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Abstract

A hypergraph H is hamiltonian-connected if for any distinct vertices z and y, H contains a
hamiltonian Berge path from x to y. We find for all 3 < r < n, exact lower bounds on minimum
degree d(n,r) of an n-vertex r-uniform hypergraph H guaranteeing that H is hamiltonian-
connected. It turns out that for 3 < n/2 < r < n, §(n,r) is 1 less than the degree bound
guaranteeing the existence of a hamiltonian Berge cycle. Moreover, unlike for graphs, for each
r > 3 there exists an r-uniform hypergraph that is hamiltonian-connected but does not contain
a hamiltonian Berge cycle.
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1 Introduction and results

A hypergraph H is a family of subsets of a ground set. We refer to these subsets as the edges of
H and the elements of the ground set as the vertices of H. We use F(H) and V(H) to denote the
set of edges and the set of vertices of H respectively. We say that H is r-uniform (an r-graph,
for short) if every edge of H contains exactly r vertices. A graph is a 2-graph. The degree dg(v)
of a vertex v in a hypergraph H is the number of edges containing v. When it is clear from the
context, we may simply write d(v) to mean dg(v). The minimum degree, 6(H), is the minimum
over degrees of all vertices of H.

A hamiltonian cycle (path) in a graph is a cycle (path) that visits every vertex. A graph is
hamiltonian if it contains a hamiltonian cycle. Furthermore, a graph is hamiltonian-connected if
there exists a hamiltonian path between every pair of vertices.

It is well known that determining whether a graph is hamiltonian is an NP-complete problem. Suffi-
cient conditions for existence of hamiltonian cycles in graphs have been well-studied. In particular,
the famous Dirac’s Theorem [5] says that for any n > 3 each n-vertex graph G with §(G) > n/2
contains a hamiltonian cycle.

Every hamiltonian-connected graph is also hamiltonian, but the converse is not true. For example

for even n > 4, the complete bipartite graph K, /3 ,, /2 is hamiltonian but not hamiltonian-connected.
The example of K, /5, /2 also shows that for even n, condition §(G) > n/2 does not provide that G
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is hamiltonian-connected. On the other hand, Ore [10] proved that a slightly stronger restriction
on minimum degree of a graph implies hamiltonian-connectedness:

Theorem 1.1 (Ore [10]). Let n > 3 and G be an n-vertex graph. If d(u) + d(v) > n+1 for every
u,v € V(Q) with wv ¢ E(G), then G is hamiltonian-connected. In particular, if 6(G) > (n+1)/2,
then G is hamiltonian-connected.

Note that for odd n, the restriction on minimum degree is the same as in Dirac’s Theorem.

Dirac’s Theorem and Theorem 1.1 have been generalized and refined in several directions by
Posa [11], Lick [7] and many others. Among generalizations, there were different extensions of
the theorems to cycles and paths in hypergraphs, in particular, in r-graphs.

Definition 1.2. A Berge cycle of length s in a hypergraph is a list of s distinct vertices and
s distinct edges vi,e1,va,...,€5-1, Vs, 5,01 such that {v;,vit1} C e; for all1 < i < s (we always
take indices of cycles of length s modulo s). We call vertices v1,...,vs the defining vertices of
C and write V(C) = {v1,...,vs}, BE(C) = {e1,...,es}. Similarly, a Berge path of length { is a
list of £ + 1 distinct vertices and ¢ distinct edges v1,e1,v2,...,epver1 such that {v;,viy1} C e; for
all 1 < i < ¢, with defining vertices V(P) = {v1,...,v41} and E(P) ={e1,...,ep}.

For simplicity, we will say a hypergraph is hamiltonian if it contains a hamiltonian Berge cycle,
and is hamiltonian-connected if it contains a hamiltonian Berge path between any pair of vertices.

Approximate bounds on the minimum degree of an n-vertex r-graph H that provide that H is
hamiltonian were obtained for r < "774 by Bermond, Germa, Heydemann, and Sotteau [1]; Clemens,
Ehrenmiiller, and Person [3]; and Ma, Hou, and Gao [8]. Coulson and Perarnau [4] gave exact
bounds in the case r = o(y/n) (and large n). The present authors resolved the problem for all
3<r<n

Theorem 1.3 ([6]). Let n > r > 3. Suppose H is an n-vertex, r-graph such that (1) r < (n—1)/2
and 6(H) > (L(n;_li/ﬂ) +1, or (2)r>n/2 and 6(H) > r. Then H contains a hamiltonian Berge
cycle.

The inequalities in this result are best possible for all 3 < r < n. Very recently, Salia [12] proved
sharp results of Pésa type for Berge hamiltonian cycles. He described the sequences (di,...,d,)
with d; < dy < ... <d, of two types: (a) for r < n/2 every n-vertex r-graph with degree sequence
(dy,...,d)) such that d; > d; for all i has a hamiltonian Berge cycle and also (b) every n-vertex
hypergraph with degree sequence (d},...,d;,) such that d; > d; for all i has a hamiltonian Berge
cycle. The first of these nice results implies Part (a) of Theorem 1.3 for odd n.

Since we consider mostly Berge cycles and paths, from now on, we will drop the word “Berge” and
simply use cycle and path to refer to a Berge cycle and a Berge path, respectively.

Note that while every hamiltonian-connected graph is hamiltonian, this is not true for r-graphs
when 3 < r < n. In the next section, for every 3 < r < n we present a hamiltonian-connected
r-graph that has no hamiltonian cycles.

The main result of this paper is the following.

Theorem 1.4. Let n > r > 3. Suppose H is an n-vertex r-graph such that
(1) r <n/2 and 6(H) > (L"/?J) +1, or(2)n—-1>r>n/2>3 and6(H)>r —1,

r—

or (8) r=3,n=05 and 6(H) > 3. Then H is hamiltonian-connected.



Note that the conditions in Theorem 1.4 for 3 < r < n/2 and even n are stronger than in Theo-
rem 1.3, for 3 < r < n/2 and odd n are the same, and for 3 <n/2 < r <n — 1 are weaker than in
Theorem 1.3. These bounds are sharp, and extremal examples will be given in the next section.

Similarly to [6], we elaborate the idea of Dirac [5] of choosing a longest cycle plus a longest path.
We also use a series of lemmas on subsets of edges and vertices in graph paths.

The structure of the paper is as follows. In the next section, we show extremal examples for The-
orems 1.3 and 1.4 and also examples of hamiltonian-connected r-graphs that have no hamiltonian
cycles. In Section 3 we prove lemmas on subsets of graph paths. In Section 4 we set up the main
proofs for all cases: we define “best” extremal substructures in possible counter-examples to our
theorem and prove some properties of such substructures. In the subsequent three sections, we
analyze all possible cases that can arise in counter-examples, and settle these cases. We finish the
paper with some concluding remarks.

2 Examples

2.1 Examples for Theorems 1.3 and 1.4

Forallnm >3 and 3 <r < (n—1)/2, let Hy = Hy(n,r) be the r-graph formed by a clique @ of size
(2417 and a clique R of size | 241 ] sharing exactly one vertex. Then §(H;) = (LﬁJ), and Hj is
non-hamiltonian because it has a vertex whose deletion disconnects the r-graph.

Another example for 3 < r < (n —1)/2, is the r-graph Hy = Ha(n,r) whose vertex set is AU B

where [A| = [%H],|B| = 251 ], AN B = § and whose edges are sets X C AU B with |X| =r and
|X NA| <1. Again, §(H2) = (Lﬁj). Also, each cycle in Hy has no two consecutive vertices in A.
Since |A| > n/2, this yields that Ha is not hamiltonian.

For n/2 < r < n —1, Hy = Hs(n,r) is obtained by removing a single edge from any r-regular
r-graph. Then §(H3) =r — 1 and Hs has n — 1 edges. Hence H3 cannot have a hamiltonian cycle.

The r-graphs above show sharpness of the bounds in Theorem 1.3. The following slight modifica-
tions of them show sharpness of the bounds in Theorem 1.4.

For all n > 3 and 3 < r <n/2, let H| = H{(n,r) be the r-graph formed by a clique Q of size ["T“]
and a clique R of size L”T*Qj sharing exactly two vertices, say « and y. Then 6(Hj) = (}%), and
H{ has no hamiltonian z, y-path, since any x, y-path should miss either @ — {z,y} or R — {z,y}.

