

# Selective synthesis of the $B_{11}H_{14}^-$ and $B_{12}H_{12}^{2-}$ borane derivatives and the general mechanisms of the B–H bond condensation

Yi Jing<sup>1</sup>, Xinghua Wang<sup>1</sup>, Hui Han<sup>1</sup>, Xin-Ran Liu<sup>2</sup>, Xing-Chao Yu<sup>2</sup>, Xi-Meng Chen<sup>2</sup>,  
Donghui Wei<sup>1\*</sup>, Lai-Sheng Wang<sup>3\*</sup> & Xuenian Chen<sup>1,2\*</sup>

<sup>1</sup>College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China;

<sup>2</sup>School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang 453007, China;

<sup>3</sup>Department of Chemistry, Brown University, Providence, RI 02912, USA

Received August 29, 2023; accepted October 19, 2023; published online December 1, 2023

Polyhedral boranes are a class of well-known boron molecular clusters with unique physical and chemical properties, and great efforts have been made in the past decades to find more effective synthetic methods. However, the established synthetic methods suffer from low efficiency and low selectivity because the mechanism of the B–H bond condensation reaction, critical for the synthesis of the polyhedral boranes, is not well understood. Here we report highly selective and efficient synthetic methods of the salts of the tetradecahydridoundecaborate (1–) ( $B_{11}H_{14}^-$ ) and dodecahydrido-dodecaborates (2–) ( $B_{12}H_{12}^{2-}$ ) anions by employing commercially available and inexpensive starting materials. Both theoretical and experimental investigations are carried out to elucidate the reaction mechanisms. We have found that the nature of the B–H bond condensation is the dihydrogen bonding interaction in which the positively charged hydrogens (bridged hydrogens) play a crucial role. The current study has not only led to more effective and selective synthetic methods for  $B_{11}H_{14}^-$  and  $B_{12}H_{12}^{2-}$  but also unveiled the nature of the B–H bond condensation and the general formation mechanisms of polyhedral boranes. This finding will facilitate the development of more effective synthetic methods for polyhedral boranes and spur their wide application.

## Boranes, polyhedral boranes, dihydrogen bond, nucleophilicity

**Citation:** Jing Y, Wang X, Han H, Liu XR, Yu XC, Chen XM, Wei D, Wang LS, Chen X. Selective synthesis of the  $B_{11}H_{14}^-$  and  $B_{12}H_{12}^{2-}$  borane derivatives and the general mechanisms of the B–H bond condensation. *Sci China Chem*, 2024, 67: 876–881, <https://doi.org/10.1007/s11426-023-1852-9>

## 1 Introduction

Polyhedral boranes are a class of well-known boron molecular clusters widely used in energy, chemistry, medicine, and material science because of their unique structure and physical and chemical properties [1]. Therefore, the synthesis of polyhedral boranes has attracted great attention. The established synthetic methods for over almost a century [2] are mainly based on reactions of borohydrides with diborane (6) ( $B_2H_6$ ) (in pressure equipment) [2c,2d,2h], pentaborane

(9) ( $B_5H_9$ ) [2e], and decaborane (14) ( $B_{10}H_{14}$ ) [2b,2f,2m] for the synthesis of various polyhedral borane anions, including  $B_3H_8^-$ ,  $B_{11}H_{14}^-$ , and  $B_{12}H_{12}^{2-}$ . In these reactions, an essential point is how to form the B–B bonds through the B–H bond condensation reaction [2g]. However, the condensation reactions of the small borane complexes are carried out under elevated temperatures in different solvents, resulting in problems of products hardly predictable and controllable. The reaction mechanisms proposed in previous reports are not fully understood [2h,3]. As a result, mixtures of several polyhedral boranes are frequently obtained in such reactions [4]. Therefore, understanding the factors underlying these reactions and exploring the mechanism of the B–H bond

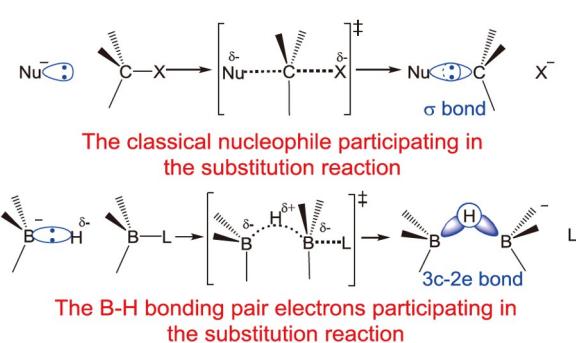
\*Corresponding authors (email: [xuenian\\_chen@zzu.edu.cn](mailto:xuenian_chen@zzu.edu.cn); [donghuiwei@zzu.edu.cn](mailto:donghuiwei@zzu.edu.cn); [Lai-Sheng\\_Wang@brown.edu](mailto:Lai-Sheng_Wang@brown.edu))

condensation reaction are crucial for finding highly selective and efficient syntheses of polyhedral boranes and have been a long-sought goal in boron chemistry.

