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Abstract

A hypergraph H is hamiltonian-connected if for any distinct vertices x and y, H contains a
hamiltonian Berge path from x to y. We find for all 3 ≤ r < n, exact lower bounds on minimum
degree δ(n, r) of an n-vertex r-uniform hypergraph H guaranteeing that H is hamiltonian-
connected. It turns out that for 3 ≤ n/2 < r < n, δ(n, r) is 1 less than the degree bound
guaranteeing the existence of a hamiltonian Berge cycle. Moreover, unlike for graphs, for each
r ≥ 3 there exists an r-uniform hypergraph that is hamiltonian-connected but does not contain
a hamiltonian Berge cycle.
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1 Introduction and results

A hypergraph H is a family of subsets of a ground set. We refer to these subsets as the edges of
H and the elements of the ground set as the vertices of H. We use E(H) and V (H) to denote the
set of edges and the set of vertices of H respectively. We say that H is r-uniform (an r-graph,
for short) if every edge of H contains exactly r vertices. A graph is a 2-graph. The degree dH(v)
of a vertex v in a hypergraph H is the number of edges containing v. When it is clear from the
context, we may simply write d(v) to mean dH(v). The minimum degree, δ(H), is the minimum
over degrees of all vertices of H.

A hamiltonian cycle (path) in a graph is a cycle (path) that visits every vertex. A graph is
hamiltonian if it contains a hamiltonian cycle. Furthermore, a graph is hamiltonian-connected if
there exists a hamiltonian path between every pair of vertices.

It is well known that determining whether a graph is hamiltonian is an NP-complete problem. Suffi-
cient conditions for existence of hamiltonian cycles in graphs have been well-studied. In particular,
the famous Dirac’s Theorem [5] says that for any n ≥ 3 each n-vertex graph G with δ(G) ≥ n/2
contains a hamiltonian cycle.

Every hamiltonian-connected graph is also hamiltonian, but the converse is not true. For example
for even n ≥ 4, the complete bipartite graph Kn/2,n/2 is hamiltonian but not hamiltonian-connected.
The example of Kn/2,n/2 also shows that for even n, condition δ(G) ≥ n/2 does not provide that G
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is hamiltonian-connected. On the other hand, Ore [10] proved that a slightly stronger restriction
on minimum degree of a graph implies hamiltonian-connectedness:

Theorem 1.1 (Ore [10]). Let n ≥ 3 and G be an n-vertex graph. If d(u) + d(v) ≥ n+ 1 for every
u, v ∈ V (G) with uv /∈ E(G), then G is hamiltonian-connected. In particular, if δ(G) ≥ (n+ 1)/2,
then G is hamiltonian-connected.

Note that for odd n, the restriction on minimum degree is the same as in Dirac’s Theorem.

Dirac’s Theorem and Theorem 1.1 have been generalized and refined in several directions by
Posa [11], Lick [7] and many others. Among generalizations, there were different extensions of
the theorems to cycles and paths in hypergraphs, in particular, in r-graphs.

Definition 1.2. A Berge cycle of length s in a hypergraph is a list of s distinct vertices and
s distinct edges v1, e1, v2, . . . , es−1, vs, es, v1 such that {vi, vi+1} ⊆ ei for all 1 ≤ i ≤ s (we always
take indices of cycles of length s modulo s). We call vertices v1, . . . , vs the defining vertices of
C and write V (C) = {v1, . . . , vs}, E(C) = {e1, . . . , es}. Similarly, a Berge path of length ℓ is a
list of ℓ+ 1 distinct vertices and ℓ distinct edges v1, e1, v2, . . . , eℓ, vℓ+1 such that {vi, vi+1} ⊆ ei for
all 1 ≤ i ≤ ℓ, with defining vertices V (P ) = {v1, . . . , vℓ+1} and E(P ) = {e1, . . . , eℓ}.

For simplicity, we will say a hypergraph is hamiltonian if it contains a hamiltonian Berge cycle,
and is hamiltonian-connected if it contains a hamiltonian Berge path between any pair of vertices.

Approximate bounds on the minimum degree of an n-vertex r-graph H that provide that H is
hamiltonian were obtained for r ≤ n−4

2 by Bermond, Germa, Heydemann, and Sotteau [1]; Clemens,
Ehrenmüller, and Person [3]; and Ma, Hou, and Gao [8]. Coulson and Perarnau [4] gave exact
bounds in the case r = o(

√
n) (and large n). The present authors resolved the problem for all

3 ≤ r < n:

Theorem 1.3 ([6]). Let n > r ≥ 3. Suppose H is an n-vertex, r-graph such that (1) r ≤ (n− 1)/2
and δ(H) ≥

(⌊(n−1)/2⌋
r−1

)
+ 1, or (2) r ≥ n/2 and δ(H) ≥ r. Then H contains a hamiltonian Berge

cycle.

The inequalities in this result are best possible for all 3 ≤ r < n. Very recently, Salia [12] proved
sharp results of Pósa type for Berge hamiltonian cycles. He described the sequences (d1, . . . , dn)
with d1 ≤ d2 ≤ . . . ≤ dn of two types: (a) for r < n/2 every n-vertex r-graph with degree sequence
(d′1, . . . , d

′
n) such that d′i > di for all i has a hamiltonian Berge cycle and also (b) every n-vertex

hypergraph with degree sequence (d′1, . . . , d
′
n) such that d′i > di for all i has a hamiltonian Berge

cycle. The first of these nice results implies Part (a) of Theorem 1.3 for odd n.

Since we consider mostly Berge cycles and paths, from now on, we will drop the word “Berge” and
simply use cycle and path to refer to a Berge cycle and a Berge path, respectively.

Note that while every hamiltonian-connected graph is hamiltonian, this is not true for r-graphs
when 3 ≤ r < n. In the next section, for every 3 ≤ r < n we present a hamiltonian-connected
r-graph that has no hamiltonian cycles.

The main result of this paper is the following.

Theorem 1.4. Let n ≥ r ≥ 3. Suppose H is an n-vertex r-graph such that
(1) r ≤ n/2 and δ(H) ≥

(⌊n/2⌋
r−1

)
+ 1, or (2) n− 1 ≥ r > n/2 ≥ 3 and δ(H) ≥ r − 1,

or (3) r = 3, n = 5 and δ(H) ≥ 3. Then H is hamiltonian-connected.
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Note that the conditions in Theorem 1.4 for 3 ≤ r ≤ n/2 and even n are stronger than in Theo-
rem 1.3, for 3 ≤ r ≤ n/2 and odd n are the same, and for 3 ≤ n/2 < r ≤ n− 1 are weaker than in
Theorem 1.3. These bounds are sharp, and extremal examples will be given in the next section.

Similarly to [6], we elaborate the idea of Dirac [5] of choosing a longest cycle plus a longest path.
We also use a series of lemmas on subsets of edges and vertices in graph paths.

The structure of the paper is as follows. In the next section, we show extremal examples for The-
orems 1.3 and 1.4 and also examples of hamiltonian-connected r-graphs that have no hamiltonian
cycles. In Section 3 we prove lemmas on subsets of graph paths. In Section 4 we set up the main
proofs for all cases: we define “best” extremal substructures in possible counter-examples to our
theorem and prove some properties of such substructures. In the subsequent three sections, we
analyze all possible cases that can arise in counter-examples, and settle these cases. We finish the
paper with some concluding remarks.

2 Examples

2.1 Examples for Theorems 1.3 and 1.4

For all n > 3 and 3 ≤ r ≤ (n− 1)/2, let H1 = H1(n, r) be the r-graph formed by a clique Q of size

⌈n+1
2 ⌉ and a clique R of size ⌊n+1

2 ⌋ sharing exactly one vertex. Then δ(H1) =
(⌊n−1

2
⌋

r−1

)
, and H1 is

non-hamiltonian because it has a vertex whose deletion disconnects the r-graph.

Another example for 3 ≤ r ≤ (n − 1)/2, is the r-graph H2 = H2(n, r) whose vertex set is A ∪ B
where |A| = ⌈n+1

2 ⌉, |B| = ⌊n−1
2 ⌋, A∩B = ∅ and whose edges are sets X ⊂ A∪B with |X| = r and

|X ∩A| ≤ 1. Again, δ(H2) =
(⌊n−1

2
⌋

r−1

)
. Also, each cycle in H2 has no two consecutive vertices in A.

Since |A| > n/2, this yields that H2 is not hamiltonian.

For n/2 ≤ r ≤ n − 1, H3 = H3(n, r) is obtained by removing a single edge from any r-regular
r-graph. Then δ(H3) = r − 1 and H3 has n− 1 edges. Hence H3 cannot have a hamiltonian cycle.

The r-graphs above show sharpness of the bounds in Theorem 1.3. The following slight modifica-
tions of them show sharpness of the bounds in Theorem 1.4.

For all n > 3 and 3 ≤ r ≤ n/2, let H ′
1 = H ′

1(n, r) be the r-graph formed by a clique Q of size ⌈n+2
2 ⌉

and a clique R of size ⌊n+2
2 ⌋ sharing exactly two vertices, say x and y. Then δ(H ′

1) =
(⌊n

2
⌋

r−1

)
, and

H ′
1 has no hamiltonian x, y-path, since any x, y-path should miss either Q− {x, y} or R− {x, y}.

Another example for 3 ≤ r ≤ n/2, is the r-graph H ′
2 = H ′

2(n, r) whose vertex set is A ∪ B where
|A| = ⌈n2 ⌉ and |B| = ⌊n2 ⌋, A ∩ B = ∅ and whose edges are sets X ⊂ A ∪ B with |X| = r and

|X ∩ A| ≤ 1. Now δ(H ′
2) =

(⌊n
2
⌋

r−1

)
. Also, for distinct x, y ∈ B each x, y-path in H ′

2 has no two
consecutive vertices in A. Since |A| ≥ n/2, this yields that H ′

2 has no hamiltonian x, y-path.