Another example for 3 < r < n/2, is the r-graph H) = H}(n,r) whose vertex set is AU B where
|A| = [5] and [B| = |[5], AN B = () and whose edges are sets X C AU B with |[X| = r and
|X NA] <1. Now §(H)) = (TL%{) Also, for distinct z,y € B each z,y-path in H) has no two
consecutive vertices in A. Since |A| > n/2, this yields that H) has no hamiltonian z, y-path.

For r > n/2,let H; = H4(n,r) be obtained from H3(n,r) by removing any edge. Then §(Hj) = r—2
and H} has n — 2 edges. Hence Hj cannot have any hamiltonian path.

For r =3, n =5, let V(Hy) = {1,2,3,4,5} and E(H4) = {{1,5,2},{1,5,3},{1,5,4},{2,3,4}}.
Then 6(H4) = 2 but there is no hamiltonian path from 1 to 5.



Figure 1: The three cases of a hamiltonian vy, vi-path in C’(n,r).

2.2 Hamiltonian-connected r-graphs with no hamiltionian cycles

By the (n,r)-tight cycle C(n,r) we denote the r-graph with vertex set V = {vy,...,v,} and edge
set £ = {e1,...,en}, where e; = {v;, viy1,...,0i4r—1} foralli = 1,...,n and indices count modulo
n.

Our example C'(n,r) is obtained from C(n,r) by deleting one edge. Since C’(n,r) has n — 1 edges,
it has no hamiltionian cycles. We claim that for 3 < r < n, C’(n,r) is hamiltonian-connected.

Indeed, by symmetry we may assume that we need a hamiltionian vy, v,-path and that we have
deleted e; from C(n,r). Also by symmetry, we may assume that h < j 4+ 1 < n. We construct a
hamiltionian vy, vy-path slightly differently for odd h, for even h > 4 and for h = 2. In all cases,
the subpath from v, to v, will be

Py =vp,€n-1,Un-1,€n-2, .y ., Vj12,€j41,Vjt1,€j—1,Vj,€j—2,Uj—1, -, Ehy Vpt1s €h—1, Vh-

Our final hamiltonian vy, vp-path will be of the form P; U P, (see Figure 1) where the subpath P
is as follows:

If A is odd, then

Pl =7v,€1,03,€3,V5,...,Vp_2,€H_2,Vh_1,€4H—_3,Vp,_3,ERL—5,-..,€2,V9,€n,VUp.
If A is even and h > 2, then

P1 =V1,€1,V3,€3,V5,...,Vh—1,€E1R—-2,Vh—2,€h—4,Vh—4,€h—6y--+,€E2,V2,Ep,Un.

Finally if h = 2, then P = vy, ey, vp,.

3 Lemmas on graph paths

In this section we derive some properties of subsets of graph paths that will be heavily used in our
proofs. The reader can skip their proofs at the first reading.

Lemma 3.1. Let Q = vy,e1,...,e5-1,0s be a graph path. Let A and B be nonempty subsets of
V(Q) such that A is an independent set, B — A # 0, and for each v; € A and v; € B — A,
li —j| >q>1. Then



(i) If ¢ > 2, then s > 2|A| + |B — A| + ¢ — 2 (and therefore |A| < (s — |B — A| —q¢+2)/2).
(i1) If g =1, then s > 2|A| + |B — A| — 2.
Moreover, if B is also an independent set, then s > 2|A| +2|B — A| 4+ q — 3.

Proof. Let v; € B — A. Without loss of generality, we may suppose there exists a vertex v; € A
such that i < j and vy, ¢ AUB for all i < k < j. Then V; := {vit1,...,vj-1} is a set of of at least
g — 1 vertices which does intersect A U B. Similarly, if there exists vy € A such i < j < i’ (and
vy ¢ AUB for all j < k <1'), then V5 := {vj41,...,vy_1} also contains at least ¢ — 1 vertices and
does not intersect AU B. In this case, set V' = V4 U V5. Otherwise, set V' = V4.

For each vy € A — {vs}, vgr1 does not intersect AU B, and only one vk 1, namely v;41, is in V.
Therefore

s 2 [A[+[B — Al + {vg41 1o € Ak & {i, s} + V7]
If V! = V3 UVa, then s > 2|A| 4+ |B — A| — 2 4+ 2¢ — 2 which is at least 2|A| + |[B — A| + ¢ — 2 if
q > 2, and at least 2|A| + |B— A|+2ifg=1.
If V! = Vi, then in this case vy ¢ A, so we have s > |A|+ |B— Al + (JA| - 1)+q¢—-1 =
201A|+|B—-Al+q—2.
Suppose now that B is also an independent set, and let v; € B — A. Again we may suppose there
exists v; € A with ¢ < j. Between v; and v; there is a set V' of at least ¢ — 1 vertices not in AU B,
and for any vy € AU B, vg41 ¢ AU B. Therefore

s> |AUB| + [{vgs1:vx € AUBk & {i,s}} + V']
> A+ |B—A|+(JA|+|B—A|—-2)+q—1=2|A|+2|B—A|+q¢—3.
O
Lemma 3.2. Let ¢ > 2 and s > a > 1. Let Q = v1,e1,...,es—1,Vs be a graph path, and I be a
non-empty independent subset of {v1,...,vs}. If A" is a set of a edges of Q such that the distance

in @Q from any edge in A’ to any vertex in I is at least q, then |I| < L%J if ¢ > 2, and
1] < [*=5H] =51 if ¢ =1.

Proof. Applying Lemma 3.1 with A = I and B = Uy;.c,eay{vi; vi41} (so |B] > a + 1) gives the
desired bounds. O

Lemma 3.3. Let QQ = vi,e1,...,e5_1,Vs be a graph path. Let A and B be nonempty subsets in
V(Q) such that

for each v; € A and v; € B, eitheri=j or|i—j| >q>2. (1)

(i) If A= B, then s > 1+ q(JA| — 1) with equality only if A = {v1,V14q,V142g,---+Vs}-
(i1) If B # A, then s > |A| 4 |B| + q — 2 with equality only if A C B or B C A.

Proof. Part (i) is obvious. We prove (ii) by induction on |[A N B|.
If AnNB =0, then @ contains |A|+ |B| vertices in AU B and at least ¢ — 1 vertices outside of AU B
between A and a closest to A vertex in B.



Suppose now that (ii) holds for all A" and B’ with |A’NB’| < t and that |[ANB| = t, say v; € ANB.
By symmetry, we may assume |A| < |B|. If A = {v;}, then @ has |B| — 1 vertices in B — A and
at least ¢ — 1 vertices between v; and a closest to v; vertex in B — A (such a vertex exists since
B # A). Thus, s > 1+ |B—A|+q—1=|B|+ |A| — 2, as claimed.

Finally, suppose |A| > 2. By definition, (AU B) N {vi—g41, Vi—g+2,-- -+ Vitq—1} = {vi}. So since
|B] > |A| > 2,i > g+1ori < s—q (or both). By symmetry, assume ¢ > g+1. Define €} = v;_q41vi41
andlet A’ = A—v;, B' = B—v;, and Q' = vi,e1,...,0i—gt1, €, Vit1, €it1, .-, €s—1,Vs. By definition,
A" and B’ satisfy (1). So, by induction, |V (Q')| > |A'| + |B'| + ¢ — 2 with equality only if A’ C B'.
Hence

s>q+|V(Q) =q+ (A=) + (Bl -1)+q—-2=[A|+|B| +2(¢ - 2),

with equality only if A C B. Since ¢ > 2, this proves (ii). O

Lemma 3.4. Let Q = vy,eq,...,e5_1,0s be a graph path. Let A’ and B’ be nonempty subsets of
E(Q) such that

for each e; € A" and ej € B, eitheri=j or|i—j| > q>2. (2)

(i) If A’ = B’, then s — 1 > 1+ q(|A'| — 1) with equality only if A" = {e1,e14q,€142qs - - -, €51}
(i1) If B #£ A’ then s — 1 > |A'| + |B'| + ¢ — 2 with equality only if A" C B' or B' C A’.

