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Abstract. 12 

Knots in proteins and DNA are known to have significant effect on their equilibrium and dynamic 13 
properties as well as on their function. While knot dynamics and thermodynamics in electrically neutral 14 
and uniformly charged polymer chains are relatively well understood, proteins are generally 15 
polyampholytes, with varied charge distributions along their backbones. Here we use simulations of 16 
knotted polymer chains to show that variation in the charge distribution on a polyampholyte chain with 17 
zero net charge leads to significant variation in the resulting knot dynamics, with some charge 18 
distributions resulting in long-lived metastable knots that escape the (open-ended) chain on a timescale 19 
that is much longer than that for knots in electrically neutral chains. The knot dynamics in such systems 20 
can be described, quantitatively, using a simple one-dimensional model where the knot undergoes biased 21 
Brownian motion along a “reaction coordinate”, equal to the knot size, in the presence of a potential of 22 
mean force. In this picture, long-lived knots result from charge sequences that create large electrostatic 23 
barriers to knot escape. This model allows us to predict knot lifetimes even when those times are not 24 
directly accessible by simulations.   25 
 26 
 27 

1. Introduction. 28 
 29 

Just like a long piece of cord tends to be entangled causing nuisance, long polymers, particularly 30 
biopolymers, can be knotted, often with significant biological consequences.  Indeed, knotted DNA were 31 
first observed in 19761;  DNA knots have the ability to wreak havoc on replication, and cell machinery 32 
exists specifically with the purpose to “undo” the knots2.  Knots in  proteins have been discovered 24 33 
years later3 and, recently, systematic computer-aided searches through the protein databank have revealed 34 
many knotted proteins4. In parallel, experimental single-molecule studies have revealed knot dynamics at 35 
atomistic scales5.  36 

The role played by knotted biopolymers in living systems is far from being understood. In 37 
addition to hampering replication or weakening polymer strands mechanically6, it has also been 38 
speculated that knots slow protein degradation by the proteasome7. More generally biopolymer 39 
translocation through biological pores, a key process in biology, is affected by the presence of knots8, 9. 40 
Likewise, folding mechanisms of knotted proteins presents a significant theoretical challenge10, 11.  41 
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 While a knot in a folded protein can exist as long as the protein remains folded, knots in 42 
disordered polymers tend to be transient. Yet an intriguing study12 finds that a knot can survive in the 43 
denatured state of a protein over a very long time. Such knot stabilization may, in part, result from 44 
entropic effects, which render knots in very long polymer chains metastable as a result of knot self-45 
tightening13, 14. But given the relatively modest typical length of polypeptide chains, this purely entropic 46 
effect is unlikely to account for long-lived knots in unstructured polypeptides. Another possible 47 
explanation is that the steric hindrance that is due to side chains induces metastability of knots – this 48 
effect was studied in  ref. 14 15. And yet another explanation is that, since proteins often have non-uniform 49 
charge distributions, intrachain electrostatic interactions may trap knots. Electrostatic interactions, indeed, 50 
have a significant effect on the thermodynamics of knotted charged polymers16, 17, but most of the studies 51 
of this effect have been limited to the case of uniformly charged polyelectrolytes such as DNA.  Of 52 
course, some combination of the above three explanations may be required to account for the 53 
experimental observations.    54 
 The purpose of this study is to explore the hypothesis that the polyampholyte nature of 55 
polypeptides (i.e., the fact that they tend to carry both positive and negative charges, while often been 56 
nearly electrically neutral) lengthen knot lifetimes. To this end, we have used coarse-grained Langevin 57 
dynamics simulations of charged polymer chains with varied charge distributions. Specifically, we 58 
consider several randomly generated charge sequences as well as diblock charge distributions with blocks 59 
of varied length (Fig. 1). The “random” sequences considered here consist of monomers that carry 60 
charges ±1 selected with equal probabilities and with no correlation between monomer charges;    61 
of many possible such randomly generated sequences only a handful of those with a total charge of 0 or 62 
±1 were selected. The sequences studied here are only a tiny subset of all possible sequences with these 63 
properties – a more extensive sampling of the sequence space would be very difficult here given the 64 
computational limitations.  65 
 66 