Recently, during our systematical investigation of the synthetic methods of amine boranes and the  $\text{B}_3\text{H}_8^-$  anion, we found that the B–H bonding pair electrons, similar to the lone pair electrons of the traditional nucleophiles, can be used in the nucleophilic substitution reaction to substitute the leaving group to form B–H–B 3c–2e bond (Figure 1) [5]. The energy profiles of these reactions depend on the nucleophilicity of the B–H bonding pair electrons, the leaving groups, the stability of the products, and solvents, as shown in Table S2 (Supporting Information online). Further experimental and computational studies on the formation mechanisms of the  $\text{B}_3\text{H}_8^-$  anion through the reactions of the alkali metal salt of borohydride ( $\text{MBH}_4$ ) and Lewis base borane adducts ( $\text{L}\cdot\text{BH}_3$ ) revealed that the  $\text{B}_2\text{H}_6$  species formed *in situ* is a crucial intermediate [5a,5e]. The acidic character of the bridging hydrogens of  $\text{B}_2\text{H}_6$  plays an essential role that can readily interact with the negatively charged terminal hydrogen of boranes to form an  $\text{H}_2$ -boron complex [5a,5e]. With  $\text{H}_2$  release and isomerization, a new B–B or B–H–B bond is formed. The formation of the  $\text{B}_3\text{H}_8^-$  anion is the first stage for the formation of polyhedral boranes because the [B3] delta-unit is the basic structural moiety of polyhedral boranes [5a,5e]. More recently, Filinchuk *et al.* [6] has reported the synthesis of  $\text{M}_2\text{B}_{12}\text{H}_{12}$  ( $\text{M} = \text{Na, K}$ ), along with the formation of intermediates of  $\text{B}_3\text{H}_8^-$ ,  $\text{B}_9\text{H}_{14}^-$ , and  $\text{B}_{11}\text{H}_{14}^-$ , by increasing the reaction temperature and pressure using borohydride and borane Lewis base adducts.

Inspired by the successful synthesis of the  $\text{B}_3\text{H}_8^-$  anion [5a], we have endeavored to investigate synthetic methods of large polyhedral boranes based on the nucleophilicity of the B–H bonding pair electrons and explore their general mechanisms and the nature of the B–H bond condensation reaction.

Among all polyhedral borane anions, the icosahedral  $\text{B}_{12}\text{H}_{12}^{2-}$  anion is the most stable and it can be readily synthesized. However, the selective preparation of the  $\text{B}_9\text{H}_{14}^-$


and  $\text{B}_{11}\text{H}_{14}^-$  anions, as the intermediates of the synthesis of the  $\text{B}_{12}\text{H}_{12}^{2-}$  anion, is more difficult, because the lower polyhedral anions are more likely converted to the thermodynamically favored  $\text{B}_{12}\text{H}_{12}^{2-}$  anion at elevated reaction temperatures [2d,2o,6]. On the other hand, the  $\text{B}_{11}\text{H}_{14}^-$  anion is a useful starting material for conversion to other 11-vertex borane compounds [7,8] and preparation of decaborane [9]. In addition, the *nido*- $\text{B}_{11}\text{H}_{14}^-$  anion is a structurally favored precursor for the synthesis of hetero-polyhedral *colso*-boranes, such as carboranes and metallaboranes, by reacting with p-block and transition metal compounds [7,10]. However, the lack of efficient synthetic methods hinders its wide application.

In this article, we report highly selective and efficient synthetic methods of the alkali metal salts of the  $\text{B}_{11}\text{H}_{14}^-$  and  $\text{B}_{12}\text{H}_{12}^{2-}$  anions by employing commercially available and inexpensive borohydrides and Lewis base borane adducts as starting materials, instead of the more reactive and hazardous  $\text{B}_2\text{H}_6$ ,  $\text{B}_5\text{H}_9$ , and  $\text{B}_{10}\text{H}_{14}$ . The reaction mechanisms have been elucidated using both theoretical and experimental investigations. More importantly, a general reaction mechanism for the B–H bond condensation has been advanced for the efficient synthesis of polyhedral boranes under relatively mild conditions.