For r > n/2, letH ′
3 = H ′

3(n, r) be obtained fromH3(n, r) by removing any edge. Then δ(H ′
3) = r−2

and H ′
3 has n− 2 edges. Hence H ′

3 cannot have any hamiltonian path.

For r = 3, n = 5, let V (H4) = {1, 2, 3, 4, 5} and E(H4) = {{1, 5, 2}, {1, 5, 3}, {1, 5, 4}, {2, 3, 4}}.
Then δ(H4) = 2 but there is no hamiltonian path from 1 to 5.
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Figure 1: The three cases of a hamiltonian v1, vh-path in C ′(n, r).

2.2 Hamiltonian-connected r-graphs with no hamiltionian cycles

By the (n, r)-tight cycle C(n, r) we denote the r-graph with vertex set V = {v1, . . . , vn} and edge
set E = {e1, . . . , en}, where ei = {vi, vi+1, . . . , vi+r−1} for all i = 1, . . . , n and indices count modulo
n.

Our example C ′(n, r) is obtained from C(n, r) by deleting one edge. Since C ′(n, r) has n− 1 edges,
it has no hamiltionian cycles. We claim that for 3 ≤ r < n, C ′(n, r) is hamiltonian-connected.

Indeed, by symmetry we may assume that we need a hamiltionian v1, vh-path and that we have
deleted ej from C(n, r). Also by symmetry, we may assume that h ≤ j + 1 ≤ n. We construct a
hamiltionian v1, vh-path slightly differently for odd h, for even h ≥ 4 and for h = 2. In all cases,
the subpath from vn to vh will be

P2 = vn, en−1, vn−1, en−2, . . . , . . . , vj+2, ej+1, vj+1, ej−1, vj , ej−2, vj−1, . . . , eh, vh+1, eh−1, vh.

Our final hamiltonian v1, vh-path will be of the form P1 ∪ P2 (see Figure 1) where the subpath P1

is as follows:

If h is odd, then

P1 = v1, e1, v3, e3, v5, . . . , vh−2, eh−2, vh−1, eh−3, vh−3, eh−5, . . . , e2, v2, en, vn.

If h is even and h > 2, then

P1 = v1, e1, v3, e3, v5, . . . , vh−1, eh−2, vh−2, eh−4, vh−4, eh−6, . . . , e2, v2, en, vn.

Finally if h = 2, then P1 = v1, en, vn.

3 Lemmas on graph paths

In this section we derive some properties of subsets of graph paths that will be heavily used in our
proofs. The reader can skip their proofs at the first reading.

Lemma 3.1. Let Q = v1, e1, . . . , es−1, vs be a graph path. Let A and B be nonempty subsets of
V (Q) such that A is an independent set, B − A ̸= ∅, and for each vi ∈ A and vj ∈ B − A,
|i− j| ≥ q ≥ 1. Then
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(i) If q ≥ 2, then s ≥ 2|A|+ |B −A|+ q − 2 (and therefore |A| ≤ (s− |B −A| − q + 2)/2).

(ii) If q = 1, then s ≥ 2|A|+ |B −A| − 2.

Moreover, if B is also an independent set, then s ≥ 2|A|+ 2|B −A|+ q − 3.

Proof. Let vj ∈ B − A. Without loss of generality, we may suppose there exists a vertex vi ∈ A
such that i < j and vk /∈ A ∪B for all i < k < j. Then V1 := {vi+1, . . . , vj−1} is a set of of at least
q − 1 vertices which does intersect A ∪ B. Similarly, if there exists vi′ ∈ A such i < j < i′ (and
vk /∈ A ∪B for all j < k < i′), then V2 := {vj+1, . . . , vi′−1} also contains at least q − 1 vertices and
does not intersect A ∪B. In this case, set V ′ = V1 ∪ V2. Otherwise, set V ′ = V1.

For each vk ∈ A − {vs}, vk+1 does not intersect A ∪ B, and only one vk+1, namely vi+1, is in V ′.
Therefore

s ≥ |A|+ |B −A|+ |{vk+1 : vk ∈ A, k /∈ {i, s}}|+ |V ′|.

If V ′ = V1 ∪ V2, then s ≥ 2|A| + |B − A| − 2 + 2q − 2 which is at least 2|A| + |B − A| + q − 2 if
q ≥ 2, and at least 2|A|+ |B −A|+ 2 if q = 1.

If V ′ = V1, then in this case vs /∈ A, so we have s ≥ |A| + |B − A| + (|A| − 1) + q − 1 =
2|A|+ |B −A|+ q − 2.

Suppose now that B is also an independent set, and let vj ∈ B − A. Again we may suppose there
exists vi ∈ A with i < j. Between vj and vi there is a set V ′ of at least q− 1 vertices not in A∪B,
and for any vk ∈ A ∪B, vk+1 /∈ A ∪B. Therefore

s ≥ |A ∪B|+ |{vk+1 : vk ∈ A ∪B, k /∈ {i, s}}|+ |V ′|

≥ |A|+ |B −A|+ (|A|+ |B −A| − 2) + q − 1 = 2|A|+ 2|B −A|+ q − 3.

Lemma 3.2. Let q ≥ 2 and s > a ≥ 1. Let Q = v1, e1, . . . , es−1, vs be a graph path, and I be a
non-empty independent subset of {v1, . . . , vs}. If A′ is a set of a edges of Q such that the distance
in Q from any edge in A′ to any vertex in I is at least q, then |I| ≤ ⌊ s−a−q+1

2 ⌋ if q ≥ 2, and
|I| ≤ ⌊ s−a+1

2 ⌋ = ⌈ s−a
2 ⌉ if q = 1.

Proof. Applying Lemma 3.1 with A = I and B =
⋃

{i:ei∈A′}{vi, vi+1} (so |B| ≥ a + 1) gives the
desired bounds.

Lemma 3.3. Let Q = v1, e1, . . . , es−1, vs be a graph path. Let A and B be nonempty subsets in
V (Q) such that

for each vi ∈ A and vj ∈ B, either i = j or |i− j| ≥ q ≥ 2. (1)

(i) If A = B, then s ≥ 1 + q(|A| − 1) with equality only if A = {v1, v1+q, v1+2q, . . . , vs}.
(ii) If B ̸= A, then s ≥ |A|+ |B|+ q − 2 with equality only if A ⊂ B or B ⊂ A.

Proof. Part (i) is obvious. We prove (ii) by induction on |A ∩B|.
If A∩B = ∅, then Q contains |A|+ |B| vertices in A∪B and at least q−1 vertices outside of A∪B
between A and a closest to A vertex in B.
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Suppose now that (ii) holds for all A′ and B′ with |A′∩B′| < t and that |A∩B| = t, say vi ∈ A∩B.
By symmetry, we may assume |A| ≤ |B|. If A = {vi}, then Q has |B| − 1 vertices in B − A and
at least q − 1 vertices between vi and a closest to vi vertex in B − A (such a vertex exists since
B ̸= A). Thus, s ≥ 1 + |B −A|+ q − 1 = |B|+ |A| − 2, as claimed.

Finally, suppose |A| ≥ 2. By definition, (A ∪ B) ∩ {vi−q+1, vi−q+2, . . . , vi+q−1} = {vi}. So since
|B| ≥ |A| ≥ 2, i ≥ q+1 or i ≤ s−q (or both). By symmetry, assume i ≥ q+1. Define e′i = vi−q+1vi+1

and let A′ = A−vi, B
′ = B−vi, andQ′ = v1, e1, . . . , vi−q+1, e

′
i, vi+1, ei+1, . . . , es−1, vs. By definition,

A′ and B′ satisfy (1). So, by induction, |V (Q′)| ≥ |A′|+ |B′|+ q − 2 with equality only if A′ ⊂ B′.
Hence

s ≥ q + |V (Q′)| ≥ q + (|A| − 1) + (|B| − 1) + q − 2 = |A|+ |B|+ 2(q − 2),

with equality only if A ⊂ B. Since q ≥ 2, this proves (ii).

Lemma 3.4. Let Q = v1, e1, . . . , es−1, vs be a graph path. Let A′ and B′ be nonempty subsets of
E(Q) such that

for each ei ∈ A′ and ej ∈ B′, either i = j or |i− j| ≥ q ≥ 2. (2)

(i) If A′ = B′, then s− 1 ≥ 1 + q(|A′| − 1) with equality only if A′ = {e1, e1+q, e1+2q, . . . , es−1}.
(ii) If B′ ̸= A′, then s− 1 ≥ |A′|+ |B′|+ q − 2 with equality only if A′ ⊂ B′ or B′ ⊂ A′.

Proof. Let A = {vi : ei ∈ A′} and B = {vi : ei ∈ B′}. Since vs /∈ A ∪ B, the sets A,B are vertex
subsets of the path Q′ = v1, e1, . . . , es−2, vs−1. So, Lemma 3.3 applied to A,B and Q′ yields the
desired bounds.

Lemma 3.5. Let Q = v1, e1, . . . , es−1, vs be a graph path. Suppose F ⊂ E(Q) and f = |F |. Let A
and B be subsets of {v1, . . . , vs} that are vertex-disjoint from all edges in F and such that

for each vi ∈ A and vj ∈ B, either i = j or |i− j| ≥ 2. (3)

(i) If A = B, then s ≥ |A|+ |B|+ f − 1.

(ii) If B ̸= A, then s ≥ |A|+ |B|+ f with equality only if A ⊂ B or B ⊂ A.

Proof. Let Q′ = v′1, e
′
1, v

′
2, . . . , e

′
s′−1, v

′
s′ be a path obtained from Q by iteratively contracting f edges

of F . In particular, s′ = s − f . Since A and B are both vertex-disjoint from F , each vi ∈ A ∪ B
was unaffected by the edge contractions and hence still exists as some v′i′ in Q′. Moreover, (3) still
holds for A and B in Q′.

So, Lemma 3.3 for q = 2 applied to A,B and Q′ yields that if A = B, then s′ ≥ |A|+ |B| − 1, and
if B ̸= A, then s′ ≥ |A|+ |B| with equality only if A ⊂ B or B ⊂ A. Since s′ = s− f , this proves
our lemma.