 67 
 68 

 

 

 69 
Figure 1. Charge sequences studied here. Left: “randomly” charged chains, with sequences labeled q1 to q6. Right: 70 
chains with diblock charge distributions, with same-charge block lengths n ranging from 1 to 25. Blue and yellow 71 
color stripes represent positively and negatively charged segments. 72 
 73 

 74 
As illustrated in Fig. 2, the knot dynamics and stability depend strongly on the charge 75 

distribution. In particular, while the trefoil (31) knot in an uncharged chain is disentangled quickly, knots 76 
become metastable in some of the polyampholyte chains, exhibiting long lifetimes (sometimes exceeding 77 
the timescales directly accessible by our simulations).  In particular, for polyampholyte chains with 78 
diblock charge distributions, knot lifetimes generally increase with the size $	of blocks of the same 79 
charge. In contrast, we could not find any simple sequence-dependent parameter allowing one to predict 80 
the knot lifetime for random charge distributions (see Supporting Information SI.4).  For instance, in 81 
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electrically neutral homopolymer chains, knot lifetimes are known to be correlated with the global 82 
relaxation times of the chain18. This is however not the case for the randomly charged polymers 83 
considered here. Indeed, consider the relaxation time of the chain defined as  84 

 85 

 86 

 87 

 88 
where ACF(t) is the autocorrelation function of the end-to-end distance R(t). As seen from Figure 3, this 89 
time does not exhibit any clear correlation with the knot lifetime (see below for a description of how the 90 
knot lifetimes were computed).  91 
 92 

 93 
Figure 2. Simulated time dependence of the knot size (defined in the Methods Section) for an electrically neutral 94 
polymer chain, chains with diblock charge distributions ( with block lengths n=1 and 25) and one of the randomly 95 
charged polyampholyte chains (q4 sequence from Fig. 1). The knots in the polyampholyte chain and in the diblock 96 
copolymer with n=25 remain intact over the entire simulation time, whereas the knots in the neutral chain and in the 97 
chain with alternating positively and negatively charged monomers (n=1) grow in size or diffuse along the chain 98 
towards the ends until they untie. Inset: time evolution of the knot boundaries. Here nf and nl are the first and the last 99 
monomers participating in the knot, where the total chain length is N=500. Data are shown for the neutral chain and 100 
for the chain with alternating charges. The unit of time & is defined in Section 2.  101 
 102 
 103 

τ r = ACF(t)dt
0

∞

∫
ACF(t) = < R(t)R(0) > − < R(0) >2
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 104 
Figure 3. Relaxation times of the end-to-end distance of PA chains plotted against knot lifetimes for n=1, 5, 10 and 105 
15 diblock (blue circles) and for the q1, q2 and q3 charge sequences (red circles).  106 

 107 
 Nevertheless, as will be shown below knot lifetimes in such randomly charged chains can be 108 

rationalized using a simple one-dimensional model, in which knot untying is viewed as progress along a 109 
one-dimensional reaction coordinate x in a potential of mean force '()). Specifically, the knot size 110 
(defined below) provides a suitable reaction coordinate. The roughness of the potential  '()) caused by 111 
electrostatic interactions is then responsible for the slow untying dynamics.  112 

The rest of this paper is organized as follows. Section 2 describes the simulation methods, Section 113 
3 reports on the results, and Section 4 concludes with a discussion of the implications of this work.   114 

 115 
 116 

 117 
 118 

2. Methods. 119 
 120 

Simulation details. We model polymers as chains of charged beads connected by springs, with their 121 
dynamics obeying the Langevin equation. All beads have the same mass  and an effective diameter +. 122 
All pairs of beads interact via a truncated Lennard-Jones (LJ) potential, which accounts for the excluded 123 
volume effects: 124 

 125 

               126 

 127 
Here r is the distance between the beads,  is a strength of the LJ interaction and  is a cut-off 128 
distance.  The parameter  sets the energy scale of the system. Adjacent monomers are connected by a 129 
finitely extensible nonlinear elastic (FENE) spring potential given by 130 

 131 

 132 

 133 
where  is a spring constant, and  is the bond’s maximum extension.  134 
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 135 