## 2 Results and discussion

### 2.1 Synthesis of $\text{MB}_{11}\text{H}_{14}$ ( $\text{M} = \text{Li, Na, K}$ )

The B–H bond condensation reaction is the main synthetic method of polyhedral boranes, but it is hardly controllable, so a mixture of polyhedral boranes is usually obtained [4]. When we systematically studied the reactions of potassium borohydride ( $\text{KBH}_4$ ) and dimethyl sulfide borane ( $(\text{CH}_3)_2\text{S}\cdot\text{BH}_3$ ), we found that the final products are dependent on the reactant ratio, reaction time and temperature. When the reaction was conducted with a molar ratio of  $\text{KBH}_4$  to  $(\text{CH}_3)_2\text{S}\cdot\text{BH}_3$  in a 1:10 in 1,4-dioxane at 90 °C for 5 d, the main product is the  $\text{B}_{11}\text{H}_{14}^-$  anion and the unsolvated potassium salt ( $\text{KB}_{11}\text{H}_{14}$ ) was isolated with 86% yield (Figure S5). This result is different from that of the previous report, where the reaction of  $\text{KBH}_4$  and  $(\text{CH}_3)_2\text{S}\cdot\text{BH}_3$  in a 1:2 molar ratio for 48 h afforded the  $\text{B}_3\text{H}_8^-$  anion as the main product, which was isolated with 89% yield [5e]. The  $\text{KB}_{11}\text{H}_{14}$  product is characterized by  $^{11}\text{B}$ ,  $^{11}\text{B}\{^1\text{H}\}$ ,  $^1\text{H}$ , and  $^1\text{H}\{^1\text{B}\}$  nuclear magnetic resonance (NMR) and infrared radiation (IR) spectroscopy (Figures S6–S8, Supporting Information online). Using  $\text{LiBH}_4$  or  $\text{NaBH}_4$  instead of  $\text{KBH}_4$  in a similar procedure, the solvated lithium salt ( $\text{Li}(\text{O}_2\text{C}_4\text{H}_8)_2\text{B}_{11}\text{H}_{14}$ ) and solvent-free sodium salt ( $\text{NaB}_{11}\text{H}_{14}$ ) were also obtained with 75% and 65% yields, respectively (Figures S9–S12 and S13–S16). It is worth noting that alkali metal salts of  $\text{MB}_{11}\text{H}_{14}$  ( $\text{M} = \text{Li, Na, and K}$ ) were synthesized [2b,2e,2h,11a], but the



**Figure 1** The nucleophilic substitution reactions with a typical nucleophile (top) or with borohydride acting as a nucleophile (bottom) (color online).

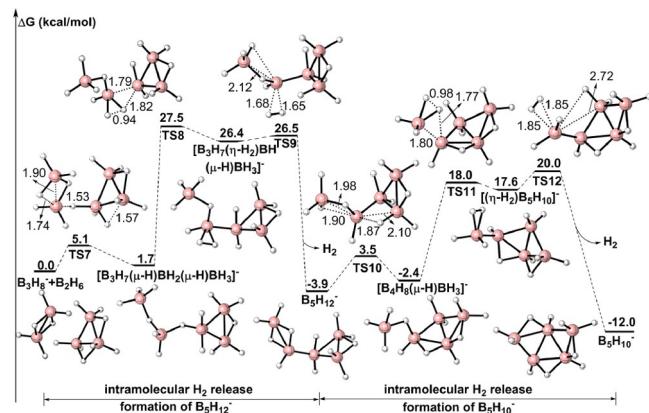
highly reactive and hazardous  $\text{B}_2\text{H}_6$ ,  $\text{B}_5\text{H}_9$ , and  $\text{B}_{10}\text{H}_{14}$  were used. In addition,  $\text{Me}_3\text{NHB}_{11}\text{H}_{14}$  can be prepared by a one-pot reaction of  $\text{NaBH}_4$  and  $\text{C}_2\text{H}_5\text{O}\bullet\text{BF}_3$  [11b]. In this work, a more stable and inexpensive Lewis base borane adduct of  $(\text{CH}_3)_2\text{S}\cdot\text{BH}_3$  was used from which  $\text{B}_2\text{H}_6$  is believed to be formed *in situ* and then reacting with alkali metal salts of borohydride to afford alkali metal salts of  $\text{MB}_{11}\text{H}_{14}$  ( $\text{M} = \text{Li}$ ,  $\text{Na}$ , and  $\text{K}$ ).

Additionally, we investigated the effects of solvent and temperature on this reaction. When 1,2-dimethoxyethane (DME) was selected as the solvent under reflux conditions, although the reaction goes similar to that in 1,4-dioxane (Figure S17), the  $\text{MB}_{11}\text{H}_{14}$  product could not be isolated and separated from the sticky crude mixture by recrystallization due to the strong coordination of alkali metal cations and the solvents (DME and THF). Notably, temperature is another important factor in this reaction. With the reaction temperature decreased from 90 to 80 °C, the reaction was completed at the  $\text{NaB}_3\text{H}_8$  stage rather than  $\text{NaB}_{11}\text{H}_{14}$  (Figure S18a, Table S1, Entry 1). However, increasing temperature causes more by-products, making separation difficult and decreasing the yield (Figure S18c). The reaction of  $\text{KBH}_4$  and  $(\text{CH}_3)_2\text{S}\cdot\text{BH}_3$  can produce  $\text{KB}_{11}\text{H}_{14}$  at 80 °C, but the yield was significantly decreased than that at 90 °C (Figure S19, Table S1, Entry 3). We determined that  $\text{MBH}_4$  and  $(\text{CH}_3)_2\text{S}\cdot\text{BH}_3$  in dioxane at 90 °C is the optimized condition to obtain the desired product  $\text{MB}_{11}\text{H}_{14}$ .