Proof. Let A ={v; :e; € A’} and B = {v; : ¢; € B'}. Since vy ¢ AU B, the sets A, B are vertex
subsets of the path Q' = vy,e1,...,e5 2,05 1. So, Lemma 3.3 applied to A, B and Q' yields the

desired bounds. O
Lemma 3.5. Let Q = vy, e1,...,6e5-1,v5 be a graph path. Suppose F C E(Q) and f = |F|. Let A
and B be subsets of {v1,...,vs} that are vertez-disjoint from all edges in F' and such that

for each v; € A and v; € B, either i =j or i — j| > 2. (3)

(1) If A= B, then s > |A|+ |B| + f — 1.

(ii) If B # A, then s > |A| + |B| + f with equality only if AC B or B C A.

Proof. Let Q" = v}, €},v5,...,€,_,,v., be a path obtained from @ by iteratively contracting f edges
of F. In particular, s = s — f. Since A and B are both vertex-disjoint from F, each v; € AU B
was unaffected by the edge contractions and hence still exists as some v}, in Q. Moreover, (3) still
holds for A and B in @Q’.

So, Lemma 3.3 for ¢ = 2 applied to A, B and @’ yields that if A = B, then s’ > |A| + |B| — 1, and
if B # A, then s’ > |A| 4+ |B| with equality only if A C B or B C A. Since s’ = s — f, this proves
our lemma. O

4 Setup for Theorem 1.4

Bounds of the theorem differ for » < n/2 and r > n/2. Naturally, the proofs also will be different,
but they will have similar structure. In both proofs, for given vertices z,y in an r-graph H we
attempt to find a hamiltonian xz, y-path. Both proofs will have three steps.



In Step 1 we construct an z, y-path @ with at least max{[™52],r + 1} vertices.

Then we consider pairs (@, P) of vertex-disjoint paths in H such that @ is an x,y-path. We will
say that such a pair (Q, P) is better than a similar pair (Q’, P’) if

(i) [E@Q) > [E(@)], or
(i) [E(@)| = |E(Q)] and |E(P)| > [E(F')], or
(

(iii) |[E(Q)| =|E(Q)|, |E(P)| = |E(P")| and the total number of vertices in V(P) in the edges in
@ (counted with multiplicities) is greater than the total number of vertices in V(P’) in the
edges in Q.

We consider best pairs and study their properties. Some properties will be proven in the next
subsection. Using these properties together with the lemmas on graph paths from the previous
section in Step 2 we show that the path P in a best pair cannot have exactly one vertex. In the
final Step 3 we handle all cases when P has at least two vertices.

Below we assume that (@, P) is a best pair, Q = vy, e1,...,€5-1,0s, and P = uq, f1,..., fo_1, ug.

We consider three subhypergraphs, Hg, Hp and H' of H with the same vertex set V(H): E(Hg) =
{e1,...,es—1}, E(Hp) ={f1,..., fe—1} and E(H') = E(H) — E(Hp) — E(Hg). By definition, the
edge sets of these three subhypergraphs form a partition of the edge set of H. For a hypergraph F
and a vertex u, we denote by Np(u) = {v € V(F) : {u,v} C e for some e € F'}. For i € {1,¢}, set
B; ={e; € E(Q) : u; € ej} and b; = |B;].

4.1 Claims on best pairs

The claims below apply to all best pairs (@, P), regardless of the uniformity 7.

Claim 4.1. In a best pair (Q, P), Ng/(u1) cannot contain a pair of vertices that are consecutive

Proof. Suppose toward a contradiction that v;,v;11 are contained in edges of H' with u;. Let
e,¢’ € E(H') be such that uj,v; € e and uy,v;11 € €. If e # €/, then replacing e; with e, uq, €’ gives
a longer z,y-path than @, a contradiction. Thus we may assume e = ¢’.

If there is 1 < j < ¢ such that u; € e;, then by replacing the path v;,e;, v;41 in @ with the longer
path v;, e, u1, fi,us, ..., fj—1,u;, €, vi+1, we obtain a longer x,y-path than Q. Thus e; NV (P) = 0.
Then replacing e; with e in @ gives a path Q" with (@', P) better than (Q, P) by criterion (iii). O
Symmetrically, the claim holds for u, in place of u;.

Claim 4.2. For any u ¢ V(Q), if u € e;, then vi,viv1 & Nu—p,(u).

Proof. Suppose v; € Ny_p,(u), and let e € E(H) — E(Hg) be such that {u,v;} C e. Then we
can find a longer cycle by replacing e; with e, u, e;, a contradiction to our choice of (). A similar

argument holds for v;41. ]

Claim 4.3. For every e; € Bi,e; € By either i = j or |i — j| > L.

7



Proof. Suppose there exists e; € By, e; € By such that without loss of generality j > i and j—i < /—
1. Then the path obtained by replacing v;, €;, . .., e;,vj41 in Q with vy, e;, w1, f1,. .., fo—1, ue, €5, V541
has [V(Q)| — (i — j) + ¢ > |V(Q)] vertices, a contradiction. O

Claim 4.4. If there exists distinct edges e, f € E(H') such that {ui,v;} C e and {us,v;} C f, then
li—j| >¢+1.

Proof. If |i — j| < £, replace the subpath in @ from v; to v; with the path v, e, P, f,v; to get a
longer x, y-path. O

Claim 4.5. For every v; € Ng(u1) and ej € By, if i < j then j —i > £ and if i > j then
i—j>0+1.

Proof. Let e € E(H') contain v; and w;. If i < j, let @' be the path obtained by replacing the

segment v;, €;,...,€;,v;41 in Q with the path v;, e, u1, P,us, ej,vj11. If ¢ > j, let Q' be obtained
from @ by replacing vj,e;,...,v; with vj,ej,ug, fo—1,..., f1,u1,e,v;. In the first case, |[V(Q')| =
[V(Q)| — (j —i)+ ¢, and in the second case |V (Q")| = |[V(Q)| — (i — (j + 1)) + £. The Claim follows
since |V(Q)| > |V (Q')| by the choice of (Q, P). O

Claim 4.6. For any e € E(H'), if v;,v; € e, then at most one of e;,e; is in By and at most one
of e;_1,ej_1 1s in Bi.

Proof. 1f e;_1,ej_1 € By, then we get a longer path
V1,€1,V2,...,Vi—1,€i—1,U1,€5-1,Vj-1,€5-2,Vj—2,...,V;,€,Vj,€5,Vjt1,...,VUs.
The argument for e;, e; is similar. O

Claim 4.7. Let By = {v; :¢; € B1} and B = {vi+1 : e; € B1}.

(i) For any edge e € E(H'), by < s—|eNV(Q)| + 1 with equality only if By = {ei, eiy1,...,¢e;} for
some i <j and eNV(Q) = {vi,...,v;i} U{vjp1,...,vs}.

(ii) by < s—1—|Ng(u1) NV (Q)| with equality only if By is a set of by consecutive edges in Q) and
Ni(u1) NV(Q) = V(Q) — (By UBY).

Proof. Set ¢/ =enNV(Q). By Claim 4.6, |B] Ne| < 1. Hence
by —1+1enV(Q)—1<|B1| =1+ e —{vs}| < v, . 051} =85 —1,

ie., by <s—|€/|+1 with equality only if vs € e, |[B] Ne| =1, and eUB] = V(Q). Symmetrically,
v €e¢, lenBf|=1,and V(Q) \ e C Bf". So, V(Q) \ e C B; N By, and therefore |B; N B | >
s — |¢/| = by — 1. This means, the symmetric difference of B; and B;" has only two vertices. For
this, the by edges in By must be consecutive on Q, and ¢’ = V(Q) — (By N By). This proves (i).

For (ii), by Claim 4.2 (B U Bf") N (Ng/(u1) N V(Q)) = 0. Therefore |By U Bf| < [V(Q)| —
INg(u1) NV(Q)| = s — |Ngr(u1) N V(Q)|. We have |B; U B{| > by + 1 with equality only if By is
a set of consecutive edges in ). These inequalities together give our result. O

Corollary 4.8. When ¢ =1, by <n — 3. If in addition, |[Ng:(u1) NV (Q)| > 2, then by < n — 4.



