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Abstract6

Hybrid (i.e., grey-box) models are a powerful and flexible paradigm for predictive science and7

engineering. Grey-box models use data-driven constructs to incorporate unknown or compu-8

tationally intractable phenomena into glass-box mechanistic models. The pioneering work of9

statisticians Kennedy and O’Hagan introduced a new paradigm to quantify epistemic (i.e., model-10

form) uncertainty. While popular in several engineering disciplines, prior work using Kennedy-11

O’Hagan hybrid models focuses on prediction with accurate uncertainty estimates. This work12

demonstrates computational strategies to deploy Bayesian hybrid models for optimization under13

uncertainty. Specifically, the predictive posterior distributions of Bayesian hybrid models pro-14

vide a principled uncertainty set for stochastic programming, chance-constrained optimization,15
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or robust optimization. Through two illustrative case studies, we demonstrate the efficacy of hy-16

brid models, composed of a structurally inadequate glass-box model and Gaussian process, for17

decision-making using limited training data. From these case studies, we develop recommended18

best practices and explore the trade-offs between different hybrid model architectures.19

Figure 0: GRAPHICAL ABSTRACT

1 Introduction20

Predictive models are fundamental to process systems engineering [1, 2] with ubiquitous appli-21

cations in design, control, and decision-making applications. In practice, glass-box (i.e., first-22

principles) models are developed from foundational scientific theory. When accurately formu-23

lated and computationally tractable, these models can offer exceptional extrapolation capabili-24

ties [3]. When constructing these models, one must consider the trade-off in accurately capturing25

the underlying physics, the uncertainty of the parameter estimates, the computational burden, and26

the necessary data for calibration and validation. Furthermore, decreasing the bias between the27

model outputs and reality requires augmenting the mathematical model with additional terms,28

thereby increasing the total number of model parameters to be estimated [4]. For these reasons,29

glass-box models can be tedious to build and validate, especially when the underlying physics30
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spans multiple length and time scales. Alternatively, black-box (i.e., surrogate) models are easier31

to develop and, once trained, facilitate fast optimization. Due to their entirely data-driven nature,32

these models suffer in physical interpretability and can be unreliable for extrapolation outside the33

training set range [5]. At the intersection of these paradigms, grey-box (i.e., hybrid) models fuse34

glass-box and data-driven constructs. The resulting framework offers superior physics-informed35

extrapolation and prediction accuracy due to data-based automatic (re)learning [6] of unmodeled36

or simplified phenomena.37

Regardless of the modeling paradigm, all models are prone to uncertainty [7]. Left unac-38

counted for, uncertainty can bias decision-making due to over- or under-confident predictions.39

Non-systematic or aleatoric uncertainty arises from uncontrollable phenomena such as exper-40

imental variability and is generally quantifiable by repeating the number of experiments con-41

ducted. Epistemic or model-form uncertainty, however, induces systematic bias between a pre-42

dictive model and the observed phenomena. Epistemic uncertainty can arise when simplifying43

a mechanistic model or when the underlying phenomena are (partially) misspecified. Epistemic44

uncertainty is harder to evaluate as it seeks to quantify an abstraction, i.e., unknown unknowns.45

This paper proposes a Bayesian hybrid modeling framework for decision-making under aleatoric46

and epistemic uncertainty. Building upon the pioneering work of Kennedy and O’Hagan [8], we47

integrate mechanistic or physics-informed glass-box models with data-driven Gaussian process48

(GP) discrepancy functions into a grey-box hybrid model. Literature to date using Kennedy and49

O’Hagan paradigm for epistemic UQ focuses on prediction. In contrast, the novel contribution50

of this work is the extension of Bayesian hybrid models to optimization under both aleatoric and51

epistemic uncertainty. Specifically, the joint posterior prediction distribution of the Bayesian hy-52

brid model defines the uncertainty sets for a stochastic program. Computational experiments53

in two case studies demonstrate the performance of Bayesian hybrid models for small data sets.54
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Through the case studies, we establish best practices regarding the choice of model architecture55

and estimation methods.56

The remainder of the paper is organized as follows. Section 2 reviews related literature. Sec-57

tion 3 describes the general modeling framework and computational implementation. Section 458

describes a ballistics case study, which shows the superiority of Bayesian hybrid models compared59

to two alternatives. Section 5 develops further computational simplifications in a reaction kinetics60

case study using the best practices from this first case study. Finally, Section 6 summarizes the key61

findings and identifies future research directions.62

2 Literature Review63

2.1 Machine learning and hybrid modeling in chemical engineering64

Machine learning (ML) in chemical engineering was explored in the 90s by researchers such as65

Ydstie [9], Kramer [10], and Bakshi and Stephanopoulos [11], however progress slowed due to66

computational challenges in training deep networks [12]. ML resurged as a popular technology67

in the 21st century with many applications across domains, prompting its revival in the chemi-68

cal engineering community. Jackson, Webb, and Pablo [13], Haghighatlari and Hachmann [14],69

Lee, Shin, and Realff [12], and Ning and You [15] discuss recent ML advances in domains such70

as molecular modeling and simulation, soft materials design, process systems engineering, and71

optimization under uncertainty. Of particular interest, Haghighatlari and Hachmann [14] identify72

the crucial need to develop ML techniques trained on small or sparse data for applications where73

data generation is the bottleneck. Lee, Shin, and Realff [12] pose the challenge of balancing ex-74

ploitation or improving the objective versus exploration or reducing model uncertainty for future75

ML applications. These challenges are complementary since understanding the model uncertainty76
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can enable active learning for improved model building with small datasets.77

Prompting the advancement of ML, the advent of the big data environment catalyzed the de-78

velopment of hybrid modeling paradigms [4], and was further motivated by problems such as79

process control [16]. Pioneered by Psichogios and Ungar [17], a combination of first-principles80

and artificial neural networks (ANN) were devised to improve the model for a fedbatch bioreac-81

tor whose dynamic behavior is tough to model despite the use of complex kinetic expressions due82

to the presence of unmodeled interactions between living cells. Their use of hybrid models evaded83

overfitting issues neural networks faced and demonstrated a significantly lower data requirement.84

The works by Thompson and Kramer [18] underscored Psichogios and Ungar’s findings and pro-85

posed ANN-hybrid models for sparse and noisy data to maximize the value of domain specific86

knowledge. These early successes lead to new grey-box modeling [6, 19, 20] in diverse applica-87

tions such as design of reactors [21, 22, 23, 24] and distillation columns [25], polymerization [26],88

crystallization [27], hydraulic fracturing [28], fluid catalytic cracking [29], model predictive con-89

trol [30], separations [5], smart manufacturing and digital twins [31], and many more.90