Any two charged monomers also interact via the Coulomb potential , where 136 

is the dielectric constant of the solvent and  and  are the monomer charges. Each charged monomer 137 
carries a charge ±,. The electrostatic parameters of the system were chosen such that the Bjerrum length 138 

is equal to the bond length +	. 139 
   140 
The Langevin equation describing the dynamics of the monomers was integrated using the 141 

velocity Verlet algorithm19 with a time step of dt = 0.002 , where  is the LJ unit of time. 142 
The temperature was set at , where kB is Boltzmann’s constant.  143 

It should be noted that, while various types of knots, including figure-eight (41), Gordian (52) and 144 
stevedore (61), have been identified within protein structures11, here we choose to study the simplest, most 145 
common, and most studied trefoil knot (31). Studying knots with more complicated topology can however 146 
also be of great interest. 147 

 148 
Observables and analysis. Knot trajectories were analyzed frame by frame using the KymoKnot 149 
software package20 for linear chains, which uses the Alexander polynomial, a knot invariant, to determine 150 
the topology of the knot21. We use the analysis data produced by the bottom-up method in KymoKnot, 151 
which is a more accurate choice for our compact knotted chains (Fig. 4b). The two main observables 152 
extracted from this analysis are the knot size and the knot position along the chain (Fig. 4a). Let nf  and  nl 153 
are the first and the  last monomers participating in the knot, with the monomers being numbered 154 
sequentially from one chain end (n=1) to the other (n=N). Then the knot size is defined as the number of 155 
monomers $! − $" in the knot region, and the knot position is (nf +nl)/2,  156 

 157 
 158 

 159 
 160 

 161 
 162 
 163 
 164 
 165 
 166 
 167 
 168 
 169 
 170 
 171 
 172 
 173 
 174 

 175 
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qiq j
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Figure 4. Knot in a polymer chain. Monomers in red represent the knot region. a) The knot size is defined as the 176 
number of monomers nf -nl in the knot region, and the knot position is defined as (nf +nl)/2, where nf  and  nl are the 177 
first and the  last monomers participating in the knot, with the monomers being numbered sequentially from one 178 
chain end (n=1) to the other (n=N). b) A snapshot of a typical knotted chain configuration (here the sequence is q1 179 
after simulation begins. PA chains tend to collapse to dense structures as a result of electrostatic interactions. 180 
 181 
 182 

3. Results and discussion. 183 
 184 
Knot lifetimes. The initial knotted chain configuration was created by placing a trefoil knot in the middle 185 
of the chain; the knot was tightened by applying opposing pulling forces of 2 . Starting with such an 186 
initial configuration, the dynamics of the chain was followed until the knot disappeared. For each charge 187 
distribution, the reported mean knot lifetime is an average over 40 independent trajectories. The measured 188 
mean lifetimes are shown on the horizontal axis of Fig. 4, indicating that some charge sequences result in 189 
longer-lived knots than others.  This effect cannot be explained by entropic stabilization, as all of the 190 
chains have the same length (N=500), and an electrically neutral chain of this length is disentangled by 191 
thermal fluctuations rapidly (Fig. 2). (See SI. 1 for more information).   192 
 As seen in Fig. 5, the average knot lifetime in chains with diblock charge sequences increases 193 
with the block length n. In contrast, the average lifetime varies considerably among random charge 194 
sequences (we note that the parameter q1, q2, q3 here simply labels random sequences in ascending order 195 
– thus the apparent “correlation” between this parameter and the knot lifetime is a property of labeling 196 
and is not physically significant). In fact, for some of the sequences that are not included in Fig. 5, knot 197 
lifetimes exceeded the simulation time and thus could not be measured directly (also see Fig.1). They 198 
could, however, be estimated using the model described and validated below.   199 

