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Polyhedral boranes are a class of well-known boron molecular clusters with unique physical and chemical properties, and great
efforts have been made in the past decades to find more effective synthetic methods. However, the established synthetic methods
suffer from low efficiency and low selectivity because the mechanism of the B-H bond condensation reaction, critical for the
synthesis of the polyhedral boranes, is not well understood. Here we report highly selective and efficient synthetic methods of the
salts of the tetradecahydridoundecaborate (1-) (B;;H;4 ) and dodecahydrido-dodecaborates (2-) (B,H, 227) anions by employing
commercially available and inexpensive starting materials. Both theoretical and experimental investigations are carried out to
elucidate the reaction mechanisms. We have found that the nature of the B-H bond condensation is the dihydrogen bonding
interaction in which the positively charged hydrogens (bridged hydrogens) play a crucial role. The current study has not only led
to more effective and selective synthetic methods for B,;H,, and B]2H1227 but also unveiled the nature of the B-H bond
condensation and the general formation mechanisms of polyhedral boranes. This finding will facilitate the development of more
effective synthetic methods for polyhedral boranes and spur their wide application.
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1 Introduction

Polyhedral boranes are a class of well-known boron mole-
cular clusters widely used in energy, chemistry, medicine,
and material science because of their unique structure and
physical and chemical properties [1]. Therefore, the synth-
esis of polyhedral boranes has attracted great attention. The
established synthetic methods for over almost a century [2]
are mainly based on reactions of borohydrides with diborane
(6) (B,Hg) (in pressure equipment) [2¢,2d,2h], pentaborane
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(9) (BsHy) [2¢], and decaborane (14) (B;,H,4) [2b,2f,2m] for
the synthesis of various polyhedral borane anions, including
B;Hg , B, ;H,, , and B12H1227. In these reactions, an essential
point is how to form the B-B bonds through the B-H bond
condensation reaction [2g]. However, the condensation re-
actions of the small borane complexes are carried out under
elevated temperatures in different solvents, resulting in
problems of products hardly predictable and controllable.
The reaction mechanisms proposed in previous reports are
not fully understood [2h,3]. As a result, mixtures of several
polyhedral boranes are frequently obtained in such reactions
[4]. Therefore, understanding the factors underlying these
reactions and exploring the mechanism of the B-H bond
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condensation reaction are crucial for finding highly selective
and efficient syntheses of polyhedral boranes and have been
a long-sought goal in boron chemistry.

Recently, during our systematical investigation of the
synthetic methods of amine boranes and the B;Hg anion, we
found that the B-H bonding pair electrons, similar to the lone
pair electrons of the traditional nucleophiles, can be used in
the nucleophilic substitution reaction to substitute the leav-
ing group to form B-H-B 3c—2e bond (Figure 1) [5]. The
energy profiles of these reactions depend on the nucliophi-
licity of the B-H bonding pair electrons, the leaving groups,
the stability of the products, and solvents, as shown in Table
S2 (Supporting Information online). Further experimental
and computational studies on the formation mechanisms of
the B;Hg anion through the reactions of the alkali metal salt
of borohydride (MBH,) and Lewis base borane adducts
(LeBH;) revealed that the B,Hg species formed in situ is a
crucial intermediate [Sa,5e¢]. The acidic character of the
bridging hydrogens of B,H, plays an essential role that can
readily interact with the negatively charged terminal hydro-
gen of boranes to form an H,-boron complex [5a,5¢]. With
H, release and isomerization, a new B-B or B-H-B bond is
formed. The formation of the B;Hg anion is the first stage
for the formation of polyhedral boranes because the [B3]
delta-unit is the basic structural moiety of polyhedral boranes
[5a,5¢]. More recently, Filinchuk et al. [6] has reported the
synthesis of M,B,,H;, (M = Na, K), along with the formation
of intermediates of B;Hg , BgH,4 , and B,;H,, , by increasing
the reaction temperature and pressure using borohydride and
borane Lewis base adducts.

Inspired by the successful synthesis of the B;Hg anion
[5a], we have endeavored to investigate synthetic methods of
large polyhedral boranes based on the nucleophilicity of the
B-H bonding pair electrons and explore their general me-
chanisms and the nature of the B-H bond condensation re-
action.