Proof. Since |E(Q)| < n — 1, there must be at least one edge e € E(H'), and since £ = 1, e
contains at least m — 1 > 2 vertices in @ if u; € e, and at least r > 3 otherwise. By Claim 4.7,
hh<s—2<n-3.

The second part follows from Claim 4.7 (ii). O]

5 Finding a longish x, y-path
In this section, we will show that there exists an z, y-path of length at least max{n/2 + 1,r 4+ 1}.

Lemma 5.1. Let 3 < r < n/2, and let H be an n-vertex r-graph. Let xz,y € V(H). If 6(H) >
(L:‘Plj), then H contains an x,y-path with at least n/2 + 1 vertices.

Proof. The restrictions on 0(H) in Theorem 1.3 are not stronger than in Theorem 1.4. So, by
Theorem 1.3, H contains a hamiltonian cycle C' in H. The longer of the two z,y-paths along C
has at least n/2 + 1 vertices. O

For r > n/2, we need much more effort, see below.

Lemma 5.2. Letn > r > n/2, and let H be an n-vertex r-graph. Let x,y € V(H). If§(H) > r—1,
then H contains an x,y-path with at least r + 1 vertices.

Proof. We will first show that there exists some x, y-path in H. If there exists an edge e € E(H)
with {x,y} C e, then we are done. Otherwise since r > n/2, any two edges e, f € E(H) such that
T € e,y € f have a common vertex, say v € eN f. Then z,e,v, f,y is an x, y-path in H.

Now let Q = v1,e1,...,es—1,vs be a longest =, y-path in H (so x = v1,y = vs). Moreover, choose
@ so that if {vy,...,vs} € E(H), then this edge is used in Q. Suppose s < r.

Construct a new hypergraph H as follows: V(H) = V(H) — V(Q), and E(H) = {eNV(H) : e €
E(H) — E(Q)}. Note that H is not necessarily a uniform hypergraph. We have a mapping from
the edges of H to the edges of H given by e — e — V(Q) (which is not necessarily one-to-one).
Let D1, Dy,..., D, be the vertex sets of the connected components of H. For1 < 7 < q, let
dj =|{e; € E(Q) : ;N Dj # P}|. Since |V (Q)| < r, at most one edge e; € E(Q)) may be contained
in V(Q). It follows that

q
Y di>|EQ)-1=s-2 (4)
i=1

Claim 5.3. For any 1 < j < gq, if e, D; # 0, then the edges of E(H) — E(Q) containing v; or
vi41 cannot intersect D;.

Proof. Let v € D; Ne;. Suppose v; € h € E(H) — E(Q) and w € hN Dj. Then H contains a
u, v-path which we can lift to a u,v-path P in H that avoids E(Q). If h ¢ E(P), then by replacing
the segment v;, €;,v;11 in @ with the path v;, h, P, e;, v;11, we obtain a longer z, y-path. Otherwise
let P’ be the subpath of P starting with h. Then we replace v;, €;, v;+1 with v;, P, e;,v;11 to get a
longer path. The argument for v;; is similar. O



Claim 5.4. Forany1 < j < gqandanyl <i < s—1, there are no distinct edges e, f € E(H)—E(Q)
such that e and f intersect Dj;, v; € e, and vi41 € f.

Proof. Let P’ be a shortest path in H from e N D; to f N Dj. Lift P’ to a path P in H which
avoids E(Q). By the minimality of P’, e ¢ E(P) and f ¢ E(P). Then we may replace the segment
v, €i, Vi1 in Q with v, e, P, f,v;41 to get a longer x, y-path. O

Claim 5.5. For any 1 < j < gq, if at least 2 edges in E(H) — E(Q) intersect D;, then
|Dj| =7 —[(s—dj)/2] + 1.

Proof. Suppose |D;| <r—[(s—d;)/2], and let e,g € E(H) — E(Q) be distinct edges that intersect
Dj. Let A=enV(Q), B=gNV(Q), and F = {{v;,vi11} : DjNe; # 0}. By definition, |F| = dj,
and each of A and B has at least r — |D;| > [(s — d;)/2] vertices.

By Claim 5.3, A and B are disjoint from all pairs in F. By Claim 5.4, (3) holds. So Lemma 3.5
together with the lower bounds on |A| and |B| imply that if A # B, then

_d,
s> |A|+|B| +d; > 22—

+d; = s, (5)

with equality only if A C Bor B C A. Butif A C Bor B C Aand A # B, then |A|+|B| > 1+25_2dj.

Hence, if A # B, then in the RHS of (5) we get at least s + 1, a contradiction.

Thus A = B. Since e and g are distinct but coincide on @, e D; and gN D; are distinct sets each
with at least  — [(s — d;)/2] vertices. It follows that |D;| > r — [(s — d;)/2] + 1. O

Claim 5.6. For any 1 < j < g, if exzactly one edge in E(H) — E(Q) intersects Dj, then |Dj;| > r.

Proof. Suppose |D;| < r —1 and e is the unique edge in E(H) — E(Q) that intersects D;. Then
by the definition of H, D; =e—-V(Q). Let v € Dj. Since |e| = r, e contains at least one vertex
v; in Q. By symmetry, we may suppose i < s. In order to have d(v) > r — 1, v must belong to at
least  — 2 edges of E(Q). By Claim 5.3, none of these at least r — 2 edges is e;—; or e;. This is
possible only if s =7, eNV(Q) = {v1} and v € eaNe3N...Nes_1. This implies |D;j| =r — 1 and
each vertex in D; belongs to ez by symmetry. But then {vs,v3} U D; C ea, contradicting the fact
that |ea| = 7. O

Claim 5.7. For any 1 < j < gq, at least one edge in E(H) — E(Q) intersects D.

Proof. Suppose not. By the definition of H, Dj is a single vertex, say v. Since d(v) > r—1, v must
belong to at least r — 1 edges of @, which is only possible if |V (Q)| = r. In this case v is contained
in all edges of Q). By the choice of @, we have {vy,...,vs} ¢ E(H).

Since |E(H)| > n—1 > r — 1, there exists an edge g € F(H) — E(Q). By the choice of Q, ¢
intersects some Dj,. If |Dy| > r — 1, then |V(H)| > |V(Q)| + |Dp| + |Dj| >r+r—1+1>n,a
contradiction. In particular, by Claim 5.6, this implies that at least two edges in E(H) — E(Q)
intersect Dy. We claim that for each such edge e,

enV(Q) C {vy,vs}. (6)
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Suppose this is not the case. Then since |Dj| < r — 2, there exists a pair {v;, vy} # {vi,vs} and
edges e, f € F(H) — E(Q) such that e and f intersect Dy, v; € e, and vy € f. Without loss of
generality, we may assume ¢ < ¢’ < s. Let P be a v;, vy-path in H avoiding E(Q) (it could be the
case that P contains only one edge). Then

U1y . - 7’UZ',P7UZ‘/,61‘/_1, <oy Vi1, €4, U, €47, Ui 41, - - - 5 €51, Us

is a longer x, y-path in H. Therefore (6) holds. Since at least two edges in F(H) — E(Q) intersect
Dy, |Dy| > r — 1, a contradiction. d

Claim 5.8. H has at least 2 components.

Proof. Suppose ¢ = 1. If |V(Q)| < r — 1, then each edge e; intersects D; and each v; € V(Q)
is contained in an edge h € E(H) — E(Q), and h must also intersect D; since |h| > |V (Q)],
contradicting Claim 5.3. So we may assume |V (Q)| = r.

By Claim 5.7, some edge h € E(H) — E(Q) intersects Dy. If h C Dy, then |V(H)| > |[V(D1)| +
[V(Q)| > r+r > n, a contradiction. For each v; € hNV(Q), each of e; and e;_; must be contained
in V(Q). As r = V(Q), only one such edge in @) can satisfy this. Hence without loss of generality,
we may assume h NV (Q) C {v1} and e; = V(Q). It follows that |Dy| > r — 1. If |Dy| > r, then
again we get |V (H)| > n.