 200 

 201 
 202 

Figure 5. The product of the mean first passage time (./01) and the diffusion coefficient D estimated using Eq. 203 
(1) and plotted against the mean knot lifetime obtained from simulations. The slope of the linear fit (dashed blue 204 
line) gives an estimate for the diffusion coefficient, D=0.6 , for the reaction coordinate ! equal to the knot size.  205 
 206 
One-dimensional model of knot dynamics. While disentangling of a knot involves many degrees of 207 
freedom, several studies22-24 have shown the utility of low-dimensional models in which the motion of the 208 
knot is viewed as one-dimensional diffusion along an appropriately chosen coordinate ), in the presence 209 
of an effective potential '()).  Intuitively, the knot may become disentangled either through its diffusion 210 
along the chain until it reaches its end8, 24, 25, or as a result of increase in its size, or possibly via some 211 
combination of these two mechanisms.  This suggests two plausible candidates for the coordinate x, the 212 

ε σ

σ 2 / τ
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knot size and the position of the knot along the chain. The size growth mechanism turns out to be 213 
dominant in our case (see Supporting Information SI.2), and thus we use the knot size as the coordinate x 214 
measuring the progress of knot untying. (Note, however, that knot diffusion may be the dominant 215 
mechanism of untying for longer chains – in such cases the knot size may not be the appropriate reaction 216 
coordinate). We assume that the motion along x is governed by the overdamped Langevin equation 217 
 ,  218 

where D is a diffusion coefficient and is the delta-correlated Gaussian noise, whose strength is 219 
related to the temperature T and the diffusion coefficient via the fluctuation-dissipation theorem 220 

.  221 
The definition of the effective potential '()) requires some care. For an equilibrium system, it 222 

would be the potential of mean force, '()) = −3#1 ln 6()), where 6()) is the equilibrium distribution 223 
of ) (i.e., of the knot size). But given that the knot is free to escape, most equilibrium chain 224 
configurations are unknotted, and thus the value ) is not even defined for them. Our operational definition 225 
of '()) is the potential of mean force in a modified system with a repulsive potential preventing knot 226 
escape, a scenario where the knot size distribution 6()) is well defined. The potential of mean force is 227 
then computed directly from the observed probability distribution 6()).	 We run the simulations until the 228 
observed values of '()) are converged to within 10$%3#1   - the small fluctuations observed in the PMF 229 
plot (Fig. 6) are indicative of the remaining statistical errors. See SI. 3 for details and further discussion. 230 
An example of the potential thus computed is shown in Fig. 6.  231 

 232 
 233 

 234 
 235 

Figure 6. Potential of mean force as a function of the knot size for a polymer chain with a diblock charge 236 
distribution ($ =20). As ! → 0	this potential, of course, must diverge preventing the knot from shrinking to zero 237 
size, but this high-energy region is not sampled by the simulation. Thus, for the purpose of evaluating the mean first 238 
passage time using Eq. 1, the computed potential was extrapolated toward smaller values of ! (i.e. tighter knots) 239 
such that it diverges for ! → 0 (green dashed line). The initial knot size is !!; the knot is considered untied when the 240 
coordinate ! reaches a value !" – both of these values are indicated as vertical red dashed lines.  241 
 242 
 243 
Assuming that the initial knot size is ) = )& and that the knot is considered untied when it reaches a value 244 
)' , the knot lifetime within this model is the mean first passage time from )& to )' , which is given by 245 
(see, e.g., ref.26)  246 
 247 

.0/1()& → )') = 9$( ∫ ;<,
!(#)
%&' ∫ ;=)

$* ,$
!(()
%&'

+)
+*       (1)  248 

( ) ( )Bk T x U x f t
D

¢= - +

f (t)

f (t) f ( ′t ) = 2D−1 kBT( )2δ t − ′t( )
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 249 
The choice of the boundaries )& and )'  is illustrated in Fig. 6. Note that Eq. 1 in general depends on the 250 
values of the potential '())	for ) < )& and, formally, even for ) < 0, but, clearly '()) must diverge for 251 
) → 0, as the knot cannot shrink to zero size or have negative size. Since high values of the potential 252 
corresponding to small knot sizes are not sampled by the simulations, we have extrapolated '()) to 253 
smaller values of ) as shown in Fig. 5, green dashed line. The value of  )& is chosen to be the the 254 
potential minimum.  255 

Within the one-dimensional diffusion model, long knot lifetimes or long mean first passage times 256 
result from high barriers that the system must overcome when escaping from the initial potential well. 257 
Indeed, a barrier significantly exceeding the thermal energy is observed in Fig. 6, explaining the relatively 258 
long lifetime of the knot in a polymer with alternating sequences of $ =20 opposite and 20 negative 259 
charges.   260 