## 2.2 Synthesis of $\text{M}_2\text{B}_{12}\text{H}_{12}$ ( $\text{M} = \text{Na, K}$ )

Although the  $\text{B}_{12}\text{H}_{12}^{2-}$  anion was observed when we monitored the reaction of  $\text{KBH}_4$  and  $(\text{CH}_3)_2\text{S}\cdot\text{BH}_3$  (Figure S20), it could not be obtained as a major product by simply adjusting the reaction conditions such as temperature, reactant ratio, and reaction time. We also attempted to use the formed potassium  $\text{B}_{11}\text{H}_{14}^-$  salt to react with  $\text{THF}\cdot\text{BH}_3$ ,  $(\text{CH}_3)_2\text{S}\cdot\text{BH}_3$ , or  $\text{KBH}_4$ , respectively, and no derivatives of the  $\text{B}_{12}\text{H}_{12}^{2-}$  anion were observed, which are different from the reactions of  $\text{NaB}_{11}\text{H}_{14}$  and  $\text{Me}_3\text{NHB}_{11}\text{H}_{14}$  [2h]. However, when  $\text{KB}_{11}\text{H}_{14}$  reacted with  $\text{KB}_3\text{H}_8$  at a 1:1 molar ratio in diglyme at 120 °C for 36 h,  $\text{K}_2\text{B}_{12}\text{H}_{12}$  was obtained with 82% yield (Figures S24–S26). Using a similar reaction of  $\text{NaB}_{11}\text{H}_{14}$  reacting with  $\text{NaB}_3\text{H}_8$  at a 1:1 molar ratio in diglyme at 140 °C for 40 h, we obtained  $\text{Na}_2\text{B}_{12}\text{H}_{12}$  in 80% yield (Figures S27–S29).

## 2.3 Reaction mechanisms


The solution and the formed precipitate during the reaction were monitored at different intervals by  $^{11}\text{B}$  NMR spectroscopy to gain insight into the reaction mechanisms. As the reaction proceeded, a white precipitate formed. The  $^{11}\text{B}$  NMR spectra of the reaction solution demonstrated the for-

mation of the  $\text{B}_3\text{H}_8^-$ ,  $\text{B}_9\text{H}_{14}^-$ , and  $\text{B}_{11}\text{H}_{14}^-$  intermediates (Figures S5, S9, S13, and S17).  $\text{B}_3\text{H}_8^-$  was observed to be formed first, and then  $\text{B}_9\text{H}_{14}^-$  and  $\text{B}_{11}\text{H}_{14}^-$  were sequentially formed. This observation provides important information for understanding the formation mechanisms.

On the basis of these observations and the theoretical results using the Gaussian 09 program [12], we proposed a mechanism for the formation of the  $\text{B}_{11}\text{H}_{14}^-$  anion through the direct reaction of  $(\text{CH}_3)_2\text{S}\cdot\text{BH}_3$  and  $\text{BH}_4^-$ . The proposed mechanism indicated that  $\text{B}_2\text{H}_6$  was first formed *in situ* by dimerization of  $(\text{CH}_3)_2\text{S}\cdot\text{BH}_3$ , and then polyhedral boranes were formed step-by-step by reacting with the nascent  $\text{B}_2\text{H}_6$  intermediate. In the first step, the  $\text{B}_3\text{H}_8^-$  anion is formed through the reaction of the  $\text{BH}_4^-$  anion and  $\text{B}_2\text{H}_6$ . The reaction mechanism for this step was discussed in our previous work [5a,5e].