4 Setup for Theorem 1.4

Bounds of the theorem differ for r ≤ n/2 and r > n/2. Naturally, the proofs also will be different,
but they will have similar structure. In both proofs, for given vertices x, y in an r-graph H we
attempt to find a hamiltonian x, y-path. Both proofs will have three steps.
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In Step 1 we construct an x, y-path Q with at least max{⌈n+2
2 ⌉, r + 1} vertices.

Then we consider pairs (Q,P ) of vertex-disjoint paths in H such that Q is an x, y-path. We will
say that such a pair (Q,P ) is better than a similar pair (Q′, P ′) if

(i) |E(Q)| > |E(Q′)|, or

(ii) |E(Q)| = |E(Q′)| and |E(P )| > |E(P ′)|, or

(iii) |E(Q)| = |E(Q′)|, |E(P )| = |E(P ′)| and the total number of vertices in V (P ) in the edges in
Q (counted with multiplicities) is greater than the total number of vertices in V (P ′) in the
edges in Q′.

We consider best pairs and study their properties. Some properties will be proven in the next
subsection. Using these properties together with the lemmas on graph paths from the previous
section in Step 2 we show that the path P in a best pair cannot have exactly one vertex. In the
final Step 3 we handle all cases when P has at least two vertices.

Below we assume that (Q,P ) is a best pair, Q = v1, e1, . . . , es−1, vs, and P = u1, f1, . . . , fℓ−1, uℓ.

We consider three subhypergraphs, HQ, HP and H ′ of H with the same vertex set V (H): E(HQ) =
{e1, . . . , es−1}, E(HP ) = {f1, . . . , fℓ−1} and E(H ′) = E(H)− E(HP )− E(HQ). By definition, the
edge sets of these three subhypergraphs form a partition of the edge set of H. For a hypergraph F
and a vertex u, we denote by NF (u) = {v ∈ V (F ) : {u, v} ⊆ e for some e ∈ F}. For i ∈ {1, ℓ}, set
Bi = {ej ∈ E(Q) : ui ∈ ej} and bi = |Bi|.

4.1 Claims on best pairs

The claims below apply to all best pairs (Q,P ), regardless of the uniformity r.

Claim 4.1. In a best pair (Q,P ), NH′(u1) cannot contain a pair of vertices that are consecutive
in Q.

Proof. Suppose toward a contradiction that vi, vi+1 are contained in edges of H ′ with u1. Let
e, e′ ∈ E(H ′) be such that u1, vi ∈ e and u1, vi+1 ∈ e′. If e ̸= e′, then replacing ei with e, u1, e

′ gives
a longer x, y-path than Q, a contradiction. Thus we may assume e = e′.

If there is 1 ≤ j ≤ ℓ such that uj ∈ ei, then by replacing the path vi, ei, vi+1 in Q with the longer
path vi, e, u1, f1, u2, . . . , fj−1, uj , ei, vi+1, we obtain a longer x, y-path than Q. Thus ei ∩V (P ) = ∅.
Then replacing ei with e in Q gives a path Q′ with (Q′, P ) better than (Q,P ) by criterion (iii).

Symmetrically, the claim holds for uℓ in place of u1.

Claim 4.2. For any u /∈ V (Q), if u ∈ ei, then vi, vi+1 /∈ NH−HQ
(u).

Proof. Suppose vi ∈ NH−HQ
(u), and let e ∈ E(H) − E(HQ) be such that {u, vi} ⊆ e. Then we

can find a longer cycle by replacing ei with e, u, ei, a contradiction to our choice of Q. A similar
argument holds for vi+1.

Claim 4.3. For every ei ∈ B1, ej ∈ Bℓ either i = j or |i− j| ≥ ℓ.
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Proof. Suppose there exists ei ∈ B1, ej ∈ Bℓ such that without loss of generality j > i and j−i ≤ ℓ−
1. Then the path obtained by replacing vi, ei, . . . , ej , vj+1 inQ with vi, ei, u1, f1, . . . , fℓ−1, uℓ, ej , vj+1

has |V (Q)| − (i− j) + ℓ > |V (Q)| vertices, a contradiction.

Claim 4.4. If there exists distinct edges e, f ∈ E(H ′) such that {u1, vi} ⊂ e and {uℓ, vj} ⊂ f , then
|i− j| ≥ ℓ+ 1.

Proof. If |i − j| ≤ ℓ, replace the subpath in Q from vi to vj with the path vi, e, P, f, vj to get a
longer x, y-path.

Claim 4.5. For every vi ∈ NH′(u1) and ej ∈ Bℓ, if i ≤ j then j − i ≥ ℓ and if i > j then
i− j ≥ ℓ+ 1.

Proof. Let e ∈ E(H ′) contain vi and u1. If i ≤ j, let Q′ be the path obtained by replacing the
segment vi, ei, . . . , ej , vj+1 in Q with the path vi, e, u1, P, uℓ, ej , vj+1. If i > j, let Q′ be obtained
from Q by replacing vj , ej , . . . , vi with vj , ej , uℓ, fℓ−1, . . . , f1, u1, e, vi. In the first case, |V (Q′)| =
|V (Q)| − (j − i) + ℓ, and in the second case |V (Q′)| = |V (Q)| − (i− (j +1))+ ℓ. The Claim follows
since |V (Q)| ≥ |V (Q′)| by the choice of (Q,P ).

Claim 4.6. For any e ∈ E(H ′), if vi, vj ∈ e, then at most one of ei, ej is in B1 and at most one
of ei−1, ej−1 is in B1.

Proof. If ei−1, ej−1 ∈ B1, then we get a longer path

v1, e1, v2, . . . , vi−1, ei−1, u1, ej−1, vj−1, ej−2, vj−2, . . . , vi, e, vj , ej , vj+1, . . . , vs.

The argument for ei, ej is similar.

Claim 4.7. Let B−
1 = {vi : ei ∈ B1} and B+

1 = {vi+1 : ei ∈ B1}.
(i) For any edge e ∈ E(H ′), b1 ≤ s− |e∩ V (Q)|+ 1 with equality only if B1 = {ei, ei+1, . . . , ej} for
some i < j and e ∩ V (Q) = {v1, . . . , vi} ∪ {vj+1, . . . , vs}.
(ii) b1 ≤ s− 1− |NH′(u1)∩V (Q)| with equality only if B1 is a set of b1 consecutive edges in Q and
NH′(u1) ∩ V (Q) = V (Q)− (B−

1 ∪B+
1 ).

Proof. Set e′ = e ∩ V (Q). By Claim 4.6, |B−
1 ∩ e| ≤ 1. Hence

b1 − 1 + |e ∩ V (Q)| − 1 ≤ |B1| − 1 + |e′ − {vs}| ≤ |{v1, . . . , vs−1}| = s− 1,

i.e., b1 ≤ s− |e′|+1 with equality only if vs ∈ e, |B−
1 ∩ e| = 1, and e∪B−

1 = V (Q). Symmetrically,
v1 ∈ e, |e ∩ B+

1 | = 1, and V (Q) \ e ⊂ B+
1 . So, V (Q) \ e ⊆ B−

1 ∩ B+
1 , and therefore |B−

1 ∩ B+
1 | ≥

s − |e′| = b1 − 1. This means, the symmetric difference of B−
1 and B+

1 has only two vertices. For
this, the b1 edges in B1 must be consecutive on Q, and e′ = V (Q)− (B−

1 ∩B+
2 ). This proves (i).

For (ii), by Claim 4.2 (B−
1 ∪ B+

1 ) ∩ (NH′(u1) ∩ V (Q)) = ∅. Therefore |B−
1 ∪ B+

1 | ≤ |V (Q)| −
|NH′(u1) ∩ V (Q)| = s− |NH′(u1) ∩ V (Q)|. We have |B−

1 ∪B+
1 | ≥ b1 + 1 with equality only if B1 is

a set of consecutive edges in Q. These inequalities together give our result.

Corollary 4.8. When ℓ = 1, b1 ≤ n− 3. If in addition, |NH′(u1) ∩ V (Q)| ≥ 2, then b1 ≤ n− 4.
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Proof. Since |E(Q)| < n − 1, there must be at least one edge e ∈ E(H ′), and since ℓ = 1, e
contains at least r − 1 ≥ 2 vertices in Q if u1 ∈ e, and at least r ≥ 3 otherwise. By Claim 4.7,
b1 ≤ s− 2 ≤ n− 3.

The second part follows from Claim 4.7 (ii).

5 Finding a longish x, y-path

In this section, we will show that there exists an x, y-path of length at least max{n/2 + 1, r + 1}.

Lemma 5.1. Let 3 ≤ r ≤ n/2, and let H be an n-vertex r-graph. Let x, y ∈ V (H). If δ(H) ≥(⌊n/2⌋
r−1

)
, then H contains an x, y-path with at least n/2 + 1 vertices.

Proof. The restrictions on δ(H) in Theorem 1.3 are not stronger than in Theorem 1.4. So, by
Theorem 1.3, H contains a hamiltonian cycle C in H. The longer of the two x, y-paths along C
has at least n/2 + 1 vertices.

For r > n/2, we need much more effort, see below.

Lemma 5.2. Let n ≥ r > n/2, and let H be an n-vertex r-graph. Let x, y ∈ V (H). If δ(H) ≥ r−1,
then H contains an x, y-path with at least r + 1 vertices.

Proof. We will first show that there exists some x, y-path in H. If there exists an edge e ∈ E(H)
with {x, y} ⊆ e, then we are done. Otherwise since r > n/2, any two edges e, f ∈ E(H) such that
x ∈ e, y ∈ f have a common vertex, say v ∈ e ∩ f . Then x, e, v, f, y is an x, y-path in H.

Now let Q = v1, e1, . . . , es−1, vs be a longest x, y-path in H (so x = v1, y = vs). Moreover, choose
Q so that if {v1, . . . , vs} ∈ E(H), then this edge is used in Q. Suppose s ≤ r.

