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Abstract

We review recent advances in software platforms for model-based design (MBD)
organized in five overarching themes — from (1) simulation to optimization, (2)
commercial to open-source, (3) process-centric to multi-scale, (4) mechanistic
to data-driven, and (5) deterministic to uncertain — illustrated with several re-
cent examples in membrane system design. We posit MBD provides (chemical)
engineers with principled frameworks to tackle global grand challenges such as
sustainable energy, clean water, and equitable access to healthcare by integrat-
ing knowledge across disciplines. As such, we predict MBD software, which has
historically focused on engineered systems, will evolve to interact with models
for natural and social systems more holistically. Finally, we emphasize the im-
portance of open-source software development, especially by users who become
contributors.
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trends
e Organize MBD software advances in five themes

e Contemporary membrane examples illustrate the confluence of MBD themes
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Design

Graphical Abstract

Model-Based Design for Chemical Engineering and Beyond

Chemical engineers are uniquely positioned to create innovative solutions
for the United Nation’s Sustainable Development Goals, including equitable ac-
cess to clean water, health services, affordable sustainable energy, and circular

s economies. Yet, these and related grand challenges are “wicked problems” with
complex interdependencies across natural, social, and engineered systems [1].
As such, (chemical) engineering design has evolved to contemplate coupled de-
cisions across molecular to infrastructure scales, often operating dynamically
away from steady-state under uncertainty [2]. We argue that model-based ap-

10 proaches, grounded in fundamental engineering science, provide the necessary
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abstractions and predictive capabilities to tackle these wicked problems. This

paper reviews software platforms for model-based design (MBD), organized in

the five overarching themes shown in Figure[I] These five themes align with the

contemporary and emerging research directions in process systems engineering

[3]. Finally, several examples from model-based membrane design illustrate the

confluence of these five themes.
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Five overarching themes summarizing the evolution of model-based design.

Acronyms: ML—machine learning, MIP—mixed integer programming, LCA—Ilife cycle anal-

ysis, CAMD-—computer-aided molecular design.

Theme 1: Simulation to Optimization

Chemical process synthesis has evolved from empirical correlations and heuris-

tics to MBD, including decomposition strategies and optimization-based meth-

ods [4, [5]. Decomposition-based designs hierarchically organize process design
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tasks in clusters of common fundamental concepts, whereas optimization-based
designs aggregate possible designs into a superstructure and solve computa-
tional optimization problems to find the best process configuration [5]. The
implementation of optimization-based design relies on the simulation approach.

Process simulation for MBD has two prevailing paradigms: sequential modu-
lar (SM) and equation-oriented (EO). SM exploits the modular nature of chem-
ical processes to successively converge individual unit models, in which the out-
put of one unit becomes the input of the next. SM is used in Aspen Hysys®
6], Aspen Plus® [7], DWSIM [8], and other popular software (see Table ,
but may require many iterations to converge flowsheets (especially with com-
plex recycles). Moreover, the sequential convergence of unit models further
exacerbates numerical noise in derivative estimates via finite differences, which
can make steady-state optimization with gradient-based methods unreliable. As
such, optimization with SM simulators is often restricted to a handful of vari-
ables, which can make multi-stage design, uncertainty quantification (UQ), and
dynamic optimization intractable.

EO environments such as Aspen Custom Modeler® (ACM) and gPROMS®
efficiently converge large-scale systems of nonlinear equations using a numerical
method (e.g., Newton-Raphson) with exact derivatives from automatic differ-
entiation (AD). As such, optimization with EO models using state-of-the-art
algorithms and software often requires similar computational effort as SM sim-
ulation [9]. Initialization, scaling, and model diagnostics remain the most sig-
nificant challenges for EO methods [10, [11]. A common strategy is to initialize
with SM simulations to provide reliable starting points for optimization with
EQ, especially for commercial tools such as AspenTech products. Commercial
EO environments often include only a handful of solvers and do not provide
complete interfaces to call state-of-the-art optimization algorithms to protect
proprietary models and databases.

Algebraic modeling languages (AMLs) such as General Algebraic Model-
ing System (GAMS) [12], A Mathematical Programming Language (AMPL®)
[13], AIMMS [14], Pyomo [15], and JuMP [L6] offer the most flexibility for
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users to define the EO model equations directly. These AMLs leverage AD
and standardized interfaces to provide exact derivatives to the optimization
solvers. Moreover, the flexibility of interacting with models in Pyomo and JuMP
has catalyzed specialized solver development, thus connecting algorithmic ad-
vances with large-scale industrially relevant applications. Extensions such as
Pyomo.DAE [17] transcribe (partial) differential-algebraic equations into alge-
braic models to facilitate numeric solutions. Complementary to AMLs, dynamic
modeling toolkits including CasADi [18], OpenModelica [19], and APMonitor
[20] specialize in simulation and optimization using numeric integration methods
(e.g., multiple shooting).

