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Abstract

We study the extremal number for paths in r-uniform hypergraphs where two consecutive
edges of the path intersect alternately in sets of size b and a with @ + b = r and all other
pairs of edges have empty intersection. Our main result, which is about hypergraphs that are
blowups of trees, determines asymptotically the extremal number of these (a, b)-paths that have
an odd number of edges or that have an even number of edges and a > b. This generalizes the
Erd6s—Gallai theorem for graphs which is the case of a = b = 1. Our proof method involves
a novel twist on Katona’s permutation method, where we partition the underlying hypergraph
into two parts, one of which is very small. We also find the asymptotics of the extremal number
for the (1,2)-path of length 4 using the different A-systems method.

1 Paths

1.1 Definitions for hypergraphs, two constructions

An r-uniform hypergraph, or simply r-graph, is a family of r-element subsets of a finite set. We
associate an r-graph F' with its edge set and call its vertex set V(F'). Usually we take V(F') = [n],
where [n] is the set of first n integers, [n] := {1,2,3,...,n}. We also use the notation F' C ([f}).
For a hypergraph H, a vertex subset C' of H that intersects all edges of H is called a vertex cover of
H. Let 7(H) be the minimum size of a vertex cover of H. Let ¥.(n,r) be the r-graph with vertex
set [n] consisting of all r-edges meeting [¢]. Then ¥ has the maximum number of r-sets such that
7(¥) < ¢. When 7 and ¢ are fixed and n — oo,

We(n,7)| = (:) - (” - C) = c(r " 1) +o(n™h). (1)
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A crosscut of a hypergraph H is a set X C V(H) such that [en X| =1 for all e € H. Not all
hypergraphs have crosscuts. Let o(H) denote the smallest size of a crosscut in a hypergraph H
with at least one crosscut. Clearly 7(H) < o(H), since a crosscut is a vertex cover. Here strict
inequality may hold, as shown by a double star whose adjacent centers have high degrees. Define
Ul(n,r):={E C[n]:|E|=r,|EN[c| = 1}, so it consists of all r-sets intersecting a fixed c-element
subset of V(H) at ezactly one vertex. Then for large enough n, W' has the maximum number of
r-sets such that o(W!) < c. Let us refer to this hypergraph as the crosscut construction. When r
and ¢ are fixed and n — oo,

10 (n, 7)| = c<7;_1c> - c<r”1) +o(n"Y). (2)

Given an r-graph F, let ex,(n,F) denote the maximum number of edges in an r-graph on n
vertices that does not contain a copy of F' (if the uniformity is obvious from context, we may omit
the subscript 7). Crosscuts were introduced in [11] to get the following obvious lower bounds

ex(n, F) > |W (p_1(n,7)|, and if crosscut exists then ex(n, ') > “chlr(F)q(na )| (3)

Notation. If H is a hypergraph and e C V(H), then I'y(e) = {f\e: e C f, f € H} and the
degree of e is di(e) = |[I'r(e)|. For an integer p, let the p-shadow, 0,H, be the collection of p-sets
that lie in some edge of H. If H is an r-graph, then the (r — 1)-shadow of H is simply called the
shadow and is denoted by 0H.

Whenever we write f(n) ~ g(n), we always mean lim,_,~ f(n)/g(n) = 1 while the other variables
of f and g are fixed. This is the case even if the variable n is not indicated.

Aims of this paper. We have three aims. First, to find more Turdn numbers (or estimates) of
hypergraphs in the Erdés—Ko—Rado range. We are especially interested in cases when the excluded
configuration is ’dense’, it has only a few vertices of degree one. Second, we present an asymmetric
version of Katona’s permutation method, when we first solve (estimate) the problem only on a well
chosen substructure. Third, we show the power of the A-systems method for (1, 2)-paths of length
4. The (a, b)-blowups of trees and paths are good examples for all our aims.

1.2 Paths in graphs

A fundamental result in extremal graph theory is the Erdés—Gallai Theorem [3], that

(£ =1)n, (4)

N

eXo (n, Pg) <

where P, is the f-edge path. (Warning: This is a non-standard notation). Equality holds in (4)
if and only if £ divides n and all connected components of G are f-vertex complete graphs. The
Turdn function ex(n, Py) was determined exactly for every ¢ and n by Faudree and Schelp [6] and
independently by Kopylov [19]. Let n = r (mod ¢), 0 < r < £. Then ex(n, ) = 3({—1)n—3r({—r).
They also described the extremal graphs which are either

— vertex disjoint unions of |n/¢] complete graphs Ky and a K, or
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— ¢isodd, f =2k —1,and r = k or K — 1. In this case, other extremal graphs with a different
structure can be obtained by taking a vertex-disjoint union of m copies of K, (0 < m < |n/¢]) and
a copy of Wi_1(n —mt,?2), ie., an (n —ml)-vertex graph with a (k — 1)-set meeting all edges.

This variety of extremal graphs makes the solution difficult.

We generalize these theorems for some hypergraph paths and trees.

1.3 Paths in hypergraphs

There are several ways to define a hypergraph path P. One of the most difficult cases appears
to be the case when P is a tight path of length ¢, namely the r-graph Tight P; with edges
{1,2,...,r1,{2,3,....,r + 1},...,{¢, £+ 1,...,£ + r — 1}. The best known results [14] for this
special case are

-1 —1( n £ i
< " ) < ex,(n,Tight P;) < { (7’—12_1 if r is even,

2
r o \r—1 (+[=2)(")  ifris odd,

r

D=

where the lower bound holds as long as certain designs exist.

Another possibility is the r-uniform loose path (also called linear path) Lin Pj, which is obtained
from P} by enlarging each edge with a new set of (r — 2) vertices such that these new (r — 2)-
sets are pairwise disjoint (so |[V(FP})| = £(r — 1) 4+ 1). Recently, the authors [15, 20] determined
ex,(n, Lin P]') exactly for large n, extending a work of Frankl [7] who solved the case £ = 2 by
answering a question of Erdds and Sés [25] (see [22] for a solution for all n when r = 4).

Here we consider so called (a, b)-blowups of P,.

Definition. Suppose that a, b, ¢ are positive integers, r = a+b. The (a, b)-path Py(a,b) of length ¢
is an r-uniform hypergraph obtained from a (graph) path P, by blowing up its vertices to a-sets and
b-sets. More precisely, an (a, b)-path Py(a,b) of length ¢ consists of ¢ sets of size r = a+b as follows.

Take ¢ + 1 pairwise disjoint sets Ag, A1, ..., Ay with |A;| = a when ¢ is even and |A4;| = b when i is
odd, and define the (hyper)edges of Py(a,b) as the sets of the form A; 1 UA; fori=1,... ¢. If the
elements of Ay, ..., A; are ordered linearly, then the members of P can be represented as intervals
of length 7.

Paths of length 2. Two r-sets with intersection size b can be considered as a hypergraph path
Py(a,b) of length two, where a +b =r, and 1 < a,b < r—1. If H C ([:f]) is Po(1,7r — 1)-free
then the obvious inequality r|H| = |0(H)| < (,",) vields the upper bound in the following result.
The lower bound holds for any given r if n is sufficiently large (n > ng(r)) due to the existence of
designs (see, Keevash [18]).