Construct a new hypergraph Ĥ as follows: V (Ĥ) = V (H) − V (Q), and E(Ĥ) = {e ∩ V (Ĥ) : e ∈
E(H) − E(Q)}. Note that Ĥ is not necessarily a uniform hypergraph. We have a mapping from
the edges of H to the edges of Ĥ given by e 7→ e− V (Q) (which is not necessarily one-to-one).

Let D1, D2, . . . , Dq be the vertex sets of the connected components of Ĥ. For 1 ≤ j ≤ q, let
dj = |{ei ∈ E(Q) : ei ∩Dj ̸= ∅}|. Since |V (Q)| ≤ r, at most one edge ei ∈ E(Q) may be contained
in V (Q). It follows that

q∑
i=1

di ≥ |E(Q)| − 1 = s− 2. (4)

Claim 5.3. For any 1 ≤ j ≤ q, if ei ∩ Dj ̸= ∅, then the edges of E(H) − E(Q) containing vi or
vi+1 cannot intersect Dj.

Proof. Let v ∈ Dj ∩ ei. Suppose vi ∈ h ∈ E(H) − E(Q) and u ∈ h ∩ Dj . Then Ĥ contains a
u, v-path which we can lift to a u, v-path P in H that avoids E(Q). If h /∈ E(P ), then by replacing
the segment vi, ei, vi+1 in Q with the path vi, h, P, ei, vi+1, we obtain a longer x, y-path. Otherwise
let P ′ be the subpath of P starting with h. Then we replace vi, ei, vi+1 with vi, P

′, ei, vi+1 to get a
longer path. The argument for vi+1 is similar.
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Claim 5.4. For any 1 ≤ j ≤ q and any 1 ≤ i ≤ s−1, there are no distinct edges e, f ∈ E(H)−E(Q)
such that e and f intersect Dj, vi ∈ e, and vi+1 ∈ f .

Proof. Let P ′ be a shortest path in Ĥ from e ∩ Dj to f ∩ Dj . Lift P ′ to a path P in H which
avoids E(Q). By the minimality of P ′, e /∈ E(P ) and f /∈ E(P ). Then we may replace the segment
vi, ei, vi+1 in Q with vi, e, P, f, vi+1 to get a longer x, y-path.

Claim 5.5. For any 1 ≤ j ≤ q, if at least 2 edges in E(H)− E(Q) intersect Dj, then

|Dj | ≥ r − ⌈(s− dj)/2⌉+ 1.

Proof. Suppose |Dj | ≤ r−⌈(s−dj)/2⌉, and let e, g ∈ E(H)−E(Q) be distinct edges that intersect
Dj . Let A = e ∩ V (Q), B = g ∩ V (Q), and F = {{vi, vi+1} : Dj ∩ ei ̸= ∅}. By definition, |F | = dj ,
and each of A and B has at least r − |Dj | ≥ ⌈(s− dj)/2⌉ vertices.

By Claim 5.3, A and B are disjoint from all pairs in F . By Claim 5.4, (3) holds. So Lemma 3.5
together with the lower bounds on |A| and |B| imply that if A ̸= B, then

s ≥ |A|+ |B|+ dj ≥ 2
s− dj

2
+ dj = s, (5)

with equality only if A ⊂ B or B ⊂ A. But if A ⊂ B or B ⊂ A and A ̸= B, then |A|+|B| ≥ 1+2
s−dj
2 .

Hence, if A ̸= B, then in the RHS of (5) we get at least s+ 1, a contradiction.

Thus A = B. Since e and g are distinct but coincide on Q, e∩Dj and g ∩Dj are distinct sets each
with at least r − ⌈(s− dj)/2⌉ vertices. It follows that |Dj | ≥ r − ⌈(s− dj)/2⌉+ 1.

Claim 5.6. For any 1 ≤ j ≤ q, if exactly one edge in E(H)− E(Q) intersects Dj, then |Dj | ≥ r.

Proof. Suppose |Dj | ≤ r − 1 and e is the unique edge in E(H) − E(Q) that intersects Dj . Then
by the definition of Ĥ, Dj = e − V (Q). Let v ∈ Dj . Since |e| = r, e contains at least one vertex
vi in Q. By symmetry, we may suppose i < s. In order to have d(v) ≥ r − 1, v must belong to at
least r − 2 edges of E(Q). By Claim 5.3, none of these at least r − 2 edges is ei−1 or ei. This is
possible only if s = r, e ∩ V (Q) = {v1} and v ∈ e2 ∩ e3 ∩ . . . ∩ es−1. This implies |Dj | = r − 1 and
each vertex in Dj belongs to e2 by symmetry. But then {v2, v3} ∪Dj ⊆ e2, contradicting the fact
that |e2| = r.

Claim 5.7. For any 1 ≤ j ≤ q, at least one edge in E(H)− E(Q) intersects Dj.

Proof. Suppose not. By the definition of Ĥ, Dj is a single vertex, say v. Since d(v) ≥ r−1, v must
belong to at least r− 1 edges of Q, which is only possible if |V (Q)| = r. In this case v is contained
in all edges of Q. By the choice of Q, we have {v1, . . . , vs} /∈ E(H).

Since |E(H)| ≥ n − 1 > r − 1, there exists an edge g ∈ E(H) − E(Q). By the choice of Q, g
intersects some Dh. If |Dh| ≥ r − 1, then |V (H)| ≥ |V (Q)| + |Dh| + |Dj | ≥ r + r − 1 + 1 > n, a
contradiction. In particular, by Claim 5.6, this implies that at least two edges in E(H) − E(Q)
intersect Dh. We claim that for each such edge e,

e ∩ V (Q) ⊆ {v1, vs}. (6)
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Suppose this is not the case. Then since |Dh| ≤ r − 2, there exists a pair {vi, vi′} ̸= {v1, vs} and
edges e, f ∈ E(H) − E(Q) such that e and f intersect Dh, vi ∈ e, and vi′ ∈ f . Without loss of
generality, we may assume i < i′ < s. Let P be a vi, vi′-path in H avoiding E(Q) (it could be the
case that P contains only one edge). Then

v1, . . . , vi, P, vi′ , ei′−1, . . . , vi+1, ei, v, ei′ , vi′+1, . . . , es−1, vs

is a longer x, y-path in H. Therefore (6) holds. Since at least two edges in E(H)−E(Q) intersect
Dh, |Dh| ≥ r − 1, a contradiction.

Claim 5.8. Ĥ has at least 2 components.

Proof. Suppose q = 1. If |V (Q)| ≤ r − 1, then each edge ei intersects D1 and each vi ∈ V (Q)
is contained in an edge h ∈ E(H) − E(Q), and h must also intersect D1 since |h| > |V (Q)|,
contradicting Claim 5.3. So we may assume |V (Q)| = r.

By Claim 5.7, some edge h ∈ E(H) − E(Q) intersects D1. If h ⊂ D1, then |V (H)| ≥ |V (D1)| +
|V (Q)| ≥ r+ r > n, a contradiction. For each vi ∈ h∩V (Q), each of ei and ei−1 must be contained
in V (Q). As r = V (Q), only one such edge in Q can satisfy this. Hence without loss of generality,
we may assume h ∩ V (Q) ⊆ {v1} and e1 = V (Q). It follows that |D1| ≥ r − 1. If |D1| ≥ r, then
again we get |V (H)| > n.

Hence, the last possibility is that |D1| = r − 1 and h ∩ V (Q) = {v1}. In particular, by Claim 5.6,
some other edge h′ ∈ E(H) − E(Q) intersects D1. Since s = r ≥ 3, e1 ̸= es−1. So by the same
argument as for h, we have h′ ∩ V (Q) = {v1}. Since h′ ̸= h and D1 ⊇ h ∪ h′ − {v1}, we get
|D1| > r − 1, a contradiction.

Now we are ready to finish the proof of the lemma. By Claims 5.7, 5.6 and 5.5, |V (Dj)| ≥
r − ⌈(s− dj)/2⌉+ 1 for all j. Therefore

|V (H)| ≥ |V (Q)|+
q∑

j=1

(r − ⌈(s− dj)/2⌉+ 1) ≥ s+ q(r − s+ 1

2
+ 1) +

q∑
i=1

dj
2
.

Since r ≥ s, the quantity q(r − s+1
2 + 1) is minimized when q = 2. By (4),

|V (H)| ≥ s+ 2(r − s+ 1

2
+ 1) +

q∑
i=1

dj
2

≥ s+ 2r − (s+ 1) + 2 + (s− 2)/2

= 2r + s/2

> n,

a contradiction.

6 Proof of Theorem 1.4 for r ≤ n/2

In the next two sections, we set t′ = ⌊n/2⌋ and consider a best pair (Q,P ) withQ = v1, e1, . . . , es−1, vs
and P = u1, f1, . . . , fℓ−1, uℓ. By Lemma 5.1, s ≥ t′ + 1 if s is even and s ≥ t′ + 2 if s is odd. In
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both cases we get ℓ ≤ n− s ≤ t′ − 1 and s ≥ n/2+ 1. Recall that for i ∈ {1, ℓ}, Bi = {ej : ui ∈ ej},
and bi = |Bi|.

6.1 Finding a nontrivial path P

Lemma 6.1. In a best pair (Q,P ), |V (P )| ≥ 2.

Proof. Suppose that |V (P )| = ℓ = 1, i.e., P = u1. Then s ≤ n − 1. By condition (ii) of (Q,P )
being a best pair, every edge of H ′ contains at most one vertex outside Q.

Claims 4.1, 4.2 and Lemma 3.2 imply that |NH′(u1)| ≤ ⌈(s− b1)/2⌉. Therefore

1 +

(
t′

r − 1

)
≤ dH(u1) ≤ b1 +

(
⌈(s− b1)/2⌉

r − 1

)
≤ b1 +

(
⌈(n− 1− b1)/2⌉

r − 1

)
. (7)

Case 1: b1 = 0. By (7), 1 +
(

t′

r−1

)
≤

(⌈(n−1)/2⌉
r−1

)
=

(
t′

r−1

)
, a contradiction.

