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Abstract.
Knots in proteins and DNA are known to have significant effect on their equilibrium and dynamic
properties as well as on their function. While knot dynamics and thermodynamics in electrically neutral
and uniformly charged polymer chains are relatively well understood, proteins are generally
polyampholytes, with varied charge distributions along their backbones. Here we use simulations of
knotted polymer chains to show that variation in the charge distribution on a polyampholyte chain with
zero net charge leads to significant variation in the resulting knot dynamics, with some charge
distributions resulting in long-lived metastable knots that escape the (open-ended) chain on a timescale
that is much longer than that for knots in electrically neutral chains. The knot dynamics in such systems
can be described, quantitatively, using a simple one-dimensional model where the knot undergoes biased
Brownian motion along a “reaction coordinate”, equal to the knot size, in the presence of a potential of
mean force. In this picture, long-lived knots result from charge sequences that create large electrostatic
barriers to knot escape. This model allows us to predict knot lifetimes even when those times are not
directly accessible by simulations.

1. Introduction.

Just like a long piece of cord tends to be entangled causing nuisance, long polymers, particularly
biopolymers, can be knotted, often with significant biological consequences. Indeed, knotted DNA were
first observed in 1976'; DNA knots have the ability to wreak havoc on replication, and cell machinery
exists specifically with the purpose to “undo” the knots®. Knots in proteins have been discovered 24
years later’ and, recently, systematic computer-aided searches through the protein databank have revealed
many knotted proteins®. In parallel, experimental single-molecule studies have revealed knot dynamics at
atomistic scales”.

The role played by knotted biopolymers in living systems is far from being understood. In
addition to hampering replication or weakening polymer strands mechanically®, it has also been
speculated that knots slow protein degradation by the proteasome’. More generally biopolymer
translocation through biological pores, a key process in biology, is affected by the presence of knots®’.
Likewise, folding mechanisms of knotted proteins presents a significant theoretical challenge'™ .
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While a knot in a folded protein can exist as long as the protein remains folded, knots in
disordered polymers tend to be transient. Yet an intriguing study'? finds that a knot can survive in the
denatured state of a protein over a very long time. Such knot stabilization may, in part, result from
entropic effects, which render knots in very long polymer chains metastable as a result of knot self-
tightening'*'*. But given the relatively modest typical length of polypeptide chains, this purely entropic
effect is unlikely to account for long-lived knots in unstructured polypeptides. Another possible
explanation is that the steric hindrance that is due to side chains induces metastability of knots — this
effect was studied in ref. 14 '°. And yet another explanation is that, since proteins often have non-uniform
charge distributions, intrachain electrostatic interactions may trap knots. Electrostatic interactions, indeed,
have a significant effect on the thermodynamics of knotted charged polymers'®'’, but most of the studies
of this effect have been limited to the case of uniformly charged polyelectrolytes such as DNA. Of
course, some combination of the above three explanations may be required to account for the
experimental observations.

The purpose of this study is to explore the hypothesis that the polyampholyte nature of
polypeptides (i.e., the fact that they tend to carry both positive and negative charges, while often been
nearly electrically neutral) lengthen knot lifetimes. To this end, we have used coarse-grained Langevin
dynamics simulations of charged polymer chains with varied charge distributions. Specifically, we
consider several randomly generated charge sequences as well as diblock charge distributions with blocks
of varied length (Fig. 1). The “random” sequences considered here consist of monomers that carry
charges +1 selected with equal probabilities and with no correlation between monomer charges;
of many possible such randomly generated sequences only a handful of those with a total charge of 0 or
+1 were selected. The sequences studied here are only a tiny subset of all possible sequences with these
properties — a more extensive sampling of the sequence space would be very difficult here given the
computational limitations.
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Figure 1. Charge sequences studied here. Left: “randomly” charged chains, with sequences labeled ql to q6. Right:
chains with diblock charge distributions, with same-charge block lengths # ranging from 1 to 25. Blue and yellow
color stripes represent positively and negatively charged segments.