Among all polyhedral borane anions, the icosahedral
B12H1227 anion is the most stable and it can be readily syn-
thesized. However, the selective preparation of the BoH,,

‘ o bond

The classical nucleophile participating in
the substitution reaction

/ / | 3c-2e boné

The B-H bonding pair electrons participating in
the substitution reaction

Figure 1 The nucleophilic substitution reactions with a typical nucleo-
phile (top) or with borohydride acting as a nucleophile (bottom) (color
online).
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and B;;H,, anions, as the intermediates of the synthesis of
the B12H1227 anion, is more difficult, because the lower
polyhedral anions are more likely converted to the thermo-
dynamically favored B,,H,,” anion at clevated reaction
temperatures [2d,20,6]. On the other hand, the B;;H,, anion
is a useful starting material for conversion to other 11-vertex
borane compounds [7,8] and preparation of decaborane [9].
In addition, the nido-B,;H,, anion is a structurally favored
precursor for the synthesis of hetero-polyhedral colso-bor-
anes, such as carboranes and metallaboranes, by reacting
with p-block and transition metal compounds [7,10]. How-
ever, the lack of efficient synthetic methods hinders its wide
application.

In this article, we report highly selective and efficient
synthetic methods of the alkali metal salts of the B;;H,, and
B12H1227 anions by employing commercially available and
inexpensive borohydrides and Lewis base borane adducts as
starting materials, instead of the more reactive and hazardous
B,H,, BsHy, and B,;jH,4. The reaction mechanisms have been
elucidated using both theoretical and experimental in-
vestigations. More importantly, a general reaction mechan-
ism for the B-H bond condensation has been advanced for
the efficient synthesis of polyhedral boranes under relatively
mild conditions.

2 Results and discussion

2.1 Synthesis of MB;;H,, (M = Li, Na, K)

The B—H bond condensation reaction is the main synthetic
method of polyhedral boranes, but it is hardly controllable,
so a mixture of polyhedral boranes is usually obtained [4].
When we systematically studied the reactions of potassium
borohydride (KBH,) and dimethyl sulfide borane ((CHj;),-
S-BH;), we found that the final products are dependent on
the reactant ratio, reaction time and temperature. When the
reaction was conducted with a molar ratio of KBH, to
(CH;),S‘BH; in a 1:10 in 1,4-dioxane at 90 °C for 5 d, the
main product is the B;;H,; anion and the unsolvated po-
tassium salt (KB;;H,,) was isolated with 86% yield (Figure
S5). This result is different from that of the previous report,
where the reaction of KBH, and (CH;),S-BHj; in a 1:2 molar
ratio for 48 h afforded the B;Hg anion as the main product,
which was isolated with 89% yield [Se]. The KB,;H,, pro-
duct is characterized by "B, llB{IH}, 'H, and IH{”B} nu-
clear magnetic resonance (NMR) and infrared radiation (IR)
spectroscopy (Figures S6—S8, Supporting Information on-
line). Using LiBH, or NaBH, instead of KBH, in a similar
procedure, the solvated lithium salt (Li(O,C,Hg),B;1H,4) and
solvent-free sodium salt (NaB;;H,,) were also obtained with
75% and 65% yields, respectively (Figures S9—S12 and S13—
S16). It is worth noting that alkali metal salts of MB,;H,, (M
= Li, Na, and K) were synthesized [2b,2e,2h,11a], but the
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highly reactive and hazardous B,H,, BsH,, and B, H,, were
used. In addition, Me;NHBH,, can be prepared by a one-
pot reaction of NaBH, and C,H;O0«BF; [11b]. In this work, a
more stable and inexpensive Lewis base borane adduct of
(CH;),S-BH; was used from which B,Hg is believed to be
formed in situ and then reacting with alkali metal salts of
borohydride to afford alkali metal salts of MB,;H,, (M = Li,
Na, and K).

Additionally, we investigated the effects of solvent and
temperature on this reaction. When 1,2-dimethoxyethane
(DME) was selected as the solvent under reflux conditions,
although the reaction goes similar to that in 1,4-dioxane
(Figure S17), the MB,H,, product could not be isolated and
separated from the sticky crude mixture by recrystallization
due to the strong coordination of alkali metal cations and the
solvents (DME and THF). Notably, temperature is another
important factor in this reaction. With the reaction tem-
perature decreased from 90 to 80 °C, the reaction was
completed at the NaB;Hj stage rather than NaB,,H,, (Figure
S18a, Table S1, Entry 1). However, increasing temperature
causes more by-products, making separation difficult and
decreasing the yield (Figure S18c). The reaction of KBH,
and (CH;),S-BH; can produce KB;;H;, at 80 °C, but the
yield was significantly decreased than that at 90 °C (Figure
S19, Table S1, Entry 3). We determined that MBH, and
(CH;),S-BHj in dioxane at 90 °C is the optimized condition
to obtain the desired product MB,,H,,.