More recently, methodological advances to hybrid modeling leverage system derivatives and91

mechanistic parameters of ordinary differential equations with neural networks in the emerging92

paradigm of neural differential equations [32]. Motivated by the fouling of an electrodialysis93

membrane, De Jaegher et al. [33] pioneered fundamental contributions to this line of inquiry by94

developing neural differential equations to accurately predict decreasing fluxes across the mem-95

brane despite simplifying assumptions in the underlying force balance equations. Across these96

studies, ANN-based ML dominates the choice for the surrogate model and fails to consider epis-97

temic uncertainty. Investigations into explicitly accounting for model uncertainty with ANNs98

involve the development of several surrogate models for strategies such as bootstrapping, lead-99

ing to an increased computational workload [34] impractical for online applications and iterative100
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model development.101

Reaction networks are often too complex to formulate as mathematical models to embed in102

optimization problems or are (partially) unknown, making reactive systems well-suited for hy-103

brid models [35]. Under sequential hybrid model architectures, parameters of kinetic models can104

be estimated with black-box models, which are used to generate outputs from a the glass-box105

component that describes the known physics. Alternatively, the black-box model can provide a106

data-driven correction term to the white-box model. Regarding the former approach, Saraceno et107

al. [36] developed a coupled neural network with a logic condition model to predict the kinetic108

parameters for the fermentation production of ethanol. Later, Azarpour et al. [37, 38] applied a109

neural network model to calculate the reaction rates for a terephthalic acid three-phase reaction110

system to solve mass balance equations. Recently, Bui et al. [39] used partial least squares and111

Kalman filtering to estimate and update the activity of a catalyst bed to predict the catalyst life-112

time of industrial-scale PFRs with real plant data.113

2.2 UQ and Kennedy-O’Hagan in chemical engineering114

In their 2001 seminal work, Kennedy and O’Hagan [8] proposed a statistical framework for the115

calibration of models under both epistemic (model-form) and aleatoric uncertainty. They were116

the first to use Gaussian process (GP) discrepancy functions to quantify the systematic bias be-117

tween the model predictions and truth. In contrast, classical (non)linear regression theory often118

assumes that the model structure is correct and the errors are independent and identically dis-119

tributed (i.i.d.) normal [40]. When these assumptions fail, estimates of the model parameters are120

biased and unreliable. Moreover, input-dependent errors can lead to predictions that have large121

random deviations from the observations. Kennedy and O’Hagan [8] overcame this limitation122

by quantifying model bias using correlations between control variables via the GP discrepancy123
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function.124

Over the past two decades, Kennedy and O’Hagan (KOH) models for uncertainty quantifica-125

tion (UQ) have been successful in various applications such as water quality management [41, 42],126

thermal engineering [43, 44], fluid dynamics [45], energy storage [46], structural dynamics [47],127

surrogate-based optimization [48], and carbon capture [49]. Kalyanaraman et al. [50] demon-128

strated how KOH models can be used to overcome model discrepancy and predict the break-129

through in a rapid thermal swing adsorption process for CO2 capture. However, the complexity130

of estimating multiple hyperparameters of the discrepancy function was noted as a computational131

barrier. Such barriers often impede iterative model development. Mebane et al. [51] used quan-132

tum chemical calculations and experimental data to identify parameter uncertainty and model133

discrepancy for CO2 adsorption with mesoporous silica-supported amines.134

Extensions to KOH models by Bhat et al. [52] include the development of dynamic discrepancy135

models based on BSS-ANOVA GPs [53]. This work enabled uncertainty propagation in multiscale136

systems but highlighted the computational complexity of the process and suggested the investiga-137

tion of adaptive techniques to economize on the Markov chain Monte Carlo (MCMC) calibration138

of the Bayesian models. Additional experiments using dynamic discrepancy models with BSS-139

ANOVA GPs were motivated by Li et al. [54], who propagated uncertainty from the bench to140

process scale for CO2 capture using reaction-diffusion kinetics on solid adsorbents in a bubbling141

fluidized-bed. Most recently, Ostace et al. [55] incorporated a discrepancy function with a Lang-142

muir adsorption model and used the Bayesian information criterion to guard against overfitting.143

Their stochastic Langmuir model demonstrated robust predictions over variability in operating144

conditions due to the inclusion of model-form and parameter uncertainty. These contributions145

demonstrate the potential to upscale uncertainty to large-scale systems, resulting in less conserva-146

tive designs and models suitable for optimization under uncertainty.147
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Outside the aforementioned contributions, UQ of reactive systems predominantly focuses on148

parameter uncertainty. Notably, Chaffart et al. [56] propagated parameter uncertainty in a cat-149

alytic reactor model to the concentration of the reactor products using power series expansion150

[56]. Similarly, Kiamev et al. [57] motivated the investigation of parameter uncertainty by study-151

ing chemical vapor deposition and catalytic flow reactors using polynomial chaos expansion and152

multilevel Monte Carlo. We advocate that consideration of parameter and epistemic uncertainty153

for calibration and prediction is critical in the data-limited regime of reactive systems. Moreover,154

decision-making frameworks for optimization under uncertainty that leverage the demonstrated155

benefits of KOH models with GP discrepancy functions are mainly absent.156

2.3 Decision-making under uncertainty157

Optimization under uncertainty is a cornerstone of process systems engineering, often utilizing158

stochastic programming, chance-constrained optimization, robust optimization, and constraint159

back-off approaches. In stochastic programming, uncertain parameters are modeled using proba-160

bility distributions and the objective optimizes an expected value across all the realizations of this161

uncertainty [58]. The parameter uncertainty in a stochastic program is approximated as scenar-162

ios, which are the discrete realizations of a probability distribution. Popular chemical engineering163

applications of stochastic programming include flowsheet optimization [59], supply chain man-164

agement [60], energy systems [61], control [62], and beyond [63]. Chance-constrained optimization165

seeks to optimize an objective ensuring that the constraints are satisfied within a specified proba-166

bility range, relying on probability distributions to capture the uncertainty in parameters [64]. This167

framework enables custom definition of risk levels, but can suffer in computational tractability [65,168

66]. Chance constrained optimization may be regarded as a generalization of robust optimiza-169

tion [67], which avoids the need for probability distributions by defining parameter uncertainty170
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using sets, thereby safeguarding against a worst case scenario in this set.171

Recent data-driven extensions of these techniques (see review by Ning and You [15]) bridge the172

gap between uncertainty modeling and decision making. For example, the emerging paradigm173

of distributionally robust optimization (DRO) safeguards against the worst-case in an ambiguous174

set of probability distributions inferred using statistics and big data analytics. DRO was used175

by Shang and You [68] in a process network planning and scheduling problem demonstrating176

less conservative solutions, potentially contributing to higher profits. Another extension is data-177

driven adaptive robust optimization, which integrates Bayesian ML in the form of a nonpara-178

metric Dirichlet process mixture model in an optimization problem to account for uncertainty by179

exploiting big data from process industries [69]. The final approach uses constraint back-offs in op-180

timization problems to prevent constraint violation under uncertainty [70]. At large, this method181

has the lowest computational burden for optimization under uncertainty [71] despite the use of182

iterative techniques for the calculation of back-off terms, defined using the second statistical mo-183

ment of the active constraints [72, 73]. Optimization with constraint back-offs have been demon-184

strated to robustify designs for fixed bed reactors [74], polymerization processes [75], enzyme185

catalyzed reactions [76], nonlinear model predictive control [77], and model based experimental186

campaigns [78]. Despite the unprecedented capabilities offered by the reviewed techniques, we187

identify two limitations, specifically optimization under epistemic (model-form) uncertainty and188

leveraging small or sparse data sets are not considered.189

Optimization with hybrid models is closely related to Bayesian optimization (BO) [79], a class190

of adaptive sampling algorithms often deployed for the sequential design of experiments and191

derivative-free optimization. Importantly, BO can model prior information about the uncertainty192

of the process, making it a natural optimization algorithm for hybrid models. Recently, González193

and Zavala [80] developed a level-set partitioning algorithm for parallel sequential design of ex-194

9

http://dowlinglab.nd.edu


Bayesian Hybrid Models http://dowlinglab.nd.edu

periments, in which the algorithm proposes multiple experiments in a single iteration. Using195

a reactor case study, the authors empirically demonstrated that their approach reduced search196

time and increased the probability of identifying a globally optimal solution while overcoming197

a known challenge of repeated experiments. Similarly, Cosenza et al. [81] experimentally vali-198

dated a multi-source BO algorithm for cell culture media optimization. Their algorithm reduced199

experimental effort by 38% compared to a traditional DOE. Finally, Folch et al. [82] developed and200

empirically validated a novel BO algorithm for multi-source and asynchronous experiments, in201

which the algorithm selects new experiments before revealing prior results.202

Regarding theoretical contributions to BO algorithms of hybrid models, Paulson and Lu [83]203

have made several to their novel COnstrained Bayesian optimizAtion of computationaLly expen-204

sive grey-box models exploiting derivaTive information (COBALT) algorithm. Moreover, COBALT205

is a one-step Bayes optimal algorithm that aims to tackle efficient constrained global optimization206

of multivariate composite functions (hybrid models). Using a bioreactor calibration case study,207

the authors initially demonstrated the promising performance of the algorithm. In the absence of208

constraints and the limit of infinite samples, COBALTs convergence is guaranteed. At the time,209

however, theoretical performance was not established on the bounds of the convergence rate for fi-210

nite cases. Toward these ends, the authors recently proposed a novel Constrained Upper Quartile211

Bound (CUQB) algorithm [84], which provides improved theoretical guarantees on convergence212

rate bounds to the optimal global solution under mild regularity assumptions. Closely related,213

model-based design of experiments (MBDoE) provides a framework to sequentially optimize data214

collection to minimize uncertainty or discern between candidate models or both [85]. However,215

numerous research opportunities exist to integrate statistical theory supporting MBDoE with in-216

formation theory and algorithms for BO. These advances would provide a theoretical foundation217

for optimization under uncertainty with hybrid models. In this context, this paper explores the218
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impact of hybrid model architectures on decision-making.219

3 Methods: Bayesian hybrid modeling framework220

Regarding notation, we use lowercase bold font to indicate vectors and uppercase bold font to221

indicate matrices. We use the notation f(·) to denote a function f with one input variable. We use222

hats to denote point estimates, e.g., ŷ is a point estimate of the random variable y.223

3.1 Kennedy-O’Hagan models for uncertainty quantification224

In their seminal work, statisticians Kennedy and O’Hagan proposed a Bayesian framework to cal-225

ibrate computationally expensive computer models from measured outputs of a physical system.226

The first statistical model in this framework is a true process model:227

yi = ⇣(xi) + "i, "1, . . . , "n
i.i.d.
⇠ N (0,⌃"). (3.1)

Here, yi = [yi,1, . . . , yi,d]| 2 Rd is a vector of observations from an experiment i 2 N : i  n.228

The observations are assumed to be generated by an unknown process ⇣(·) which is a function of229

the experiment’s controlled (i.e., independent) variables xi = [xi,1, . . . , xi,m]| 2 Rm, which we call230

controls. For all experiments, the outputs of the unknown process are corrupted by independent231

and identically distributed (i.i.d.) Gaussian measurement error ✏ with an unknown variance-232

covariance matrix ⌃".233

Though we can formulate high-fidelity representations of the true process ⇣(·) from expert234

scientific knowledge, building a model that captures every detail of a real-world system is im-235

possible. Moreover, there will always be uncertainty between a mathematical model and the true236
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process. Toward these ends, KOH propose an additive statistical model to explain the true process:237

⇣(xi) = ⌘(xi,✓) + a �(xi;�). (3.2)

The first component in Eq. (3.2) is a mechanistic model ⌘ : Rm
⇥ ⇥ ! Rd that represents the238

modeler’s working knowledge of the underlying physics of the true process. The mechanistic239

model has two inputs: known control variables xi and unknown physically meaningful parame-240

ters ✓ 2 ⇥ ✓ Rp. The second component of the HM is a data-driven discrepancy term a �(·) that241

accounts for bias between the true process and the mechanistic model as a function of the con-242

trol variables and unknown hyperparameters �. Hence, Eq. (3.2) can be thought of as a “hybrid243

model” because it combines physical intuition with hidden trends from data through ⌘(·, ·) and244

a �(·), respectively.245

Though vector-valued representations of the discrepancy term exist for KOH models in liter-246

ature [86], we limit this introduction to scalar discrepancies that propagate in a known way to a247

multivariate system. Moreover, we use a known projection coefficient a 2 Rd to project the dis-248

crepancy of the true process to the system outputs. The discrepancy is modeled using a Gaussian249

Process (GP) in the original KOH framework. KOH employed a GP for the same reason normal250

distributions are often used in statistics. That is, GP’s are convenient, flexible, and often realis-251

tic. That being said, joint normality should be a feature of prior beliefs about �(·) for this to be252

a reasonable modeling choice. If this condition is not met, other nonparametric methods can be253

used.254

Combining Eq. (3.1) with Eq. (3.2) yields what we shall refer to as the (Bayesian) hybrid model255

((B)HM) from here on out:256

yi = ⌘(xi,✓) + a �(xi;�) + "i. (3.3)
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In this work, we deploy the KOH HM for cases where the mechanistic model is computationally257

inexpensive and misspecified in functional form. Furthermore, we use the KOH framework to258

quantify bias between an inadequate first-principles model and experimental data.259

3.2 Gaussian process regression260

A Gaussian process (GP) is a time-continuous stochastic process (i.e., a set of random variables261

indexed by a continuous variable) for which every finite subset of random variables follows a262

multivariate normal distribution. The distribution of a GP is the joint distribution of all the its263

random variables, and as such, a GP can be thought of as an infinite-dimensional generalization264

of a multivariate normal distribution. Furthermore, a GP is a distribution over functions with a265

continuous domain [87, 88, 89, 90, 91]. We use the notation f(·) ⇠ GP(m(·), c(·, ·)) to denote that266

f(·) follows a GP distribution with mean and covariance functions267

m(x) := E[f(x)] (3.4)

and268

c(x,x0) := Cov[f(x), f(x0)], (3.5)

respectively. To model m(·) and c(·, ·), we assume that the process is stationary. That is, we assume269

that the process does not change when shifted in time. We impose this belief in the mean function270

by setting m(·) = 0. We choose a zero mean function for ease of notation, though any function271

that satisfies the property m(x) = m(x + dx) may be used. Furthermore, the covariance c(·, ·) is272

modeled as273

c(x,x0) = �2fk(x,x
0) = �2fk(x� x0) (3.6)
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where �2f is an unknown common variance of the process and k(·, ·) is a chosen correlation func-274

tion that satisfies k(0) = 1.275

For n evaluations of f(·), this GP is equivalent to the multivariate normal distribution:276

[f(x1), . . . , f(xn)] ⇠ N (0,K), (3.7)

K = (Kij)
n
i,j=1, Kij = �2fk(xi,xj ;�), 8(i, j) 2 {1, . . . , n}2. (3.8)

When the process is corrupted by Gaussian noise, i.e.,:277

g(xi) = f(xi) + "i, "1, . . . , "n
i.i.d.
⇠ N (0,�2"), (3.9)

the additive property of Gaussian distributions allows us to write:278

[g(x1), . . . , g(xn)] ⇠ N (0,K+⌃"), (3.10)

⌃" = (⌃"ij )
n
i,j=1, ⌃"ij = �2"�ij , 8(i, j) 2 {1, . . . , n}2, (3.11)

where �ij is the Kronecker delta function.279

3.2.1 Kernel functions280

We consider two correlation functions k(·, ·) to define the GP. The first is the Radial basis function281

(RBF) also known as the Exponentiated Quadratic or Squared Exponential kernel [92]:282

k(x,x0) = exp

"
�
1

2

✓
||x� x0

||

`

◆2
#
. (3.12)
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Here, ` is a length scale parameter that determines how far apart x and x0 need to be before283

f(x) can be very different from f(x0). Moreover, ` controls the smoothness of the process. A284

generalization of Eq. (3.12) would be to write:285

k(x,x0) = exp
⇥
�(x� x0)|⇤(x� x0)

⇤
, (3.13)

where ⇤ is an unknown symmetric positive definite matrix with the form ⇤ = diag(`1, . . . , `m).286

The second kernel we consider is the Matern 3/2 kernel:287

k(x,x0) =

 
1 +

p
3||x� x||2

`

!
exp

"
�

p
3||x� x||2

`

#
. (3.14)

This correlation function is defined using a positive parameter ⌫ = 3/2 [93]. As ⌫ ! 1, the288

Matern kernel is equivalent to the RBF kernel.289

3.2.2 Likelihood model290

For the training inputs X = [x|
1, . . . ,x

|
n], we write the corresponding observed values as g =291

[g(x1), . . . , g(xn)]. For predictions outside the training data X⇤ = [x⇤|
1 , . . . ,x⇤|

q ], let f⇤ = [f(x⇤
1), . . . , f(x

⇤
q)]292

denote the corresponding function evaluations. The joint distribution of the training data and the293

predictions is:294 0

BB@
g

f⇤

1

CCA ⇠ N

0

BB@ 0 ,

0

BB@
K+⌃" K|X,X⇤

K|X⇤,X K|X⇤,X⇤

1

CCA

1

CCA . (3.15)

Conditioning on the observed values g, the predictive distribution is:295

f⇤|X,g,X⇤
⇠ N (µ⇤

f ,K
⇤
f ). (3.16)
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where µ⇤
f and K⇤

f are the predictive mean and variance, given by296

µ⇤
f = K|X⇤,X(K+⌃")

�1g (3.17)

and297

K⇤
f = K|X⇤,X⇤ �K|X⇤,X(K+⌃")

�1K|X,X⇤ , (3.18)

respectively.298

3.3 Model calibration299

For the HM (Eq. (3.3)) to be fully defined, we need to estimate all unknown model parameters300

! = [✓|,�|,�"], also referred to as model calibration. For ease of notation, we use a scalar case of301

the hybrid model.302

3.3.1 Bayesian approach303

We use Bayes’ rule to perform Bayesian calibration of the HM:304

p(!|D)| {z }
posterior

=

likelihoodz }| {
p(D|!)

priorz}|{
p(!)Z

p(D|!)p(!)d!
| {z }

evidence

. (3.19)

In Eq. (3.19), we use D = {xi, yi}ni=1 to denote the training data. In the Bayesian approach, the305

unknown HM parameters ! are treated as random variables. Furthermore, prior information306

about ! is incorporated through a probability distribution p(!) called the prior. The training data307

D are used to construct likelihood model p(!|D), which is always independent of the prior. The308

evidence integral (i.e., marginal likelihood) quantifies the agreement between the data and the309
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prior. Use of these terms as governed by Eq. (3.19) yields the posterior distribution p(!|D) or the310

updated probability of observing the parameters after considering the data.311

3.3.2 Simultaneously calibrated Bayesian hybrid model312

The simultaneously calibrated BHM (hereafter referred to as the simultaneous model) is trained by313

jointly inferring the unknown physically-meaningful parameters ✓ and the model discrepancy314

hyperparameters �. The Bayesian hierarchical model is:315

y|�(x), " ⇠ GP(⌘(x,✓), c(x,x0;�) + �2"�x,x0), (3.20a)

�(x)|� ⇠ GP(0, c(x,x0;�)), "|�2" ⇠ N (0,�2"), (3.20b)

✓ ⇠ p✓(·), � ⇠ p�(·), �2" ⇠ p�2
"
(·), (3.20c)

where pz(·) denotes the probability distribution for some random variable z.316

3.3.3 Incrementally calibrated Bayesian hybrid model317

Kahrs and Marquardt [94] proposed the incremental identification of hybrid models by decompos-318

ing a penalized least squares parameter estimation approach into a series of more straightforward319

subproblems. Similarly, Wong, Storlie, and Lee [95] developed a frequentist approach to computer320

model calibration that theoretically justifies dividing the model calibration problem into two steps.321

Building upon these methods, we define the incrementally calibrated Bayesian hybrid model322

(hereafter referred to as the incremental model). First, the glass-box model is fit to the experimental323

observations ignoring the discrepancy. That is, we (incorrectly) assume the model explains the324

observations:325

y = ⌘(x,✓) + "⌘ (3.21)
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where "⌘ is a measurement error term. The hierarchical model for Eq. (3.21) is:326

y|✓, "⌘ ⇠ N (⌘(x,✓),�2"⌘), (3.22a)

"⌘|�
2
"⌘ ⇠ N (0,�2"⌘), (3.22b)

✓ ⇠ p✓(·), �2"⌘ ⇠ p�2
"⌘
(·). (3.22c)

In Eq. (3.22b), we impose a mean-zero Gaussian structure for the error, which we discuss the327

implications of below.328

In step two, the GP is fit to the residuals between experimental observations and the predic-329

tions of the glass-box model r(x) = y � ⌘(x,✓|D) where ✓|D is a draw from the posterior p(✓|D).330

The model for the residuals is:331

r(x) = �(x) + "� (3.23)

where "� is another measurement error term. The hierarchical model for step two is:332

r(x)|�(x), "� ⇠ GP(0, c(x,x0;�) + �2"��x,x0), (3.24a)

�(x)|� ⇠ GP(0, c(x,x0;�)), "�|�
2
"� ⇠ N (0,�2"�), (3.24b)

� ⇠ p�(·), �2"� ⇠ p�2
"�
(·). (3.24c)

Again, we impose a mean-zero Gaussian error structure for "� which is technically misspecified.333

This is the critical difference between the incremental model proposed in Eq. (3.21)-(3.24) and the334

work of Wong, Storlie, and Lee. Furthermore, Wong, Storlie, and Lee proposed a more theoret-335

ically sound frequentist approach in which nonparametric bootstrap is used to build confidence336

intervals for ✓̂ and �̂(·) thereby circumventing the need to assume an error structure. The frame-337

work proposed here does not use this method, as bootrapping is computationally unrealistic for338
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iterative model development and online optimization. These more rigorous approaches should339

be considered for applications with significant model discrepancies.340

3.3.4 Frequentist approach to incremental calibration341

Without prior information, frequentist inference is a computationally less demanding alternative342

to MCMC. In step one, Bayesian calibration can be replaced with (non)linear least squares regres-343

sion to obtain estimates of the physically meaningful parameters ✓:344

✓̂ = argmin
✓2⇥

1

n
M(✓), M(✓) =

nX

i=1

(yi � ⌘(xi,✓))
2, (3.25)

�̂2"⌘ =

✓
1

n� p

◆
M(✓̂). (3.26)

In step two, the remaining (hyper)parameters  = [�2"� ,�
|] can be estimated with maximum345

likelihood estimation (MLE):346

 ̂MLE = argmax
 2 

L( ), L( ) = log p(r|X) (3.27)

where log p(r|X) is the log marginal likelihood:347

log p(r|X) = �
1

2
r|(K+ �2"�I)

�1r�
1

2
log |K+ �2"�I|�

n

2
log 2⇡. (3.28)

Here, r is an n-dimensional vector of the residuals [yi � ⌘(xi, ✓̂)]ni=1, I is the identity matrix, and348

| · | is the determinant.349

3.3.5 Posterior approximation350

Because the evidence integral is high-dimensional, Eq. (3.19) is most often analytically intractable,351

and the target posterior must be sampled from an empirical posterior constructed with MCMC.352
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We compare three approximations for approximating the HM posterior below. All Bayesian model353

calibration was performed using the open source Python package PyMC3 [96]. Specifically, Hamil-354

tonian Monte Carlo implemented in the No-U-Turn Sampler NUTS) [97] was used via the PyMC3.sample()355

method to estimate posteriors using 4 chains of 1000 samples each.356

M0: Full estimation uses the traceplots of the model parameters ! obtained from MCMC357

to generate a sample set S of the empirical distribution. For the GP, each sample s is propa-358

gated through the conditional mean and variance formulas, which necessitates recalculating the359

prediction mean and variance across |S| = O(103) samples of parameters. This computation in360

PyMC3 [96] can take about 10 s per sample or about 3 hours to fully evaluate the model prediction361

and uncertainty with 1000 samples. This method is included for completeness but is not discussed362

further due to its computationally intensive nature. Moreover, three hours is too long for many363

online applications and extremely inconvenient for iterative model development.364

M1: Composite estimation uses the maximum-a-posteriori (MAP) (i.e., posterior mode) esti-365

mate of the GP hyperparameters:366

�̂MAP / argmax
�2�

p(�|�) p(�) (3.29)

and the samples from the sample set S of the remaining parameters.367

M2: Composite estimation neglecting GP uncertainty only uses samples of the standard de-368

viation of the random noise model to calculate the hybrid model uncertainty. This method has369

computational complexity similar to that of M1 and helps study the performance of a hybrid370

model in which the discrepancy function is a conventional machine-learning model that does not371

provide uncertainty estimates. This is sometimes done under the name of Kriging interpolation372

where the statistical interpretation of the GP kernel matrix is ignored [98].373
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3.4 Benchmark models374

We consider two references models to benchmark the HM.375

The simple physics model represents a set of equations that do not completely capture all the376

phenomena governing a process due to lack of knowledge, coarse-graining for tractability, etc.377

These simplifications result in a systematic bias between experimental observations and model378

predictions, leading to epistemic uncertainty in the system. We define the simple physics model379

as:380

y = ⌘(x,✓) + ", " ⇠ N (0,�2"). (3.30)

The GP-only model is a purely data-driven surrogate model; it is calibrated using experimental381

observations contained in a training set and does not incorporate scientific knowledge or physi-382

cal intuition (unless a specialized kernel is employed). In our framework, the GP-only model is383

defined as:384

y = �(x) + ", " ⇠ N (0,�2"). (3.31)

3.5 Optimization under uncertainty with Bayesian hybrid models385

Ultimately, we wish to use the Bayesian hybrid models for decision-making. Let a general utility386

function u(y) encode the consequences of a decision x. For example, in the first case study, we387

consider a ballistic trajectory, and u(·) is the proximity to the target. In the second case study, u(·)388

is the value of a reactor effluent. In the context of Bayesian optimization, u(·) is an acquisition389

function such as expected improvement, probability of improvement, or the lower confidence390

bound.391

A decision-maker seeks to maximize the expected value of the utility function over the random392

variables !:393
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x⇤ = argmax
x

E![u(y(x))], (3.32a)

s.t. y(x) = ⌘(x,✓|D) + �(x;�|D) + "|�2" . (3.32b)

Eq. (3.32) is a single-stage stochastic program if there is no recourse.394

We now discuss approximations for the expected value. We start by drawing samples s 2 S395

from trace of the posterior.396

E![u(✓, �, ")] =
Z

⇥

Z 1

�1

Z 1

�1
u(✓, �, ") p(✓, �, ") d� d" d✓ (3.33a)

=

Z

⇥

Z 1

�1

Z 1

�1
u(✓, �, ") p(�, "|✓) p(✓) d� d" d✓ (3.33b)

⇡
1

|S|

X

s2S

Z 1

�1

Z 1

�1
u(✓s, �, ") p(�, "|✓s) d� d" (3.33c)

where p(�, "|✓s) is the joint conditional distribution for � and ✏ given a sample s of the marginal397

posterior of ✓.398

Next, we exploit the fact that the kernels of the GP model �(·) and observation error " are addi-399

tive to define the random variable f := � + " which follows a Gaussian distribution with first and400

second moments µf and �2f , respectively. This allows us to approximate the remaining integral401

with a 7-degree Gauss-Hermite quadrature [99, 100], implemented via NumPy polynomial.hermite.402

hermgauss():403
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E![u(✓, �, ")] ⇡
1

|S|

X

s2S

Z 1

�1
u(✓s, f) p(f |✓s) df (3.34a)

⇡
1

�f
p
2⇡|S|

X

s2S

Z 1

�1
u(✓s, f) exp

2

4�
 
f � µf

2�2f

!2
3

5 df. (3.34b)

As Eq. (3.34b) does not exactly correspond to a Hermite polynomial, we use a change of variables:404

⇠ :=
f � µf
p
2�2f

() f = µf +
p
2�f⇠ (3.35)

and integration by substitution to obtain:405

E![u(✓, f)] ⇡
1

p
⇡|S|

X

s2S

Z 1

�1
u(✓s, µf +

p
2�f⇠) exp(�⇠

2) d⇠ (3.36a)

⇡
1

p
⇡|S|

X

s2S

X

j2J
wju(✓s, µf +

p
2�f⇠j), (3.36b)

where wj and ⇠j are the weights and nodes contained in the set of quadrature points J and 1/
p
⇡406

normalizes the Gauss-Hermite quadrature rule.407

Using these approximations, we assemble the following optimization problem:408

argmax
x

1

|S|
p
⇡

X

s2S

X

j2J
wj us,j , (3.37a)

s.t. us,j = u(ys,j), 8s 2 S, j 2 J (3.37b)

ys,j = ⌘(x,✓s) +m(x|�) +
q
2(�2� |�s + �2" |�s) ⇠j , 8s 2 S, j 2 J. (3.37c)

One disadvantage of optimization problem (Eq. (3.37)) is that the conditional GP mean and vari-409
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ance must be evaluated for all samples s from the posterior trace. This is computationally expen-410

sive and can be avoided by using a point estimate for � such as the MAP.411

Fig. 1 summarizes the alternative modeling and computational strategies in the proposed mod-412

eling framework.413
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Figure 1: Proposed framework for hybrid model calibration and optimization. This framework
supports both simultaneous and incremental hybrid model architectures as well as frequentist or
Bayesian statistical paradigms.
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4 Case study: Ballistics with Bayesian hybrid models414

We compare several Bayesian hybrid model architectures and calibration methods in this first case415

study using a ballistics decision-making problem.416

4.1 Problem statement, models, and data417

Consider a projectile with constant and known mass m (kg) launched from the origin (y = 0,418

z = 0) using a cannon. The gunner manipulates two control variables: the firing angle  (�) and419

the initial velocity v0 (m s�1), to hit a target at y† = 100 m. However, the value of acceleration420

due to gravity g (m s�2) and the full physics of projectile motion are unknown. Using information421

observed in prior experiments, the gunner must recommend a firing angle  ⇤ and velocity v⇤0 to422

hit the target despite parameter and epistemic uncertainty.423

4.1.1 Ground truth model and training data424

A complete physical model was used to simulate ground truth experiments. Assuming the pro-425

jectile experiences drag due to air resistance, its flight may be described using four coupled differ-426

ential equations along with initial conditions:427

m
dvy
dt

= �CDv
2
y ,

dy

dt
= vy, vy(0) = v0 cos( ), y(0) = 0 (4.38)

m
dvz
dt

= �m g � CDvz|vz|,
dz

dt
= vz, vz(0) = v0, z(0) = 0 (4.39)

where t (s) is time, CD (kg m�1) is the coefficient of drag and vy and vz (m s�1) are projectile428

velocity’s horizontal and vertical components, respectively. We solve this initial value problem429

by splitting the flight into two time domains: upward motion (t 2 [0, tp]) and downward motion430

(t 2 (tp, tf ]). We refer the reader to our prior work for a full description of the final solution for the431
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horizontal displacement of the projectile [101]:432

⇣(xi) =
m

CD
ln (CD v0 cos( ) tf +m) (4.40)

where xi = [v0, ]|. The training data shown in Table 1 and Fig. 2 were generated via true process433

⇣(·) using m = 1 kg, CD = 0.01 kg m�1, and g = 9.8 m s�2 and then corrupted with i.i.d. mean zero434

Gaussian measurement error with standard deviation �" = 5.435

Table 1: Training data for the pro-
jectile motion experiments.

Legend v0  yi
(m s�1) (�) (m)

a 71 85 43.24
b 60 25.7 118.18
c 75 60 143.21
d 70 30 159.79
e 80 36 174.14
f 90 45 181.67

Figure 2: True trajectories simulated using the ground truth model. (A) Trajectories and impact
locations calculated using ground truth simulations (Eq. (4.40)). Green ⇥’s are the six training data
labeled a-f . (B) The firing velocity and angle are plotted on the vertical and horizontal axes, re-
spectively. The contours of the heat map indicate the horizontal distance traveled by the projectile
fired from location y = 0.

Fig. 2 shows the importance of air resistance when simulating the ballistic trajectory. Specifi-436
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cally, Fig. 2 (B) shows that at a constant velocity, firing the cannon using a shallow angle ( < 45�)437

instead of its steeper complement will result in farther horizontal displacement of the projectile.438

This case study aims to demonstrate how Bayesian hybrid models correct the bias of neglecting439

air resistance in the glass-box model.440

4.1.2 Bayesian projectile motion models441

We consider four model architectures for decision-making.442

(1) The simple physics model predicts an ideal parabolic trajectory by neglecting air-resistance:443

⌘(x, ✓) =
2v20
g

sin( ) cos( ). (4.41)

Thus, the simple physics model is linear in parameters when ✓ = g�1. The hierarchical represen-444

tation of the simple physics model is:445

y|✓, " ⇠ N (⌘(x, ✓),�2✏ ), (4.42a)

"|�2" ⇠ N (0,�2"), (4.42b)

✓ ⇠ U(10�3, 1), �" ⇠ U(1, 9). (4.42c)

For all models, we use uniform priors to represent weak prior information about the behavior of446

the parameters in some known range of the values.447

(2) The data-driven GP-only model does not explicitly use physical information to predict the448

distance traveled. The hierarhical model is:449 28
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y|�(x), " ⇠ GP(0,�2�k(x,x
0; `) + �2"�x,x0), (4.43a)

�(x)|�2� , ` ⇠ GP(0,�2�k(x,x
0; `)), "|�2" ⇠ N (0,�2"), (4.43b)

�� ⇠ U(1, 15), �" ⇠ Gamma(25, 5), (4.43c)

` ⇠ U(1, 15). (4.43d)

Eq. (4.43a) says that at any point x, y(x) is Gaussian with a mean of 0 and variance �2�k(x,x
0; `) +450

�2"�x,x0 . In Eq. (4.43b) we set the mean of �(·) to 0 because we do not have a prior expectation451

that the observations are more likely to be positive than they are to be negative. The variance �2�452

expresses a prior belief that �(·) is not likely to be outside the range ±2��. The correlation k(·, ·) is453

governed by the Matern 3/2 kernel (Eq. (3.14)) with a single unknown length scale parameter `.454

The wide range of the length scale ` reflects weak prior information about the smoothness of the455

function. The Gamma prior enforces that the standard deviation of the noise is strictly positive.456

In PyMC, the default Gamma distribution uses the rate-shape parameterization (i.e., E[�"] = 5,457

V[�"] = 1). Empirical evaluations of predictive performance demonstrated that the Matern 3/2458

kernel was superior to the RBF kernel. Thus, the GP-only model uses the Matern 3/2 kernel.459

(3) The simultaneous hybrid model augments the simple physics model ⌘(·, ·) with a GP. The460

hierarchical model is:461

y|✓, " ⇠ GP(⌘(x, ✓),�2�k(x,x
0; `) + �2"�x,x0), (4.44a)

"|�2" ⇠ N (0,�2"), (4.44b)

✓ ⇠ Gamma(0.56, 5.6), �� ⇠ U(1, 15), �" ⇠ Gamma(25, 5), (4.44c)

` ⇠ U(1, 15). (4.44d)
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Here, k(·, ·) is the RBF kernel (Eq. (3.12)) with a single unknown length scale parameter `. We used462

the RBF kernel because the simple physics model is smooth.463

(4) The incremental hybrid model borrows the simple physics components of the simultane-464

ous hybrid model in step one:465

y|✓, "⌘ ⇠ N (⌘(x, ✓), ⌧�1
"⌘ ), (4.45a)

"⌘|⌧
�1
"⌘ ⇠ N (0, ⌧�1

"⌘ ), (4.45b)

✓ ⇠ Gamma(0.56, 5.6), ⌧�1
"⌘ ⇠ Gamma(5, 5), (4.45c)

where ⌧"⌘ = 1/�2"⌘ is the precision. In step two, the discrepancy function is fit to the residuals:466

y � ⌘(x, ✓̂)|�(x), "� ⇠ GP(0,�2�k(x,x
0; `) + �2"��x,x0), (4.46a)

�(x)|` ⇠ GP(0,�2�k(x,x
0; `)), "�|�

2
"� ⇠ N (0,�2"�), (4.46b)

�� ⇠ U(1, 15), �"� ⇠ Gamma(25, 5), (4.46c)

l ⇠ U(1, 15). (4.46d)

To compare the incremental model with the simultaneous performance, the incremental model467

also used an RBF kernel.468

4.1.3 Optimization under uncertainty for decision-making469

We consider optimization problem (Eq. (3.37)) with the goal of hitting a target located at y† = 100470

m:471 30
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⌘s =
2 v20
gs

sin( ) cos( ), 8s 2 S (4.47a)

�j = m(x|�̂MAP) + ⇠j

q
2�2� |�̂MAP, 8j 2 J (4.47b)

ys,j = ⌘s + �j + "j , �ys,j = ys,j � y†, us,j = 1�
1

y†
min(|�ys,j |, y

†), 8s 2 S, j 2 J. (4.47c)

The utility function u(·) scales linearly from unity for a direct hit to zero for a miss of y† m or more.472

In this work, we solved Eqs. (3.37) and (4.47) by enumerating solutions v0 2 [40, 100] (m s�1) and473

 2 [1, 90] (�) on a mesh grid 5490 points with a step size of 1 in each dimension to facilitate visual-474

ization. For larger problems, we recommend gradient-based computation optimization [102]. We475

highlight that the mechanistic model ⌘s is only indexed over posterior trace samples s 2 S, and476

the GP plus observation error is indexed over quadrature nodes j 2 J . Thus, the MAP approx-477

imation and Eq. (3.37) avoid the computational bottleneck of evaluating the GP prediction mean478

and variance for all trace samples.479

4.1.4 True model error480

To evaluate the proposed models, we define the true model error (true error) as:481

yerr(x) = y � y⇤(x) (4.48)

where y⇤ is the hybrid model prediction and y is the data.482

4.2 Results and discussion483

Using the ballistic case study, we now demonstrate the advantages of the hybrid models and484

discuss best practices.485
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4.2.1 Hybrid models outperform the glass-box and black-box models by overcoming system-486

atic bias utilizing limited data487

Fig. 3 compares the performance of the Bayesian hybrid, simple physics, and GP-only models for488

decision-making. The left column, Fig. 3 (A-E), are the results from the simple physics model; the489

middle column, Fig. 3 (F-J), are the results using the GP-only model; and the right column, Fig. 3490

(K-O), are results of the simultaneous hybrid model. Row 1, Fig. 3 (A, F, K), plots the distance491

traveled as predicted by the model. Row 2, Fig. 3 (B, G, L), shows the uncertainty in predictions.492

Row 3, Fig. 3 (C, H, M), is the objective value of the single-stage stochastic program. The optimum493

decisions are marked with purple dots. Row 4, Fig. 3 (D, I, N), shows yerr and the model used in494

the framework Fig. 3 (A, F, K). Row 5, Fig. 3 (E, J, O), is the absolute value of the true error plotted495

in row 4, which is representative of the utility function for the ballistic experiments.496
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Figure 3: Results from the Bayesian decision-making framework. In each plot, the two control
variables, firing velocity v0 (m s�1) and angle  (�), are plotted on the vertical and horizontal
axes, respectively. The dashed blue contour shows true experimental conditions needed to satisfy
the objective of hitting the target and corresponds to the y† = 100 m contour in Fig. 2. Green
⇥’s are the training data, and the purple dot is the optimum decision. The left column (A-E)
shows the simple physics model, the middle column (F-J) shows the GP-only model and the right
column (K-O) shows the hybrid model. Row 1 (A, F, K) shows the distance traveled predictions
of the model. The red contour highlights decisions corresponding to the prediction y = 100 m.
Row 2 (B, G, L) shows the uncertainties in the model prediction. Row 3 (C, H, M) displays the
values of the optimization objective. Row 4 (D, I, N) shows the error between the ground truth
and the model prediction. Row 5 (E, J, O) plots the absolute errors between the truth and model
predictions.
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The simple physics model misses the target with the highest absolute error of 14.2±9.3 m by497

recommending an experiment at  ⇤=72� and v⇤0=78 m s�1 as shown by the purple dot in Fig. 3498

(A-E). As highlighted in Fig. 3 (A), the simple model predictions are symmetric around  = 45�,499

whereas the ground truth model (dashed blue line) which includes air resistance is not. Fig. 3 (B)500

shows the prediction uncertainty for the simple physics model increases with v0. However, these501

uncertainties are much smaller than the absolute error shown in Fig. 3 (E) because the simple502

physics model neglects model-form (epistemic) uncertainty.503

Decision-making using the data-driven GP-only model misses the target by 0.9±10 m with an504

experiment proposed at  ⇤=75� and v⇤0=78 m s�1, shown by the purple dot in Fig. 3 (F-J). The505

order of magnitude improvement in absolute error over the simple physics model is because this506

surrogate model interpolates the optimum experiment between observations in the training set at507