As illustrated in Fig. 2, the knot dynamics and stability depend strongly on the charge
distribution. In particular, while the trefoil (31) knot in an uncharged chain is disentangled quickly, knots
become metastable in some of the polyampholyte chains, exhibiting long lifetimes (sometimes exceeding
the timescales directly accessible by our simulations). In particular, for polyampholyte chains with
diblock charge distributions, knot lifetimes generally increase with the size n of blocks of the same
charge. In contrast, we could not find any simple sequence-dependent parameter allowing one to predict
the knot lifetime for random charge distributions (see Supporting Information SI.4). For instance, in
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electrically neutral homopolymer chains, knot lifetimes are known to be correlated with the global
relaxation times of the chain'®. This is however not the case for the randomly charged polymers
considered here. Indeed, consider the relaxation time of the chain defined as

T = jo ACF(t)dt

_ <R(OR(0)>-<R(0)>’
" < R(0)R(0)>— < R(0) >

CF(t)

where ACF(t) is the autocorrelation function of the end-to-end distance R(?). As seen from Figure 3, this
time does not exhibit any clear correlation with the knot lifetime (see below for a description of how the
knot lifetimes were computed).
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Figure 2. Simulated time dependence of the knot size (defined in the Methods Section) for an electrically neutral
polymer chain, chains with diblock charge distributions ( with block lengths n=1 and 25) and one of the randomly
charged polyampholyte chains (q4 sequence from Fig. 1). The knots in the polyampholyte chain and in the diblock
copolymer with #=25 remain intact over the entire simulation time, whereas the knots in the neutral chain and in the
chain with alternating positively and negatively charged monomers (#n=1) grow in size or diffuse along the chain
towards the ends until they untie. Inset: time evolution of the knot boundaries. Here nyand n; are the first and the last
monomers participating in the knot, where the total chain length is N=500. Data are shown for the neutral chain and
for the chain with alternating charges. The unit of time 7 is defined in Section 2.



104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

127

128

129
130
131

132

133
134

14
12+ ®
\‘:10
o
£ t
D
R
h=R
=
6 _ ‘
6 L ] ? ¢
4 L ]
1 1.5 2 2.5 3
Tr/T

Figure 3. Relaxation times of the end-to-end distance of PA chains plotted against knot lifetimes for n=1, 5, 10 and
15 diblock (blue circles) and for the q1, q2 and q3 charge sequences (red circles).

Nevertheless, as will be shown below knot lifetimes in such randomly charged chains can be
rationalized using a simple one-dimensional model, in which knot untying is viewed as progress along a
one-dimensional reaction coordinate x in a potential of mean force U (x). Specifically, the knot size
(defined below) provides a suitable reaction coordinate. The roughness of the potential U(x) caused by
electrostatic interactions is then responsible for the slow untying dynamics.

The rest of this paper is organized as follows. Section 2 describes the simulation methods, Section
3 reports on the results, and Section 4 concludes with a discussion of the implications of this work.

2. Methods.

Simulation details. We model polymers as chains of charged beads connected by springs, with their
dynamics obeying the Langevin equation. All beads have the same mass 7 and an effective diameter o.
All pairs of beads interact via a truncated Lennard-Jones (LJ) potential, which accounts for the excluded
volume effects:

. . . . . 6~ .
Here r is the distance between the beads, € is a strength of the L] interaction and 7, = 270 is a cut-off

distance. The parameter € sets the energy scale of the system. Adjacent monomers are connected by a
finitely extensible nonlinear elastic (FENE) spring potential given by

2
1 r
[]FENE(I"):—Ekol"o2 In 1—[—] .

%

where ko =100(e/ o 2) is a spring constant, and 7, =1.5¢ is the bond’s maximum extension.
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Any two charged monomers also interact via the Coulomb potential Ueprms(7) = 94,  where £

s

is the dielectric constant of the solvent and ¢, and ¢, are the monomer charges. Each charged monomer
carries a charge te. The electrostatic parameters of the system were chosen such that the Bjerrum length
l,= e/ (&,k,T)is equal to the bond length o .

The Langevin equation describing the dynamics of the monomers was integrated using the

velocity Verlet algorithm' with a time step of df = 0.002 T , where T=0+m/ € is the LJ unit of time.
The temperature was set at T = ¢/ k,, where k3 is Boltzmann’s constant.

It should be noted that, while various types of knots, including figure-eight (41), Gordian (5,) and
stevedore (61), have been identified within protein structures'', here we choose to study the simplest, most
common, and most studied trefoil knot (3). Studying knots with more complicated topology can however
also be of great interest.