Most AMLs and some dynamic modeling toolkits are generalized environ-
ments that lack modeling libraries to facilitate MBD, which requires extensive
custom model development by the user. To address this gap, the Institute for the
Design of Advanced Energy Systems Process Systems Engineering (IDAES®—
PSE) platform provides an object-oriented modeling library built on Pyomo
[21]. Recent application-specific extensions of IDAES-PSE include the Design
Integration and Synthesis Platform to Advance Tightly Coupled Hybrid Energy
Systems (DISPATCHES), Water treatment Techno-economic Assessment Plat-
form (WaterTAP), the Produced Water Application for Beneficial Reuse, En-
vironmental Impact and Treatment Optimization (PARETO), and the Process
Optimization and Modeling for Minerals Sustainability (PrOMMIiS) project.
Compared to most legacy MBD tools focused on simulation, these projects em-

phasize computational optimization.
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Theme 2: Commercial to Open-Source

Over the past two decades, many open-source MBD software have emerged.
Commercial platforms such as the AspenTech suite, gPROMS, PRO/ 11", and
CHEMCAD (Chemstations" ) offer a wide range of tools for process development
such as simulation, optimization, and cost estimation. These commercial tools,
as well as commercial AMLs such as GAMS, AMPL, and AIMMS, offer sup-
port and contract model development, which is essential for many organizations.
Academic and government researchers, motivated by cost and ease of customiza-
tion, have led the creation of open-source tools, including DWSIM, CasADi, Py-
omo, and JuMP. [Jusevic¢ius et al. [38] compared the performance of three com-
mercial AMLs (AMPL, AIMMS, GAMS) and two open-source AMLs (JuMP,
Pyomo). Direct comparison of commercial process simulators and custom mod-
els is often challenging, as commercial tools include proprietary databases for
physical property models, which are difficult to reproduce in custom environ-
ments. The open-source license impacts the adoption of tools. Licenses such
as MIT or BSD are the most flexible for commercialization, whereas “copyleft”
licenses such as GPL require all derivatives to be released under the same open-

source license, thus inhibiting proprietary extensions.

Theme 3: Process-Centric to Multi-Scale

Over the past two decades, MBD has shifted from process-centric analy-
sis to a holistic perspective spanning molecular to global infrastructure scales.
At larger scales, enterprise-wide optimization (EWO) optimizes manufacturing
and distribution facilities, supply chains, R&D portfolios, and beyond to maxi-
mize profits, responsiveness to customers, and asset utilization while minimizing
costs, inventory levels, and ecological footprints [39]. EWO problems are for-
mulated as mixed-integer linear programs, mixed-integer nonlinear programs
(MINLP), mixed-integer dynamic optimization problems, or logic-based models
such as general disjunctive programming problems and constraint programming

problems [39,[40]. Oliveira et al. [41] review common software for simulation and
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optimization for supply chain management. While some commercial software
exists for specialized planning problems, EWO models are often implemented
in AMLs due to their flexibility and leverage either off-the-shelf solvers (see
review by |Grossmann| [39]) or logic-based algorithms such as Pyomo.GDP [15]
or LOGMIP and EMP in GAMS. Pyomo and JuMP make it easier to develop
decomposition algorithms, e.g., Coramin [42], Mindtpy [43] and Parapint [44],
that exploit problem structure to accelerate the solution of large-scale (mixed
integer) (nonlinear) optimization problems. Similarly, Octeract Neural [45],
which uses generative Al, demonstrates the potential for a new generation of
mathematical optimization algorithms for extremely large multiscale problems.

Life cycle analysis (LCA) has become a crucial step in EWO and design
for environment frameworks that consider each step of the product life cy-
cle: design/development, raw material acquisition, manufacturing, distribution,
use/maintenance,/reuse, and end-of-life activities [46]. Choosing the software
tool for LCA is critical, as a wide range of commercial software is available,
varying in functionality, database availability, user interface, data quality man-
agement, and modeling principles, which can result in different LCA results [47].
Popular LCA software tools include SimaPro, GaBi, Umberto®, openL.CA, and
GREET [47]. [Mahmud et al.| [46] extensively review LCA software tools and
databases.