Hence, the last possibility is that [D;| =7 —1 and hNV(Q) = {v1}. In particular, by Claim 5.6,
some other edge h' € E(H) — E(Q) intersects Dy. Since s = r > 3, e1 # es_1. So by the same
argument as for h, we have A’ N V(Q) = {v1}. Since b’ # h and D; O h UK — {v1}, we get
|D1| > r — 1, a contradiction. O

Now we are ready to finish the proof of the lemma. By Claims 5.7, 5.6 and 5.5, |V(D;)| >
r—[(s—d;)/2] + 1 for all j. Therefore

V(H)| > [V(Q)] +j§::<r (s —dj)/2] + 1) > s+ q(r — % 1)+ Zéj

Since r > s, the quantity g(r — % + 1) is minimized when ¢ = 2. By (4),
s+1 . d;
V(H) > 2(r — —— +1 -
I TR

s+2r—(s+1)+2+(s—2)/2
= 2r+s/2
> n,

a contradiction. O

6 Proof of Theorem 1.4 for r < n/2

In the next two sections, we set ' = [n/2] and consider a best pair (Q, P) with Q = v1,e1,...,€5-1, Vs
and P = uq, f1,..., fo—1,us. By Lemma 5.1, s >t/ + 1 if s is even and s >t + 2 if s is odd. In
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both cases we get £ <n—s <t'—1and s >n/2+1. Recall that for i € {1,¢}, B; = {e; : u; € ¢;},

6.1 Finding a nontrivial path P
Lemma 6.1. In a best pair (Q, P), |V (P)| > 2.

Proof. Suppose that |V(P)| =¢ =1, ie., P = wu;. Then s < n — 1. By condition (ii) of (@, P)
being a best pair, every edge of H' contains at most one vertex outside Q.

Claims 4.1, 4.2 and Lemma 3.2 imply that |Ngs(u1)| < [(s — b1)/2]. Therefore

1+< t! )SdH(U1)§b1+ <((8—bl)/21> b4 <f(n—1—b1)/21>. 7)

r—1 r—1 r—1

Case 1: by =0. By (7), 1 + (Tt_ll) < (Hn_l)/ﬂ) = (Tt_ll), a contradiction.

r—1

Case 2: by = 1. Again by (7), 1 + (rt_/l) <1+ (Hs;_l)l/ﬂ) <1+ ([(nr—_2%/21>' If n is even, we
immediately obtain a contradiction. If n is odd, then we reach a contradiction when s <n —1. So
suppose n is odd, s =n — 1, |[Ng/(u1)| = [(s — b1)/2] = s/2 = ¢/, and wu; is contained in all (Tt_ll)
possible edges within Ny (u1) U {u;}.

Consider the unique edge e; of @ containing uy. Then |Ngs(u1)| < [(i—1)/2]4+[(n—1—(i+1))/2] by
Claim 4.1 and Claim 4.2. If 7 is odd, then this gives [Ny (u1)| < (i—1)/2+(n —1—2)/2 = (n—3)/2,
a contradiction. Thus, i is even and X := Nyr(u1) = {v1,v3,...,0i—1,Vit2, Vitd, - ., Vs}.

Replacing e;—1 in @ with the edge e € E(H') containing uy,v;—1 and replacing v; with u; creates
a new path @' which only misses v;. Since (@, P) is a best pair, by condition (iii) of choosing a
best pair, e; and e;—1 can be the only edges of () which contain v; and in fact (Q',v;) is also a
best pair. Thus applying the same arguments to v; and Q" as we did to u; and @, we obtain that
Nu_gr(v;) = X. Notice that we can apply a symmetric argument to v;1 and corresponding path
QH to get NH,Q// (’Ulqu) = X.

We will find an edge g # e; with |[¢ — X| > 2 and |g N {va,v4, ..., Vi—2,Vi43, Vits, ..., Vs—1}] > 1,
and then we will use ¢ to find the desired hamiltonian path. Choose v; ¢ e; with v; ¢ X, which
exists because [(X Ue;) NV (Q)| < |X|+r—1<2t'—1=s—1. Since dg(v;) > (Tt_/l) and | X| =1/,
there is an edge g containing v; and some vertex outside X. Since v; ¢ X and v; ¢ e;, that vertex
cannot be u; and must instead be some v, € V(H) — (X U{u1}) = V(Q) — X. Suppose without
loss of generality that j < k.

Case 2.1: g € E(H'). Since v; is in neither X nor e;, vj_; € X. Thus let f € E(H') be such
that v;_1,u; € f. Similarly, since vy ¢ X, we have vy € X unless k = i + 1, which we handle
separately. Let f' € E(H') be such that vg_1,u; € f’, and observe that we can choose edges such
that f, f/ are distinct because u; is in (ii ) > 2 edges with each vertex in X. Thus if j < k, we
have the hamiltonian path

/
U1,€1,02,... 7Ujfl7fa ulaf y Uk—1,€k—2,Vk—2, .- ., Vj, G, Vk, €ks Vg1, - - -, Us-

A similar path can be found for j > k by symmetry. In the case k =i + 1, replace f’ in the above
path with e; to obtain the desired hamiltonian path.
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Case 2.2: g = e, € E(Q). Since g # e;, we may assume by symmetry that v, € X, unless m = k.
Let f be as in the previous case, and let f' € F(H’) be such that v,,,u; € f'.

Thus for j < m we have the hamiltonian path

/
V1,€1,02, ... 7Uj—17f7 ulvf y Ums €m—1, Um—1,---5V5,9; Um+1, Em+1, Um+2,- -+, Us

(and similar for j > m). If m = k, then vy € X, so we let f”, f” € E(H') be such that
vjt1,ur € f” and vggq,ur € f”. Then

" "
01,61,’02,...,’Uj,Q,’Uk,ek_l,Uk_l,...,Uj+1,f ,Ul,f y Uk+1, €k+1, Vk+2,- - -, Us
is hamilitonian if j < k and we can find a similar path for j > k, ending the proof of Case 2.

Case 3: by > 2. Then by (7)
e () s (TP < (A o (T2]),

Hence 1 + (rt_ll) = (tl_l) =1+ (tl_l) < b; <n—3by Corollary 4.8. If 2 < r —2 <t/ — 3, then

r—1 r—2
we have n — 4 > (';/:21) > (tlgl), a contradiction when n > 12. For n < 11, it is straightforward to

check that 1 4 (Tt_ll) > by + ([("_71«:[{1)/2}) in all cases.

For r = 3, we have t/ =1+ (1::21) < b1, s0

1+ <152’> b4 (f(n—l—bl)/21> b4 <t’— L21?1/2J> <n_34 (Tt’éﬂ)

2

This gives a contradiction when n > 12. For n < 11, it is straightforward to check that 1 + (g) >
by + ([("—15171)/2}) in all cases except n = 7, by € {3,4}, which will be considered with the case
r=t =3.

For r =t by (7) we have

1+t’:1+<rt/1> §b1+<[(3_bl)m> <b +1,

r—1

since s <n — 1 and b; > 2. Thus by > t'. For n > 8, we have
INgr(u1)| < [(s=01)/2] < [(n—1-t)/2] < [(n—5)/2] =t —2<r—1.

This also holds for n < 8 if s < n — 2, so we will handle the case n < 8, s = n — 1 separately at the
end of this subsection.

Since each edge in H' containing u; contains r — 1 other vertices, |Ng/(uj)| < r — 1 gives that
|Np/(u1)| = 0 and hence 1 +#" < by. Notice also that n < §(H)y < |E(H)| = |E(Q)| + |[E(H')| <
n— 2+ |E(H')|, so there are at least 2 edges in E(H’).

Case 3.1: There exists e € E(H') with e C V(Q). By Claim 4.7, by < s—t'+1 < n —
1—¢+1 < t'+1 with equality only if there exists ¢ < j such that By = {e;,...,e;} and
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e ={vi,...,v} U{vjt1,...,es}. Without loss of generality, ¢ > 2. Then we can replace e; in @
with e to obtain another x, y-path @' such that (Q’, P) is also a best pair. As By does not change
for this new pair, e; must play the old role of e, ie., e1 = {v1,...,v;} U{vjq1,vj43,...,0s}, but
then e = ey, a contradiction.