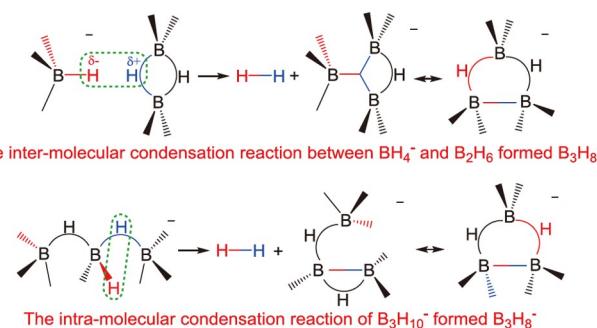
In the following stage, one of the terminal B–H bonds in the formed  $\text{B}_3\text{H}_8^-$  anion attacks the B atom in  $\text{B}_2\text{H}_6$  to form the  $\text{B}_3\text{H}_7(\mu\text{-H})\text{BH}_2(\mu\text{-H})\text{BH}_3^-$  intermediate. Then an  $\text{H}_2$ -boron complex,  $\text{B}_3\text{H}_7(\eta\text{-H}_2)\text{BH}(\mu\text{-H})\text{BH}_3^-$ , is formed through a dihydrogen bonding interaction. With the liberation of the  $\text{H}_2$  molecule, the  $\text{B}_5\text{H}_{12}^-$  anion is formed. Repeating the formation process of the  $\text{H}_2$ -boron complex and the release of  $\text{H}_2$ , the  $\text{B}_5\text{H}_{10}^-$  anion is formed (Figure 2). Similarly, the  $\text{B}_7\text{H}_{12}^-$ ,  $\text{B}_9\text{H}_{14}^-$ , and  $\text{B}_{11}\text{H}_{14}^-$  anions are progressively formed stepwise *via* reactions of one  $\text{B}_2\text{H}_6$  molecule with the formed intermediates in the previous step, following  $\text{H}_2$  release and isomerization (Figures S1–S3). The highest energy barrier in the whole process is 33.2 kcal/mol for the  $\text{B}_7\text{H}_{12}^-$  (I) formation (Figure S1), which can be overcome readily at 90 °C. Figure 2 shows the optimized structures of the intermediates and products from  $\text{B}_3\text{H}_8^-$  to  $\text{B}_5\text{H}_{10}^-$ . The details of the theoretical calculations are given in the Supporting Information online.

The proposed mechanism is supported by experimental evidence. The intermediates of  $\text{B}_3\text{H}_8^-$  and  $\text{B}_9\text{H}_{14}^-$  were isolated or characterized spectroscopically, and the released

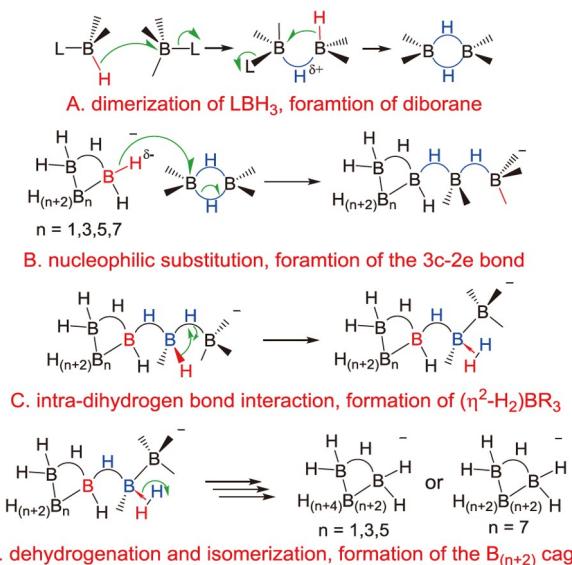


**Figure 2** The reactions associated with the structural transformation from  $\text{B}_3\text{H}_8^-$  and  $\text{B}_2\text{H}_6$  to  $\text{B}_5\text{H}_{10}^-$  (distance in Å) (color online).

hydrogen gas was captured by the  $C_6D_6$  solution (Figure S34). We also conducted the reaction of  $KB_3H_8$  with  $(CH_3)_2S \cdot BH_3$  at a 1:8 molar ratio, and the potassium salt of the  $B_{11}H_{14}^-$  anion was obtained with a 75% yield (Figures S21–S23). The previously reported conversion of  $B_3H_8^-$  or  $B_9H_{14}^-$  into  $B_{11}H_{14}^-$  by reacting with  $B_2H_6$  [2e,4e] also supports the proposed mechanism. Furthermore, we proved no reaction between  $KB_9H_{14}$  and  $KB_3H_8$  in 1,4-dioxane at 90 °C (Figure S30). However, when the reaction was carried out in diglyme at 120 °C for 3.5 d,  $K_2B_{12}H_{12}$  was exclusively afforded in a 92% isolated yield (Figures S31–S33). Based on these results, we conclude that the formed  $B_9H_{14}^-$  anion rapidly reacts with  $B_2H_6$  to form  $B_{11}H_{14}^-$  under a relatively mild condition, but in the absence of  $B_2H_6$ , it directly reacts with  $B_3H_8^-$  to give  $B_{12}H_{12}^{2-}$  at the elevated temperature.