Observables and analysis. Knot trajectories were analyzed frame by frame using the KymoKnot
software package® for linear chains, which uses the Alexander polynomial, a knot invariant, to determine
the topology of the knot*'. We use the analysis data produced by the bottom-up method in KymoKnot,
which is a more accurate choice for our compact knotted chains (Fig. 4b). The two main observables
extracted from this analysis are the knot size and the knot position along the chain (Fig. 4a). Let ny and ny
are the first and the last monomers participating in the knot, with the monomers being numbered
sequentially from one chain end (n=1) to the other (n=N). Then the knot size is defined as the number of
monomers n; — 1y in the knot region, and the knot position is (17+1:)/2,

(a)

(b)
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Figure 4. Knot in a polymer chain. Monomers in red represent the knot region. a) The knot size is defined as the
number of monomers ny-#; in the knot region, and the knot position is defined as (n/+n:)/2, where ny and i are the
first and the last monomers participating in the knot, with the monomers being numbered sequentially from one
chain end (n=1) to the other (n=N). b) A snapshot of a typical knotted chain configuration (here the sequence is ql
after simulation begins. PA chains tend to collapse to dense structures as a result of electrostatic interactions.

3. Results and discussion.

Knot lifetimes. The initial knotted chain configuration was created by placing a trefoil knot in the middle
of the chain; the knot was tightened by applying opposing pulling forces of 2 8/ 0 . Starting with such an

initial configuration, the dynamics of the chain was followed until the knot disappeared. For each charge
distribution, the reported mean knot lifetime is an average over 40 independent trajectories. The measured
mean lifetimes are shown on the horizontal axis of Fig. 4, indicating that some charge sequences result in
longer-lived knots than others. This effect cannot be explained by entropic stabilization, as all of the
chains have the same length (N=500), and an electrically neutral chain of this length is disentangled by
thermal fluctuations rapidly (Fig. 2). (See SI. 1 for more information).

As seen in Fig. 5, the average knot lifetime in chains with diblock charge sequences increases
with the block length n. In contrast, the average lifetime varies considerably among random charge
sequences (we note that the parameter ql, g2, q3 here simply labels random sequences in ascending order
— thus the apparent “correlation” between this parameter and the knot lifetime is a property of labeling
and is not physically significant). In fact, for some of the sequences that are not included in Fig. 5, knot
lifetimes exceeded the simulation time and thus could not be measured directly (also see Fig.1). They
could, however, be estimated using the model described and validated below.
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Figure 5. The product of the mean first passage time (MPFT) and the diffusion coefficient D estimated using Eq.
(1) and plotted against the mean knot lifetime obtained from simulations. The slope of the linear fit (dashed blue
line) gives an estimate for the diffusion coefficient, D=0.6*/ 7, for the reaction coordinate x equal to the knot size.

One-dimensional model of knot dynamics. While disentangling of a knot involves many degrees of
freedom, several studies?* have shown the utility of low-dimensional models in which the motion of the
knot is viewed as one-dimensional diffusion along an appropriately chosen coordinate x, in the presence
of an effective potential U(x). Intuitively, the knot may become disentangled either through its diffusion
along the chain until it reaches its end®***° or as a result of increase in its size, or possibly via some
combination of these two mechanisms. This suggests two plausible candidates for the coordinate x, the
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knot size and the position of the knot along the chain. The size growth mechanism turns out to be
dominant in our case (see Supporting Information SI.2), and thus we use the knot size as the coordinate x
measuring the progress of knot untying. (Note, however, that knot diffusion may be the dominant
mechanism of untying for longer chains — in such cases the knot size may not be the appropriate reaction
coordinate). We assume that the motion along x is governed by the overdamped Langevin equation
kB?T)'c =-U'(x)+ (1)

where D is a diffusion coefficient and f'(¢) is the delta-correlated Gaussian noise, whose strength is
related to the temperature 7 and the diffusion coefficient via the fluctuation-dissipation theorem

(f@ f@))=2D"(k,TY 8(c~1).

The definition of the effective potential U(x) requires some care. For an equilibrium system, it
would be the potential of mean force, U(x) = —kgT In p(x), where p(x) is the equilibrium distribution
of x (i.e., of the knot size). But given that the knot is free to escape, most equilibrium chain
configurations are unknotted, and thus the value x is not even defined for them. Our operational definition
of U(x) is the potential of mean force in a modified system with a repulsive potential preventing knot
escape, a scenario where the knot size distribution p(x) is well defined. The potential of mean force is
then computed directly from the observed probability distribution p(x). We run the simulations until the
observed values of U(x) are converged to within 1072kgT - the small fluctuations observed in the PMF

plot (Fig. 6) are indicative of the remaining statistical errors. See SI. 3 for details and further discussion.
An example of the potential thus computed is shown in Fig. 6.
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Figure 6. Potential of mean force as a function of the knot size for a polymer chain with a diblock charge
distribution (1 =20). As x — 0 this potential, of course, must diverge preventing the knot from shrinking to zero
size, but this high-energy region is not sampled by the simulation. Thus, for the purpose of evaluating the mean first
passage time using Eq. 1, the computed potential was extrapolated toward smaller values of x (i.e. tighter knots)
such that it diverges for x — 0 (green dashed line). The initial knot size is x4; the knot is considered untied when the
coordinate x reaches a value x. — both of these values are indicated as vertical red dashed lines.