1( " >—O(nr_Q)<exr(n,P2(1,r—1))Si( ! ) 5)

r\r—1 r—1



FUREDI, JIANG, KOSTOCHKA, MUBAYI, AND VERSTRAETE: HYPERGRAPH BLOWUPS OF TREES 4

The case b = 1 was solved asymptotically by Frankl [7] and the general case was handled in [10].

exr(n, P2(a,b)) = © (nmax{“_l’b}) . (6)

Two disjoint r-sets can be considered as a P5(r,0), so (6) also holds for a = r since the maximum
size of an intersecting family of r-sets is (:f:%) for n > 2r by the Erdés-Ko-Rado theorem [4].

Paths of length 3.
Ps(a,b)-path has three r-sets, two of them are disjoint and they cover the third in a prescribed
way. For given 1 < a,b <r, r =a+ b and for n > na(r), Fiiredi and Ozkahya [16] showed that

ex, (1, Ps(a, b)) = (" N 1).

r—1

Longer paths.
While Pop_1(a,b) = Por_1(b,a) we have that Pk (a,b) # Por(b,a) for a # b.

Our first results provide a nontrivial extension of the Erdés—Gallai Theorem (4) for r-graphs.
Since the case ¢ = 2 behaves somewhat differently, see (5) and (6), we only discuss the case ¢ > 3.

Suppose that a +b = r, a,b > 1, r > 3 and suppose that ¢ € {2k — 1,2k}, { > 4. Furthermore,
suppose that these values are fixed and n — oo or n > ng(r, k). Recall that U;_q(n,r) := {E C
] : |E| =7, EN[k—1] # 0}. We have the lower bound

ex,(n, Por(a,b)) > ex.(n, Py_1(a,b))

> o) = (1) < ("TET ) = (") e,

Our main results (Theorems 6 and 7 below) imply that equality holds above for at least 75% of the

V

cases.

Theorem 1. Let a+b=r, a,b>1 and ¢ > 3. Suppose further that (i) € is odd, or (ii) ¢ is even
and a > b, or (ii) (¢,a,b) = (4,1,2).
Then

exr(n, Py(a, b)) = V;J (T " 1) +o(n" L.

Moreover, if a # b, a,b > 2 and { = 2k — 1, then Uy_1(n,r) is the only extremal family.

The proof of Theorem 1 in the case (¢, a,b) = (4,1,2) is different than the proof for the other cases.
The remaining cases (when £ is even, a < b and (¢,a,b) # (4,1,2)) are still open.

Conjecture 2. Ifr >3, k> 2 and a < b, then ex,(n, Py (a,b)) = (1 + o(1))Vs_1(n,r).
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2 'Trees blown up, our main results

Generalizing the Erdés—Gallai Theorem (4), Ajtai, Komlds, Simonovits and Szemerédi [1] claimed
a proof of the Erdés—Sés Conjecture [5], showing that if 7" is any tree with ¢ edges, where / is large

enough, then for all n,

1

exa(n,T) < (£ — 1)n.

— o]

A more general conjecture due to Kalai (see in [11]) is about the extremal number for hypergraph
trees. A hypergraph T is a forest if it consists of edges eq,es,...,ep ordered so that for every
1 < i </, there is 1 <4’ < i such that e; N (U

is r-uniform and for each i > 1, |e; N (Y

i< ej) € ey. A connected forest is called a tree. If T'
;<i€j)| =7 —1, then we say that 7" is a tight tree.

Conjecture 3. (Kalai) Let T be an r-uniform tight tree with ¢ edges. Then

exp(n, T) < £_1< n >

r r—1

When r = 2, this is precisely the Erdés—Sés Conjecture. A simple greedy argument shows that

Proposition 4. If T is an r-uniform tight tree with ¢ edges and G is an r-graph on [n] not
containing T, then |G| < (¢ — 1)|0(G)].

Here O(G) is the family of (r — 1)-sets that lie in some edge of G. We obtain

ex,(n,T) < (£ — 1)<Tfl>.

Our goal is to prove a nontrivial extension of the Erdos—Gallai Theorem and the Erdds—Sés Con-
jecture for r-graphs. To define the hypergraph trees we study in this paper, we make the following
more general definition:

Definition 5. Let s,t,a,b > 0 be integers, r = a+b, and let H = H(U,V') denote a bipartite graph
with parts U = {uy,ug,...,us} and V ={v1,ve,...,v4}. Let Uy,...,,Us and Vi,...,V; be pairwise
disjoint sets, such that |U;| = a and |V;| = b for all i,5. So |JU; UV;| = as + bt.

The (a,b)-blowup of H, denoted by H(a,b), is the r-uniform hypergraph with edge set
H(a, b) = {Ul U ‘/J Tuv; € E(H)}

Since deleting a vertex cover from a bipartite graph leaves an independent set, each cross cut in
a connected bipartite graph is one of its parts. Consequently, o(H (a,b)) = min{s,¢}. Recalling
from (2) that U1 | (n,r):={E C [n]:|E| =r,|EN|oc —1]| = 1}, we obtain

o—1

-0, ) o=@ -n(" 7T s seveum. @

Let T+ denote the family of trees 7" with parts U and V where |U| = s and |V| = t. We frequently
say that T is a tree with s 4 t vertices. Let Ts(a,b) denote the family of (a,b)-blowups of trees
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T € Tsi. We frequently suppose that a > b (but not always).

We investigate the problem of determining when crosscut constructions are asymptotically ex-
tremal for (a,b)-blowups of trees. For other instances of hypergraph trees for which the crosscut
constructions are asymptotically extremal, see [21]. Our main result is the following theorem.

Theorem 6. Supposer >3, s,t>2, a+b=r,b<a<r. Let T be a tree on s+t vertices and
let T =T(a,b), its (a,b)-blowup. Then (as n — o) any T -free n-vertex r-graph H satisfies

<=, " ) o

This is asymptotically sharp whenever t < s.

Indeed, in the case t < s we have o(7) =t and (7) provides a matching lower bound.

A vertex x of T' € T4 is called a critical leaf if o(T \ x) < o(T). In case of t < s it simply means
that degp(z) = 1 and « € V. (Similarly, a critical leaf of T = T'(a,b) € Ts+(a,b) with t < s is a
b-set V; in the part of size t whose degree in 7 is one). If such a vertex exists then we have a more
precise upper bound.

Theorem 7. Supposer >5,2<t<s,a+b=r,b<a<r—1. LetT be a tree on s + t vertices
and let T = T(a,b), its (a,b)-blowup. Suppose that T has a critical leaf. Then for large enough n

(n > no(T))
ex(n, T) < <Z> - <"_:+1>.

If, in addition, 7(T) = t, then equality holds above and the only example achieving the bound is
U_1(n,7r).

Since 7(¥;—1(n,r)) = t — 1, no r-graph F with 7(F) > ¢ is contained in ¥;_;(n,r). Note that
Theorems 6 and 7 imply Theorem 1.

3 Asymptotics

In this section we prove the asymptotic version of our main results, i.e., Theorem 6. At a very
high level, our proof can be viewed as a generalization of the Katona circle method. The idea of
this method is to partition the underlying family into many well structured subfamilies and prove
a good upper bound for the size of each subfamily. Alternatively, we can phrase this using an
averaging argument. In the famous proof of the Erdés-Ko-Rado theorem using this method, these
subfamilies comprise sets that appear as intervals in a cyclic permutation. Our situation is more
complex. We take a random subset R of vertices and consider the r-sets in a subhypergraph H’
that have a vertices in R and b = r — a vertices outside R. This gives us a bipartite structure and
we use a greedy embedding algorithm to find the tree within these edges. Further complications
arise due to b-sets with high codegree and these are handled separately via a vertex cover L whose
presence plays an important role in defining H’. One novelty in our approach is that the size of R
is very small since this is needed for various estimates in the proof (|R| is about n!~/3" though we
have some flexibility).
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The next section proves various bounds in the bipartite environment described above.