## 2.4 The nature of the B–H bond condensation reaction and its general mechanism

After analyzing the reported methods for the synthesis of polyhedral boranes through the B–H bond condensation reaction [2–11], we found that the nature of the B–H bond condensation reaction can be generally described as a dihydrogen bonding interaction between a positively charged hydrogen and a negatively charged hydrogen leading to the formation of a dihydrogen molecule boron complex. The B–B bond is formed upon the  $H_2$  release. As shown in Figure 3, the reaction of  $BH_4^-$  and  $B_2H_6$  or dehydrogenation of  $B_3H_{10}^-$  to form  $B_3H_8^-$  and  $H_2$  are illustrated as simple examples through the inter- or intra-dihydrogen bonding interaction, resulting in the breaking of the B–H  $\sigma$  bonds and the formation of H–H and B–B  $\sigma$  bonds under mild conditions. In addition, the  $\sigma$  aromaticity of the [B3] delta-unit increases its stability [13]. This mechanism also applies to the reactions of borohydrides with the other neutral boranes, such as  $B_5H_9$  and  $B_{10}H_{14}$  [2], in which the bridging hydrogens also display positively charged characteristics (Figure S4).


Based on the understanding of the nature of the B–H bond condensation reaction and the formation mechanism of the  $B_3H_8^-$  anion [5a,5e], a general mechanism of the B–H bond condensation reaction of the borohydrides and the borane Lewis base adducts to form the polyhedral boranes is summarized as three important steps: (1) Conversion of terminal hydrogen (B–H) into bridging hydrogen (B–H–B). The driving force of the condensation reaction is the dihydrogen bond interaction between a positively charged hydrogen and a negatively charged hydrogen. However, all of the terminal hydrogen atoms, either in borohydride ( $BH_4^-$ ) or in borane Lewis base adduct ( $L \cdot BH_3$ ), appear negatively charged ( $H^-$ ) because the electronegativity of hydrogen (2.1) is higher than that of the B atom (2.0). Thus, it is necessary to reverse the hydrogen atom from negatively charged  $H^-$  (red color) to positively charged  $H^{\delta+}$  (blue color) because the bridging

hydrogen in a neutral borane is partially positively charged (Figure S4). Usually two  $L \cdot BH_3$  molecules are dimerized into  $B_2H_6$  (Figure 4A) which then reacts with borohydrides ( $B_nH_{(n+5)}^-$ ,  $n = 3, 5, 7, 9$ ) (Figure 4B). (2) Formation of a  $H_2$ -boron complex ( $\eta^2$ - $H_2$ ) $BR_3$ . Intra-molecular dihydrogen interactions between the bridging hydrogen and the terminal hydrogen ( $B-H^{\delta+} \cdots H^{\delta-}B$ ) afford an  $H_2$ -boron complex, ( $\eta^2$ - $H_2$ ) $BR_3$  (Figure 4C). (3) Formation of the [B3] delta unit. The  $H_2$ -boron complex is unstable, resulting in the rapid release of the  $H_2$  molecule when the nucleophilic B–H or B–B bonding pair electrons attack the  $H_2$ -boron complex [5a,5c,5e]. Then a similar process is repeated to release the second  $H_2$  molecule, resulting in the formation of new B–H–B or B–B–B bonds and completing the [B3] delta unit upon isomerization (Figure 4D).

Based on the understanding of the nature of the B–H bond condensation reaction and the general formation mechanism of polyhedral boranes, we can further explain why the alkali metal salts of borohydride can stably exist alone even at high



**Figure 3** The inter- or intra-molecular B–H bond condensation reaction resulting in the formation of delta B3 unit (color online).



**Figure 4** The general formation mechanism of polyhedral boranes from small boranes through the B–H bond condensation reaction (color online).  
<https://engine.scichina.com/doi/10.1007/s11426-023-1852-9>

temperatures but can react with neutral borane under relatively mild conditions to form polyhedral boranes because of the protonic character of their bridging hydrogen of these neutral boranes. On the other hand, the  $H_2$  release reaction is irreversible, differentiating from those organic condensation reactions in which an equilibrium may occur because the impetus of those reactions is the formation of water or alcohol [14]. Thus, selecting and controlling the initial reaction conditions are critical for developing the highly selective synthesis of the polyhedral boranes, because once the by-product is formed it will go to the final product, leading to a mixture of products.

It is worth noting that in the whole procedure of the reactions, the  $B_{10}H_{10}^{2-}$  anion was not detected in our synthetic methods. However, it was often reported in the literature that the  $B_{10}H_{10}^{2-}$  anion was a co-product formed with  $B_9H_{14}^-$ ,  $B_{11}H_{14}^-$ , and  $B_{12}H_{12}^{2-}$  [2k,4a,4h]. This observation indicated that the formation conditions and mechanisms of  $B_{10}H_{10}^{2-}$  are different from those of  $B_{12}H_{12}^{2-}$  and the current conditions are not suitable for the  $B_{10}H_{10}^{2-}$  anion. Thus, the conditions for the formation of the  $B_{10}H_{10}^{2-}$  anion appear to be very delicate and it would be interesting to conduct further research for the selective synthesis of  $B_{10}H_{10}^{2-}$ .