Case 3.2: Every edge in H' contains exactly one vertex outside of V(Q). Since E(H') # () and
u1 is contained only in edges of @), there must be at least one additional vertex outside of ¢ and
hence s < n — 2. Let e € E(H'). Because Case 3.1 does not hold, e — V(Q)| < n—1—s,
so lenNV(Q)] >t — (n—1—s) with equality only if e U V(Q)U {u1} = V(H). By Claim 4.7,
1+t < by < s—eNV(Q)|+1 < s—(t'—(n—1-5))+1 < +n—t', s0 2t'+1 < n. We get a contradiction
unless the “equality” part of Claim 4.7(i) holds. Then as in the previous subcase, there exists i < j
such that e N V(Q) = {v1,...,v;} U{vj,...,vs}. Moreover, since the choice of e € E(H') was
arbitary, for each ¢ # e in E(H'), ¢ NV (Q) =enV(Q). But since V(H) =eUV(Q) U {u;} and
up ¢e,e —V(Q)=e—V(Q), hence e = ¢, a contradiction.

Finally we handle the cases 6 <n <7, r=t =3, s=n—1, and by € {3,4}. The average degree
of H is
> dv)/n=3|E(H)|/n>5(H) > 4,

veV (H)
so |E(H)| > [4n/3] which is equal to 8 when n = 6 and 10 when n = 7. In either case, there exists
at least 3 edges in H'.
We will first show that By is a set of by consecutive edges in Q). If u; is not contained in any edges
in H', then by > §(H) > 4. Otherwise if u; belongs to an edge h of H’', then Claim 4.7(ii) implies
by = 3and n = 7. In both cases, the “equality” part of Claim 4.7 implies By = {e;,€i1+1,...,€i+b,—1}
for some 1.
If uy is not contained in any edges in H', then for any e € E(H'),e = {v1,...,0i} U{0Vitby,---,Vs}-
But this holds for all edges in H’, a contradiction. Now suppose n = 7, by = 3 and wu; is con-
tained in an edge e of H'. Since Np/(u1) contains no consecutive vertices and is disjoint from
{vi, Vit1,Vit2,vit3}, we have i = 2, and e = {v1, vg,u1}. In particular, dg/(u;) = 1.
Let E” be the set of edges in H not containing uy. Since |[E”| = |E(H)|—dg(u1) > 10—4 = 6, some
edge g € E” does not contain {v1,vs}. By symmetry, we may assume vg ¢ g. If g = €1 = {v1,v2, v},
then we have a longer vy, vg-path vy, e, u1, ep—1,V0p—1,€n—2,...,V2, €1, Vh, €hy Uht1, - - -, VG-
Otherwise, g € E(H'). So, by Claim 4.6, |g N {va,v3,v4}| < 1 and |g N {vs,v4,v5}| < 1. This is
possible only if g = {v1,v2,v5}. Then we have vy, vg-path vi, e, us, eq,v4, €3, 03, €2, V2, g, V5, €5, Vg, &
contradiction. O

6.2 Finishing the proof of Theorem 1.4 for r < n/2

Proof of Theorem 1.4 for r < n/2. Consider a best pair (Q,P) with Q@ = vi,e1,...,e5-1,v5 and
P = uy, fl, e ,fg_l,ug.

By symmetry, we may assume b, = |By| > |Bi| = b;. By Lemma 6.1, ¢ > 2. Recall also that
s>n/24+1>t+1and ¢ <t —1.

By Claim 4.3 and Lemma 3.4, either

s>b1+b+0—1, (8)
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or Bl = Bg and
s>2+4 (b —1). (9)

Recall that by the maximality of V(P), all edges of H' containing u; or wuy are contained in
V(Q)UV(P). For j € {1,¢}, define A; = Np/(u;) N V(Q) and a; = |A;]. By Claim 4.1, A;

contains no consecutive vertices of Q.
Case 1: A; = (). Then all edges in H' containing u; are contained in V(P).

Case 1.1: r =t'. Since ¢ <t — 1, no edge can be contained entirely in V(P). Thus u; must only
be contained in edges of () and P.

Then by > 6(H) — |[E(P)] =1+ (,",) = ({ —1) =t — £+ 2. If (8) holds, then
n—0>s>2(t' —0+2)+L—-1=2t'+3 -4 >n+2—1,

a contradiction.
If instead (9) holds, then

n>l+s>04+240H —0+2)—1) =2+ —(+2). (10)
Since 2 <0 <t'—1,4(t' —€+2) >2(t' =24 2) >n — 1, contradicting (10).

Case 1.2: 3 <r <t — 1. The number of edges in H’' containing u; and contained in V(P) is at
most (fj) Thus,

wzsm - (1)) —men=1e (0 )= (7)) e

21+<t’>_(€;1)_(€_1): (-2 041,

2 2
If (8) holds, then

t+0—-2)t —0+1 — 0+ 2

WHE=DW =AY g s=tb2 n )y
2 2 2

However, w < ¢ —1 implies that 0 > #? — ¢ =3t +30 = (' — {)(t' + ¢ — 3). This

cannot hold because 2 < ¢ <t —1 and t' > 3, so w >t >n/2—1, a contradiction.

If instead (9) holds, then

t+L-=2)t' —C+1) s—2 n—2
2 -/ 2

However, we have£+"772 < %2_2 < %+1, and thus "772 §%—£—|—1 < W—E—I—Z.
Case 2: A1 # 0,B; # 0. Let B = U€jeB[{/Uj’/Uj+1}' By Claim 4.5, Lemma 3.2 and the facts
s<n—0<2'+1—4, By #0, |B|>b;+1, and BN A; = 0, we have

20 +1—-4)—by—1—4+1
2

a1 < | | =t —0+1—[by/2]. (11)
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Recall that we assumed by < by. Therefore

V(P) — (-1
d(uy) < (‘“ * T(_)l {“1}|> b+ |E(P)| < (‘“:_ : ) b+l 1, (12)
with equality only if u; belongs to every edge of P, and b1 = by.
Combining (12) and (11), we obtain
t/ t' — [by/2
<T_1>+1§d(u1)§< [_fl/ 1>+b4+6—1. (13)

Case 2.1: r = t'. Since A; # 0, we need a; > r — |[V(P)| =t —£. By (11), 1 < by < 2, and
a; +¢—1=r—1. Then from (13), we get
t/
t'+1= ( 1) +1<d(u) <b+0<2+0<24(t'—1).

r —
This gives a contradiction unless by =by=2and £ =t —1 (so s = [V(Q)| <t +2 ={+3). But
then there is no way to fit two edges in By and two edges in By without violating Claim 4.3.
Case 2.2: 3 <r <t —1. If ¢ — [by/2] < r — 1, then as in the previous subcase, d(u1) < by + /.
Since A1 # 0 and ¢ > 2, in order not to violate Claim 4.5 we need by < |E(Q)] —2 = s — 3.
Therefore d(u;) < s—3+¢<n—-3<2t'—2. When t' > 4 (n > 8), we have (Tt_ll) +1>2t' -2,
a contradiction. In the remaining cases 6 < n < 7, r > 3 implies r = 3 = t/ which was handled in
the previous subcase.

So we may assume t' — [by/2] > r — 1 and therefore from (13) we get,

() - () = () s (0T s s sy

Here we use the fact that £ < ¢ —1 and (Tt_ll) - (i__f) = ('::21) + (5:22) +.. o+ (';:__20) for any positive
integer ¢ < [by/2].

Let f(z) = (5:21) +...+ (t/;Ecz/Q]) and g(z) =z +t'—3. For z € {1,2} and r > 3, f(z) = (’::21) >
t' —1 > g(x) with equality only if » = 3 and « = 2. For integers 2 < x < by, g(x) = g(2)+ (x —2) <

9(2) 1 2[(z — 2)/2], and
f(@) > f2)+ C:;) - (t/;ﬂxz/ﬂ).

Each of these terms is at least 2, so f(x) > f(2) +2[z/2]. So f(bs) > g(be) if by # 3, contradict-
ing (14). The final case is by = 2. Moreover, we also get a contradiction if equalities in (12)—(14)
do not hold. In this case, we must have by = b, = 2, and £ =t —1 (so s < t'+2). But then there is

no way to fit two edges in By and two edges in B, without violating Claim 4.3. This finishes Case
2.

Case 3: By, By = (). Let us show that

if By, Be =0, then aj,ap >t —(+1>2. (15)
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Indeed, if a; <t — ¢, then dgr(uy) < (Y ~FIVIPIIZDY = (" ~1) S0, since By =0 and € < #' —1,

dutw) = dwlun) +BP) < (07 ) 4e-1< (1)

r —

a contradiction. The same argument works if a; <t/ — /.