Complementing EWO and LCA, computer-aided molecular design (CAMD)
simultaneously designs new molecules and optimizes their manufacturing pro-
cess or their usefulness in other processes [48]. Often trained via machine learn-
ing (ML) techniques, quantitative structure-property relationships bridge mod-
els across molecular, material, device, and process scales. CAMD problems are
usually formulated as MINLP and solved with off-the-shelf algorithms, special-
ized decomposition strategies, or heuristic search [49]. Popular CAMD packages
include ProCAFD® [36] which fine-tunes chemical process designs; ProCAPD®
|50] which optimizes product designs; and ProCAPE® [36] and ProREFD® [37]
which are used to estimate molecular properties [51]. These often interface with

LCSoft and ECON to create sustainable process and molecular designs that
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satisfy additional economic, environmental, and safety constraints [52].

Theme 4: Mechanistic to Data-Driven

Mechanistic models (a.k.a., first-principles, phenomenological, white- or glass-
box models) have been central to process monitoring, design, control, and op-
timization. Mechanistic models are constructed using knowledge of the funda-
mental science (e.g., reaction kinetics, transport phenomena, boundary condi-
tions, and thermodynamics) to facilitate safer extrapolation and technological
innovation. Once constructed, mechanistic models are solved with analytical
and numerical methods. In process industries, software such as MATLAB and
Simulink® [53], COMSOL Multiphysics® [54], gPROMS [29], AspenTech [55],
and Simcenter STAR-CCM+ [56] are central to these tasks [57].

In a recent review, |[Sansana et al.| [58] note four primary shortcomings of
mechanistic modeling. First, mechanistic modeling is fragmented by a lack
of generalizability, as this paradigm depends on bespoke implementations that
are difficult to reuse. Second, practitioners must balance a trade-off between
developing high-fidelity models to improve accuracy and their increased com-
putational expense. Third, mechanistic models are often time-consuming to
formulate and expensive to maintain. Finally, mechanistic modeling does not
leverage the ever-increasing availability of process data in chemical engineering.
Toward these ends, surrogate modeling has become a popular alternative to
mechanistic modeling,.

A surrogate model (a.k.a., data-driven, black-box, statistical, emulator, or
meta-model) is a computationally inexpensive substitute for a mechanistic model
that relies solely on paired input-output data from the system to make pre-
dictions. Types of surrogate models include (polynomial) response surfaces,
support vector machines, kriging, radial basis functions, artificial neural net-
works (ANNs), multivariate adaptive regression splines, Fourier, and random
forest models. Popular surrogate modeling tools include Automatic Learning

of Algebraic Models for Optimization (ALAMO) [59], Python-based Surrogate
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Modelling Objects (PySMO), Reaction Identification and Parameter Estima-
tion (RIPE), and HELMholtz Energy Thermodynamics, which are all available
in the IDAES-PSE ecosystem [21], as well as TensorFlow [60], scikit-learn [61],
and SciML Surrogates.jl [62].

The data-driven nature of surrogate models leads to three challenges dis-
cussed by [Shulkind et al.| [63]. First, surrogate models are limited in physical
interpretability due to the agnosticism of their underlying functional form. Sec-
ond, surrogate models rely entirely on data availability for sufficient fidelity.
Third, the lack of extreme scenario data may lead to poor out-of-sample pre-
diction performance. Thus, the ideal modeling paradigm must encompass prior
knowledge and process data.

Hybrid (a.k.a., grey-box) models overcome many limitations of both mech-
anistic and surrogate models. Hybrid models combine a priori knowledge of
the system with data-driven insights [64]. Available software packages for hy-
brid modeling include Novasign Hybrid Modeling Toolbox [65], Aspen Hybrid
Models™ [55], HybridML [66], and PharmaPy [32]. In a recent review, Bradley
et al. [67] note several use cases for hybrid models, including emulation, physics-
informed ML, estimation, correction, and calibration. In the emulation use case,
surrogate models replace computationally expensive high fidelity computer mod-
els. Similarly, physics-informed ML leverages a surrogate model to replace a
mechanistic model while enforcing physical constraints in its training. Unlike
emulation and physics-informed ML use cases, correction, estimation, and cal-
ibration cases leverage data-driven models to augment a mechanistic model.
Regarding estimation, a data-driven model aims to learn a specific phenomeno-
logical relationship embedded in a mechanistic model. In contrast, correction
use cases deploy data-driven models to learn the bias between a mechanistic
model and data. Finally, calibration is a generalization of correction cases in
which the user performs joint inference of the mechanistic model parameters
and the bias.

Surrogate-assisted optimization uses data-driven or hybrid models as emu-

lators for computationally expensive functions to reduce the solution time [68].

10



15 For example, algebraic surrogate models trained with ALAMO are well-suited
for global or mixed integer optimization. More recently, the open-source OMLT [69]
package facilitates embedding pre-trained ML models (ANNs and gradient-
boosted trees) with the Pyomo environment as constraints. A key challenge
with surrogate-assisted optimization is managing model error, especially near

200 the optimal solution. The trust-region algorithm helps maintain the surrogate
model’s accuracy by controlling the trust region’s size [70]. Recently, |Chen
et al. [71] used the trust-region algorithm with an algebraic surrogate model to
successfully emulate and optimize the fluidized catalytic cracker in a large-scale

refinery.

206 Theme 5: Deterministic to Uncertain

Quantifying the uncertainty of model predictions is critical for safe engi-
neering practices and risk management in technology scale-up and deployment.
There are several sources of uncertainty, of which we review four relevant to the

discussion in this section [72]:

210 1. Parameter uncertainty — This uncertainty arises from the fact that the
parameter values of mathematical models are not known a priori and must
be estimated from data.

2. Model inadequacy — Also known as systematic bias or model discrepancy,
model inadequacy arises when the mean value of the measured process

215 does not match the mathematical model’s output given the inputs’ actual
values.

3. Parametric variability — The predicted process value acquires an extra
uncertainty attributed to the variation of the model inputs.
4. Observation error — Also known as measurement uncertainty, observation

220 error arises when the observed (measured) value of the process does not

match the model output.

UQ methods consider these uncertainties in two types of problems: forward

and inverse. Forward problems aim to quantify the influence of parametric

11
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variability on the outputs. That is, forward methods provide an estimate to
the question: “How does uncertainty in the model inputs affect the model out-
puts?”. Conversely, inverse UQ problems aim to infer cause from effect. That
is, given experimental data subject to observation error, inverse UQ problems
aim to infer the model parameters’ optimal values and estimate their uncer-
tainty. When the model is inadequate, inverse UQ estimates the discrepancy
between the model and the data. This process is also known as “bias correction”
or “discrepancy modeling,” closely related to correction and calibration hybrid
models (see Theme 4: Mechanistic to Data-Driven). Table [2| shows popular
general-purpose UQ tools.

Often, models with quantified uncertainty are used for decision-making via
optimization. While many of these tools in Table [2| support optimization under
uncertainty (OUU), we highlight mpi-sppy [73] and PyROS [74], which provide
stochastic programming and robust optimization capabilities, respectively, in
Pyomo.

Design of experiments (DoE) methods determine the best experimental cam-
paigns to learn information, minimize uncertainty, or discriminate between
candidate models |90 91], [92]. DoE methodologies include classical (e.g., full-
factorial, fractional-factorial, response-surface, mixture), randomized (e.g., space-
filling such as Latin hypercube, Sobol sequence), and optimal designs [93]. These
methods quantify the interactions between input and output variables (i.e., fac-
tors and responses) in experimental designs through predictive analysis. In
addition, model-based design of experiments (MBDoE) computes the next best
set of experiments for model selection or parameter estimation tasks by directly
exploiting (mechanistic) model predictions. Often, MBDoE is deployed sequen-
tially, where the model is re-calibrated as new information becomes available
to determine the next batch of optimal experiments. Thus, there is a strong
connection between MBDoE and inverse UQ.

Table [2] indicates UQ software with DoE capabilities, whereas Table [3] out-
lines DoE software used frequently in chemical engineering. gPROMS is the
most popular commercial software for MBDoE, while Table (3] highlights many

12
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Name Language(s) License Eln | E|E|ln|R”]|O
Dakota [75] C++ LGPL VIV v

EasyVVUQ [76] [77] Python3 LGPL v3.0 v v
FERUM [78] MATLAB® GPLv30 |V |V v
FOQUS* [79] GUI BSD3-like v VIV Y
MUQ)| [80] C++, Python | GPL v2.0 VvV v
OpenCOSSAN [81] | MATLAB® LGPL Ve Vs v
OpenTURNS | [82] C++, Python LGPL VIiVIiVIVI|VY v
PSUADE |[83] Shell Scripting LGPL VvV s
SUMO Toolbox [84] | MATLAB® | AGPL v3.0 vl
SmartUQ® | |85] GUI Proprietary VIiVIVI|IVI VIV
UQLab [86] MATLAB® BSD-3 Nl VA BVER VAN V4 v
UQPy [87] Python MIT v |V v IV
UQTK [88] 189 C++, Python BSD-3 VIV Vv|Y v

Table 2: General purpose UQ software and their capabilities for reliability and sensitivity
analysis, inverse and forward UQ, surrogate modeling, design of experiments (DoE), and
optimization under uncertainty (OUU). *FOQUS provides an interface to UQ capabilities in
PSUADE.
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255

new open-source options. Notably, Pyomo.DoE [94] is a Python package for
MBDoE that exploits EO Pyomo models for gradient-based optimization of
Fisher information-based objectives. Pydex also leverages Pyomo models but
discretizes the MBDoE decision space to exploit advances in convex optimiza-

tion [95].

14
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Design-Expert® [96] GUI Proprietary | v | vV |V | V | V
dexpy [97] Python Apache VIiVvY v
doepy| [98] Python MIT v v
GPdoemd [99] Python MIT v
gPROMS® [29) GUI Proprietary v
JMP® [100] GUI Proprietary | v | v |V |V | V
Minitab® [101] GUI Proprietary | v/ | v/ | V v
MODDE® [102] GUI Proprietary | v | v | v v
NCSS| [103] GUI Proprietary | v/ | v | V v
pydex [95] Python MIT v
pyDOE [104] Python BSD-3 v | v v
Pyomo.DoE [94] Python BSD-3 v
SAS® [105] GUI Proprietary | v | v | vV | V | V
Statgraphics® [106] GUI Proprietary | v/ | v/ | V v
Statistics and Machine MATLAB® | Proprietary | v | v/ v |V
Learning toolbox] [107]
Synthace [108] GUI Proprietary | v/ | vV |V | V | V

Table 3: Popular DoE toolkits in chemical engineering. Readers are also encouraged to explore

DoE software packages in R [109], which are more commonly used in the applied statistics

community.
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Five Themes Applied to Model-Based Membrane Design

These five themes for MBD are often applied in conjunction, as illustrated by
the following contemporary examples of process intensification with membranes.

Clean Water. [Di Martino et al.|[110] implemented ANN surrogate mod-
els to optimize reverse osmosis systems for water desalination (themes 1, 3).
Recently, [Razman et al. [111] overviewed LCA methods for membrane-based
systems for wastewater treatment and common challenges, such as the lack of
counsistency (theme 4).

Sustainable Energy. Recently, |Cherif et al. [112] used MBD for the multi-
objective optimization of a palladium-based membrane steam methane reformer
for hydrogen production (themes 1, 4). Sarma and Ganguly [113] implemented a
model-based optimization of proton-exchange membrane fuel cell-battery-hybrid
energy systems to minimize fuel consumption subject to dynamic power bal-
ances and other operating constraints (themes 1,4). |Wamble et al.| [114] used
superstructure optimization implemented in Pyomo to design diafiltration cas-
cades for lithium-ion battery recycling and quantify the systems-scale benefits of
membrane material improvements (themes 1, 2, 4). Similarly, Zach et al. [115]
proposed a general-purpose, model-based tool based on GAMS for optimizing
membrane separators for post-combustion carbon capture (themes 1, 3, 4).

Medical Sciences. [Khulu et al.| [116] optimized the membrane-assisted
extraction of therapeutic pharmaceuticals from surface water using a central
composite DoE technique (themes 1, 3, 5). Finally, |Bayazidi et al. [117] used
computational fluid dynamics and DoE for MBD, optimization, and parameter
identification of a micropump embedded with a vibrating membrane for appli-

cations in drug delivery (themes 3, 5).

Future Outlook

We predict chemical engineers will increasingly utilize MBD to guide inter-

disciplinary teams focused on convergent research for global grand challenges.
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Modeling abstractions in process systems engineering provide coherent frame-
works to integrate knowledge across disciplines. As such, we expect MBD
software to expand, analogous to the growth of EWO paradigms over the last
decade, to emphasize interactions with natural and social system models. Like-
wise, we anticipate a continued proliferation of open-source software but note
the challenges with actively maintaining research software, especially for small
academic groups. As such, we see the continued importance of investments in
large software projects, such as Pyomo, JuMP, CasADi, and IDAES-PSE, that
provide extensive benefits to the broad community. We encourage more con-
tributions to these open-source packages and training of researchers in software

carpentry skills.
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