Case 2: b1 = 1. Again by (7), 1 +
(

t′

r−1

)
≤ 1 +

(⌈(s−1)/2⌉
r−1

)
≤ 1 +

(⌈(n−2)/2⌉
r−1

)
. If n is even, we

immediately obtain a contradiction. If n is odd, then we reach a contradiction when s < n− 1. So
suppose n is odd, s = n − 1, |NH′(u1)| = ⌈(s − b1)/2⌉ = s/2 = t′, and u1 is contained in all

(
t′

r−1

)
possible edges within NH′(u1) ∪ {u1}.
Consider the unique edge ei ofQ containing u1. Then |NH′(u1)| ≤ ⌈(i−1)/2⌉+⌈(n−1−(i+1))/2⌉ by
Claim 4.1 and Claim 4.2. If i is odd, then this gives |NH′(u1)| ≤ (i−1)/2+(n−i−2)/2 = (n−3)/2,
a contradiction. Thus, i is even and X := NH′(u1) = {v1, v3, . . . , vi−1, vi+2, vi+4, . . . , vs}.
Replacing ei−1 in Q with the edge e ∈ E(H ′) containing u1, vi−1 and replacing vi with u1 creates
a new path Q′ which only misses vi. Since (Q,P ) is a best pair, by condition (iii) of choosing a
best pair, ei and ei−1 can be the only edges of Q which contain vi and in fact (Q′, vi) is also a
best pair. Thus applying the same arguments to vi and Q′ as we did to u1 and Q, we obtain that
NH−Q′(vi) = X. Notice that we can apply a symmetric argument to vi+1 and corresponding path
Q′′ to get NH−Q′′(vi+1) = X.

We will find an edge g ̸= ei with |g − X| ≥ 2 and |g ∩ {v2, v4, . . . , vi−2, vi+3, vi+5, . . . , vs−1}| ≥ 1,
and then we will use g to find the desired hamiltonian path. Choose vj /∈ ei with vj /∈ X, which

exists because |(X ∪ ei)∩V (Q)| ≤ |X|+ r− 1 ≤ 2t′− 1 = s− 1. Since dH(vj) >
(

t′

r−1

)
and |X| = t′,

there is an edge g containing vj and some vertex outside X. Since vj /∈ X and vj /∈ ei, that vertex
cannot be u1 and must instead be some vk ∈ V (H) − (X ∪ {u1}) = V (Q) −X. Suppose without
loss of generality that j < k.

Case 2.1: g ∈ E(H ′). Since vj is in neither X nor ei, vj−1 ∈ X. Thus let f ∈ E(H ′) be such
that vj−1, u1 ∈ f . Similarly, since vk /∈ X, we have vk−1 ∈ X unless k = i + 1, which we handle
separately. Let f ′ ∈ E(H ′) be such that vk−1, u1 ∈ f ′, and observe that we can choose edges such

that f, f ′ are distinct because u1 is in
(
t′−1
r−2

)
≥ 2 edges with each vertex in X. Thus if j < k, we

have the hamiltonian path

v1, e1, v2, . . . , vj−1, f, u1, f
′, vk−1, ek−2, vk−2, . . . , vj , g, vk, ek, vk+1, . . . , vs.

A similar path can be found for j > k by symmetry. In the case k = i+ 1, replace f ′ in the above
path with ei to obtain the desired hamiltonian path.
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Case 2.2: g = em ∈ E(Q). Since g ̸= ei, we may assume by symmetry that vm ∈ X, unless m = k.
Let f be as in the previous case, and let f ′ ∈ E(H ′) be such that vm, u1 ∈ f ′.

Thus for j < m we have the hamiltonian path

v1, e1, v2, . . . , vj−1, f, u1, f
′, vm, em−1, vm−1, . . . , vj , g, vm+1, em+1, vm+2, . . . , vs

(and similar for j > m). If m = k, then vk+1 ∈ X, so we let f ′′, f ′′′ ∈ E(H ′) be such that
vj+1, u1 ∈ f ′′ and vk+1, u1 ∈ f ′′′. Then

v1, e1, v2, . . . , vj , g, vk, ek−1, vk−1, . . . , vj+1, f
′′, u1, f

′′′, vk+1, ek+1, vk+2, . . . , vs

is hamilitonian if j < k and we can find a similar path for j > k, ending the proof of Case 2.

Case 3: b1 ≥ 2. Then by (7)

1 +

(
t′

r − 1

)
≤ b1 +

(
⌈(n− 1− b1)/2⌉

r − 1

)
≤ b1 +

(
⌈(n− 3)/2⌉

r − 1

)
= b1 +

(
t′ − 1

r − 1

)
.

Hence 1 +
(

t′

r−1

)
−

(
t′−1
r−1

)
= 1 +

(
t′−1
r−2

)
≤ b1 ≤ n − 3 by Corollary 4.8. If 2 ≤ r − 2 ≤ t′ − 3, then

we have n− 4 ≥
(
t′−1
r−2

)
≥

(
t′−1
2

)
, a contradiction when n ≥ 12. For n ≤ 11, it is straightforward to

check that 1 +
(

t′

r−1

)
> b1 +

(⌈(n−1−b1)/2⌉
r−1

)
in all cases.

For r = 3, we have t′ = 1 +
(
t′−1
r−2

)
≤ b1, so

1 +

(
t′

2

)
≤ b1 +

(
⌈(n− 1− b1)/2⌉

2

)
≤ b1 +

(
t′ − ⌊b1/2⌋

2

)
≤ n− 3 +

(
⌈t′/2⌉

2

)
.

This gives a contradiction when n ≥ 12. For n ≤ 11, it is straightforward to check that 1 +
(
t′

2

)
>

b1 +
(⌈(n−1−b1)/2⌉

2

)
in all cases except n = 7, b1 ∈ {3, 4}, which will be considered with the case

r = t′ = 3.

For r = t′, by (7) we have

1 + t′ = 1 +

(
t′

r − 1

)
≤ b1 +

(
⌈(s− b1)/2⌉

r − 1

)
≤ b1 + 1,

since s ≤ n− 1 and b1 ≥ 2. Thus b1 ≥ t′. For n ≥ 8, we have

|NH′(u1)| ≤ ⌈(s− b1)/2⌉ ≤ ⌈(n− 1− t′)/2⌉ ≤ ⌈(n− 5)/2⌉ = t′ − 2 < r − 1.

This also holds for n < 8 if s ≤ n− 2, so we will handle the case n < 8, s = n− 1 separately at the
end of this subsection.

Since each edge in H ′ containing u1 contains r − 1 other vertices, |NH′(u1)| < r − 1 gives that
|NH′(u1)| = 0 and hence 1 + t′ ≤ b1. Notice also that n ≤ δ(H)nt′ ≤ |E(H)| = |E(Q)|+ |E(H ′)| ≤
n− 2 + |E(H ′)|, so there are at least 2 edges in E(H ′).

Case 3.1: There exists e ∈ E(H ′) with e ⊆ V (Q). By Claim 4.7, b1 ≤ s − t′ + 1 ≤ n −
1 − t′ + 1 ≤ t′ + 1 with equality only if there exists i < j such that B1 = {ei, . . . , ej} and
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e = {v1, . . . , vi} ∪ {vj+1, . . . , es}. Without loss of generality, i ≥ 2. Then we can replace e1 in Q
with e to obtain another x, y-path Q′ such that (Q′, P ) is also a best pair. As B1 does not change
for this new pair, e1 must play the old role of e, i.e., e1 = {v1, . . . , vi} ∪ {vj+1, vj+3, . . . , vs}, but
then e = e1, a contradiction.

Case 3.2: Every edge in H ′ contains exactly one vertex outside of V (Q). Since E(H ′) ̸= ∅ and
u1 is contained only in edges of Q, there must be at least one additional vertex outside of Q and
hence s ≤ n − 2. Let e ∈ E(H ′). Because Case 3.1 does not hold, |e − V (Q)| ≤ n − 1 − s,
so |e ∩ V (Q)| ≥ t′ − (n − 1 − s) with equality only if e ∪ V (Q) ∪ {u1} = V (H). By Claim 4.7,
1+t′ ≤ b1 ≤ s−|e∩V (Q)|+1 ≤ s−(t′−(n−1−s))+1 ≤ +n−t′, so 2t′+1 ≤ n. We get a contradiction
unless the “equality” part of Claim 4.7(i) holds. Then as in the previous subcase, there exists i < j
such that e ∩ V (Q) = {v1, . . . , vi} ∪ {vj , . . . , vs}. Moreover, since the choice of e ∈ E(H ′) was
arbitary, for each e′ ̸= e in E(H ′), e′ ∩ V (Q) = e ∩ V (Q). But since V (H) = e ∪ V (Q) ∪ {u1} and
u1 /∈ e′, e′ − V (Q) = e− V (Q), hence e = e′, a contradiction.

Finally we handle the cases 6 ≤ n ≤ 7, r = t′ = 3, s = n− 1, and b1 ∈ {3, 4}. The average degree
of H is ∑

v∈V (H)

d(v)/n = 3|E(H)|/n ≥ δ(H) ≥ 4,

so |E(H)| ≥ ⌈4n/3⌉ which is equal to 8 when n = 6 and 10 when n = 7. In either case, there exists
at least 3 edges in H ′.

We will first show that B1 is a set of b1 consecutive edges in Q. If u1 is not contained in any edges
in H ′, then b1 ≥ δ(H) ≥ 4. Otherwise if u1 belongs to an edge h of H ′, then Claim 4.7(ii) implies
b1 = 3 and n = 7. In both cases, the “equality” part of Claim 4.7 implies B1 = {ei, ei+1, . . . , ei+b1−1}
for some i.

If u1 is not contained in any edges in H ′, then for any e ∈ E(H ′), e = {v1, . . . , vi} ∪ {vi+b1 , . . . , vs}.
But this holds for all edges in H ′, a contradiction. Now suppose n = 7, b1 = 3 and u1 is con-
tained in an edge e of H ′. Since NH′(u1) contains no consecutive vertices and is disjoint from
{vi, vi+1, vi+2, vi+3}, we have i = 2, and e = {v1, v6, u1}. In particular, dH′(u1) = 1.