Similarly, if By, B, = () and i € {1,/}, then at least two edges in H' containing u; are not subsets
of V(P). Indeed, otherwise

(-1 v
dp(ur) = dpr(ur) + dpp (ur) <1+ (T_ 1) tl-1< (T_ 1)'

Let f, f’ be distinct edges of H' such that for distinct ¢, j, we have {v;,u1} C f,{vj,ue} C f'. By
Claim 4.4, |j —i| > £+ 1, and by Claim 4.1, A; contains no consecutive vertices in Q). Without loss
of generality, there exists v; € Ay, v; € A with j > i+ ¢4+ 1. If ay >t/ — ¢ + 2, then

n—~02>s> A1+ {vktr t ok € Aik # i, st + {vigt, - vige} |

1
22(t’—£+2)—2+£22"T—£+2:n—£+1,

a contradiction. Hence by (15),
alzag:t/—f—i-lzz (16)

We also prove that

if B1,By = 0, then every v; € A1 is contained in at least two common edges of H'
with uy, and similar with wy.

Indeed, otherwise by (16),

dH(ul) = dH/(U1)+dHP(U1>
(O N g camuveysue £ == D1+ 1+ 1EE)
01+ ( e-1)> - (t’—€+1+(£—1)—1

IA

1+¢-—-1
r—1 r—2 >+ +

t/

(
< <T_1) -1 +14+0-1
< <rt_/1> H).

This implies that for each v; € Ay and v; € Ay, there exist distinct edges f, f/ € H’ such that
{ui,v;} € f,{ug,v;} € f’, and hence |j —i| > ¢+ 1 by Claim 4.4.

Case 3.1: By, By = () and Ay # A,. Without loss of generality, |As| > |A1|. Since A, Ay are
independent sets and Ay — A is nonempty, by Lemma 3.1, s > 2a; +2|Ay — A1| + (/+1) — 3. Hence

s—2|Ay— Ay|—£0+2 20 +1—4) —2|Ap — A| — 0+ 2
ar < | [4e 21’ JgL( ) ‘25 1 | =t —0—|A;— Ay|+1. (18)
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We have

r—1

d(u) < (al +€1_ 1> +|E(P)| < (t/ e~ Al') FO—1.

Since |Ay — A1] > 1 and ¢ < t' — 1, this quantity is strictly less than (rt_ll) + 1, a contradiction.

Case 3.2: B1,B; = () and Ay = A,. If H' has no edges containing both, u; and wuy, then by the
case and (16),

/

du(ur) = dm(ur) + dip(u1) < <r t_

“( 54 () rens( D)

a contradiction. So suppose there is fy € E(H') containing {uq,u¢}. Let

) I €4 UVP): Il =7 = Luc € fH + BP)

Py =wuj, fi—1, ..., fi,uas fosuwe, fo—1, oo ujp

denote the path obtained from P by adding fy and deleting f;. By definition, for each 1 < j <
¢ — 1, the pair (Q, P;) is also a best pair. This yields that each f; is contained in V(Q) U V(P).
Moreover, for each such j we have Case 3.2. By (17), deleting fy from H’ does not change Aj.
It follows that Ay = A = ... = Ay, and hence each f; is contained in A; U V(P). So by (16),
d(uy) < ((tlfet}_)f(e*l)), a contradiction. O

7 Proof of Theorem 1.4 for r > n/2

In this section, we complete the proof of Theorem 1.4 by showing that if » > n/2 > 3 and
S(H)>r—1lorr=3,n=5and 6(H) > 3, then H is hamiltonian-connected.

Proof of Theorem 1.4 for r > n/2. Suppose that an r-graph H with §(H) > r — 1 has no hamilto-
nian x,y-path for some z,y € V(G). Let (Q, P) be a best pair of two vertex-disjoint paths @ and
P such that @ is a z, y-path.

It is straightforward to check that the theorem is satisfied when n =4, r = 3, §(H) = 2, so we may
assume §(H) > 3.

Since by Lemma 5.2, s > r+ 1 and r > ["T‘H], we have £ < n —s < L"T%J and

r—zz[”;ﬂ—V;?’Jzz (19)

Case 1: ¢ = 1. As in Section 6.1, in this case every edge g € H' contains at most one vertex
outside of V(Q).

Case 1.1: There are two edges g,¢’ € E(H') containing u;. Then |(¢Ug¢" )NV (Q)| > r, and no two
vertices of g U ¢’ are consecutive on Q. It follows that s > 2r — 1 > 2"7‘"1 — 1 =mn, a contradiction
tos<n-—/4.
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Case 1.2: There is exactly one edge g € F(H') containing u;. Since §(H) > 3, at least two edges
of Hg contain u;. By Claim 4.2, g does not intersect the sets {vi, viy1} such that u; € e;. On the
other hand, since no two vertices in g are consecutive on @), the r — 1 vertices of g NV (Q) intersect
at least 2(r — 1) —2 > n — 3 sets {v;, v;4+1}. This contradicts the fact that @ has s —1 < n — 2 pairs
{Ui7 Ui+1}-

Case 1.3: All edges containing u; are in By, and some edge g € H' is contained in V(Q). Then
d(u;) =b;y >r—1. By Claim 4.7, r — 1 < b; < s —7r+ 1 and therefore n <2r —1 <s+1 < n.
This implies that the “equality” part of Claim 4.7(i) holds, and so g = {v1,...,v;} U{vj41,...,vs}
and By = {e;,...,e;} for some i < j. In particular, by symmetry we may assume that ¢ > 1. Let
@’ be the path obtained by replacing e; with g. We get a new best pair (Q’, P) with e; playing the
old role of g. As By does not change, Claim 4.7 asserts g = ej, a contradiction.

Case 1.4: All edges containing u; are in By, and no edges in H' are contained in V(Q). Again,
|B1| > r— 1. Since |E(H)| > n — 1, there is an edge g € E(H’). Since ¢ = 1 and Case 1.3 does not
hold, [¢gNV(Q)| =r — 1. Then g has a vertex w outside of V(Q) U {u1}, so s <n — 2.

If there is another edge ¢’ € E(H’) containing w, then there could not be consecutive vertices
v, Vi1 in @ such that one of them is in g and the other in ¢’. Hence the sets A = g\ {w} and
B = ¢\ {w} satisfy condition (1) for ¢ = 2 in Lemma 3.3. Since ¢’ Z g and g Z ¢, Lemma 3.3(ii)
for g =2 yields s > |A| 4+ |B|+¢q—1 > 2r — 1 > n. This contradicts the fact that s <n — 2.

Otherwise, w belongs to some r—2 edges €;,, ..., €, ,. Let A= Ug;%{vi].,vijﬂ}. Then |A| > r—1.
By Claim 4.2, gn A = (. Hence s > (r — 1)+ (r — 1) > 22 — 2 = n — 1, contradicting s <n — 2.

Case2:2§£§L%J—1.

Case 2.1: a; > 1 and by > 1. Let g € E(H’) contain u;. Then g C V(Q)UV(P) and [gNV(Q)| >
r —{. Since £ > 2, by Lemma 3.2 with ¢ =/,

s—1—¢+1 n
gty
TTEs 2 =90

- n
contradicting r > 7.

If b < 1, then u; is contained in at least one edge in H' and so a1 > r —¥¢ > 2 by (19). Either way,
a1 + b1 > 2 and similarly ay 4+ by, > 2. By symmetry, the following two subcases remain.
Case 2.2: by = by = 0. Then dy/(u1) > 6(H) — |[E(P)| > (r —1) — ({ — 1) > 2 and similarly
dyr(ug) > 2. Let g1 € E(H') contain u; and gy € E(H') — g1 contain uy. Let A = g1 N V(Q) and
B=g,NV(Q). Then A and B satisfy condition (1) for ¢ = 1+ ¢ in Lemma 3.3.
Also, |A| > r—¢ with equality only if g; D V(P), and the same holds for B. If |A| = |B| = r—/, then
A # B because g1 # go. In this case, by Lemma 3.3(ii) for ¢ = 144, s > 2(r—{)+(1+4)—1 = 2r—¢.
Since s < n — ¢, this contradicts r > n/2. Similarly, if max{|A|,|B|} > r — ¢+ 1 and A # B, then
by Lemma 3.3(ii) for g =1+4¢, s> (r—£)+ (r—£4+1)+ (14+¢) —2 = 2r — {. So, we get the same
contradiction.
Finally, suppose A = B. Since g1 # gy, this implies |A| > r — ¢ + 1. Hence by Lemma 3.3(i) for
qg=1+1, we get

n—0>s>14+U+1)(r—1),

which yields
Lr—0)<n—r—1. (20)
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Since 2 < ¢ < r — 2, for fixed n and r, the LHS in (20) is at least 2(r — 2). Thus (20) implies
3r <m+3. But 3r > (n+1)+r >n+4, a contradiction.