Assuming that the initial knot size is x = x, and that the knot is considered untied when it reaches a value
X¢, the knot lifetime within this model is the mean first passage time from x4 to x, which is given by
(see, e.g., ref. )

U(z)

» i@
MFPT (x4 —» xc) = D7t f;CAC dye*sT [ dze kT (1)
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The choice of the boundaries x4 and x is illustrated in Fig. 6. Note that Eq. 1 in general depends on the
values of the potential U(x) for x < x4 and, formally, even for x < 0, but, clearly U(x) must diverge for
x — 0, as the knot cannot shrink to zero size or have negative size. Since high values of the potential
corresponding to small knot sizes are not sampled by the simulations, we have extrapolated U(x) to
smaller values of x as shown in Fig. 5, green dashed line. The value of x, is chosen to be the the
potential minimum.

Within the one-dimensional diffusion model, long knot lifetimes or long mean first passage times
result from high barriers that the system must overcome when escaping from the initial potential well.
Indeed, a barrier significantly exceeding the thermal energy is observed in Fig. 6, explaining the relatively
long lifetime of the knot in a polymer with alternating sequences of n =20 opposite and 20 negative
charges.

More generally, the product D * MPFT (x4, — x¢), calculated using Eq. (1) with the computed
potential of mean force U(x), is proportional to the mean knot lifetime T measured directly (Fig. 5), both
validating the present one-dimensional model of knot disentanglement and allowing us to estimate the

value of the diffusion coefficient in this model. This resulting value of D=0.60>/7 is somewhat

unexpectedly high. Indeed, this value is comparable to the monomer diffusion coefficient of 16%/7
suggesting that local chain motion, as opposed to global chain rearrangement, is responsible for the
dynamics of untying. This result is consistent with the self-reptation and local breathing picture proposed
earlier” as well as with fast diffusion of knot size observed in another simulation study of a circular,
uniformly charged knotted chain'’.

Equipped with a low-dimensional description, we can now estimate knot lifetimes in polymers for
which it was too long to be estimated directly. The knot lifetimes thus predicted, along with the knot
lifetimes of the charge sequences which were estimated directly, are shown in Table 1.

Table 1. Mean knot lifetimes in ascending order for different charge distributions. The second column shows the
lifetimes that are short enough to be measured directly in simulations. Lifetimes in the third column are predictions
of Eq. 1 for those sequences for which the mean knot lifetime was too long to be measured directly. We note that the
parameter ql, q2, etc. simply labels the sequences and has no physical significance.

Charge sequence | Lifetime of the knot/10%t Lifetime of the knot/10*

(from simulation) (from diffusion model)
n=1 5.7+0.3 5.5
ql 6.1+0.3 5.6
n=5s 6.4+0.5 6.5
n=10 7.1+£0.2 6.9
q2 7.5+0.5 7.7
q3 9.6+0.7 9.8
n=15 - 15.9
n=20 - 16.6
q5 - 22.4
n=25 - 39.1
q6 - 43.8
q4 - 45.2

4. Conclusions

In summary, while knots in intrinsically disordered polymer chains of modest length that are either
electrically neutral or uniformly charged are short lived, we find that electrostatic interactions within a
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polampholyte chain (i.e. a polymer that has both positive and negative charges, such as is the case for
many proteins) may trap knots within a chain, significantly increasing the knot lifetime. This effect is due
to the electrostatic interactions resulting in rough energy landscapes with barriers trapping the knots in
metastable conformations. In combination with entropic effects'* and steric hindrance'>?’, this
mechanism provides a possible explanation of the experimental observation of long-lived knots in
denatured proteins'%.