Let E′′ be the set of edges in H not containing u1. Since |E′′| = |E(H)|−dH(u1) ≥ 10−4 = 6, some
edge g ∈ E′′ does not contain {v1, v6}. By symmetry, we may assume v6 /∈ g. If g = e1 = {v1, v2, vh},
then we have a longer v1, v6-path v1, e, u1, eh−1, vh−1, eh−2, . . . , v2, e1, vh, eh, vh+1, . . . , v6.

Otherwise, g ∈ E(H ′). So, by Claim 4.6, |g ∩ {v2, v3, v4}| ≤ 1 and |g ∩ {v3, v4, v5}| ≤ 1. This is
possible only if g = {v1, v2, v5}. Then we have v1, v6-path v1, e, u1, e4, v4, e3, v3, e2, v2, g, v5, e5, v6, a
contradiction.

6.2 Finishing the proof of Theorem 1.4 for r ≤ n/2

Proof of Theorem 1.4 for r ≤ n/2. Consider a best pair (Q,P ) with Q = v1, e1, . . . , es−1, vs and
P = u1, f1, . . . , fℓ−1, uℓ.

By symmetry, we may assume bℓ = |Bℓ| ≥ |B1| = b1. By Lemma 6.1, ℓ ≥ 2. Recall also that
s ≥ n/2 + 1 ≥ t′ + 1 and ℓ ≤ t′ − 1.

By Claim 4.3 and Lemma 3.4, either

s ≥ b1 + bℓ + ℓ− 1, (8)
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or B1 = Bℓ and
s ≥ 2 + ℓ(b1 − 1). (9)

Recall that by the maximality of V (P ), all edges of H ′ containing u1 or uℓ are contained in
V (Q) ∪ V (P ). For j ∈ {1, ℓ}, define Aj = NH′(uj) ∩ V (Q) and aj = |Aj |. By Claim 4.1, Aj

contains no consecutive vertices of Q.

Case 1: A1 = ∅. Then all edges in H ′ containing u1 are contained in V (P ).

Case 1.1: r = t′. Since ℓ ≤ t′ − 1, no edge can be contained entirely in V (P ). Thus u1 must only
be contained in edges of Q and P .

Then b1 ≥ δ(H)− |E(P )| = 1 +
(

t′

r−1

)
− (ℓ− 1) = t′ − ℓ+ 2. If (8) holds, then

n− ℓ ≥ s ≥ 2(t′ − ℓ+ 2) + ℓ− 1 = 2t′ + 3− ℓ ≥ n+ 2− ℓ,

a contradiction.

If instead (9) holds, then

n ≥ ℓ+ s ≥ ℓ+ 2 + ℓ((t′ − ℓ+ 2)− 1) = 2 + ℓ(t′ − ℓ+ 2). (10)

Since 2 ≤ ℓ ≤ t′ − 1, ℓ(t′ − ℓ+ 2) ≥ 2(t′ − 2 + 2) ≥ n− 1, contradicting (10).

Case 1.2: 3 ≤ r ≤ t′ − 1. The number of edges in H ′ containing u1 and contained in V (P ) is at
most

(
ℓ−1
r−1

)
. Thus,

b1 ≥ δ(H)−
(
ℓ− 1

r − 1

)
− |E(P )| = 1 +

(
t′

r − 1

)
−
(
ℓ− 1

r − 1

)
− (ℓ− 1)

≥ 1 +

(
t′

2

)
−
(
ℓ− 1

2

)
− (ℓ− 1) =

(t′ + ℓ− 2)(t′ − ℓ+ 1)

2
− ℓ+ 2.

If (8) holds, then

(t′ + ℓ− 2)(t′ − ℓ+ 1)

2
− ℓ+ 2 ≤ s− ℓ+ 2

2
≤ n

2
− ℓ+ 1.

However, (t′+ℓ−2)(t′−ℓ+1)
2 ≤ t′ − 1 implies that 0 ≥ t′2 − ℓ2 − 3t′ + 3ℓ = (t′ − ℓ)(t′ + ℓ − 3). This

cannot hold because 2 ≤ ℓ ≤ t′ − 1 and t′ ≥ 3, so (t′+ℓ−2)(t′−ℓ+1)
2 ≥ t′ > n/2− 1, a contradiction.

If instead (9) holds, then

(t′ + ℓ− 2)(t′ − ℓ+ 1)

2
− ℓ+ 2 ≤ s− 2

ℓ
+ 1 ≤ n− 2

ℓ
.

However, we have ℓ+ n−2
ℓ ≤ n+ℓ2−2

2 ≤ n
2 + 1, and thus n−2

ℓ ≤ n
2 − ℓ+ 1 < (t′+ℓ−2)(t′−ℓ+1)

2 − ℓ+ 2.

Case 2: A1 ̸= ∅, Bℓ ̸= ∅. Let B =
⋃

ej∈Bℓ
{vj , vj+1}. By Claim 4.5, Lemma 3.2 and the facts

s ≤ n− ℓ ≤ 2t′ + 1− ℓ, Bℓ ̸= ∅, |B| ≥ bℓ + 1, and B ∩A1 = ∅, we have

a1 ≤ ⌊(2t
′ + 1− ℓ)− bℓ − 1− ℓ+ 1

2
⌋ = t′ − ℓ+ 1− ⌈bℓ/2⌉. (11)
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Recall that we assumed b1 ≤ bℓ. Therefore

d(u1) ≤
(
a1 + |V (P )− {u1}|

r − 1

)
+ b1 + |E(P )| ≤

(
a1 + ℓ− 1

r − 1

)
+ bℓ + ℓ− 1, (12)

with equality only if u1 belongs to every edge of P , and b1 = bℓ.

Combining (12) and (11), we obtain(
t′

r − 1

)
+ 1 ≤ d(u1) ≤

(
t′ − ⌈bℓ/2⌉

r − 1

)
+ bℓ + ℓ− 1. (13)

Case 2.1: r = t′. Since A1 ̸= ∅, we need a1 ≥ r − |V (P )| = t′ − ℓ. By (11), 1 ≤ bℓ ≤ 2, and
a1 + ℓ− 1 = r − 1. Then from (13), we get

t′ + 1 =

(
t′

r − 1

)
+ 1 ≤ d(u1) ≤ bℓ + ℓ ≤ 2 + ℓ ≤ 2 + (t′ − 1).

This gives a contradiction unless b1 = bℓ = 2 and ℓ = t′ − 1 (so s = |V (Q)| ≤ t′ + 2 = ℓ+ 3). But
then there is no way to fit two edges in B1 and two edges in Bℓ without violating Claim 4.3.

Case 2.2: 3 ≤ r ≤ t′ − 1. If t′ − ⌈bℓ/2⌉ ≤ r − 1, then as in the previous subcase, d(u1) ≤ bℓ + ℓ.
Since A1 ̸= ∅ and ℓ ≥ 2, in order not to violate Claim 4.5 we need bℓ ≤ |E(Q)| − 2 = s − 3.

Therefore d(u1) ≤ s − 3 + ℓ ≤ n− 3 ≤ 2t′ − 2. When t′ ≥ 4 (n ≥ 8), we have
(

t′

r−1

)
+ 1 > 2t′ − 2,

a contradiction. In the remaining cases 6 ≤ n ≤ 7, r ≥ 3 implies r = 3 = t′ which was handled in
the previous subcase.

So we may assume t′ − ⌈bℓ/2⌉ > r − 1 and therefore from (13) we get,(
t′

r − 1

)
−
(
t′ − ⌈bℓ/2⌉

r − 1

)
=

(
t′ − 1

r − 2

)
+ . . .+

(
t′ − ⌈bℓ/2⌉

r − 2

)
≤ bℓ + ℓ− 2 ≤ bℓ + t′ − 3. (14)

Here we use the fact that ℓ ≤ t′−1 and
(

t′

r−1

)
−
(
t′−c
r−1

)
=

(
t′−1
r−2

)
+
(
t′−2
r−2

)
+ . . .+

(
t′−c
r−2

)
for any positive

integer c ≤ ⌈b1/2⌉.
Let f(x) =

(
t′−1
r−2

)
+ . . .+

(
t′−⌈x/2⌉

r−2

)
and g(x) = x+ t′ − 3. For x ∈ {1, 2} and r ≥ 3, f(x) =

(
t′−1
r−2

)
≥

t′−1 ≥ g(x) with equality only if r = 3 and x = 2. For integers 2 < x ≤ bℓ, g(x) = g(2)+(x−2) ≤
g(2) + 2⌈(x− 2)/2⌉, and

f(x) ≥ f(2) +

(
t′ − 2

r − 2

)
+ . . .+

(
t′ − ⌈x/2⌉

r − 2

)
.

Each of these terms is at least 2, so f(x) ≥ f(2) + 2⌈x/2⌉. So f(bℓ) > g(bℓ) if bℓ ̸= 3, contradict-
ing (14). The final case is bℓ = 2. Moreover, we also get a contradiction if equalities in (12)–(14)
do not hold. In this case, we must have b1 = bℓ = 2, and ℓ = t′−1 (so s ≤ t′+2). But then there is
no way to fit two edges in B1 and two edges in Bℓ without violating Claim 4.3. This finishes Case
2.

Case 3: B1, Bℓ = ∅. Let us show that

if B1, Bℓ = ∅, then a1, aℓ ≥ t′ − ℓ+ 1 ≥ 2. (15)
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Indeed, if a1 ≤ t′ − ℓ, then dH′(u1) ≤
(
t′−ℓ+(|V (P )|−1)

r−1

)
=

(
t′−1
r−1

)
. So, since B1 = ∅ and ℓ ≤ t′ − 1,

dH(u1) = dH′(u1) + |E(P )| ≤
(
t′ − 1

r − 1

)
+ ℓ− 1 ≤

(
t′

r − 1

)
,

a contradiction. The same argument works if aℓ ≤ t′ − ℓ.