2.2 Synthesis of M,B,,H;, (M = Na, K)

Although the Bleu% anion was observed when we mon-
itored the reaction of KBH, and (CHj;),S-BH; (Figure S20),
it could not be obtained as a major product by simply ad-
justing the reaction conditions such as temperature, reactant
ratio, and reaction time. We also attempted to use the formed
potassium B H,, salt to react with THF-BH;, (CH;),S-BHj,
or KBH,, respectively, and no derivatives of the BIZHIQ%
anion were observed, which are different from the reactions
of NaB,,;H,, and Me;NHB,H,, [2h]. However, when KB, H,,
reacted with KB;Hg at a 1:1 molar ratio in diglyme at
120 °C for 36 h, K,B,H,, was obtained with 82% yield
(Figures S24-S26). Using a similar reaction of NaB; H,
reacting with NaB;Hg at a 1:1 molar ratio in diglyme at
140 °C for 40 h, we obtained Na,B,H,, in 80% yield (Fig-
ures S27-S29).

2.3 Reaction mechanisms

The solution and the formed precipitate during the reaction
were monitored at different intervals by "B NMR spectro-
scopy to gain insight into the reaction mechanisms. As the
reaction proceeded, a white precipitate formed. The a

NMR spectra of the reaction solution demonstrated the for-
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mation of the B;Hg, BgH;,, and B, H,, intermediates
(Figures S5, S9, S13, and S17). B;Hg was observed to be
formed first, and then ByH;, and B;;H,, were sequentially
formed. This observation provides important information for
understanding the formation mechanisms.

On the basis of these observations and the theoretical re-
sults using the Gaussian 09 program [12], we proposed a
mechanism for the formation of the B,;H,, anion through
the direct reaction of (CH;),S-BH; and BH, . The proposed
mechanism indicated that B,H, was first formed in situ by
dimerization of (CHj;),S-BHj3, and then polyhedral boranes
were formed step-by-step by reacting with the nascent B,Hg
intermediate. In the first step, the BsHg anion is formed
through the reaction of the BH, anion and B,H,. The reac-
tion mechanism for this step was discussed in our previous
work [5a,5¢].

In the following stage, one of the terminal B—H bonds in
the formed B;Hg anion attacks the B atom in B,Hg to form
the B;H;(u-H)BH,(u-H)BH;  intermediate. Then an H,-
boron complex, B;H,(n-H,)BH(u-H)BHj, is formed through
a dihydrogen bonding interaction. With the liberation of the
H, molecule, the BsH;, anion is formed. Repeating the
formation process of the H,-boron complex and the release
of H,, the BsH;, anion is formed (Figure 2). Similarly, the
B;H,, , BjH,4 , and B;H,, anions are progressively formed
stepwise via reactions of one B,Hg molecule with the formed
intermediates in the previous step, following H, release and
isomerization (Figures S1-S3). The highest energy barrier in
the whole process is 33.2 kcal/mol for the B;H;, (I) forma-
tion (Figure S1), which can be overcome readily at 90 °C.
Figure 2 shows the optimized structures of the intermediates
and products from B;Hg to BsH,, . The details of the theo-
retical calculations are given in the Supporting Information
online.

The proposed mechanism is supported by experimental
evidence. The intermediates of B;Hg and BoH,;, were iso-
lated or characterized spectroscopically, and the released
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Figure 2 The reactions associated with the structural transformation from
B;Hg and B,H to BsH,, (distance in A) (color online).
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hydrogen gas was captured by the C¢Dy solution (Figure
S34). We also conducted the reaction of KB;Hg with (CH;),S
‘BH; at a 1:8 molar ratio, and the potassium salt of the
B,H,, anion was obtained with a 75% yield (Figures S21—
S23). The previously reported conversion of ByHg or BgH, 4
into B;H,, by reacting with B,H, [2¢,4¢] also supports the
proposed mechanism. Furthermore, we proved no reaction
between KBgH,, and KB;Hg in 1,4-dioxane at 90 °C (Figure
S30). However, when the reaction was carried out in diglyme
at 120 °C for 3.5 d, K,B,H;, was exclusively afforded in a
92% isolated yield (Figures S31-S33). Based on these re-
sults, we conclude that the formed ByH,, anion rapidly re-
acts with B,Hy to form B;;H;, under a relatively mild
condition, but in the absence of B,Hy;, it directly reacts with
B;H; to give B12H122f at the elevated temperature.

