition have each defined
their own sets of gestures for their own datasets [13]-[17]]
with limited overlap between gestures. On the other hand,
works on recognition of fine-grained surgical actions focus
on action triplets (verb, instrument, tissue/object) [18]-[20],
representing surgical instrument and tissue interactions in
endoscopic videos. While gesture recognition has been done
with kinematic and/or video data [11]], recent work on action
triplet recognition has mainly focused on video data of sur-
gical procedures [19], [20]. To leverage finer-grained action
recognition in safety monitoring and autonomy applications,
in this paper we examine verb-only predictions based on
kinematic data. Kinematic data is particularly important for
safety analysis [[7], [8]], error detection [6], [11]], and improved
recognition accuracy using multi-modal data [21]], [22], since
it is unaffected by common camera issues such as occlusions,
lens contamination, and smoke [S[, [23[], [24]]. Plus, using
fewer data types can reduce computational cost and enable
real-time applications [25].

To address the challenge of limited datasets, Hutchinson et
al. presented a new dataset, called COMPASS [12], which ag-
gregates six dry-lab surgical training tasks from the JIGSAWS
[26], DESK [16]], and ROSMA [27] datasets by providing
standardized context and motion primitive (MP) labels for all
the tasks. MPs are a standardized set of actions (e.g., push)
whose execution results in changes of surgical context, which
is comprised of important state variables describing physical
status and interactions of tools and tissues/objects (e.g., needle
in tissue). Some of the tasks in the dataset share similar objects
and goals enabling their aggregation and comparison. The
standardized labels in COMPASS can support aggregated anal-
ysis of datasets and combining data from contextually similar
tasks for improved activity recognition and error detection [7],
(8], [11]).

In this paper, we use the COMPASS dataset to study the
effect of label granularity on activity recognition performance
and generalization across users, tasks, and datasets for RAS
with a case study of Temporal Convolutional Networks (TCN)
[28]. Specifically, we make the following contributions:

« We compare the performance of existing activity recogni-
tion models in a case study of TCN using only kinematic
data at different levels of the surgical hierarchy, specif-
ically, the gesture and motion primitive levels, and for
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separate left and right sides of the robot vs. both sides
combined.

o We introduce the Leave-One-Task-Out (LOTO) cross val-
idation method to measure the ability of surgical activity
recognition models to generalize to an unseen task, since
current datasets do not include all of the surgical tasks
that a model may see when it is deployed.

e We perform the first evaluation of a surgical activity
recognition model trained on multiple tasks with data
combined from different datasets by comparing model
performance using the existing LOUO method as well as
our proposed LOTO cross validation method.

The insights from our analysis can guide the development of
future surgical activity recognition and error detection models.
The aggregated dataset and code to train and evaluate the
recognition models are publicly available at https://github.com/
UVA-DSA/COMPASS,

II. BACKGROUND
A. Levels of Granularity in Surgical Procedures

Surgical process modeling [1], decomposes surgical
procedures into smaller units such as steps, tasks, gestures,
and actions as shown in Figure [II We refer to units at
any level of the surgical hierarchy as “activities”. Gestures
are defined as “intentional surgical activit[ies] resulting in a
perceivable and meaningful outcome” (e.g., pushing needle
through tissue) and usually include the semantics of
both the activity and the underlying physical context in their
definition. We also consider surgical actions (i.e., the verbs of
action triplets [20], [29]) which are atomic units of activity
or lower level motions (e.g., grasp, push) based on kinematic
data, but without the semantics of physical context or the types
and status of interacting tools and objects/tissues (e.g., needle
through tissue) based on video data [I].

Existing activity recognition models have been mostly task-
specific and restricted to specific datasets and gesture defini-
tions. For example, the majority of previous works have used
the JIGSAWS dataset and gesture definitions [26]]. To address
this, defined a finer-grained set of motion primitives
(MPs) as generalizable surgical actions to enable compara-
tive analysis between tasks and datasets. MPs are similar in
granularity and definition to the action triplets defined by [20].