Similarly, if B1, Bℓ = ∅ and i ∈ {1, ℓ}, then at least two edges in H ′ containing ui are not subsets
of V (P ). Indeed, otherwise

dH(u1) = dH′(u1) + dHP
(u1) ≤ 1 +

(
ℓ− 1

r − 1

)
+ ℓ− 1 <

(
t′

r − 1

)
.

Let f, f ′ be distinct edges of H ′ such that for distinct i, j, we have {vi, u1} ⊂ f, {vj , uℓ} ⊂ f ′. By
Claim 4.4, |j− i| ≥ ℓ+1, and by Claim 4.1, A1 contains no consecutive vertices in Q. Without loss
of generality, there exists vi ∈ A1, vj ∈ Aℓ with j ≥ i+ ℓ+ 1. If a1 ≥ t′ − ℓ+ 2, then

n− ℓ ≥ s ≥ |A1|+ |{vk+1 : vk ∈ A1, k ̸= i, s}|+ |{vi+1, . . . , vi+ℓ}|

≥ 2(t′ − ℓ+ 2)− 2 + ℓ ≥ 2
n− 1

2
− ℓ+ 2 = n− ℓ+ 1,

a contradiction. Hence by (15),
a1 = aℓ = t′ − ℓ+ 1 ≥ 2. (16)

We also prove that

if B1, Bℓ = ∅, then every vi ∈ A1 is contained in at least two common edges of H ′

with u1, and similar with uℓ.
(17)

Indeed, otherwise by (16),

dH(u1) = dH′(u1) + dHP
(u1)

≤
(
|A1 ∪ V (P )− {u1}|

r − 1

)
− |{f ⊆ A1 ∪ V (P ) : vi ∈ f, |f | = r − 1}|+ 1 + |E(P )|

≤
(
t′ − ℓ+ 1 + (ℓ− 1)

r − 1

)
−
(
t′ − ℓ+ 1 + (ℓ− 1)− 1

r − 2

)
+ 1 + ℓ− 1

≤
(

t′

r − 1

)
− (t′ − 1) + 1 + ℓ− 1

≤
(

t′

r − 1

)
< δ(H).

This implies that for each vi ∈ A1 and vj ∈ Aℓ, there exist distinct edges f, f ′ ∈ H ′ such that
{u1, vi} ∈ f, {uℓ, vj} ∈ f ′, and hence |j − i| ≥ ℓ+ 1 by Claim 4.4.

Case 3.1: B1, Bℓ = ∅ and A1 ̸= Aℓ. Without loss of generality, |Aℓ| ≥ |A1|. Since A1, Aℓ are
independent sets and Aℓ−A1 is nonempty, by Lemma 3.1, s ≥ 2a1+2|Aℓ−A1|+(ℓ+1)−3. Hence

a1 ≤ ⌊s− 2|Aℓ −A1| − ℓ+ 2

2
⌋ ≤ ⌊(2t

′ + 1− ℓ)− 2|Aℓ −A1| − ℓ+ 2

2
⌋ = t′− ℓ−|Aℓ−A1|+1. (18)
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We have

d(u1) ≤
(
a1 + ℓ− 1

r − 1

)
+ |E(P )| ≤

(
t′ − |Aℓ −A1|

r − 1

)
+ ℓ− 1.

Since |Aℓ −A1| ≥ 1 and ℓ ≤ t′ − 1, this quantity is strictly less than
(

t′

r−1

)
+ 1, a contradiction.

Case 3.2: B1, Bℓ = ∅ and A1 = Aℓ. If H ′ has no edges containing both, u1 and uℓ, then by the
case and (16),

dH(u1) = dH′(u1) + dHP
(u1) ≤

(
t′

r − 1

)
− |{f ⊆ A1 ∪ V (P ) : |f | = r − 1, uℓ ∈ f}|+ |E(P )|

=

(
t′

r − 1

)
−
(
t′ − 1

r − 2

)
+ (ℓ− 1) ≤

(
t′

r − 1

)
,

a contradiction. So suppose there is f0 ∈ E(H ′) containing {u1, uℓ}. Let

Pj = uj , fj−1, . . . , f1, u1, f0, uℓ, fℓ−1, . . . , uj+1

denote the path obtained from P by adding f0 and deleting fj . By definition, for each 1 ≤ j ≤
ℓ − 1, the pair (Q,Pj) is also a best pair. This yields that each fj is contained in V (Q) ∪ V (P ).
Moreover, for each such j we have Case 3.2. By (17), deleting f0 from H ′ does not change A1.
It follows that A1 = A2 = . . . = Aℓ, and hence each fj is contained in A1 ∪ V (P ). So by (16),

dH(u1) ≤
(
(t′−ℓ+1)+(ℓ−1)

r−1

)
, a contradiction.

7 Proof of Theorem 1.4 for r > n/2

In this section, we complete the proof of Theorem 1.4 by showing that if r > n/2 ≥ 3 and
δ(H) ≥ r − 1 or r = 3, n = 5 and δ(H) ≥ 3, then H is hamiltonian-connected.

Proof of Theorem 1.4 for r > n/2. Suppose that an r-graph H with δ(H) ≥ r− 1 has no hamilto-
nian x, y-path for some x, y ∈ V (G). Let (Q,P ) be a best pair of two vertex-disjoint paths Q and
P such that Q is a x, y-path.

It is straightforward to check that the theorem is satisfied when n = 4, r = 3, δ(H) = 2, so we may
assume δ(H) ≥ 3.

Since by Lemma 5.2, s ≥ r + 1 and r ≥
⌈
n+1
2

⌉
, we have ℓ ≤ n− s ≤

⌊
n−3
2

⌋
and

r − ℓ ≥
⌈
n+ 1

2

⌉
−
⌊
n− 3

2

⌋
≥ 2. (19)

Case 1: ℓ = 1. As in Section 6.1, in this case every edge g ∈ H ′ contains at most one vertex
outside of V (Q).

Case 1.1: There are two edges g, g′ ∈ E(H ′) containing u1. Then |(g∪g′)∩V (Q)| ≥ r, and no two
vertices of g ∪ g′ are consecutive on Q. It follows that s ≥ 2r − 1 ≥ 2n+1

2 − 1 = n, a contradiction
to s ≤ n− ℓ.
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Case 1.2: There is exactly one edge g ∈ E(H ′) containing u1. Since δ(H) ≥ 3, at least two edges
of HQ contain u1. By Claim 4.2, g does not intersect the sets {vi, vi+1} such that u1 ∈ ei. On the
other hand, since no two vertices in g are consecutive on Q, the r− 1 vertices of g ∩V (Q) intersect
at least 2(r− 1)− 2 ≥ n− 3 sets {vi, vi+1}. This contradicts the fact that Q has s− 1 ≤ n− 2 pairs
{vi, vi+1}.

Case 1.3: All edges containing u1 are in B1, and some edge g ∈ H ′ is contained in V (Q). Then
d(u1) = b1 ≥ r − 1. By Claim 4.7, r − 1 ≤ b1 ≤ s − r + 1 and therefore n ≤ 2r − 1 ≤ s + 1 ≤ n.
This implies that the “equality” part of Claim 4.7(i) holds, and so g = {v1, . . . , vi} ∪ {vj+1, . . . , vs}
and B1 = {ei, . . . , ej} for some i < j. In particular, by symmetry we may assume that i > 1. Let
Q′ be the path obtained by replacing e1 with g. We get a new best pair (Q′, P ) with e1 playing the
old role of g. As B1 does not change, Claim 4.7 asserts g = e1, a contradiction.

Case 1.4: All edges containing u1 are in B1, and no edges in H ′ are contained in V (Q). Again,
|B1| ≥ r− 1. Since |E(H)| ≥ n− 1, there is an edge g ∈ E(H ′). Since ℓ = 1 and Case 1.3 does not
hold, |g ∩ V (Q)| = r − 1. Then g has a vertex w outside of V (Q) ∪ {u1}, so s ≤ n− 2.

If there is another edge g′ ∈ E(H ′) containing w, then there could not be consecutive vertices
vi, vi+1 in Q such that one of them is in g and the other in g′. Hence the sets A = g \ {w} and
B = g′ \ {w} satisfy condition (1) for q = 2 in Lemma 3.3. Since g′ ̸⊆ g and g ̸⊆ g′, Lemma 3.3(ii)
for q = 2 yields s ≥ |A|+ |B|+ q − 1 ≥ 2r − 1 ≥ n. This contradicts the fact that s ≤ n− 2.

Otherwise, w belongs to some r−2 edges ei1 , . . . , eir−2 . Let A =
⋃r−2

j=1{vij , vij+1}. Then |A| ≥ r−1.

By Claim 4.2, g ∩A = ∅. Hence s ≥ (r− 1) + (r− 1) ≥ 2n+1
2 − 2 = n− 1, contradicting s ≤ n− 2.

Case 2: 2 ≤ ℓ ≤
⌊
n
2

⌋
− 1.

Case 2.1: a1 ≥ 1 and bℓ ≥ 1. Let g ∈ E(H ′) contain u1. Then g ⊂ V (Q)∪V (P ) and |g∩V (Q)| ≥
r − ℓ. Since ℓ ≥ 2, by Lemma 3.2 with q = ℓ,

r − ℓ ≤ s− 1− ℓ+ 1

2
≤ n

2
− ℓ,

contradicting r > n
2 .

If b1 ≤ 1, then u1 is contained in at least one edge in H ′ and so a1 ≥ r− ℓ ≥ 2 by (19). Either way,
a1 + b1 ≥ 2 and similarly aℓ + bℓ ≥ 2. By symmetry, the following two subcases remain.

Case 2.2: b1 = bℓ = 0. Then dH′(u1) ≥ δ(H) − |E(P )| ≥ (r − 1) − (ℓ − 1) ≥ 2 and similarly
dH′(uℓ) ≥ 2. Let g1 ∈ E(H ′) contain u1 and gℓ ∈ E(H ′) − g1 contain uℓ. Let A = g1 ∩ V (Q) and
B = gℓ ∩ V (Q). Then A and B satisfy condition (1) for q = 1 + ℓ in Lemma 3.3.