For charge sequences with alternating blocks of positive and negative charges, the knot lifetime
increases with the length of a block. For random charge sequences (subject to the net zero charge
constraint) we have not been able to identify a simple sequence-based parameter that is a good predictor
of the knot lifetime, with usual sequence-based measures® *’ used for intrinsically disordered proteins
showing little correlation with the observed lifetime (SI. 4), although this conclusion should be viewed as
tentative given the limited number of “random” sequences studied. Nevertheless, the dynamics of knots
in such chains is well described as one-dimensional diffusion along a coordinate equal to the knot size,
with the electrostatic interactions determining the effective potential acting along this coordinate. This
model allows us to predict knot lifetimes for sequences where they cannot be measured directly.
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Supporting Information
SI.1. Dependence of knot stability on chain length
Motivated by earlier studies indicating that the knot lifetime strongly depends on the chain length

N **3° here we examine this dependence for uncharged chains and for a charged chain with
(quasi)random charge sequences. In the latter case we start with the g4 charge sequence (N=500) and
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obtain its shorter fragments by successively removing 50-monomer fragments from both ends, resulting
in shorter chains with N=400, 300, 200, and 100.
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Figure S1. The knot lifetime grows with increasing chain length for both polyampholytes and uncharged chains.
This lifetime is significantly greater for a polyampholyte chain as compared to the uncharged chain.

SI.2. Knot size as the reaction coordinate
Here we illustrate two possible “reaction mechanisms” for knot escaping a polymer chain, knot
growth (Fig. S2, lower panel) and knot diffusion along the chain (Fig. S2, upper panel). In our

simulations, only ~10% of untying events for each charge sequence occurred via knot diffusion, with knot
growth thus being the dominant untying mechanism.
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Figure S2. Knot size (black) and locations ns, n; of the first (blue) and the last (red) monomers on the knot region
plotted as a function of time. In the upper panel, the knot diffuses along the chain until it escapes off one of its ends,
with the knot size remaining smaller than 200 monomers. In the lower panel, the knot size grows until it becomes
comparable to the chain length N~500, thereby completing the untying event.

SI.3. Equilibrium properties of knots.
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While a knotted conformation of a polymer with free ends is, at best, a metastable rather than
thermodynamically stable state, a knot can be trapped by closing the chain or by tethering its ends to
repulsive walls that prevent the knot from escaping '”. Here we use the second method, with the distance
between the two walls was set to be twice the radius of gyration of the chain.

Figure S3 shows the computed potentials of mean force and, in particular, illustrates that
sequences resulting in long knot lifetimes are characterized by rugged free energy landscapes with deeper
wells.
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Figure S3. (a) Potentials of mean force, U(x), x being the knot size, for chains with short knot lifetimes
(n=1, n=5, n=10, ql1, q2, q3). (b) Potentials of mean force U(x), x being the knot size, for chains with long knot
lifetimes (n=15, n=20, n=25, q4, q5, q6). The dashed red lines represent the boundaries x, and x. used in the
calculations of the mean first passage times (Eq. 1).

SI.4. Lack of correlation of structural, and sequence chain parameters with the knot
lifetimes.

i. Chain compactness is uncorrelated with knot lifetime for random sequences.

A long enough PA chain with a net charge smaller than a critical number (globally neutral
charged chain) collapses to a dense globular state’'. From a previous study of uncharged chains, we know
that knots behave differently in the globules and in the coils®*: the knot size is found to be small in the
swollen phase and large in the dense phase, and compactness increases the likelihood of forming knots in
free uncharged chains. Could knot lifetime also depend on the compactness of the chain? Figure S4 shows
that chain compactness cannot account for the significant variation among chains with different charge
sequences.
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Figure S4. Knot lifetime is not significantly correlated with the radius of gyration of the PA chains, both for
randomly charged sequences (red circles) and diblock charge sequences (blue circles).

ii. Charge decoration metric does not predict the knot lifetime in PA chains
with random sequences.

Earlier studies have introduced different sequence-based metrics to quantify intra-chain
electrostatic interactions and to predict conformational ensembles of intrinsically disordered proteins
For instance, Sawle and Ghosh? proposed a patterning parameter defined as

28,29

N m-1
SCD = i{zzq q ( m— n)m} where N is the total number of monomer/residues and ¢, is the charge
N min

carried by the monomer m. Figure S5 shows that such metric is not significantly correlated with the
observed knot lifetime for random charge sequences

m=2 n=1

. x10%
10 +
9
+
b]
E 8 i
= _ Y
&7 bt
= Y
[§ L ¢ +
5
4l | .
-8 -6 -4 -2 0
SCD

Figure S5. SCD calculated for PA chains with diblock (blue) and random (red) charge distributions plotted against
the knot lifetime.
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