More generally, the product 9 ∗ ./01()& → )'),	calculated using Eq. (1) with the computed 261 
potential of mean force '()), is proportional to the mean knot lifetime &	measured directly (Fig. 5), both 262 
validating the present one-dimensional model of knot disentanglement and allowing us to estimate the 263 
value of the diffusion coefficient in this model. This resulting value of D=  is somewhat 264 
unexpectedly high. Indeed, this value is comparable to the monomer diffusion coefficient of   265 
suggesting that local chain motion, as opposed to global chain rearrangement, is responsible for the 266 
dynamics of untying. This result is consistent with the self-reptation and local breathing picture proposed 267 
earlier22 as well as with fast diffusion of knot size observed in another simulation study of a circular, 268 
uniformly charged knotted chain17.  269 
 270 

Equipped with a low-dimensional description, we can now estimate knot lifetimes in polymers for 271 
which it was too long to be estimated directly. The knot lifetimes thus predicted, along with the knot 272 
lifetimes of the charge sequences which were estimated directly, are shown in Table 1.  273 
 274 
Table 1. Mean knot lifetimes in ascending order for different charge distributions. The second column shows the 275 
lifetimes that are short enough to be measured directly in simulations. Lifetimes in the third column are predictions 276 
of Eq. 1 for those sequences for which the mean knot lifetime was too long to be measured directly. We note that the 277 
parameter q1, q2, etc. simply labels the sequences and has no physical significance.  278 

 279 
Charge sequence Lifetime of the knot/104τ 

(from simulation) 
Lifetime of the knot/104τ 
(from diffusion model) 

n=1 5.7±0.3 5.5 
q1 6.1±0.3 5.6 
n=5 6.4±0.5 6.5 
n=10 7.1±0.2 6.9 

q2 7.5±0.5 7.7 
q3 9.6±0.7 9.8 
n=15 - 15.9 
n=20 - 16.6 

q5 - 22.4 
n=25 - 39.1 

q6 - 43.8 
q4 - 45.2 

 280 
 281 

4. Conclusions 282 
 283 
In summary, while knots in intrinsically disordered polymer chains of modest length that are either 284 
electrically neutral or uniformly charged are short lived, we find that electrostatic interactions within a 285 

0.6σ 2 / τ
1σ 2 / τ
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polampholyte chain (i.e. a polymer that has both positive and negative charges, such as is the case for 286 
many proteins) may trap knots within a chain, significantly increasing the knot lifetime.  This effect is due 287 
to the electrostatic interactions resulting in rough energy landscapes with barriers trapping the knots in 288 
metastable conformations.  In combination with entropic effects14 and steric hindrance15, 27, this 289 
mechanism provides a possible explanation of the experimental observation of long-lived knots in 290 
denatured proteins12.  291 

For charge sequences with alternating blocks of positive and negative charges, the knot lifetime 292 
increases with the length of a block. For random charge sequences (subject to the net zero charge 293 
constraint) we have not been able to identify a simple sequence-based parameter that is a good predictor 294 
of the knot lifetime, with usual sequence-based measures28, 29 used for intrinsically disordered proteins 295 
showing little correlation with the observed lifetime (SI. 4), although this conclusion should be viewed as 296 
tentative given the limited number of “random” sequences studied.  Nevertheless, the dynamics of knots 297 
in such chains is well described as one-dimensional diffusion along a coordinate equal to the knot size, 298 
with the electrostatic interactions determining the effective potential acting along this coordinate. This 299 
model allows us to predict knot lifetimes for sequences where they cannot be measured directly.    300 
 301 
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SI.1. Dependence of knot stability on chain length 415 
 416 
Motivated by earlier studies indicating that the knot lifetime strongly depends on the chain length 417 

N 22, 30, here we examine this dependence for  uncharged chains and for a charged chain with 418 
(quasi)random charge sequences. In the latter case we start with the q4 charge sequence (N=500) and 419 
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obtain its shorter fragments by successively removing 50-monomer fragments from both ends, resulting 420 
in shorter chains with N=400, 300, 200, and 100.   421 