Also, |A| ≥ r−ℓ with equality only if g1 ⊃ V (P ), and the same holds for B. If |A| = |B| = r−ℓ, then
A ̸= B because g1 ̸= gℓ. In this case, by Lemma 3.3(ii) for q = 1+ℓ, s ≥ 2(r−ℓ)+(1+ℓ)−1 = 2r−ℓ.
Since s ≤ n− ℓ, this contradicts r > n/2. Similarly, if max{|A|, |B|} ≥ r − ℓ+ 1 and A ̸= B, then
by Lemma 3.3(ii) for q = 1+ ℓ, s ≥ (r− ℓ) + (r− ℓ+1)+ (1+ ℓ)− 2 = 2r− ℓ. So, we get the same
contradiction.

Finally, suppose A = B. Since g1 ̸= gℓ, this implies |A| ≥ r − ℓ + 1. Hence by Lemma 3.3(i) for
q = 1 + ℓ, we get

n− ℓ ≥ s ≥ 1 + (ℓ+ 1)(r − ℓ),

which yields
ℓ(r − ℓ) ≤ n− r − 1. (20)
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Since 2 ≤ ℓ ≤ r − 2, for fixed n and r, the LHS in (20) is at least 2(r − 2). Thus (20) implies
3r ≤ n+ 3. But 3r ≥ (n+ 1) + r ≥ n+ 4, a contradiction.

Case 2.3: a1 = aℓ = 0. Similarly to Case 2.2, b1 ≥ r− ℓ and bℓ ≥ r− ℓ. Let A = {vivi+1 : u1 ∈ ei}
and B = {vjvj+1 : uℓ ∈ ej}. Then A and B satisfy condition (2) for q = ℓ in Lemma 3.4.

Also, |A| ≥ r − ℓ with equality only if u1 ∈ fj for all j, and the same holds for B (with uℓ in place
of u1). If |A| = |B| = r− ℓ and A ̸= B, then by Lemma 3.4(ii) for q = ℓ, s− 1 ≥ 2(r− ℓ) + ℓ− 1 =
2r − ℓ − 1. Since s ≤ n − ℓ, this contradicts r > n/2. Similarly, if max{|A|, |B|} ≥ r − ℓ + 1 and
A ̸= B, then by Lemma 3.4(ii) for q = ℓ, s− 1 ≥ (r − ℓ) + (r − ℓ+ 1) + ℓ− 2 = 2r − ℓ− 1. So, we
get the same contradiction.

Finally, suppose A = B. Let B′ =
⋃

{j:u1∈ej}{vj , vj+1}. Since A = B, |B′| ≥ 2(r − ℓ). Let

A′ = f1 ∩ V (Q). If A′ = ∅, then |V (H) − V (Q) − V (P )| ≥ |f1 − V (P )| ≥ r − ℓ ≥ 2. Then by
Lemma 3.4(i) for q = ℓ, we get n− ℓ− 2 ≥ s ≥ 2+ ℓ(r− ℓ− 1), which yields ℓ(r− ℓ) ≤ n− 4. Since
2 ≤ ℓ ≤ r− 2, the LHS of this inequality is at least 2(r− 2) ≥ n− 3, a contradiction. Thus A′ ̸= ∅.
If vi1 ∈ A′ ∩ B′, say ei1 ∈ B, then we can replace edge ei1 in Q by the path vi1 , f1, u1, ei1 , vi1+1,
contradicting the choice of (Q,P ). Thus A′ ∩ B′ = ∅. Moreover, similarly if i1 < i2 ≤ i1 + ℓ − 2,
vi1 ∈ A′ and ei2 ∈ B′, then we can replace the subpath vi1 , ei1 , vi1+1, . . . , vi2 of Q with the longest
path vi1 , f1, u2, f2, u3, . . . , uℓ, ei2 , vi2+1, a contradiction again. It follows that s ≥ |A′|+ |B′|+ ℓ− 2.
If |A′| = 1, then s ≤ n − ℓ − 1, and therefore n − ℓ ≥ |B′| + ℓ ≥ 2r − ℓ > n − ℓ, a contradiction.
Otherwise if |A′| ≥ 2, then s ≥ |B′|+ ℓ ≥ 2r − ℓ > n− ℓ again.

8 Concluding remarks

1. A number of theorems on graphs, in particular, Theorem 1.1, give sufficient conditions for
the existence of hamiltonian cycles in terms of σ2(G) = minuv/∈E(G) d(u) + d(v). Partially, this is
because many proofs of bounds in terms of the minimum degree also work for σ2(G). It seems
this is not the case for r-graphs when r ≥ 3. Moreover the degree of a vertex in an r-graph
can be interpreted in different ways: the number of edges containing the vertex or the number of
vertices in its neighborhood. Defining a suitable analog of σ2(G) for hypergraphs is unclear. For
example, if n = 2r, then there are n-vertex r-graphs with 6 edges in which every two vertices are
in a common edge (e.g., a blow up of a K4), so counting the sizes of the neighborhoods is not a
useful parameter at least for large r. On the other hand for small r, the hypergraph consisting of
a Kr

n−1 and one additional edge satisfies d(u) + d(v) ≥
(
n−2
r−1

)
+ 1 for every pair of vertices and is

not hamiltonian. While it is likely possible to prove an Ore-type theorem using this bound, this
quantity is significantly larger than the sufficient minimum degree condition δ(H) ≥

(⌊(n−1)/2⌋
r−1

)
+1

needed for hamiltonicity, and so such a result may not be very meaningful. It would be interesting
to find some analog of σ2(G) for r-graphs that is both natural and nontrivial for a given range of r.

2. Given k ≥ 2, a (hyper)graph G is k-path-connected if for any distinct x, y ∈ V (G), there is
an x, y-path with at least k vertices. In these terms, an n-vertex (hyper)graph is hamiltonian-
connected exactly when it is n-path-connected. It would be interesting to find exact restrictions on
the minimum degree of an n-vertex r-graphG providing that G is k-path-connected for r < k < n/2.

3. Call a graph G 1-extendable if for each edge e ∈ E(G), G has a hamiltonian cycle containing
e. Thus Theorem 1.1 yields that for n ≥ 3 each n-vertex graph G with δ(G) ≥ (n + 1)/2 is 1-
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extendable. Also, one can define 1-extendable hypergraphs in several ways. One natural definition
would be: An r-graph G 1-extendable if for each edge e ∈ E(G) and any two vertices u,w ∈ e, G
has a hamiltonian cycle C = v1, e1, v2, . . . , vn, en, v1 such that e1 = e, v1 = u and v2 = w.

For r = 2, this definition coincides with the original definition of 1-extendable graphs, but for r ≥ 3
the claim that each hamiltonian-connected r-graph is 1-extendable is not true: as we have seen in
Section 2.2, hamiltonian-connected r-graphs do not need to be even just hamiltonian. On the other
hand, trivially if each n-vertex r-graph with minimum degree at least d is hamiltonian-connected,
then each n-vertex r-graph with minimum degree at least d + 1 is 1-extendable. So, Theorem 1.4
yields the following.

Corollary 8.1. Let n ≥ r ≥ 3. Suppose H is an n-vertex, r-graph such that (1) r ≤ n/2 and
δ(H) ≥

(⌊n/2⌋
r−1

)
+ 2, or (2) r > n/2 ≥ 3 and δ(H) ≥ r, or (3) r = 3, n = 5 and δ(H) ≥ 4. Then H

is 1-extendable.

When r > n/2 ≥ 3, the bound in Corollary 8.1 is exact, but when 3 ≤ r ≤ n/2 or r = 3 and n = 5
it probably can be improved by 1.

4. Pósa [11] considered the following generalization of 1-extendable graphs. Given a linear forest
(i.e., a set of vertex-disjoint paths) L, call a graph G L-extendable if G∪L has a hamiltonian cycle
containing all edges of L. Pósa [11] proved that for each n > ℓ ≥ 0 and every linear forest L
with ℓ edges, each n-vertex graph G with σ2(G) ≥ n + ℓ is L-extendable. This is a far reaching
generalization of Theorem 1.1. It also implies that if σ2(G) ≥ n + ℓ, then G is ℓ + 1-hamiltonian-
connected (take L to be a path on at most ℓ vertices).

One may consider different hypergraph definitions of being L-extendable for a given graph linear
forest L. For example, given a positive integer ℓ, we can say that a hypergraph G is ℓ-extendable if
for every choice of ℓ + 1 vertices u1, . . . , uℓ+1 and ℓ edges g1, . . . , gℓ in G such that {ui, ui+1} ⊂ gi
for all i ∈ [ℓ], G has a hamiltonian cycle C = v1, e1, v2, . . . , vn, en, v1 such that vi = ui for all
i ∈ [ℓ + 1] and ej = gj for all j ∈ [ℓ]. Exact bounds on the minimum degree providing that an
n-vertex r-graph is ℓ-extendable seem difficult for general ℓ but probably are feasible for very small
or very large ℓ.

5. Chartrand, Kapoor and Lick [2] proved analogs of Dirac’s Theorem and its generalizations
by Ore [9] and Pósa [11] for α-hamiltonian graphs, that is, the graphs that are hamiltonian after
deleting any set of at most α vertices. If in this definition we replace “at most” with “exactly”,
the class of the graphs satisfying the definition may change. For example, after deleting any vertex
from Petersen Graph, the remaining graph is hamiltonian. Lick [7] proved similar exact results for
α-hamiltonian-connected graphs, that is, the graphs that are hamiltonian-connected after deleting
any set of at most α vertices. The ideas and tricks in [6] and this paper may be used to try to find
exact or close to exact bounds on minimum degree in an n-vertex r-graph G ensuring that G is
α-hamiltonian/α-hamiltonian-connected. As with graphs, the answers for the definitions with “at
most” and “exactly” may differ.
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