Granularity Example

Surgical )

Procedure | Partial Nefhrectomy |
Steps | Renorrhaphy |
Tasks | Suture |

Gestures | G6: Pulling suture with left hand |

Motion | |

Primitives v Grasp(Left, Needle)

Fig. 1: Surgical Hierarchy. Adapted from
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0 = Not touching
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Fig. 2: Context states and object encodings for a “Release”
motion primitive from the Needle Passing task [12].

(c) Knot Tying
(KT)

(d) Pea on a Peg
(PoaP)

(e) Post and Sleeve (f) Peg Transfer

(PaS) (PT)
Fig. 3: COMPASS tasks: S, NP, and KT from JIGSAWS [26];
PoaP and PaS from ROSMA ; PT from DESK .

Each MP consists of a verb (e.g., Grasp), the tool that is used
(e.g., left grasper), and the object with which the tool interacts
(e.g., needle). The left and right graspers are abbreviated as
‘L’ and ‘R’, and the object encodings are shown in Figure 2]
for an example MP and physical context. Table [V] shows the
set of MPs and the number of samples in each MP class and
task.

B. COMPASS Dataset

We use the COMPASS dataset since it has different
dry-lab tasks from multiple datasets and kinematic data from
da Vinci surgical robots with which to train our surgical
activity recognition models. We compare the performance
of these models at the gesture and MP granularities. The
COMPASS dataset contains kinematic and video data at 30 Hz
for a total of six tasks from three different datasets as described
in Table |I The tasks are: Suturing (S), Needle Passing (NP),
Knot Tying (KT), Peg Transfer (PT), Post and Sleeve (PaS),
and Pea on a Peg (PoaP) as shown in Figure [3] Context and
MP labels are present for all trials, but gesture labels are only
available for trials in the JIGSAWS and DESK datasets. To
generate separate left and right label sets, MPs performed by
each arm of the robot are split into new transcripts. Also,
an ’Idle’ MP is defined and used to fill the gaps created by
the separation so that every kinematic sample has a label. An
example segment of a Needle Passing trial with each label
type is shown in Figure 4] This also shows the discrepancy in
the G3 boundary noted by where the Push(Needle, Ring)
MP is in G2 rather than G3.
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TABLE I: Number of subjects and trials and types of anno-
tations for each task in the COMPASS dataset: Suturing (S),
Needle Passing (NP), Knot Tying (KT), Peg Transfer (PT),
Post and Sleeve (PaS), and Pea on a Peg (PoaP).

Dataset JIGSAWS [26] DESK [30] ROSMA [27]
Tasks S NP KT PT PaS PoaP
Trials 39 28 36 47 65 71
Subjects 8 8 12
Gesture Labels v v
MP Labels v v v

MPs

Left MPs I Idle (L) I

Gestures  ** | G2 | G3 | G6 | G4 | eee
Time | : : : : >
(frames) 1379 1410 1510 1610 1710

Fig. 4: Example of alignment between MPs and gestures
in a Needle Passing trial that also shows the G3 boundary
discrepancy noted by [7] where the "Push’ MP is not part of
G3. From [26], G2: positioning needle, G3: pushing needle
through tissue, G4: transferring needle from left to right, G6:
pulling suture with left hand. Figure best viewed in color.