 422 

 423 
 424 

Figure S1. The knot lifetime grows with increasing chain length for both polyampholytes and uncharged chains. 425 
This lifetime is significantly greater for a polyampholyte chain as compared to the uncharged chain.  426 
 427 

SI.2. Knot size as the reaction coordinate 428 
 429 

Here we illustrate two possible “reaction mechanisms” for knot escaping a polymer chain, knot 430 
growth (Fig. S2, lower panel) and knot diffusion along the chain (Fig. S2, upper panel). In our 431 
simulations, only ~10% of untying events for each charge sequence occurred via knot diffusion, with knot 432 
growth thus being the dominant untying mechanism.  433 
 434 

 435 
Figure S2. Knot size (black) and locations &# , &$ of the first (blue) and the last (red) monomers on the knot region 436 
plotted as a function of time. In the upper panel, the knot diffuses along the chain until it escapes off one of its ends, 437 
with the knot size remaining smaller than 200 monomers. In the lower panel, the knot size grows until it becomes 438 
comparable to the chain length N~500, thereby completing the untying event.  439 
 440 

 441 
SI.3. Equilibrium properties of knots. 442 

 443 
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While a knotted conformation of a polymer with free ends is, at best, a metastable rather than 444 
thermodynamically stable state, a knot can be trapped by closing the chain or by tethering its ends to 445 
repulsive walls that prevent the knot from escaping 17.  Here we use the second method, with the distance 446 
between the two walls was set to be twice the radius of gyration of the chain.  447 

 448 
Figure S3 shows the computed potentials of mean force and, in particular, illustrates that 449 

sequences resulting in long knot lifetimes are characterized by rugged free energy landscapes with deeper 450 
wells.    451 
 452 

 453 

  
 454 

Figure S3. (a) Potentials of mean force, ((!), ! being the knot size, for chains with short knot lifetimes 455 
(n=1, n=5, n=10, q1, q2, q3). (b) Potentials of mean force ((!), ! being the knot size, for chains with long knot 456 
lifetimes (n=15, n=20, n=25, q4, q5, q6). The dashed red lines represent the boundaries !! and !" used in the 457 
calculations of the mean first passage times (Eq. 1).  458 
 459 

 460 
SI.4. Lack of correlation of structural, and sequence chain parameters with the knot 461 

lifetimes. 462 
 463 

i. Chain compactness is uncorrelated with knot lifetime for random sequences. 464 
 465 

A long enough PA chain with a net charge smaller than a critical number (globally neutral 466 
charged chain) collapses to a dense globular state31. From a previous study of uncharged chains, we know 467 
that knots behave differently in the globules and in the coils32: the knot size is found to be small in the 468 
swollen phase and large in the dense phase, and compactness increases the likelihood of forming knots in 469 
free uncharged chains. Could knot lifetime also depend on the compactness of the chain? Figure S4 shows 470 
that chain compactness cannot account for the significant variation among chains with different charge 471 
sequences.  472 

 473 

(b) (a) 
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 474 
Figure S4. Knot lifetime is not significantly correlated with the radius of gyration of the PA chains, both for 475 
randomly charged sequences (red circles) and diblock charge sequences (blue circles).  476 
 477 
 478 
 479 
 480 
 481 
 482 

ii. Charge decoration metric does not predict the knot lifetime in PA chains 483 
with random sequences. 484 

 485 
Earlier studies have introduced different sequence-based metrics to quantify intra-chain 486 

electrostatic interactions and to predict conformational ensembles of intrinsically disordered proteins28, 29. 487 
For instance, Sawle and Ghosh29 proposed a patterning parameter defined as 488 

 where N is the total number of monomer/residues and qn is the charge 489 

carried by the monomer m. Figure S5 shows that such metric is not significantly correlated with the 490 
observed knot lifetime for random charge sequences  491 

 492 

 493 
Figure S5. SCD calculated for PA chains with diblock (blue) and random (red) charge distributions plotted against 494 
the knot lifetime.  495 

SCD = 1
N m=2

N

∑
n=1

m−1

∑qmqn m− n( )1/2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥


