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Abstract

We review recent advances in software platforms for model-based design (MBD)

organized in five overarching themes — from (1) simulation to optimization, (2)

commercial to open-source, (3) process-centric to multi-scale, (4) mechanistic

to data-driven, and (5) deterministic to uncertain — illustrated with several re-

cent examples in membrane system design. We posit MBD provides (chemical)

engineers with principled frameworks to tackle global grand challenges such as

sustainable energy, clean water, and equitable access to healthcare by integrat-

ing knowledge across disciplines. As such, we predict MBD software, which has

historically focused on engineered systems, will evolve to interact with models

for natural and social systems more holistically. Finally, we emphasize the im-

portance of open-source software development, especially by users who become

contributors.

Keywords: model-based optimization, dynamic optimization, uncertainty

quantification, multi-scale design, data-driven models, open-source software
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trends

• Organize MBD software advances in five themes

• Contemporary membrane examples illustrate the confluence of MBD themes

Graphical Abstract

Model-Based Design for Chemical Engineering and Beyond

Chemical engineers are uniquely positioned to create innovative solutions

for the United Nation’s Sustainable Development Goals, including equitable ac-

cess to clean water, health services, affordable sustainable energy, and circular

economies. Yet, these and related grand challenges are “wicked problems” with5

complex interdependencies across natural, social, and engineered systems [1].

As such, (chemical) engineering design has evolved to contemplate coupled de-

cisions across molecular to infrastructure scales, often operating dynamically

away from steady-state under uncertainty [2]. We argue that model-based ap-

proaches, grounded in fundamental engineering science, provide the necessary10
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abstractions and predictive capabilities to tackle these wicked problems. This

paper reviews software platforms for model-based design (MBD), organized in

the five overarching themes shown in Figure 1. These five themes align with the

contemporary and emerging research directions in process systems engineering

[3]. Finally, several examples from model-based membrane design illustrate the15

confluence of these five themes.

Figure 1: Five overarching themes summarizing the evolution of model-based design.

Acronyms: ML—machine learning, MIP—mixed integer programming, LCA—life cycle anal-

ysis, CAMD—computer-aided molecular design.

Theme 1: Simulation to Optimization

Chemical process synthesis has evolved from empirical correlations and heuris-

tics to MBD, including decomposition strategies and optimization-based meth-

ods [4, 5]. Decomposition-based designs hierarchically organize process design20
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tasks in clusters of common fundamental concepts, whereas optimization-based

designs aggregate possible designs into a superstructure and solve computa-

tional optimization problems to find the best process configuration [5]. The

implementation of optimization-based design relies on the simulation approach.

Process simulation for MBD has two prevailing paradigms: sequential modu-25

lar (SM) and equation-oriented (EO). SM exploits the modular nature of chem-

ical processes to successively converge individual unit models, in which the out-

put of one unit becomes the input of the next. SM is used in Aspen Hysys®

[6], Aspen Plus® [7], DWSIM [8], and other popular software (see Table 1),

but may require many iterations to converge flowsheets (especially with com-30

plex recycles). Moreover, the sequential convergence of unit models further

exacerbates numerical noise in derivative estimates via finite differences, which

can make steady-state optimization with gradient-based methods unreliable. As

such, optimization with SM simulators is often restricted to a handful of vari-

ables, which can make multi-stage design, uncertainty quantification (UQ), and35

dynamic optimization intractable.

EO environments such as Aspen Custom Modeler® (ACM) and gPROMS®

efficiently converge large-scale systems of nonlinear equations using a numerical

method (e.g., Newton-Raphson) with exact derivatives from automatic differ-

entiation (AD). As such, optimization with EO models using state-of-the-art40

algorithms and software often requires similar computational effort as SM sim-

ulation [9]. Initialization, scaling, and model diagnostics remain the most sig-

nificant challenges for EO methods [10, 11]. A common strategy is to initialize

with SM simulations to provide reliable starting points for optimization with

EO, especially for commercial tools such as AspenTech products. Commercial45

EO environments often include only a handful of solvers and do not provide

complete interfaces to call state-of-the-art optimization algorithms to protect

proprietary models and databases.

Algebraic modeling languages (AMLs) such as General Algebraic Model-

ing System (GAMS) [12], A Mathematical Programming Language (AMPL®)50

[13], AIMMS [14], Pyomo [15], and JuMP [16] offer the most flexibility for
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users to define the EO model equations directly. These AMLs leverage AD

and standardized interfaces to provide exact derivatives to the optimization

solvers. Moreover, the flexibility of interacting with models in Pyomo and JuMP

has catalyzed specialized solver development, thus connecting algorithmic ad-55

vances with large-scale industrially relevant applications. Extensions such as

Pyomo.DAE [17] transcribe (partial) differential-algebraic equations into alge-

braic models to facilitate numeric solutions. Complementary to AMLs, dynamic

modeling toolkits including CasADi [18], OpenModelica [19], and APMonitor

[20] specialize in simulation and optimization using numeric integration methods60

(e.g., multiple shooting).

Most AMLs and some dynamic modeling toolkits are generalized environ-

ments that lack modeling libraries to facilitate MBD, which requires extensive

custom model development by the user. To address this gap, the Institute for the

Design of Advanced Energy Systems Process Systems Engineering (IDAES®-65

PSE) platform provides an object-oriented modeling library built on Pyomo

[21]. Recent application-specific extensions of IDAES-PSE include the Design

Integration and Synthesis Platform to Advance Tightly Coupled Hybrid Energy

Systems (DISPATCHES), Water treatment Techno-economic Assessment Plat-

form (WaterTAP), the Produced Water Application for Beneficial Reuse, En-70

vironmental Impact and Treatment Optimization (PARETO), and the Process

Optimization and Modeling for Minerals Sustainability (PrOMMiS) project.

Compared to most legacy MBD tools focused on simulation, these projects em-

phasize computational optimization.
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Theme 2: Commercial to Open-Source75

Over the past two decades, many open-source MBD software have emerged.

Commercial platforms such as the AspenTech suite, gPROMS, PRO/II™, and

CHEMCAD (Chemstations™) offer a wide range of tools for process development

such as simulation, optimization, and cost estimation. These commercial tools,

as well as commercial AMLs such as GAMS, AMPL, and AIMMS, offer sup-80

port and contract model development, which is essential for many organizations.

Academic and government researchers, motivated by cost and ease of customiza-

tion, have led the creation of open-source tools, including DWSIM, CasADi, Py-

omo, and JuMP. Jusevičius et al. [38] compared the performance of three com-

mercial AMLs (AMPL, AIMMS, GAMS) and two open-source AMLs (JuMP,85

Pyomo). Direct comparison of commercial process simulators and custom mod-

els is often challenging, as commercial tools include proprietary databases for

physical property models, which are difficult to reproduce in custom environ-

ments. The open-source license impacts the adoption of tools. Licenses such

as MIT or BSD are the most flexible for commercialization, whereas “copyleft”90

licenses such as GPL require all derivatives to be released under the same open-

source license, thus inhibiting proprietary extensions.

Theme 3: Process-Centric to Multi-Scale

Over the past two decades, MBD has shifted from process-centric analy-

sis to a holistic perspective spanning molecular to global infrastructure scales.95

At larger scales, enterprise-wide optimization (EWO) optimizes manufacturing

and distribution facilities, supply chains, R&D portfolios, and beyond to maxi-

mize profits, responsiveness to customers, and asset utilization while minimizing

costs, inventory levels, and ecological footprints [39]. EWO problems are for-

mulated as mixed-integer linear programs, mixed-integer nonlinear programs100

(MINLP), mixed-integer dynamic optimization problems, or logic-based models

such as general disjunctive programming problems and constraint programming

problems [39, 40]. Oliveira et al. [41] review common software for simulation and

7



optimization for supply chain management. While some commercial software

exists for specialized planning problems, EWO models are often implemented105

in AMLs due to their flexibility and leverage either off-the-shelf solvers (see

review by Grossmann [39]) or logic-based algorithms such as Pyomo.GDP [15]

or LOGMIP and EMP in GAMS. Pyomo and JuMP make it easier to develop

decomposition algorithms, e.g., Coramin [42], Mindtpy [43] and Parapint [44],

that exploit problem structure to accelerate the solution of large-scale (mixed110

integer) (nonlinear) optimization problems. Similarly, Octeract Neural [45],

which uses generative AI, demonstrates the potential for a new generation of

mathematical optimization algorithms for extremely large multiscale problems.

Life cycle analysis (LCA) has become a crucial step in EWO and design

for environment frameworks that consider each step of the product life cy-115

cle: design/development, raw material acquisition, manufacturing, distribution,

use/maintenance/reuse, and end-of-life activities [46]. Choosing the software

tool for LCA is critical, as a wide range of commercial software is available,

varying in functionality, database availability, user interface, data quality man-

agement, and modeling principles, which can result in different LCA results [47].120

Popular LCA software tools include SimaPro, GaBi, Umberto®, openLCA, and

GREET [47]. Mahmud et al. [46] extensively review LCA software tools and

databases.

Complementing EWO and LCA, computer-aided molecular design (CAMD)

simultaneously designs new molecules and optimizes their manufacturing pro-125

cess or their usefulness in other processes [48]. Often trained via machine learn-

ing (ML) techniques, quantitative structure-property relationships bridge mod-

els across molecular, material, device, and process scales. CAMD problems are

usually formulated as MINLP and solved with off-the-shelf algorithms, special-

ized decomposition strategies, or heuristic search [49]. Popular CAMD packages130

include ProCAFD® [36] which fine-tunes chemical process designs; ProCAPD®

[50] which optimizes product designs; and ProCAPE® [36] and ProREFD® [37]

which are used to estimate molecular properties [51]. These often interface with

LCSoft and ECON to create sustainable process and molecular designs that

8



satisfy additional economic, environmental, and safety constraints [52].135

Theme 4: Mechanistic to Data-Driven

Mechanistic models (a.k.a., first-principles, phenomenological, white- or glass-

box models) have been central to process monitoring, design, control, and op-

timization. Mechanistic models are constructed using knowledge of the funda-

mental science (e.g., reaction kinetics, transport phenomena, boundary condi-140

tions, and thermodynamics) to facilitate safer extrapolation and technological

innovation. Once constructed, mechanistic models are solved with analytical

and numerical methods. In process industries, software such as MATLAB and

Simulink® [53], COMSOL Multiphysics® [54], gPROMS [29], AspenTech [55],

and Simcenter STAR-CCM+ [56] are central to these tasks [57].145

In a recent review, Sansana et al. [58] note four primary shortcomings of

mechanistic modeling. First, mechanistic modeling is fragmented by a lack

of generalizability, as this paradigm depends on bespoke implementations that

are difficult to reuse. Second, practitioners must balance a trade-off between

developing high-fidelity models to improve accuracy and their increased com-150

putational expense. Third, mechanistic models are often time-consuming to

formulate and expensive to maintain. Finally, mechanistic modeling does not

leverage the ever-increasing availability of process data in chemical engineering.

Toward these ends, surrogate modeling has become a popular alternative to

mechanistic modeling.155

A surrogate model (a.k.a., data-driven, black-box, statistical, emulator, or

meta-model) is a computationally inexpensive substitute for a mechanistic model

that relies solely on paired input-output data from the system to make pre-

dictions. Types of surrogate models include (polynomial) response surfaces,

support vector machines, kriging, radial basis functions, artificial neural net-160

works (ANNs), multivariate adaptive regression splines, Fourier, and random

forest models. Popular surrogate modeling tools include Automatic Learning

of Algebraic Models for Optimization (ALAMO) [59], Python-based Surrogate

9



Modelling Objects (PySMO), Reaction Identification and Parameter Estima-

tion (RIPE), and HELMholtz Energy Thermodynamics, which are all available165

in the IDAES-PSE ecosystem [21], as well as TensorFlow [60], scikit-learn [61],

and SciML Surrogates.jl [62].

The data-driven nature of surrogate models leads to three challenges dis-

cussed by Shulkind et al. [63]. First, surrogate models are limited in physical

interpretability due to the agnosticism of their underlying functional form. Sec-170

ond, surrogate models rely entirely on data availability for sufficient fidelity.

Third, the lack of extreme scenario data may lead to poor out-of-sample pre-

diction performance. Thus, the ideal modeling paradigm must encompass prior

knowledge and process data.

Hybrid (a.k.a., grey-box) models overcome many limitations of both mech-175

anistic and surrogate models. Hybrid models combine a priori knowledge of

the system with data-driven insights [64]. Available software packages for hy-

brid modeling include Novasign Hybrid Modeling Toolbox [65], Aspen Hybrid

Models™ [55], HybridML [66], and PharmaPy [32]. In a recent review, Bradley

et al. [67] note several use cases for hybrid models, including emulation, physics-180

informed ML, estimation, correction, and calibration. In the emulation use case,

surrogate models replace computationally expensive high fidelity computer mod-

els. Similarly, physics-informed ML leverages a surrogate model to replace a

mechanistic model while enforcing physical constraints in its training. Unlike

emulation and physics-informed ML use cases, correction, estimation, and cal-185

ibration cases leverage data-driven models to augment a mechanistic model.

Regarding estimation, a data-driven model aims to learn a specific phenomeno-

logical relationship embedded in a mechanistic model. In contrast, correction

use cases deploy data-driven models to learn the bias between a mechanistic

model and data. Finally, calibration is a generalization of correction cases in190

which the user performs joint inference of the mechanistic model parameters

and the bias.

Surrogate-assisted optimization uses data-driven or hybrid models as emu-

lators for computationally expensive functions to reduce the solution time [68].

10



For example, algebraic surrogate models trained with ALAMO are well-suited195

for global or mixed integer optimization. More recently, the open-source OMLT [69]

package facilitates embedding pre-trained ML models (ANNs and gradient-

boosted trees) with the Pyomo environment as constraints. A key challenge

with surrogate-assisted optimization is managing model error, especially near

the optimal solution. The trust-region algorithm helps maintain the surrogate200

model’s accuracy by controlling the trust region’s size [70]. Recently, Chen

et al. [71] used the trust-region algorithm with an algebraic surrogate model to

successfully emulate and optimize the fluidized catalytic cracker in a large-scale

refinery.

Theme 5: Deterministic to Uncertain205

Quantifying the uncertainty of model predictions is critical for safe engi-

neering practices and risk management in technology scale-up and deployment.

There are several sources of uncertainty, of which we review four relevant to the

discussion in this section [72]:

1. Parameter uncertainty – This uncertainty arises from the fact that the210

parameter values of mathematical models are not known a priori and must

be estimated from data.

2. Model inadequacy – Also known as systematic bias or model discrepancy,

model inadequacy arises when the mean value of the measured process

does not match the mathematical model’s output given the inputs’ actual215

values.

3. Parametric variability – The predicted process value acquires an extra

uncertainty attributed to the variation of the model inputs.

4. Observation error – Also known as measurement uncertainty, observation

error arises when the observed (measured) value of the process does not220

match the model output.

UQ methods consider these uncertainties in two types of problems: forward

and inverse. Forward problems aim to quantify the influence of parametric

11



variability on the outputs. That is, forward methods provide an estimate to

the question: “How does uncertainty in the model inputs affect the model out-225

puts?”. Conversely, inverse UQ problems aim to infer cause from effect. That

is, given experimental data subject to observation error, inverse UQ problems

aim to infer the model parameters’ optimal values and estimate their uncer-

tainty. When the model is inadequate, inverse UQ estimates the discrepancy

between the model and the data. This process is also known as “bias correction”230

or “discrepancy modeling,” closely related to correction and calibration hybrid

models (see Theme 4: Mechanistic to Data-Driven). Table 2 shows popular

general-purpose UQ tools.

Often, models with quantified uncertainty are used for decision-making via

optimization. While many of these tools in Table 2 support optimization under235

uncertainty (OUU), we highlight mpi-sppy [73] and PyROS [74], which provide

stochastic programming and robust optimization capabilities, respectively, in

Pyomo.

Design of experiments (DoE) methods determine the best experimental cam-

paigns to learn information, minimize uncertainty, or discriminate between240

candidate models [90, 91, 92]. DoE methodologies include classical (e.g., full-

factorial, fractional-factorial, response-surface, mixture), randomized (e.g., space-

filling such as Latin hypercube, Sobol sequence), and optimal designs [93]. These

methods quantify the interactions between input and output variables (i.e., fac-

tors and responses) in experimental designs through predictive analysis. In245

addition, model-based design of experiments (MBDoE) computes the next best

set of experiments for model selection or parameter estimation tasks by directly

exploiting (mechanistic) model predictions. Often, MBDoE is deployed sequen-

tially, where the model is re-calibrated as new information becomes available

to determine the next batch of optimal experiments. Thus, there is a strong250

connection between MBDoE and inverse UQ.

Table 2 indicates UQ software with DoE capabilities, whereas Table 3 out-

lines DoE software used frequently in chemical engineering. gPROMS is the

most popular commercial software for MBDoE, while Table 3 highlights many
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Dakota [75] C++ LGPL X X X X X X
EasyVVUQ [76, 77] Python3 LGPL v3.0 X X

FERUM [78] MATLAB® GPL v3.0 X X X
FOQUS* [79] GUI BSD3-like X X X X X

MUQ [80] C++, Python GPL v2.0 X X X X
OpenCOSSAN [81] MATLAB® LGPL X X X X X
OpenTURNS [82] C++, Python LGPL X X X X X X

PSUADE [83] Shell Scripting LGPL X X X X X
SUMO Toolbox [84] MATLAB® AGPL v3.0 X X X

SmartUQ® [85] GUI Proprietary X X X X X X
UQLab [86] MATLAB® BSD-3 X X X X X X
UQPy [87] Python MIT X X X X

UQTk [88, 89] C++, Python BSD-3 X X X X X

Table 2: General purpose UQ software and their capabilities for reliability and sensitivity

analysis, inverse and forward UQ, surrogate modeling, design of experiments (DoE), and

optimization under uncertainty (OUU).
*
FOQUS provides an interface to UQ capabilities in

PSUADE.
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new open-source options. Notably, Pyomo.DoE [94] is a Python package for255

MBDoE that exploits EO Pyomo models for gradient-based optimization of

Fisher information-based objectives. Pydex also leverages Pyomo models but

discretizes the MBDoE decision space to exploit advances in convex optimiza-

tion [95].
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Design-Expert® [96] GUI Proprietary X X X X X
dexpy [97] Python Apache X X X X
doepy [98] Python MIT X X

GPdoemd [99] Python MIT X
gPROMS® [29] GUI Proprietary X

JMP® [100] GUI Proprietary X X X X X
Minitab® [101] GUI Proprietary X X X X
MODDE® [102] GUI Proprietary X X X X

NCSS [103] GUI Proprietary X X X X
pydex [95] Python MIT X

pyDOE [104] Python BSD-3 X X X
Pyomo.DoE [94] Python BSD-3 X

SAS® [105] GUI Proprietary X X X X X
Statgraphics® [106] GUI Proprietary X X X X

Statistics and Machine

Learning toolbox [107]

MATLAB® Proprietary X X X X

Synthace [108] GUI Proprietary X X X X X

Table 3: Popular DoE toolkits in chemical engineering. Readers are also encouraged to explore

DoE software packages in R [109], which are more commonly used in the applied statistics

community.
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Five Themes Applied to Model-Based Membrane Design260

These five themes for MBD are often applied in conjunction, as illustrated by

the following contemporary examples of process intensification with membranes.

Clean Water. Di Martino et al. [110] implemented ANN surrogate mod-

els to optimize reverse osmosis systems for water desalination (themes 1, 3 ).

Recently, Razman et al. [111] overviewed LCA methods for membrane-based265

systems for wastewater treatment and common challenges, such as the lack of

consistency (theme 4 ).

Sustainable Energy. Recently, Cherif et al. [112] used MBD for the multi-

objective optimization of a palladium-based membrane steam methane reformer

for hydrogen production (themes 1, 4 ). Sarma and Ganguly [113] implemented a270

model-based optimization of proton-exchange membrane fuel cell-battery-hybrid

energy systems to minimize fuel consumption subject to dynamic power bal-

ances and other operating constraints (themes 1,4 ). Wamble et al. [114] used

superstructure optimization implemented in Pyomo to design diafiltration cas-

cades for lithium-ion battery recycling and quantify the systems-scale benefits of275

membrane material improvements (themes 1, 2, 4 ). Similarly, Zach et al. [115]

proposed a general-purpose, model-based tool based on GAMS for optimizing

membrane separators for post-combustion carbon capture (themes 1, 3, 4 ).

Medical Sciences. Khulu et al. [116] optimized the membrane-assisted

extraction of therapeutic pharmaceuticals from surface water using a central280

composite DoE technique (themes 1, 3, 5 ). Finally, Bayazidi et al. [117] used

computational fluid dynamics and DoE for MBD, optimization, and parameter

identification of a micropump embedded with a vibrating membrane for appli-

cations in drug delivery (themes 3, 5 ).

Future Outlook285

We predict chemical engineers will increasingly utilize MBD to guide inter-

disciplinary teams focused on convergent research for global grand challenges.
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Modeling abstractions in process systems engineering provide coherent frame-

works to integrate knowledge across disciplines. As such, we expect MBD

software to expand, analogous to the growth of EWO paradigms over the last290

decade, to emphasize interactions with natural and social system models. Like-

wise, we anticipate a continued proliferation of open-source software but note

the challenges with actively maintaining research software, especially for small

academic groups. As such, we see the continued importance of investments in

large software projects, such as Pyomo, JuMP, CasADi, and IDAES-PSE, that295

provide extensive benefits to the broad community. We encourage more con-

tributions to these open-source packages and training of researchers in software

carpentry skills.
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