III. RELATED WORK

Surgical workflow segmentation has been examined in dif-
ferent datasets with different tasks and at different levels of
granularity as summarized in Table

Datasets and Tasks: Recent works in surgical activity
recognition perform comparative evaluation of their models
across different datasets. For example, [10] developed the
TAPIR model and found that it performed better on the
MISAW dataset [31] than their PSI-AVA dataset for phase
and step recognition, but did not examine the reason for this.
[6]] evaluated an LSTM using LOSO cross validation on the
JIGSAWS dataset and their own dataset of Block Transfer on
the RAVEN II. The LSTM achieved a higher accuracy for the
Block Transfer task since it was a simpler task with a larger
amount of data compared to the JIGSAWS tasks. [8] found
that combining data from the Suturing and Needle Passing
tasks in JIGSAWS could improve error detection performance
because the gestures were kinematically similar. [38] found
that gesture recognition models trained on the JIGSAWS
dataset did not generalize well to other dry-lab or clinical data.
Whereas previous works did not combine data from multiple
datasets or tasks since the label definitions differed, in this
paper we examine such aggregation in training surgical activity
recognition models.

Label Granularities: Surgical workflow recognition has
been examined at different levels of granularity as listed in

the fifth column of Table [IIl Note that there are inconsisten-
cies in label and granularity definitions across datasets. For
example, the fasks of Suturing, Knot Tying, and Peg Transfer
in JIGSAWS and DESK are considered phases in MISAW
[31] and PETRAW [36]. [13] trained a GRU for gesture
and maneuver recognition on the JIGSAWS and MISTIC-
SL datasets, respectively. Although the different datasets had
different labels, the lower-level gesture recognition model had
a higher error rate. The MISAW challenge [31]] and HeiChole
benchmark [33] datasets were labeled at multiple levels as well
as the PSI-AVA dataset [[10]. The best performing models from
these works all showed decreasing performance metrics for
finer-grained labels which highlights a significant challenge
for fine-grained recognition. Interestingly, [31] found that
multi-granularity recognition models performed better because
such models may be learning that certain activities only
occur during specific phases and steps. Also, recent works
on action triplet recognition in laparoscopic procedures focus
on concurrent phase, step, and action recognition [36]. The
poor performance of activity recognition models is a barrier
to clinical applications, but understanding the relationship
between granularity levels can address this challenge and
guide model development. This work closes a gap between the
gesture and action levels of the hierarchy by evaluating and
comparing the performance of an activity recognition model
at those granularities.

IV. METHODS

This section presents our methods for the construction and
evaluation of gesture and MP recognition models.

A. Data Pre-processing

The input to the activity recognition model is the time-series
kinematic data, x, and the output is a transcript of class labels,
y¢, one for each time-series sample, where each class label is
selected from the finite set of gestures or MPs. We experi-
mented with different combinations of kinematic variables as
inputs to the activity recognition models (while hyperparame-
ter and cross validation settings were kept constant) and found
that using only the position, linear velocity, and gripper angle
kinematic variables resulted in the best performance. This is
consistent with the best performing gesture recognition models
that relied on kinematic data as reported in [11]. The stride
was 1, so there was no downsampling, and the kinematic data
and gesture and MP labels were all at 30 Hz.