2.4 The nature of the B-H bond condensation reaction
and its general mechanism

After analyzing the reported methods for the synthesis of
polyhedral boranes through the B-H bond condensation re-
action [2—11], we found that the nature of the B-H bond
condensation reaction can be generally described as a dihy-
drogen bonding interaction between a positively charged
hydrogen and a negatively charged hydrogen leading to the
formation of a dihydrogen molecule boron complex. The B—
B bond is formed upon the H, release. As shown in Figure 3,
the reaction of BH, and B,H, or dehydrogenation of B;H;,
to form B;Hg and H, are illustrated as simple examples
through the inter- or intra-dihydrogen bonding interaction,
resulting in the breaking of the B-H ¢ bonds and the for-
mation of H-H and B-B ¢ bonds under mild conditions. In
addition, the ¢ aromaticity of the [B3] delta-unit increases its
stability [13]. This mechanism also applies to the reactions of
borohydrides with the other neutral boranes, such as BsHg
and B(H4 [2], in which the bridging hydrogens also display
positively charged characteristics (Figure S4).

Based on the understanding of the nature of the B-H bond
condensation reaction and the formation mechanism of the
B;Hg anion [5a,5¢], a general mechanism of the B-H bond
condensation reaction of the borohydrides and the borane
Lewis base adducts to form the polyhedral boranes is sum-
marized as three important steps: (1) Conversion of terminal
hydrogen (B-H) into bridging hydrogen (B-H-B). The
driving force of the condensation reaction is the dihydrogen
bond interaction between a positively charged hydrogen and
a negatively charged hydrogen. However, all of the terminal
hydrogen atoms, either in borohydride (BH, ) or in borane
Lewis base adduct (L-BH;), appear negatively charged (H )
because the electronegativity of hydrogen (2.1) is higher than
that of the B atom (2.0). Thus, it is necessary to reverse the
hydrogen atom from negatively charged H> (red color) to
positively charged H” (blue color) because the bridging
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hydrogen in a neutral borane is partially positively charged
(Figure S4). Usually two L-BH; molecules are dimerized
into B,H, (Figure 4A) which then reacts with borohydrides
(B,Hg1s), n =3, 5 7, 9) (Figure 4B). (2) Formation of a H,-

boron complex (n —H2)BR3 Intra-molecular dihydrogen in-
teractions between the bridging hydrogen and the terminal
hydrogen (B—H(H---HJ_—B) afford an H,-boron complex, (nz—
H,)BR; (Figure 4C). (3) Formation of the [B3] delta unit.
The H,-boron complex is unstable, resulting in the rapid
release of the H, molecule when the nucleophilic B-H or B—
B bonding pair electrons attack the H,-boron complex
[5a,5¢,5¢]. Then a similar process is repeated to release the
second H, molecule, resulting in the formation of new B-H—
B or B-B-B bonds and completing the [B3] delta unit upon
isomerization (Figure 4D).

Based on the understanding of the nature of the B-H bond
condensation reaction and the general formation mechanism
of polyhedral boranes, we can further explain why the alkali
metal salts of borohydride can stably exist alone even at high
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Figure 3 The inter- or intra-molecular B-H bond condensation reaction
resulting in the formation of delta B3 unit (color online).
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temperatures but can react with neutral borane under rela-
tively mild conditions to form polyhedral boranes because of
the protonic character of their bridging hydrogen of these
neutral boranes. On the other hand, the H, release reaction is
irreversible, differentiating from those organic condensation
reactions in which an equilibrium may occur because the
impetus of those reactions is the formation of water or al-
cohol [14]. Thus, selecting and controlling the initial reaction
conditions are critical for developing the highly selective
synthesis of the polyhedral boranes, because once the by-
product is formed it will go to the final product, leading to a
mixture of products.

It is worth noting that in the whole procedure of the re-
actions, the BIOHlozf anion was not detected in our synthetic
methods. However, it was often reported in the literature that
the B10H102f anion was a co-product formed with BoH,, ,
B,;H,4 , and B12H1227 [2k,4a,4h]. This observation indicated
that the formation conditions and mechanisms of B10H1027
are different from those of B12H1227 and the current condi-
tions are not suitable for the B10H1027 anion. Thus, the con-
ditions for the formation of the B10H1027 anion appear to be
very delicate and it would be interesting to conduct further
research for the selective synthesis of BloHlozf.

3 Conclusions

In conclusion, based on our previous study on the synthesis
and mechanism of the B;Hg anion, we developed highly
selective and efficient synthetic methods for the B; H;, and
B12H1227 polyhedral boranes using safer and commercially
available borohydride and Lewis base borane adducts. The
formation mechanism of the B,;H,, anion was elucidated
experimentally and computationally. Furthermore, we found
that the nature of the B-H bond condensation reaction is a
dihydrogen bonding interaction leading to the formation of
the B-B bond with the release of an H, molecule. The con-
version of the negatively charged terminal hydrogen to the
positively charged bridging hydrogen is crucial for devel-
oping efficient synthetic methods of polyhedral boranes
under mild conditions. The current findings pave the way for
the development of controllable synthetic methods for
polyhedral boranes and for their broader applications.
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