### 3 Conclusions

In conclusion, based on our previous study on the synthesis and mechanism of the  $B_3H_8^-$  anion, we developed highly selective and efficient synthetic methods for the  $B_{11}H_{14}^-$  and  $B_{12}H_{12}^{2-}$  polyhedral boranes using safer and commercially available borohydride and Lewis base borane adducts. The formation mechanism of the  $B_{11}H_{14}^-$  anion was elucidated experimentally and computationally. Furthermore, we found that the nature of the B–H bond condensation reaction is a dihydrogen bonding interaction leading to the formation of the B–B bond with the release of an  $H_2$  molecule. The conversion of the negatively charged terminal hydrogen to the positively charged bridging hydrogen is crucial for developing efficient synthetic methods of polyhedral boranes under mild conditions. The current findings pave the way for the development of controllable synthetic methods for polyhedral boranes and for their broader applications.

**Acknowledgements** This work was supported by the National Natural Science Foundation of China (22171246, U1804253 to X.C. and 21773214 to D.W.) and the National Science Foundation (CHE-2053541 to L.-S. W.).

**Conflict of interest** The authors declare no conflict of interest.

**Supporting information** The supporting information is available online at [chem.scichina.com](http://chem.scichina.com) and [link.springer.com/journal/11426](http://link.springer.com/journal/11426). The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

- (a) Weilmuenster EA. *Ind Eng Chem*, 1957, 49: 1337–1338; (b) Martin DR. *J Chem Educ*, 1959, 36: 208–214; (c) He T, Cao H, Chen P. *Adv Mater*, 2019, 31: 1902757; (d) Li S, Qiu P, Kang J, Ma Y, Zhang Y, Yan Y, Jensen TR, Guo Y, Zhang J, Chen X. *ACS Appl Mater Interfaces*, 2021, 13: 17554–17564; (e) Li J, Sun Q, Lu C, Xiao H, Guo Z, Duan D, Zhang Z, Liu T, Liu Z. *Nat Commun*, 2022, 13: 2143; (f) Bondarev O, Khan AA, Tu X, Sevryugina YV, Jalasatgi SS, Hawthorne MF. *J Am Chem Soc*, 2013, 135: 13204–13211; (g) Leśnickowski ZJ. *J Med Chem*, 2016, 59: 7738–7758; (h) Huang Z, Wang S, Dewhurst RD, Ignat'ev NV, Finze M, Braunschweig H. *Angew Chem Int Ed*, 2020, 59: 8800–8816; (i) Paskevicius M, Hansen BRS, Jørgensen M, Richter B, Jensen TR. *Nat Commun*, 2017, 8: 15136; (j) Sivaev IB, Bregadze VV. *Eur J Inorg Chem*, 2009, 2009: 1433–1450; (k) Li WL, Hu HS, Zhao YF, Chen X, Chen TT, Jian T, Wang LS, Li J. *Sci Sin-Chim*, 2018, 48: 98–107; (l) Wang R, Zhang J, Jiang X, Ma N, Chen X, Xu C, Li J. *Chin J Chem*, 2021, 39: 1811–1818
- For selected research articles and reviews on this topic: (a) Stock A. *Hydrides of Boron and Silicon*. New York: Cornell University Press, 1933; (b) Aftandilian VD, Miller HC, Parshall GW, Muetterties EL. *Inorg Chem*, 1962, 1: 734–737; (c) Gaines DF, Schaeffer R, Tebbe F. *Inorg Chem*, 1963, 2: 526–528; (d) Miller HC, Miller NE, Muetterties EL. *J Am Chem Soc*, 1963, 85: 3885–3886; (e) Hosmane NS, Werner JR, Hong Z, Getman TD, Shore SG. *Inorg Chem*, 1987, 26: 3638–3639; (f) Adams RM, Siedle AR, Grant J. *Inorg Chem*, 1964, 3: 461; (g) Bykov AY, Zhizhin KY, Kuznetsov NT. *Russ J Inorg Chem*, 2014, 59: 1539–1555; (h) Miller HC, Miller NE, Muetterties EL. *Inorg Chem*, 1964, 3: 1456–1463; (i) Preetz W, Peters G. *Eur J Inorg Chem*, 1999, 1999: 1831–1846; (j) Bykov AY, Zhdanov AP, Zhizhin KY, Kuznetsov NT. *Russ J Inorg Chem*, 2016, 61: 1629–1648; (k) Sivaev IB, Prikaznov AV, Naoufal D. *Collect Czech Chem Commun*, 2010, 75: 1149–1199; (l) Sivaev IB. *Russ J Inorg Chem*, 2019, 64: 955–976; (m) Sivaev IB, Bregadze VI, Sjöberg S. *Collect Czech Chem Commun*, 2002, 67: 679–727; (n) He L, Li HW, Tumanov N, Filinchuk Y, Akiba E. *Dalton Trans*, 2015, 44: 15882–15887; (o) Hansen BRS, Paskevicius M, Li HW, Akiba E, Jensen TR. *Coord Chem Rev*, 2016, 323: 60–70
- Hawthorne MF, Pilling RL, Grimes RN. *J Am Chem Soc*, 1964, 86: 5338–5339
- (a) Colombier M, Atchekzai J, Mongeot H. *Inorg Chim Acta*, 1986, 115: 11–16; (b) Bykov AY, Mal'tseva NN, Generalova NB, Zhizhin KY, Kuznetsov NT. *Russ J Inorg Chem*, 2013, 58: 1321–1323; (c) Chong M, Matsuo M, Orimo S, Autrey T, Jensen CM. *Inorg Chem*, 2015, 54: 4120–4125; (d) Zheng X, Yang Y, Zhao F, Fang F, Guo Y. *Chem Commun*, 2017, 53: 11083–11086; (e) Gavrilova LA, Titov LV, Petrovskii PV. *Rus J Coord Chem*, 2004, 30: 307–308; (f) Klanberg F, Eaton DR, Guggenberger LJ, Muetterties EL. *Inorg Chem*, 1967, 6: 1271–1281; (g) Klanberg F, Muetterties EL. *Inorg Chem*, 1966, 5: 1955–1960; (h) Makhlouf JM, Hough WV, Hefferan GT. *Inorg Chem*, 1967, 6: 1196–1198
- (a) Chen XM, Ma N, Zhang QF, Wang J, Feng X, Wei C, Wang LS, Zhang J, Chen X. *J Am Chem Soc*, 2018, 140: 6718–6726; (b) Chen X, Ma N, Liu X, Wei C, Cui C, Cao B, Guo Y, Wang L, Gu Q, Chen X. *Angew Chem Int Ed*, 2019, 58: 2720–2724; (c) Zhao Q, Dewhurst RD, Braunschweig H, Chen X. *Angew Chem Int Ed*, 2019, 58: 3268–3278; (d) Liu XR, Chen XM, Zhang J, Jensen TR, Chen X. *Dalton Trans*, 2019, 48: 5140–5143; (e) Chen X, Liu XR, Wang X, Chen XM, Jing Y, Wei D. *Dalton Trans*, 2021, 50: 13676–13679; (f) Chen XM, Jing Y, Kang JX, Wang Y, Guo Y, Chen X. *Inorg Chem*, 2021, 60: 18466–18472
- Wang J, Steenhaut T, Li HW, Filinchuk Y. *Inorg Chem*, 2023, 62: 2153–2160
- (a) Volkov O, Paetzold P. *J Organomet Chem*, 2003, 680: 301–311; (b) Dirk W, Paetzold P, Radacki K. *Z Anorg Allg Chem*, 2001, 627: 2615–2618; (c) Volkov O, Dirk W, Englert U, Paetzold P. *Z Anorg Allg Chem*, 1999, 625: 1193–1200
- (a) Getman TD, Krause JA, Shore SG. *Inorg Chem*, 1988, 27: 2398–2403