B. Surgical Activity Recognition Model

One of the fastest and best performing models that used only
kinematic data for gesture recognition in [[11] was the Tempo-
ral Convolutional Network (TCN). The TCN is also used as
a component in more complex state-of-the-art models such as
MA-TCN [22] and MRG-Net [32]. Thus, as a case study, we
adopt the TCN model from [28] for activity recognition at both
gesture and MP levels. This model has an encoder-decoder
structure, each consisting of three convolutional layers with
pooling, channel normalization, and upsampling. As in [28]],
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TABLE II: Surgical workflow segmentation models that considered multiple datasets and label granularities.
Paper Dataset Data Type Tasks Label Levels Best Teams/Models and Performance
Phases MedAIR [32] AD-Accuracy: 96.5%
MISAW Challenge Kinematics . - .
2021 [31] MISAW and/or Video Anastomosis Steps MedAIR [32] AD-Accuracy: 84.0%
Activities NUSControl Lab AD-Accuracy: ~64%
and UniandesBCV
Multigranularity  NUSControl Lab AD-Accuracy: ~72%
HeiChole benchmark  EndoVis . Laparoscopic Phase HIKVision and CUHK F1 Score: ~65%
2021 [33] 2019 Video cholecystectom
4 Y Actions Wintegral F1 Score: 23.3%
. Phase mAP: 56.6%
Valderrama 2022 [10] ~ PSI-AVA Video Radical TAPIR
prostatectomy Step mAP: 45.6%
Action mAP: 23.6%
DiPietro 2019 [13] JIGSAWS Kinematics Suturing Gestures GRU Error rate: 15.2% Edit distance: 8.4
MISTIC-SL Knot Tying Maneuvers Error rate: 8.6% Edit distance: 9.3
%\;[;]ltl—modal attention JIGSAWS Kin+Vid Suturing Gestures ?/[I(::lfs(jlll\; Accuracy: 86.8% Edit: 91.4
own (dV) Accuracy: 80.9% Edit: 79.6
Gesture Recognition Kinematics MS-RNN [34] Acc: 90.2% Edit Score*: 89.5
Survey [11] JIGSAWS Video Suturing Gestures Symm dilation+attention [35] Acc: 90.1% Edit Score: 89.9%
Kin+Vid Fusion-KV [21] Acc: 86.3% Edit Score: 87.2
Video SK AD-Accuracy: 90.8%
PETRAW Challenge PETRAW Kinematics Peg Transfer Phases, 'St'e'ps, MedAIR AD-Accuracy: 90.7%
2021 [36] - . and Activities
Segmentation SK AD-Accuracy: 88.5%
Vid+Kin NCC NEXT AD-Accuracy: 93.1%
Vid+Kin+Seg NCC NEXT AD-Accuracy: 93.1%
Sim2Real Gesture Simulator Acc: 86%
Classification [16], DESK Kinematics Peg Transfer Gestures RF Robot Acc: 95%
30
301 Sim2Real (0% Real) Acc: 34%
Sim2Real (18% Real) Acc: 85%
CholecTriplet2021 CholecT50 Video Laparoscopic Action Triplets Trequartista APy: 529
Challenge [37] cholecystectomy APryp: 38.1

* Normalized by maximum number of segments in any ground-truth sequence.

the kernel size is set to the average duration of the shortest
activity class (e.g., gesture or MP), and the three layers have
32, 64, and 96 filters respectively. We used the cross-entropy
loss function and Adam optimizer [39].

The learning rate and weight decay hyperparameters for all
TCN models were selected based on a grid search of values
by training on the JIGSAWS dataset with gesture labels for
each cross validation setup. For LOUO models, the learning
rate was 0.00005 and the weight decay was 0.0005. For
LOTO models, the learning rate was 0.0001 and the weight
decay was 0.001. These values were fixed for all models of
their respective cross validation setup to analyze the effect of
different training and label sets on model performance.

We compare the performance of the TCN when trained with
four different sets of labels: gestures, MPs for only the left side
(Left MPs), MPs for only the right side (Right MPs), and MPs
for both sides together (MPs).

C. Model Generalization

We evaluate the generalization of the recognition models
to unseen users/subjects and surgical tasks using two cross
validation setups: Leave-One-User-Out (LOUO) from [40] and
our novel Leave-One-Task-Out (LOTO).

1) Leave-One-User-Out (LOUQO): LOUO is the standard
cross validation setup for comparing gesture recognition
models and is preferred over the Leave-One-Supertrial-Out
(LOSO) method as it measures a model’s ability to generalize
to an unseen user as expected of a deployed model [11]. Since
tasks from different aggregated datasets in COMPASS do not
share the same subjects, we extended the LOUO setup from
JIGSAWS [40] to include the new subjects, resulting in a
maximum of 28 folds (corresponding to 28 users) when the
model was trained on data from all tasks.

2) Leave-One-Task-Out (LOTO): Existing datasets repre-
sent a limited number of trials, subjects, and tasks. This
means that machine learning models trained on them will see
subjects, trials, and tasks that could be very different when
they are deployed. In order to assess a model’s ability to
generalize to an unseen task, we introduce the Leave-One-
Task-Out (LOTO) cross validation method.

In the LOTO setup, all of the data for one task was held out
as the test set while the model was trained on all of the data
for a set of other tasks. Thus the model would be tested on all
the trials of all subjects from an unseen task. For an example
fold, a model could be trained on NP, KT, PT, PaS, and PoaP
and tested on S. This differs from the LOSO setup where a
model would be tested on unseen frials from a known subject
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of a known task. Similar to the existing LOSO and LOUO
setups, average accuracy and edit score across the folds can
be reported and used to compare models. However, examining
each fold’s performance and considering the relationship and
similarity between the tasks in the training and test sets yields
insights about the generalizability of the model to unseen tasks
and the data needed to train a model.

D. Task Combination for Training

The unified set of finer-grained MP labels enable combining
data from different tasks across datasets which can improve the
diversity and size of training data and model generalization.
On the other hand, the gesture labels are specific to each
dataset and only tasks with similar labels within that dataset
can be combined. To evaluate the effect of label granularity on
task generalization, we use data from different combinations
of tasks in the aggregated datasets for model training in
both LOUO and LOTO setups. Using MPs, there were two
combinations with similar context: S + NP = "SNP’ where
both tasks have a task-specific needle state, and PT + PaS
= 'PTPaS’ where both tasks have a task-specific block state.
Tasks could also be grouped together if they come from the
same dataset: S + NP + KT = "JIGSAWS’ and PaS + PoaP
= 'ROSMA’. Combining all of the data to train a model
was referred to as ’All’. With gestures, only the SNP and
JIGSAWS combinations could be used. For LOTO, we also
considered specific combinations of data that tested on one
task but removed the contextually similar tasks (defined above)
from the training set to assess the importance of augmenting
the training set with data from similar tasks.

E. Evaluation Metrics

We use the standard metrics accuracy, edit score [28]], and
mean average precision (mAP) [41]] for the evaluation of
gesture and MP recognition models. Micro mAP is reported
for each verb to account for class imbalance.

V. EXPERIMENTAL RESULTS

Experiments were performed on a computer with an Intel
Core 19 CPU @ 3.60GHz and 64GB RAM, running Linux
Ubuntu 18.04 LTS, and an NVIDIA GeForce RTX 2070 GPU
running CUDA 10.2, and the models were built and trained
using Torch 1.10.1 [42].

A. Gesture vs. Motion Primitive Recognition

In this section we present the performance of TCN models
in recognizing gestures and MPs in comparison to state-of-
the-art models and with different combinations of data.

Tables and compare the accuracies and edit scores
averaged over the folds of the LOUO setup for the TCN
models trained to recognize gestures and MPs, respectively.
Accuracies for two state-of-the-art models are also presented
in Table [l1I| against which our TCN model performs compara-
bly or better. The TCN performed best on S alone achieving
an accuracy of 84.6% and an edit score of 87.7 which is also
slightly better than the 79.6% accuracy and 85.8 edit score

TABLE III: Gesture recognition performance under the LOUO
cross validation setup compared to state-of-the-art models
using only kinematic data. Results for the state-of-the-art
models were only available for the JIGSAWS tasks.

Tasks Gestures Baselines
Acc (%) Edit Score  mAP  Acc (%) Model
PT 73.5 83.8 80.7
S 84.6 87.7 86.0 90.2 MS-RNN [34]
NP 78.4 85.2 86.4 753 SC-CRF [43]
KT 84.4 85.4 89.8 78.9 SC-CRF [43]
SNP 81.4 85.2 85.1
JIGSAWS 80.9 82.0 85.7

reported by [28[] and comparable to the results of [22]] for the
TCN using only kinematic data (not shown in Table [III).

Despite KT only sharing two similar gestures and having a
different task-specific context than the other two JIGSAWS
tasks, the TCN’s performance on KT is comparable to its
performance on S (accuracy of 84.4%, edit score of 85.4).
When data from multiple tasks is combined for the *SNP’
and "JIGSAWS’ models, the TCN models’ accuracies are only
about the average of their performances on individual tasks
while the edit score for the JIGSAWS model drops to 82.0
which is lower than any single task in that dataset. Thus, there
does not appear to be much benefit to combining data from
the JIGSAWS tasks at the gesture level. The PoaP and PaS
tasks from the ROSMA dataset did not have gesture labels,
s0 no gesture recognition models were trained for them. The
PT task of the DESK dataset did have gesture labels although
their definitions were much closer in scope to MPs rather than
the more complex gestures of the JIGSAWS dataset. The TCN
only achieves an accuracy of 73.5% for gesture recognition on
the PT task which is comparably lower than the performance
of any of the MP recognition models for this task in the
LOUO setup shown in Table For the JIGSAWS tasks,
the gesture recognition models performed much better than
MP recognition models (only considering verbs). This suggests
that the definitions and granularity of the labels in the surgical
hierarchy affect activity recognition performance.

By examining Table we note that MP recognition
performance is better for the task in the DESK dataset, and to
a somewhat lesser extent for tasks in the ROSMA dataset, than

TABLE IV: MP recognition performance with different task
combinations under the LOUO cross validation setup.

Task MPs Left MPs Right MPs
asks Acc  Edit Acc Edit Acc Edit
S 526 585 660 652 603 618
NP 523 531 647 60.0 559 548
KT 629 580 712 672 646 599
SNP 552 562 665 622 595 611
JIGSAWS 558 553 664 635 617 60.1
PoaP 674 746 796 726 793 747
PasS 702 765 800 77.6 785 759
ROSMA 675 749 788 731 782 73.6
PT 753 799 81.1 818 820 824
PTPaS 703 764 785 778 788 774
All 659 69.6 750 703 731 707
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TABLE V: Number of examples (#) and mean average precision (mAP) of MPs for models trained on different combinations
of tasks in the LOUO setup with micro mAP for all verbs (weighted by number of samples in each class).

Tasks Grasp Release Touch Untouch Pull Push All verbs
# mAP # mAP # mAP # mAP # mAP # mAP # mAP
S 471  57.6 441 487 518  58.1 314 276 194 722 179 551 2117 525
NP 373 63.0 365 570 330  57.0 206  16.2 114 69.1 119 342 1507  52.0
KT 283 645 247 69.1 135 438 111 18.6 235 853 0 N/A 1011 62.7
SNP 844  61.3 806  54.8 848  58.0 520 212 308 700 298 473 3624 529
JIGSAWS 1127 622 1053 587 983  53.0 631  20.7 543 72,6 298 415 4635  53.7
PoaP 577 528 556 553 1782 88.0 1261 472 525 583 2 335 4703 655
PaS 824 502 776 503 1598 889 1131 457 0 NA 0 NA 4329 633
ROSMA 1401  50.7 1332 53.1 3380 89.2 2392 453 525  59.2 2 5.1 9032 645
PT 323 483 313 61.1 539 903 364 683 0 N/A 0 N/A 1539 703
PTPaS 1147 487 1089 54.6 2137 89.8 1495 53.0 0 N/A 0 NA 5868  65.9
All 2851 545 2698 554 4902 795 3387 435 1068 657 300 37.7 15206  60.7

for tasks in the JIGSAWS dataset. This could be because the
JIGSAWS tasks (S, NP, KT) are more challenging with more
complex grammar graphs [40], while the tasks in the ROSMA
and DESK datasets are variations of a pick and place task
with simpler grammar graphs. This is supported by the higher
edit scores for the models trained on the ROSMA and DESK
datasets than the models on the JIGSAWS dataset. Combining
data at the MP level also resulted in performance metrics
that are about the average of the individual tasks that were
combined. But, training separate models for each side of the
robot resulted in higher accuracies with comparable or better
edit scores. So, having separate annotations and models for the
left and right arms of the robot can improve MP recognition
performance.