Case 2.3: a1 = ay = 0. Similarly to Case 2.2, by > r—/fand by > r — . Let A = {v;v;41 : uj € €;}
and B = {v;vj41 : u¢ € e;}. Then A and B satisfy condition (2) for ¢ = ¢ in Lemma 3.4.

Also, |A| > r — £ with equality only if u; € f; for all j, and the same holds for B (with uy in place
of up). If |A| = |B| =r — ¢ and A # B, then by Lemma 3.4(ii) for g =¢, s —1>2(r—{)+{—1=
2r — ¢ — 1. Since s < n — £, this contradicts r > n/2. Similarly, if max{|A|,|B|} > r — ¢+ 1 and
A # B, then by Lemma 3.4(ii) for ¢ =¥¢, s —1> (r—0)+(r—£+1)+{—-2=2r —{—1. So, we
get the same contradiction.
Finally, suppose A = B. Let B’ = U{j:uleej}{vj’vjﬂ}' Since A = B, |B'| > 2(r — {). Let
A= f1NnV(Q). If A =0, then |V(H) —V(Q)—V(P)| > |fi — V(P)| > r—+£ > 2. Then by
Lemma 3.4(i) for g = ¢, we get n —¢ —2 > s > 2+ {(r — £ — 1), which yields ¢(r — ¢) < n —4. Since
2 < ¢ <r—2, the LHS of this inequality is at least 2(r —2) > n — 3, a contradiction. Thus A’ # (.
If v;; € AN B, say e;, € B, then we can replace edge e;, in @ by the path v;,, f1,u1,€;,,vi;+1,
contradicting the choice of (Q, P). Thus A’ N B’ = (). Moreover, similarly if 41 < iy < i3+ /¢ — 2,
vy, € A" and e;, € B, then we can replace the subpath v;,,€;,, v, +1,...,v;, of @ with the longest
path v;,, f1,us2, fo,us, ..., U, €y, Vi,+1, a contradiction again. It follows that s > |A’| + |B'| + £ — 2.
If |A'| =1, then s <n — ¢ —1, and therefore n — ¢ > |B'| + ¢ > 2r — { > n — {, a contradiction.
Otherwise if |A’| > 2, then s > |B'| + ¢ > 2r — { > n — { again.

O

8 Concluding remarks

1. A number of theorems on graphs, in particular, Theorem 1.1, give sufficient conditions for
the existence of hamiltonian cycles in terms of 02(G) = min,,¢p(q) d(u) + d(v). Partially, this is
because many proofs of bounds in terms of the minimum degree also work for o2(G). It seems
this is not the case for r-graphs when r > 3. Moreover the degree of a vertex in an r-graph
can be interpreted in different ways: the number of edges containing the vertex or the number of
vertices in its neighborhood. Defining a suitable analog of o2(G) for hypergraphs is unclear. For
example, if n = 2r, then there are n-vertex r-graphs with 6 edges in which every two vertices are
in a common edge (e.g., a blow up of a K4), so counting the sizes of the neighborhoods is not a
useful parameter at least for large . On the other hand for small r, the hypergraph consisting of
a K] _, and one additional edge satisfies d(u) + d(v) > (’;:f) + 1 for every pair of vertices and is
not hamiltonian. While it is likely possible to prove an Ore-type theorem using this bound, this
quantity is significantly larger than the sufficient minimum degree condition §(H) > (L("r__l%/ QJ) +1
needed for hamiltonicity, and so such a result may not be very meaningful. It would be interesting
to find some analog of o2(G) for r-graphs that is both natural and nontrivial for a given range of .

2. Given k > 2, a (hyper)graph G is k-path-connected if for any distinct z,y € V(G), there is
an x,y-path with at least k vertices. In these terms, an n-vertex (hyper)graph is hamiltonian-
connected exactly when it is n-path-connected. It would be interesting to find exact restrictions on
the minimum degree of an n-vertex r-graph G providing that G is k-path-connected for r < k < n/2.

3. Call a graph G 1-extendable if for each edge e € E(G), G has a hamiltonian cycle containing
e. Thus Theorem 1.1 yields that for n > 3 each n-vertex graph G with 6(G) > (n +1)/2 is 1-
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extendable. Also, one can define 1-extendable hypergraphs in several ways. One natural definition
would be: An r-graph G 1-extendable if for each edge e € F(G) and any two vertices u,w € e, G
has a hamiltonian cycle C' = vy, e, v, ..., Vs, €n,v1 such that e; = e, v1 = u and v9 = w.

For r = 2, this definition coincides with the original definition of 1-extendable graphs, but for r > 3
the claim that each hamiltonian-connected r-graph is 1-extendable is not true: as we have seen in
Section 2.2, hamiltonian-connected r-graphs do not need to be even just hamiltonian. On the other
hand, trivially if each n-vertex r-graph with minimum degree at least d is hamiltonian-connected,
then each n-vertex r-graph with minimum degree at least d + 1 is l-extendable. So, Theorem 1.4
yields the following.

Corollary 8.1. Let n > r > 3. Suppose H is an n-vertex, r-graph such that (1) r < n/2 and
S(H) > (Lfﬁj) +2,0r (2)r>n/2>3 and 6(H) >r, or (3) r=3,n=>5 and §(H) > 4. Then H

1s 1-extendable.

When r > n/2 > 3, the bound in Corollary 8.1 is exact, but when 3 <r <n/2orr=3andn=>5
it probably can be improved by 1.

4. Poésa [11] considered the following generalization of 1-extendable graphs. Given a linear forest
(i.e., a set of vertex-disjoint paths) L, call a graph G L-extendable if G U L has a hamiltonian cycle
containing all edges of L. Pdsa [11] proved that for each n > ¢ > 0 and every linear forest L
with ¢ edges, each n-vertex graph G with o9(G) > n + ¢ is L-extendable. This is a far reaching
generalization of Theorem 1.1. It also implies that if 09(G) > n + ¢, then G is £ + 1-hamiltonian-
connected (take L to be a path on at most ¢ vertices).

One may consider different hypergraph definitions of being L-extendable for a given graph linear
forest L. For example, given a positive integer ¢, we can say that a hypergraph G is ¢-extendable if
for every choice of ¢ + 1 vertices uq,...,uppq and £ edges g1, ..., g¢ in G such that {u;,u;11} C ¢;
for all i € [¢], G has a hamiltonian cycle C' = vi,€e1,v9,...,Un,€n,v1 such that v; = wu; for all
i € [0 +1] and e; = g; for all j € [(]. Exact bounds on the minimum degree providing that an
n-vertex r-graph is f-extendable seem difficult for general ¢ but probably are feasible for very small
or very large /.

5. Chartrand, Kapoor and Lick [2] proved analogs of Dirac’s Theorem and its generalizations
by Ore [9] and Pésa [11] for a-hamiltonian graphs, that is, the graphs that are hamiltonian after
deleting any set of at most « vertices. If in this definition we replace “at most” with “exactly”,
the class of the graphs satisfying the definition may change. For example, after deleting any vertex
from Petersen Graph, the remaining graph is hamiltonian. Lick [7] proved similar exact results for
a-hamiltonian-connected graphs, that is, the graphs that are hamiltonian-connected after deleting
any set of at most a vertices. The ideas and tricks in [6] and this paper may be used to try to find
exact or close to exact bounds on minimum degree in an n-vertex r-graph G ensuring that G is
a-hamiltonian/a-hamiltonian-connected. As with graphs, the answers for the definitions with “at
most” and “exactly” may differ.
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