2399; (b) Edwards LJ, Makhlof JM. *J Am Chem Soc*, 1966, 88: 4728–4729

9 Dunks GB, Barker K, Hedaya E, Hefner C, Palmer-Ordonez K, Remec P. *Inorg Chem*, 1981, 20: 1692–1697

10 (a) Franken A, King BT, Rudolph J, Rao P, Noll BC, Michl J. *Collect Czech Chem Commun*, 2001, 66: 1238–1249; (b) Han H, Wang YY, Yu XC, Ma YN, Chen X. *Crystals*, 2022, 12: 1339; (c) Little JL, Whitesell MA, Chapman RW, Kester JG, Huffman JC, Todd LJ. *Inorg Chem*, 1993, 32: 3369–3372; (d) Getman TD, Shore SG. *Inorg Chem*, 1988, 27: 3439–3440; (e) Kester JG, Keller D, Huffman JC, Benefiel MA, Geiger Jr. WE, Atwood C, Siedle AR, Korba GA, Todd LJ. *Inorg Chem*, 1994, 33: 5438–5442; (f) Jasper SA, Huffman JC, Todd LJ. *Inorg Chem*, 1998, 37: 6060–6064

11 (a) Gaines DF, Bridges AN, Hayashi RK. *Inorg Chem*, 1994, 33: 1243–1244; (b) Dunks GB, Ordonez KP. *Inorg Chem*, 1978, 17: 1514–1516

12 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 09, Revision D.01. Wallingford: Gaussian, Inc., 2009

13 Olson JK, Boldyrev AI. *Comput Theor Chem*, 2011, 967: 1–4

14 Bruckner R. *Advanced Organic Chemistry*. First Ed. San Diego: Harcourt Academic Press, 2002. 414–427