Furthermore, Table [V shows the mAPs for each MP and
micro average over all verbs for the MP recognition models
in the LOUO set up. We note that class imbalance may
have caused differences between the macro and micro mAPs
for tasks from the DESK and ROSMA datasets where MPs
with a greater number of instances sometimes had higher
mAPs. None of these MP models perform as well as the
gesture recognition models for the JIGSAWS tasks as listed
in Table which achieve mAPs of up to 89.8. So additional
work is needed to improve fine-grained activity recognition
performance. Although the recognition models of [20] have
been evaluated for verb recognition performance, a direct
comparison to action triplet models is not fair as the data
(kinematic vs. video) and tasks (robotic dry-lab vs. real
laparoscopic surgery) are different.

B. Model Generalization

Table |VI| reports the accuracies and edit scores for models
trained with different combinations of data in the LOTO
setup and immediately shows limitations of existing gesture
definitions. Note that only the JIGSAWS dataset had gesture
labels that could be used in the LOTO setup, so gesture
recognition models using tasks from different datasets could
not be trained because gesture labels were not present or were
not compatible. We observe that splitting the MP labels into
separate transcripts and training separate models for the left

and right arms of the robot generally results in improved
accuracies compared to having a single model.

We find that a gesture recognition model trained on S or NP
is able to transfer to NP or S, respectively, but when KT is
added to the training set, performance is severely decreased.
Specifically, a model tested on S drops from an accuracy of
48.5% to 24.4%, and a model tested on NP drops from 37.9%
to 28.8% when KT is added to the training set. This is due
to the lack of generalizable gesture labels between these tasks
since S and NP have an almost completely different set of
gestures than KT. Thus, gesture recognition for the KT task
using a model trained on S and NP is particularly poor with an
accuracy of only 6.8%. Hence, at the gesture level, combining
data from different tasks is not beneficial for a model that must
predict on an unseen task.

Comparatively, when MPs are used, the model is able to
predict on a new task like KT by leveraging information
learned from other tasks that are dissimilar to it such as S and
NP. Adding data from a dissimilar task has a much smaller
detrimental effect at the MP level than at the gesture level.
For example, the model’s accuracy drops less than 1% for S
and 5% for NP when KT is added to the training set.

When the model must predict MPs on a dissimilar task
with a different task-specific context state, then combining data
from all tasks results in better performance compared to using
only data in the same dataset. KT improves from an accuracy
of 29.7% to 33.3% and PoaP improves from 54.8% to 56.5%
by including data from other datasets.

For S and NP, we observe that models trained with data
from the same dataset and with the same task-specific state
variable perform better than models including data from the
same dataset but without the same task-specific state variable.
However, the opposite is true for PaS where models whose
training sets included PoaP (same dataset) but not PT (same
task-specific state variable) sometimes performed better.

For KT and PoaP, even though data with the same context
was not available, models whose training sets included tasks
from the same dataset generally performed better than models
whose training sets did not. The poorest performing models for
PaS were trained with data that only included PT, even though
they had the same task-specific state variables. For PT, some



HUTCHINSON et al.: EVALUATING THE TASK GENERALIZATION OF TEMPORAL CONVOLUTIONAL NETWORKS 7

TABLE VI: MP and gesture recognition performance with different task combinations under LOTO cross validation setup.

Test Set Training Set Gestures MPs Left MPs Right MPs
(Task combinations) Acc Edit Acc Edit Acc Edit Acc Edit
S NP KT PT PaS  PoaP 39.0 49.0 62.3 59.4 429 58.5
S KT PT PaS  PoaP 25.3 40.2 41.3 50.2 34.8 42.5
S NP KT 244 339 43.2 48.3 56.2 52.7 46.3 48.2
S NP 48.5 70.5 44.0 47.7 62.7 58.7 50.1 54.7
NP S KT PT PaS  PoaP 40.8 48.5 54.1 55.9 41.6 46.4
NP KT PT PaS  PoaP 35.6 44.5 46.2 51.9 344 39.9
NP S KT 28.8 38.2 37.2 46.9 499 52.8 44.7 48.3
NP S 379 52.7 42.2 48.6 52.2 51.9 46.0 52.8
KT S NP PT PaS  PoaP 333 40.2 47.2 51.9 35.2 39.8
KT PT PaS  PoaP 22.6 37.5 37.7 36.5 25.1 36.8
KT S NP 6.8 9.3 29.7 40.5 48.1 50.4 34.5 42.8
PT S NP KT PaS  PoaP 53.1 48.0 559 42.0 439 38.6
PT S NP KT PoaP 44.5 44.4 49.0 37.6 55.3 44.8
PT PaS 48.0 37.6 51.1 40.3 52.6 43.5
PaS S NP KT PT PoaP 58.1 65.5 58.8 60.5 61.1 58.0
PaS S NP KT PoaP 60.7 65.0 58.5 58.5 61.4 57.7
PaS PT PoaP 58.0 64.1 65.8 58.3 63.9 57.2
PaS PT 61.0 37.5 42.5 54.6 55.0 429
PaS PoaP 58.4 62.9 59.5 57.2 59.8 56.1
PoaP S NP KT PT PaS 56.5 64.2 59.1 50.7 58.5 49.8
PoaP S NP KT PT 534 47.8 50.4 459 36.0 439
PoaP PaS 54.8 63.1 57.8 44.9 58.0 45.2

models that included PaS (same task-specific state variable)
performed better than those that did not. Since tasks from the
same dataset were performed by the same subjects, models
whose training sets included tasks from the same dataset
are tested on different tasks performed by known subjects.
This is somewhat similar to the Leave-One-Supertrial Out
(LOSO) cross validation method where models are tested on
unseen trials performed by known subjects. Models evaluated
using the LOSO method perform better than those using the
LOUO method which suggests that including data from the
same subjects may improve model performance. However,
additional data and tests would be needed to determine if it
is this or another feature of the dataset that is responsible for
the performance improvement. Additional evaluations are also
needed to verify that MPs enable task generalization for other
types of models such as transformers [25].

VI. DISCUSSION AND CONCLUSION

In summary, we compare the performance of activity recog-
nition in a case study of TCN models at different levels of
the surgical hierarchy, evaluate their generalizability to unseen
users and tasks, and draw insights from the combinations of
tasks used to train these models.

We find that gesture-level recognition models perform better
than motion primitive-level recognition models under the
LOUO cross validation method which is consistent with the
observations of [31]]. Our models achieve comparable or better
accuracies than state-of-the-art in recognizing gestures (from
JIGSAWS).

Using motion primitives, we combine data from different
datasets, tasks, and subjects and find that having separate mod-
els for the left and right sides improves performance. We also
introduce the Leave-One-Task-Out (LOTO) cross validation

setup, and perform the first evaluation of a surgical activity
recognition model in terms of its ability to generalize to an
unseen task. When tested on a task from a specific dataset, the
model performed better if data from other tasks in that dataset
were included in training. Also, models for tasks with different
task-specific state variables perform best when data for all
other tasks is aggregated for their training. Similarly, [44]]
evaluated the performance of surgeme classification models in
sim2real domain transfer using different data percentages in
the target domain and found that this improved the accuracies
of their models. Thus, improved performance may be achieved
by including a small percentage of data from the target test
task in the training dataset.

Future work will focus on evaluating the task generalization
of other state-of-the-art recognition models (e.g., recurrent
neural networks and transformers) using both kinematic and
vision data as well as other tasks and datasets.
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