3.1 Definition of templates and a lemma.

Throughout this section, 7 € T5(a,b) and we suppose T is an (a,b)-blowup of a tree T'. If H is
an r-graph, then an (a,b)-template in H is a pair (A, B) where A is an a-uniform hypergraph on
V(H), B is a b-uniform matching on V(H), and V(A) NV (B) = (. Define the bipartite graph

H():H(](A,B):{(e,f)EAXB:eUfEH}

and let H; = H1(A,B) ={eU f : (e, f) € Hy} C H. By construction, |Hp| = |H;|. We claim that
if A and B are both matchings and Hy(A, B) is T -free, then

[Hi(A, B)| < (¢t = D]A[ + (s = 1)[B]. (8)

Indeed, otherwise |Ho(A, B)| = |H1(A, B)| > (t—1)|A|+ (s—1)|B| and Hp has a minimum induced
subgraph H((A’, B') satisfying |H)(A',B’)| > (t — 1)|4’| + (s — 1)|B’|. By minimality, H/, has
minimum degree at least ¢ in A" and minimum degree at least s in B’. This is sufficient to greedily
construct a copy of T in H{,. Since H; is an (a,b)-blowup of Hy D H|), this shows T C Hj.

We now prove a version of (8) for templates, i.e., in the case when A may be not a matching:

Lemma 8. Let 6 > 0 and let T € T54(a,b). Let H be a T -free r-graph containing an (a,b)-template
(A,B). If B= B°U B! and dy(e) < dn® for every a-set e C V(H)\V(B'), then

[H1(A, B)| < (t = 1)|A| + asn®~ (3] B°| + | BY]). (9)

Proof. Let By = asén®! and f; = asn®'. Let H; = H,(A, B) and Hy = Hy(A, B) and suppose
|Hy| > (t — 1)|A| + Bo|B°| + B1|B*|. By deleting vertices of Hy, we may assume

dp,(€) >t for all e € A and for i € {0,1}, dp,(e) > B; for all e € B'. (10)

Suppose T is a blowup of a tree T, where T" has a unique bipartition (U, V) with |U| = s, |[V| = t.
We call an embedding of the (a,b)-blowup of a subtree 7" of T in H; (A, B) a feasible embedding if
the a-sets corresponding to vertices in U are mapped to members of A and the b-sets corresponding
to vertices in V are mapped to members of B. It suffices to prove that any feasible embedding h
of the (a,b)-blowup of any proper subtree 7" of T' can be extended to a feasible embedding A’ of
the (a,b)-blowup of a subtree of T that strictly contains 7".

Let T’ be given. Then there exists an edge zy in T with z € V(T”) and y ¢ V(T"). Let h be
a feasible embedding of the (a,b)-blowup 7' of 7" in Hy(A, B). First suppose that x € U. Let
e denote the image under h of the a-set in 7" that corresponds to z. By our assumption e € A.
Hence by our earlier assumption, dg,(e) > t. Thus |T'g, (e)| > t. Since 'y, (e) C B is a matching
of size at least t and the b-sets corresponding to V' — {y} are mapped to at most ¢ — 1 members of
B, there exists f € B such that f N V(h(T")) = 0. We can extend h to a feasible embedding of
T’ U zy by mapping the b-set in T corresponding to y to f.

Next, suppose z € V. Let e denote the image under h of the b-set in 7’ that corresponds to x. If
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there exists f € 'y, () — V(h(T")), then h(T")U{eU f} is a feasible embedding of 7" U zy. Hence
we may assume that no such f exists. If e € BY, then we estimate dp, (e) by first adding a — b new
vertices, one from V(h(T’)) and all outside V(B!), and then choosing the remaining a vertices.
This yields

diy(e) < IV(A(T) AV (A)] - 051 b < asbnt = By,

a contradiction to (10). Note it is crucial here that b < a. Similarly, if e € B!, then
d,(€) < [V(R(T")) NV (A)] 7l <asn®t = Bi.

This contradicts dy,(e) > B for e € B!. Hence we have shown that each feasible embedding of T’
can be extended. This completes the proof. O

3.2 Proof of Theorem 6.

In a few places of the proof we will use the following elementary fact or a slight variant of it. Let
e be a fixed edge in ([Z]) and H a p-graph on at most n vertices. Let L be a copy of H in ([z])
chosen uniformly at random among all copies of H. Then P(e € L) = |H|/ (Z)

Let m be an integer satisfying m > 7" and m = o(y/n). Let f(m) = m~Y"n"~! + m?n"~2. We
show that if H is T-free for some T € T;+(a,b), then

<= ")+ otrm).

r—1

In particular, taking m = [n'/3], we obtain

H| < (¢~ 1)< ! 1> +O(nr=11/6n),
7” —_

In our arguments below, for convenience, we assume b divides n, since assuming so has no effect
on the asymptotic bound we want to establish. Let D = {e € (V(aH)) :dg(e) >nb/m} and L be a
smallest vertex cover of D, meaning that every set in D intersects L. We claim

IL| = O(m). (11)

Indeed, if |L| > asm, then D has a matching M of size sm. Each set in M forms an edge of H with
at least n®/m different b-sets, and at most a|M|n’~! = asmn®~! of these b-sets intersect V(M).
By averaging, there is a matching N of b-sets disjoint from V(M) such that

|M|(nb/m — asmn®~
(5-1)

Since n is large and m = o(y/n), this is at least

1
|Ho(M, N)| > ) 2 M- asm.
m

(t—1)| M| + (% 41— asm)|M| > (t—D)|M|+ (s — Dn > (t— )| M|+ (s — 1)|N|.
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By (8), we conclude that 7 C Hi(M,N) C H, a contradiction. This proves (11).
Let G={e€ H :|enL| <1}, so that
|G| > [H| — [L[>n"™2 > |H| = O(m®n" 7). (12)

Let R C V(G)\L be a set whose elements are chosen independently with probability « = m=r,

and A = (f) Let P be a random partition of V(@) into b-sets. Let B denote the set of b-sets
in P that are disjoint from R, and let H; = Hy(A,B). If B® = {e € B : enL = ()} and
Bl ={e€ B:|enL|> 1}, then by (9) with § = 1/m, and using |B!| < |L|,

[H1| < (t = D)IA[+ O(n*~!|B%|/m) + O(n"~'|L]).
Taking expectations over all choices of R and P and using (11) and |B°| < n, we get
E(|H) < (t - 1)a” (Z) +0(n®/m). (13)

For i € {0,1}, let G; = {e € G : |eN L| = i} and note G = Gy U G1. We observe that for an edge
e € Gy,

Nal(1l — b
P(e € Hy) = (o —a)? (ﬁl) ) = po
b—1

and for an edge e € G,

(3-1)a"(1 — )
o = DP1-
(1)

]P’(e S Hl) =

Since a =m =" < 1/r and b < r — 1,

r r 1
=—-(1- > 1—- =p1.
Po b( a)p1 r—l( T)m b1

Therefore

(r—1N(1 — a)b_l
alnb—1

!
E([H1[) = polGol + p1|G1| = (po — p1)[Gol + p1|G| > p1|G| > Gl (14)
and combining this with (13) yields

E(|H[)aln®t ofn aln®~! patb—1
anlr— DI —apt TN <> cr =D —ap 1 © (au_a)bm> |

Using (1 — o)t =1 — O(m~Y") and simplifying, we find

Gl <

G| < (t—l)( "

r—1

)+ ot

) + O(an™™ Y + O0(n" "t /am)

n

< (t—1)<

r—

Together with (12), this gives the required bound on |H|. O
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In fact, the proof of Theorem 6 yields more than the theorem claims. We have the following fact.

Corollary 9. Let 0 <y < 1/t,b<a<r,a+b=r,t <s. Letn be sufficiently large, r" < m <n”
and f(m) =m=Yn™=t + m2n""2. Let T € Ts4(a,b) and H be an n-vertex T -free r-graph. If

= w-n(, ") + o) (15)
then some F' C H with |F| = |H| — O(f(m)) has a crosscut L of size O(m).

Proof. If |H| = (t—1)(,",) + O(f(m)), then the upper and lower bounds for E(|H;|) given by (13)
and (14) differ by O(n®/m). By (14) they also differ by at least (pg — p1)|Go| so

(po — p1)|Go| = O(n/m).

Using po > (1+1/7)p1, we get p1|Go| = O(n®/m) and this shows |Go| = O(f(m)). Setting F' = G,
L is a crosscut of F and |F| = |H| — O(f(m)). O

4 Stability

The aim of this section is to prove the following stability theorem. It is important throughout
this section that ¢t < s, so that for T € T5(a,b), we have o(T) = t and therefore ¥} ,(n,r)
does not contain 7. The following theorem says that if H is a T-free r-graph on n vertices and
|H| ~ |W;_1(n,7)|, then H is obtained by adding or deleting o(n"~!) edges from ¥;_1(n,r).

Theorem 10. Let T € Tg4(a,b), where b < a <r—1,t<s. Let H be a T -free n-vertex r-graph
with |H| ~ (t—1)(,",). If T has a critical leaf, then there exists a set S of t — 1 vertices of H such
that |H — S| = o(n"™1).

4.1 Degrees of sets.

By Corollary 9 with 7" < m = o(n'/(*1) there exists F C H such that |F| ~ |H| and F has a
crosscut L of size O(m). Our first claim says that most elements of OF have degree t — 1 in F'. For
a hypergraph G and S C V(G), we write G — S to denote the induced subhypergraph G[S].

Claim 1. There are (,"|) — o(n""') sets e € OF — L such that dp(e) =t — 1.

Proof. Suppose £ sets e € OF — L have dp(e) > t. By the definition of L, I'(e) C 2% for each
e € OF — L. Let Z be a crosscut of 7 with |Z| = t contained in B and let 7* = {e\Z : e € T} (note
that here I'(e) is a l-uniform hypergraph). Then 7™ is an (a,b — 1)-blowup of T'. Proposition 4
implies

ex(n, T*) < (s +t)n" 2.

By the pigeonhole principle, there exists a set S C L with |S| = ¢ such that at least k = £/|L|* sets
e € OF — L have T'p(e) D S. If k > ex(n,T*), then T* C OF — L and for all e € T*, T'g(e) 2 S.
Now we can lift 7* to 7 C F via S. Indeed, we can greedily enlarge each of the (b — 1)-sets that
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form 7* to a b-set by adding an element of S. This contradicts the choice of H. We therefore
suppose that
C/IL)E =k < ex(n, T*) < (s +t)n" 2

which gives ¢ < (s +t)|L'n""? = O(n""?m!). As |F| ~ |H| ~ (¢t —1)(,",), and the number
of (r — 1)-sets in V(F) — L is at most (,",), the average degree of sets in OF — L is at least
t —1—o0(1). We have already argued that at most O(n"~2m!) of these sets have degree larger than
t — 1. Furthermore, none of them has degree greater than m. Hence, writing x for the number of
sets in OF — L of degree at most ¢ — 2, we have

n

)=o),

Since m n"~?m! = o(n"~!), we conclude that z = o ((Tfl)) This yields the claim. O

4.2 Proof of Theorem 10

Let Sy, So, ..., Sk be an enumeration of the (t—1)-element subsets of L, and let F; denote the family
of (r—1)-element sets e in V(F)\L such that I'r(e) = S;. By Claim 1, |[FiUF,U---UFy| ~ (";_'f‘)
Suppose k > 2. By definition, for i # j, F; N Fj = (). Therefore,

k n
;!Fi ~ <r_1>.

For each i € [k], if |F;| = o(n""1/k), let G; be an empty (r — 1)-graph, if |F}| = Q(n"~!/k), then
delete edges of F; containing a-sets or b-sets of ”small” degree until we obtain either an empty
(r — 1)-graph or an (r — 1)-graph G; such that

dg,(e) > r(s +t)n" "2V a-set e € 0,Gy, and dg,(f) > (s +t)n" 271V b-set f € 0pG;.  (16)

By construction, |G;| > |F;| —2r(s+t)n"~2 and since F; = Q(n"~!/k) and k < |L|' < O(m?) = o(n),
whenever G; is non-empty we have

|Gil = (1 = o(1))|Fil.
We conclude that if G = JG; then |G| = (1 —o(1))|F| ~ (,",) and
k n
S~ (") (17)

Claim 2. For i # j, 0,G; N 0,G;j = 0.

Proof. Let W be a tree obtained from the tree T by deleting a leaf vertex x with unique neighbor
y € T, such that x is in the part of T" of size . Suppose some a-set e is contained in 9,G; N 0, G-
By (16), we can greedily grow W (a,b — 1) in G; such that e is the blowup of y. By adding one
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vertex of S; to each b— 1-set in W(a,b— 1), we obtain W (a,b). Now there exists z’ € S;\\S;. Since
dg,(€) > r(s+t)n"~279 there exists an edge f € G; containing e, such that fNV (W (a,b—1)) = 0,
and therefore f U {2’} € F plus W (a,b) gives the tree T'(a,b), with f\e the blowup of z. This
proves the claim. O

Now we prove Theorem 10. Since a < r — 2, by Claim 2, for all i # j, 0,_2G; N 0,—2G; = 0.
Without loss of generality, suppose that for some 0 < p < k, |G1] > |Ga| > ... > |Gp| > 1
and G; = 0 for p+1 < i < k. For each i € [p|, let y; > r — 1 denote the real such that
|G;| = (rzfl). Then y1 > y2 > -+ > y,. By the Lovész form of the Kruskal-Katona theorem, for
each i € [p],]0,—2(G;)| = (,%,). By the disjointness of the d,_2(G;)’s, we have

> (") =(.")

For each i € [p], since (,¥) = yi—r+2 (v, <% I+2( ,), by (17) we have

a1 =SS () < () < )

=1

From this, we get y1 > n — o(n). Hence |Fi| > |G1| = (,*",) = (,"";) — o(n"~!). Hence there exists

S =8 C Lsuch that (¢t—1)(,",) —o(n"~') edges of F consists of one vertex in S and r — 1 vertices
disjoint from S. O

5 Exact results

The aim of this section is to prove the following theorem, which completes the proof of Theorem 7:

Theorem 11. Lett <s,b<a<r—1witha+b=1r and T € Tsi(a,b) such that T has a critical
leaf and 7(T) = t. If n is large and H is a T -free n-vertex r-graph with |H| > (') — ("~ H'l) then
H =V, i(n,r).

To prove this, we aim to show that the (f — 1)-set S given by Theorem 10 is a vertex cover of H.
We prove the following consequence of Claim 1. Recall that Corollary 9 gives F' C H such that
[F| ~ [H].

Claim 3. Let A, = (t —1)(,"[".). Then for each 6 > 0, there exists G C F with |G| ~ |F| such

r—1—u

that for any u-set e C V(G) with u < r and dg(e) > 0, either

(i) JenS| =0 and dg(e)

(1-0)A, or
(ii) lenS|=1and dg(e) >r

>
> ( ) r—1— U

Proof. Let K be the set of edges of F' containing some e € OF — S with dp(e) = ¢t —1. By Claim 1,
|K| ~ |F|. Also, every r-set in K has one point in S and r—1 points in V(K)\S. Since dx(e) =t—1
for all e € 0K — S, every u-set in V(K )\S has degree at most A, in K.
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We repeatedly delete edges from K as follows. Suppose at some stage of the deletion we have a
hypergraph K’. If there exists a u-set e for some u < r such that

(i’) |enS|=0and dg(e) < (1 —05)A, or
(i) |enS|=1and dg/(e) <r(s+t)n 17

then delete all edges of K’ containing e. Let G be the hypergraph obtained at the end of this
process. We shall prove |G| ~ |K|. To this end, suppose that |G| = |K| — n(t — 1)(£1)v and we
show 1 = o(1) to complete the proof. Consider two cases.

Case 1. At least 3(t —1)(,",) edges of K were deleted due to (ii’).

In this case, there exists u < r such that the set H' of edges of K deleted due to (ii’) on u-sets
satisfies |[H'| > 5L(¢t — 1)(,",). Then by (ii’), and since the number of u-sets with one vertex in S
i —1S]

18 |S|(nu71 )’

n— S|

u—1

| < sy( ) (s 4 1 < |S|r(s + 2,

Since [H'| > 5L(,",) and [S| = ¢ — 1, this gives n = o(1).

r—1

Case 2. At least 3(t —1)(,",) edges of K were deleted due to (i’).

In this case, there exists u < r such that the set H' of edges of K deleted due to (i’) on u-sets
satisfies |H'| > 5L(t — 1)(,",). Let Uy be the set of u-sets in V(K)\S on which edges of K were
deleted due to (i"), and let Uz be the remaining u-sets in V(K )\S. Then

’H/’ > 77(t B 1> (rﬁl)
(1—=08)Ay ~ 20t —1)(,_ 1)

r—1-u

‘Uﬂ >

If n is large enough, then this is at least ﬁ(ﬁ) Let v = ﬁ. Then

() - X ae

ce(TT9)
= Y di(e)+ Y dile)
eclU; eclUs
< W~ 8)8y + (ol
< 2-9(0) A= (")as = -9 (") A

Here we used |Ui| + |Usz| < (7). Therefore

() A n
K| <(1- - =(1- -1 .
K| < (1-+6) o A=)t -=1{
Since |K| ~ |F| ~ (t = 1)(,",), 70 = o(1). Since § > 0 and v = ﬁ, this implies n = o(1), as
required. ’ ]
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Let T € Ts4(a,b) have a critical leaf with 7(7) =t <s,a+b=7r,b<a <r—1, and let H be a
T-free n-vertex r-graph with |[H| > (7) — (":’f“). We aim to show that S is a vertex cover of H,

which gives H = ¥;_;(n,r), as required. To this end, let H; = {e € H : |en S| =i}. So we have
to show Hy = 0.

Since T has a critical leaf, there is a b-set €’ of T in the part of size ¢ with dr(e’) = 1. Let T’ be
the tree obtained from 7 by deleting the edge containing €’. So V(7’) has one part comprising
t — 1 sets, each of size b and the other part comprising s sets, each of size a. It has a crosscut of
size t — 1 by picking one vertex from each of the b-sets above.

Let K1 be the set of r-sets of [n] that have exactly one vertex in S. A subfamily T C K! is a
potential tree if

T=T

the t — 1 vertices of S play the role of the crosscut vertices of 7’ described above
e is an a-set in V(T') with ey € 0, Hy

there exists e € Hy such that eg C e

T Ueis a copy of T.

AN

Fix an a-set eg € 0,Hy and suppose eg C e € Hyg. If T' C Hy is a potential tree as described above,
then T'U {e} is a copy of T in H, a contradiction. So for each such potential tree T', there exists
f €T — Hy. Let us call this a missing edge. Let m = as + bt — b be the number of vertices of each
potential tree. The number of potential trees containing a fixed missing edge f is at most

n—|S|—(a+b-1)

<m 18— (a+b-1)) AT
where ¢(7) is the number of ways we can put a potential tree using f into the set M with |M|=m
and SU f C M C [n], (note that [fNS| =1).

On the other hand, each ey € 0, Hy and a subset M’ with |[M'| = m and S C M’ C ([n]—ep) carries
at least one potential tree so the total number of potential trees is at least

n—|S|—a
(1, %)

It follows that the number of missing edges is at least ¢|0, Ho|n?~! for some ¢ > 0. Therefore
n n—t+1 _
|H| = |Ho| + |H1| + |Ha| + -+ + |H,| < (r) - < . )+|Hg|—c|8aH0|nb L

By Proposition 4 and the fact that 7 is contained in a tight tree on V(T), |Ho| < ¢/|0Hy| for some
constant ¢'.

Next, we observe that 9Hy N G = (), for otherwise we will use Claim 3 to greedily build a copy of
T using the edge of Hy, and whose remaining edges form a copy of 7’ and come from G. Indeed,
at each step in this greedy process, we either have a b-set €’ disjoint from S and we would like to
find an r-set in G containing e’ with one vertex in S (and disjoint from the current subtree), or an
a-set €’ with one vertex in S and we would like to find an r-set in G containing €’ disjoint from S
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and from the current subtree. In the first case we apply Claim 3 (i) with uw = b. Here |S| =1¢ —1
ensures that we can find the required r-set in G. In the second case we apply Claim 3 (ii) with
u = a. The claim states that the number of r-sets in G containing €” is at least r(s +t)n"~17% and
hence one of them can be used to enlarge the current subtree.

Since 0G| ~ (,",), we obtain [0Hy| = o(n"~1). Writing |[0Ho| = (,”,) for some real z, we have
|0.Ho| > (%), by the Kruskal-Katona Theorem. Therefore

a

|Ho| — ¢|@a Ho|n"~* < ¢/|0Hy| — c|0,Holn! < c’( v 1) —ent <$>
r—

Since x = o(n), for large enough n the above expression is negative, unless |0Hy| = |0,Hy| = 0.
We have shown that if [H| > (") — (*"/*1), then Ho = 0 and |H| = (") — ("1, as required. [

6 (1,2)-paths of length 4

6.1 Result and the setup of the proof

The goal of this section is to find asymptotics for the smallest case not covered by our results above,
namely, for exs(n, Py(1,2)). We will show that

exs(n, Py(1,2)) = (” ) 1> +0(n). (18)

We cannot replace the term O(n) in (18) with o(n): Consider the 3-graph H with V(H) = [n]| and
E(H) = E1 U Ey, where By = {{1,i,j} :2<i<j<n}and Ep = {{2,2i + 1,2 + 2} : 1 < <
n/2 — 1}. This 3-graph has (";1) + [(n —2)/2] edges and does not contain Py(1,2).

The technique in this section is different from used above. Instead of (18), we shall prove the
following slightly stronger version.

Theorem 12. For every Py(1,2)-free n-vertex 3-graph H,

|H| = |0H]| = O(n). (19)

Again, we cannot replace O(n) in (19) with o(n): If n is divisible by 6 and H is the disjoint union
of n/6 copies of K2, then H contains no Py(1,2), |H| = (20/6)n and |0H| = (15/6)n.

Our proof has the following 3 steps:

Step 1: There is a Cy such that for every n every Py(1,2)-free n-vertex 3-graph H can be made
K3-free after deleting at most Cin edges.

Step 2: There is a Cy such that for every n from any Py(1,2)-free n-vertex 3-graph H without
K3} -subgraphs one can delete at most Con edges so that the remaining 3-graph H' is (K3)~-free or
satisfies |H'| < |0H'|.

Step 3: If a Py(1,2)-free n-vertex 3-graph H has no (K3)~-subgraphs, then |H| < |0H|.
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The three steps together imply Theorem 12. The main tool for Steps 1 and 2 is the A-system
method introduced by Deza, Erdds and Frankl [2]. In the next subsection we introduce the notions
needed to apply the A-system method and state an important lemma by Fiiredi [12] on the topic,
and in the subsequent three subsections we prove the three steps.

6.2 Definitions for the A-system method and a lemma
A family of sets {F1,..., Fy} is an s-star or a A-system of size s with kernel A, if F; N Fj = A for
all 1 <i<j<s.

For a member F of a family F, let the intersection structure of F' relative to F be

I(F,F)={FNF :F e F\{F}}.

An r-uniform family F C ([Z]) is r-partite if there exists a partition (X7i,..., X,) of the vertex set
[n] such that |F'N X;| =1 for each F € F and each i € [r].

For a partition (X1, ..., X;) of [n] and aset S C [n], the patternI1(S) is the set {i € [r] : SNX; # 0}.
Naturally, for a family £ of subsets of [n],

(L) = {II(S) : S e £} C 2.

Lemma 13 (The intersection semilattice lemma (Firedi [12])). For any positive integers s and r,
there exists a positive constant c(r, s) such that every family F C ([:,L]) contains a subfamily F* C F
satisfying

1. |F*| > e(r,s)|F|.

2. F* is r-partite, together with an r-partition (Xi,...,X,).

3. There ezists a family J of proper subsets of [r] such that IZ(F,F*)) = J holds for all F € F*.
4. F* is closed under intersection, i.e., for all A, B € J we have AN B € J, as well.

5. For any F € F* and each A € I(F,F*), there is an s-star in F* containing F with kernel A.

Remark 1. The proof of Lemma 13 in [12] yields that if F itself is r-partite with an r-partition
(X1,...,X,), then the r-partition in the statement can be taken the same.

Remark 2. By definition, if for some k € [r] none of the members of the family J of proper
subsets of [r] in Lemma 13 contains k, then the degree in F* of each vertex in Xy, is at most 1.
Since F* is r-partite, this yields |F*| < |Xy| <n —r+ 1. Thus, if |[F*| > n, then U;c;J = [r].

6.3 Proof of Step 1

Choose C = ﬁ, where ¢(4,6) is from Lemma 13. Let H be a Py(1,2)-free n-vertex 3-graph.
Construct a 4-uniform family & of subsets of [n] as follows. First, let & = 0, Hy = H. Then for

j=1,...,do
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(i) If Hj_; has no Kj-subgraphs, then let £ = &;_1 and H' = H;_;.
(ii) Otherwise, choose some 4-set e = iyigigis C [n] with H;_1[e] = K3, let & = &;—1 U {e} and
Hj = Hj_q \ {iviois, i1i2i4, 910304, 129304 }.

By construction, |H'| = |H|—4|&|. So, if |€] < %n, then Step 1 is done. Suppose |£| > C1§ = ﬁ.

By Lemma 13 for r = 4 and s = 6, there are a partition (X1,...,X4) of [n] and a family £ C &

satisfying properties 1-5 in the lemma. In particular, |£*| > ¢(4,6) 8(26) = n. By Remark 2, the
union of the members of 7 is the whole [4].

On the other hand, by the definition of £, no two members of it may share 3 vertices. It follows
that |J| < 2 for all J € J. Furthermore, if |e; Nes| = 1 for some ey, es € €, say e; = {1,2,3,4} and
es = {4,5,6,7}, then we have a Py(1,2) with edges 123, 234,456,567, a contradiction. It follows
that |J| # 1 for all J € J. By Part 4 of Lemma 13 this means that up to symmetry, the only
possibility for 7 is that

J ={0,{1,2},{3,4}}. (20)

So, let e; = zixoxsxy € E* where x; € X; for i = 1,2,3,4. By Part 5 of Lemma 13 and by (20),
there is eg € £* such that e; Ney = {x1, 22}, say es = xixoxhal, where a4 € X3 and 2 € Xy.
For the same reasons, there is e3 € £* such that e; Neg = {x3,24}, say es = z|zhasxy, where
x) € Xy and 25, € Xo. But then H contains a Py(1,2) with edges zha) x3, 2)xszy, xam129, 212025,
a contradiction. This proves Step 1.

6.4 Proof of Step 2

For Steps 2 and 3, we need a couple of new definitions. Call a 3-graph normal if it has no pairs of
vertices of codegree exactly 1. In a normal 3-graph H, for every edge xyz € H, there is a vertex
h(zy; z) # z such that {z,y,h(zy;2)} € H. Such a vertex h(zy;z) does not need to be unique:
there are d(x,y) — 1 such vertices.

We will show Step 2 in the following form.

Lemma 14. Let Cy = C(zf%) where c(4,6) is from Lemma 158. If H is a Py(1,2)-free and Kj-

free n-vertex 3-graph, then one can delete at most Con edges so that the remaining 3-graph H' is
(K3)~-free or satisfies |[H'| < |0H'|.

Proof. Suppose that lemma does not hold, and H is a counter-example with the fewest edges. If
our H is not normal, then deleting an edge containing a pair of codegree exactly 1 would create a
smaller 3-graph H' with |H'| — |0H'| > |H| — |0H| > 1 that is again Py(1,2)-free and (K3) -free,
contradicting the minimality of H. Thus H is normal.

Construct a 4-uniform family £ of subsets of [n] with a special vertex in each member as follows.
First, let & =0, Hy = H. Then for j =1,..., do

(i) If H;_1 has no (K3) -subgraphs, then let & = &;_1 and H' = H;_;.

(ii) Otherwise, choose some 4-set e = {iy,i2,43,94} C [n] with Hj_1[e] = (K3)~, say ioigis ¢
E(H;_1). Then let i; be the special vertex in e, let £ = £;_1 U {e} and

Hj; = Hj_q \ {irigi3, i19214, 719304 }.
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By construction, |H'| = |H| — 3|&|. So, if |€| < %n, then the lemma is proved. Suppose |£]| >
Cyn/3. By a classic observation of Erdés and Kleitman, there is a 4-partite subfamily £’ of £ with
I > %|5\ > %n Let (X1, X2, X3, X4) be the corresponding 4-partition of [n]. By symmetry, we

may assume that at least }|&’| members of £ have the special vertex in X;. Let F be the family

of such members. In particular, |F| > || > %n
By Lemma 13 for r = 4 and s = 6 and Remark 1 after it, there is a family F* C F satisfying

properties 1-5 of the lemma (with the same partition (X7, X9, X3, X4)). In particular,
* &
IE*| > c(4, 6)?71 > n.
By Remark 2, (J;c;J = [4]. Let us first show that
If J € J is a singleton, then J = {1}. (21)

Indeed, if say J N J; = {4}, then F* contains sets f1 = {z1,z2, 23,24} and fo = {a}, 2h, 25, 24}
So by the definition of F, H has a Py(1,2) with edge set {zszox1, vox124, vaxha, xbx iz}, This
proves (21).

Case 1: A member J of J is a triple. Since the intersection of any two members of £ cannot be
an edge of H, J ={2,3,4}, and J contains no other triples. Let J; be a member of J containing
1. Then |J;] < 2. By Part 4 of Lemma 13, JNJ; € J and |J N Ji| < |Ji|. Then by (21), the set
J N Jp is not a singleton and hence is (). If follows that the unique member of 7 containing 1 is
{1}.

Let y1 € X;. By Part 5 of Lemma 13, F* contains sets Aj, Ao such that for i = 1,2, A; =
{Y1,vi2,Yi3,yia} forming a 2-star with kernel {y;}. Since J = {2,3,4} € J by the same Part
5, for i = 1,2 and i' = 1,2,3, F* contains sets B; ;s such that B; s = {zi"1,¥i2,¥i3,¥ia} forming
3-stars with kernels {y12,y13,y1.4} and {y22,y23,924}. Since 1 < i’ < 3, we choose 211 #
y1 and then 207 ¢ {yi1,211}. Then by the definition of F, H has a P4(1,2) with edge set
{21,191,291,3, Y1,241,3Y1, Y1Y2,2Y2,3, Y2,22,3%2,1 }, @ contradiction.

Case 2: |J| < 2 for each J € J, and there are nonempty Jy,Jo € J with Jy N Jy = 0. If
|J1| = |J2| = 2, then we may assume J; = {1,2} and Jo = {3,4}. In this case, we simply repeat the
last paragraph of the proof of Step 1. Otherwise, by (21) we may assume J; = {1} and Jo = {3, 4}.
Then we take y; € X; and sets Ay, As as in Case 1. Since Jy = {3,4} € 7, for i € [2] and
i’ € [3], F* contains sets B;; such that B, = {zi1,2i2,Yi3,Yia} forming 3-stars with kernels
{y13,y14} and {y23,y24}. Since 1 < ¢’ < 3, we choose z1 1 # y1 and then 221 ¢ {y1,21,1}. Then
by the definition of F, H has a P4(1,2) with edge set {z1,1y1.3Y1.4, Y1,3Y1,4Y1, Y1Y2,3Y2.4, Y2,3Y2,422,1 },
a contradiction.

Case 3: |J| < 2 for each J € J, and for all nonempty Jq,Jo € J, J1 N Jo # 0. Since the sets in J
cover [4], by (21),

{1}, 41,25, {1, 31, {1,4}} € 7 < {0, {1}, {1, 2}, {1,3}, {1, 4} }. (22)

For each v € V(H), the link graph H(v) is the simple graph G with V(G) = e\ {v} and

ecH:vee
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E(G)={e\{v}:veeec H}.

Observe that because H is normal, 6(H (v)) > 2 for every vertex v € V(H) that lies in at least one
edge of H. Indeed, if 2 € H(v), then there is an edge vzy € H and zy € H(v). By normality of
H, there is another edge vrz € H which implies that zz € H(v). This shows that degp,)(z) > 2.

Let z1 € Xj. Since {1} € J, F* contains sets A1, ..., Ag such that A,NAy = {1} foralll <i<i <
6. This means that H(z1) has 6 vertex-disjoint triangles, say with vertex sets A, = {a; 1, a;2,a;3}
fori=1,...,6. Also, (22) implies that for every vertex y € Nr«(x1) = {x : degr«(z,z1) > 0}, we
have dg(,)(y) > 12. Indeed, (22) implies that we have at least 6 other edges in F* containing both
x1 and y with kernel {z1,y}, and each of these edges contains two edges of H(x) that contain y.
Thus, we have §(H (v)) > 6.

Let w = h(ag a62;x1). Since all A} are disjoint, we may assume that w ¢ |Ji_, A;. If for some
1 <i<d4dand 1 <i <i" <3, ha;pa;im;x1) ¢ {as1,a62, 21}, then H has a Py(1,2) with edge
set {wae,106,2, 46,106,201, L1045 i, Qi i inh(a; ya; v 1)}, a contradiction. Since {w, ag,1,a62} N
U?Zl Al =, for similar reasons, for 1 <i; < iz <4 and any 1 <} < <3 and 1 < <if <3,

h(ail,i’lail,i’l’;xl) = h<ai2,i’2ai2,i’2’;x1)‘

But then there is w’ € {w, ag,1,a62} such that for each yz € H(xy) with w’ ¢ {y, 2z}, h(yz;z1) = w'.

Recall that §(H (z1)) > 6, so H(x1) — w’ has a cycle y1,...,ys,y1 for some s > 6. Then H has a
Py(1,2) with edge set {19271, y221y3, ysyaw’, yaw'ys }, a contradiction. O

6.5 Proof of Step 3

Suppose there exists a Py(1,2)-free and (K}) -free n-vertex 3-graph H with |H| > |0H|. Then
|H| > 1, so |0H| > 3, and hence |H| > 4.

If our H is not normal, then deleting an edge containing a pair of codegree exactly 1 would create
a smaller 3-graph H' with |H'| — |0H'| > |H|—|0H| > 1 that is again Py(1,2)-free and (K3) -free,
contradicting the minimality of H. Thus H is normal. So as in Step 2, for every edge zyz € H,
there is a vertex h(zy; z) # z such that {x,y, h(zy;2)} € H.
Since H is (K3)~-free,

for each v € V(H), H(v) is triangle-free. (23)

We now prove another property:

for each v € V(H), H(v) is Cy-free. (24)

Indeed, suppose H contains edges vujug, vugus, vugug, vusuy. Let h(uuir1;v) = x; (indices count
modulo 4). If x; = w42, then H[{v,u;, uiy1,uir2}] 2 (K3)~, a contradiction. Similarly, z; #
ui—1. Thus if 3 # x1, then H contains a Py(1,2) with edges zjujug, ujugv, vusuy, ususxs, a
contradiction.

Therefore, 3 = 1 and d(uy,u2) = d(ug,us) = 2. Similarly, x4 = z.
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Suppose first xo # x1. Let w = h(zjug;u;). Since H is (Kj) -free, w # v. Since g # z7,
w # us. Thus if w # uy, then H contains a Py(1,2) with edges wzjug, z1uguy, ujvug, vusug, a
contradiction. It follows that w = wuy and d(ug,x1) = d(u4,z1) = 2. Similarly, h(zius;us) = u;
and d(us,z1) = d(uj,x1) = 2. But then the pairs ujz;, ugx1, usxi, ugz are not in the shadow of
H' = H\ {ujusx1, ugusxy, ugusry, uruszs b, and so |H'| — |[0H'| = |H| — |0H|, contradicting the
minimality of H.

Suppose now that xe = x1. If the co-degree of each pair zju; (1 < i < 4) is 2, then similarly to
above, the 3-graph H” = H \ {ujusz1, ugusry, ususxy, ujuszi } has the property |H”| — |0H"| =
|H| — |0H]|, contradicting the minimality of H. So by symmetry we may assume that there is
some w ¢ {v,u1,u2,us,uq,x1} such that wuizy € H. Then H contains a Py(1,2) with edges
WT1UL, T1ULU2, U2VUZ, Vuguy. This contradiction proves (24).

Fix v € V(H). Since H is normal, §(H (v)) > 2, so H(v) has cycles. Let C = uy, uy, ..., us,u; be
a shortest cycle in H(v). By (23) and (24), s > 5. We now show

for each 1 < i <'s, h(ujuir1;v) € {ug, ..., us}. (25)

Indeed, suppose w = h(ujug;v) & {u1,...,us}. Let w' = h(ujw;uz). Since H is (K3) -free,
w # v, If w ¢ {us,ug}, then H contains a Py(1,2) with edges w'wuq, wujusg, ugvug, vuguy, a
contradiction. Otherwise, suppose w’ = u, where ¢ € {3,4}. Then H has a P4(1,2) with edges
U w, U W', WU, VUg1Ugt2, unless ¢ + 2 > s which yields s = 5 and ¢ = 4. In this case,
ug = h(wui;ug). Then by symmetry, also ug = h(wug;u;). Hence |H[{w,ui,u2,us}]| > 3, a
contradiction. This proves (25).

Our next claim is

for each v € V(H) with d(v) >0, H(v) is a cycle. (26)

Indeed, suppose d(v) > 0. Let C' = uj,uy,...,us,u; be a shortest cycle in H(v). Suppose there is
w € V(H(v)) — V(C). Since C is a shortest cycle in H(v) and s > 5, w has at most one neighbor
in C. Then, since 0(H(v)) > 2, w has a neighbor w’ ¢ V(C). Let x = h(ww’;v). We may rename
the vertices of C so that if x € V(C), then = = u;. By (25), the vertex y = h(ugus;v) is in V(C),
and since H is (K3)~-free, y # u1. Then the edges zww’, ww'v, vusug, uguzy form a Py(1,2) in H,
a contradiction. This proves (26).

Since Y,y gy [V(H(v))| = 2[0H| and 3, ¢y gy [H (v)| = 3[H]|, inequality |H| > |[0H| yields that

for some v € V(H), |H(v)| > 3|V(H(v))|, which contradicts (26). This finishes Step 3, and hence
the proof of Theorem 12.

7 Concluding remarks

In this paper we determined for b < a < r the asymptotic behavior of ex,(n,7) when T € T;(a,b)
is an (a, b)-blowup of a tree T' with parts of sizes s and t where s >t and (7 ) = t. The extremal
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problem appears to be more difficult when s < ¢, in which case the smallest crosscut of T has size
s. We pose Conjecture 15, which covers all cases except a = r — 1.

Conjecture 15. If T € T54(a,b) where b <a <r—1, 0 = o(T) = min{s,t}, and H is a T -free
n-vertex r-graph, then for large enough n, |H| < (0 — 1)(Tfl) + o(n"1), with equality only if H is
isomorphic to a hypergraph obtained from W,_1(n,r) by adding or deleting o(n"~!) edges.

The case a =r — 1. Ift > s (and n > |V(T)|), then ¥} ;(n,r) contains 7 so Conjecture 15
does not hold. Since W! | (n,7) does not contain 7T, it is natural to ask whether W! | (n,r) is
(asymptotically) extremal for 7. In some cases when a = r — 1, this is certainly not so because
certain Steiner systems do not contain a blowup of a star K;; and are denser than W¥y_q(n,r).
More precisely: Let T be a tree on s + t vertices and let 7 = T'(a,b), its (a,b)-blowup. Suppose
a=r—1 and let A = maxgzey degp(x). Then ex(n,T) is at least the number of edges in a Steiner
(n,r,r — 1,\ — 1)-system — an r-graph on n vertices where each (r — 1)-set is contained in exactly
A — 1 edges. In this case, ex(n, T(r —1,1)) > % (,",) for infinitely many n (due to the existence
of those designs [18]) whereas ¢(T") = s and it could be much less than %

No stability for a = r — 1. It is important in the above proof that a £ r — 1. If a = r — 1,
then there is no stability theorem: consider for instance an (r — 1, 1)-blowup T of a path with four
edges. Let H be the n-vertex r-graph constructed as follows. Let V(H) = [n], let G; U G2 be a
partition of the edge set of the complete (r — 1)-graph on {3,4,...,n}, and let H consist of the

edges e U {i} such that e € G;, for i € {1,2}. Then |H| = (:f:f) and H does not contain 7.

The case a = b =7/2. Let T be a tree on s+t vertices then for 7 = T'(r/2,r/2) one can use an
argument of Frankl [9] (applied by many others, see [23]) to prove that

ex(|2n/r|,T) (n ex(|2n/r],T)( n

< —— ~—— . 27
exr(n, T) < (e 12n/r] \r—1 (27)
Indeed, similarly to the idea of templates, given a T-free r-graph H on n vertices take a random
partition of [n] into r/2-sets, (where for simplicity r/2 divides n), and consider only those r-edges
of H which are unions of two partite sets. Then this subfamily consists of at most ex(2n/r,T')
edges of H, out of the possible (2”2/ T).

The bound is asymptotically tight, due to U} ;(n,r), if o(7) =t and T has 2t — 1 edges. So the
inequality (27) completes the proof of Theorem 1 showing that ex, (n, P4 (g, g)) ~(k-1) (Tfl)
(the other cases follow from Theorems 6 and 7). It also gives a better upper bound for the even
length, ex, (n, Por (5.5)) < (1 +o0(1)) (k—2) (™).

However, the proof of (27) does not reveal the extremal structure.

The case of forests. Many of our ideas can be generalized for the case of T = F(a,b), when F
is a forest, but we do not have a general conjecture.

Problem 16. Given a,b > 1 and a forest F' on s+t vertices. Determine lim,,_,~ ex(n, F'(a,b)) (rfl)fl.

Other bipartite graphs. The class of (a,b)-blowups of bipartite graphs contains well-studied
instances including blowups of complete bipartite graphs. In particular, Fiiredi [13] made the
following conjecture for blowups of a 4-cycle. Let C; = {C4(a,b) : a+b=r,a,b > 0}.
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Conjecture 17 ([13]). If r > 3 then ex(n,Cj)) ~ ( " 1).
r —

The current record is due to Pikhurko and the last author [24], who showed

exp(n,Cf) < (1+ 5;)<r : 1)

and exs(n, Cy(2,1)) < 1@3 (). When G is an even cycle of length six or more, it is only known [17]
that ex,.(n,G(a,b)) = O(n"~!) and the asymptotic behavior of ex,(n,G(a,b)) is not known. One
can show, however, that for F' = Kg(a,b) with a +b = r, b < a, and t sufficiently large as a

function of s and r,
1

ex,(n, F) =0(n""5)

via a randomized algebraic construction.
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