[60�, 75 m s�1 ] and [85�, 71 m s�1 ] (Fig. 3 (J)). However, the exclusion of physical information in508

the GP-only framework leads to the possibility of several physically impractical predictions. For509

example, at  = 45�, increasing the velocity above 90 m s�1 (topmost green ⇥ in Fig. 3 (F)) leads510

to a decrease in the horizontal displacement of the projectile which is contrary to physical intu-511

ition irrespective of the consideration of air-resistance effects. Additionally, the GP cannot learn512

the sensitivity of impact location to firing angle  as noted by the mismatch between the elliptical513

and U-shaped contours of the GP-only model predictions and the truth, respectively. In general,514

due to their reliance on interpolation, pure ML models often perform poorly for prediction and515

decision-making using small datasets or weakly informative priors [103, 104, 105, 106, 107]. Exper-516

imental observations are often sparse or expensive for many (chemical) engineering applications,517

and informative priors are challenging to specify. These limitations motivate hybrid models.518

The simultaneous hybrid model is superior with the least absolute prediction error of 0.5±7.9519

m for an experiment recommended at  ⇤=13� and v⇤0=64 m s�1 shown by the purple dot in Fig. 3520

34

http://dowlinglab.nd.edu


Bayesian Hybrid Models http://dowlinglab.nd.edu

(K-O). The hybrid model’s glass-box (simple physics) component encodes physics-based informa-521

tion, e.g., the form of the ideal trajectory of the projectile. The black-box (GP) component leverages522

observations to learn the discrepancy between the simple glass-box model and the real process.523

The horseshoe-shaped contours in Fig. 3 (K) highlight the hybrid model predictions are a linear524

combination of the U-shaped simple physics model prediction and elliptical GP-only model pre-525

diction. Moreover, the simultaneous hybrid model’s predictions, shown by the red contour in526

Fig. 3 (K), overlap the dashed blue truth contour at several points, in contrast to Fig. 3 (A, F). Fig. 3527

(L) shows the hybrid model’s prediction uncertainty also combines the shapes of the glass-box528

and black-box models, Fig. 3 (B, G). In Fig. 3 (L), there are two regions with prediction uncertain-529

ties less than 8 m, which are near training data. As a consequence of these improved predictions,530

Fig. 3 (M) shows that two segments of the truth contour (dashed blue) pass through regions with531

objective values above 0.9 or higher (recall that 1 is a direct hit, i.e., yerr = 0). Fig. 3 (N, O) shows532

the true error and absolute true error contours both incorporate visual features from similar con-533

tours for the glass-box Fig. 3 (D, E) and black-box Fig. 3 (I, J) models. Thus, in summary, Fig. 3534

illustrates how hybrid models combine the advantages of both glass-box and black-box models to535

enable more accurate predictions with limited training data.536

4.2.2 Explicitly accounting for epistemic uncertainty leads to better decision-making.537

Next, we compare two instances of the hybrid model: M1, which is the standard model, and M2,538

ignores the GP uncertainty (i.e., treats it as a Kriging model). Fig. 4 compares the top 1% decisions539

calculated with M1 and M2. Fig. 4 (A, B) are parity plots that compare the absolute values of the540

true error |yerr| and the model prediction error |y† � y⇤| on the horizontal and vertical axes respec-541

tively. As expected, the means and standard deviations of absolute prediction errors are larger for542

M1. Moreover, Fig. 4 (B) shows a handful of optimal decisions for M2 have absolute true errors543
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above 15 m, which is not the case for M1 in Fig. 4 (A). Fig. 4 (C) sorts these top 1% decisions for544

M1 and M2 from lowest to higher absolute error to facilitate comparisons. For example, approxi-545

mately 78% of the top decisions for M1 have an absolute error of less than 6 m compared to only546

61% for M2. Ultimately, Fig. 4 shows that including the GP prediction uncertainty in M1 helps547

safeguard against poor decisions.548

Figure 4: Considering epistemic uncertainty improves decision-making with hybrid models. The
best 55 decisions (top 1% of objective values) are shown in this figure. Parity plots for the simul-
taneous hybrid model trained via (A) M1 (composite estimation) and (B) M2 (composite estima-
tion neglecting GP uncertainty). The horizontal and vertical axes represent the absolute values of
the true and model prediction errors, respectively. Each dot corresponds to a decision from the
Bayesian framework, and the error bars indicate the uncertainty corresponding to the decision.
(C) Compares M1 and M2 utilizing the cumulative density of the absolute true errors from the
parity plots (A, B) and its inset repeats the same comparison using a smaller batch of top 0.1% of
decisions.

To better understand the importance of epistemic uncertainty, Fig. 5 shows the objective and549

uncertainty contours for M2 and is analogous to Fig. 3 (K, L) for M1. Neglecting GP prediction550

uncertainty in M2 leads to large deviations between the best objective function value (darkest551

solid blue contours) and ground truth predictions (dashed blue contour) in regions (I), (II), and552

(III) of Fig. 5 (A). The prediction uncertainties of M2, shown in Fig. 5 (B), are now a function only553

of the parameter variability, which leads to a maximum of 12 m uncertainty in regions (I), (II),554

and (III). In the same regions of Fig. 3 (L), the inclusion of the GP uncertainty causes the total555

prediction uncertainty to be as high as 16 m. The low prediction uncertainty values from M2 are556

36

http://dowlinglab.nd.edu


Bayesian Hybrid Models http://dowlinglab.nd.edu

Figure 5: Neglecting epistemic uncertainty leads to large deviations from the truth due to low un-
certainty predictions. In both figures, the two control variables of the ballistic experiment, firing
velocity v0 and angle  are plotted on the vertical and horizontal axes, respectively. The dashed
blue contour shows true experimental conditions needed to satisfy the objective of hitting the tar-
get and corresponds to the 100 m contour in Fig. 2. Green ⇥’s are the training data used to calibrate
the model and the purple dot is the optimum decision predicted by the framework. Simultaneous
hybrid model prediction means (A) and uncertainties (B) using M2 (composite estimation neglect-
ing GP uncertainty). Regions of largest deviation between the best model predictions (darkest
solid blue contours corresponding to objective values � 0.9) and the truth (dashed blue contour)
are highlighted using red boxes and labeled (I), (II), and (III) and may be compared with analo-
gous coordinates in Fig 3 (K, L, O). Note that Fig. 3 (O), the plot for absolute true errors is common
for both M1 and M2.

not significant enough to impact decisions in these regions, which also correspond to true errors557

as high as 80 m as seen in Fig. 3 (O) thus leading to the higher maximum absolute true error for558

M2.559

4.2.3 Decision-making with incremental hybrid models560

A modeler faces several nuanced choices while building a Bayesian hybrid model, including the561

model structure. We now compare the performance of incremental hybrid models to the simulta-562

neous hybrid models (analyzed previously). Fig. 6 explores an incremental M1 hybrid model and563

is analogous to the columns in Fig. 3. For completeness, Fig. S1 in the SM explores an incremental564

M2 hybrid model.565

37

http://dowlinglab.nd.edu


Bayesian Hybrid Models http://dowlinglab.nd.edu

Figure 6: Results from the Bayesian decision-making framework using the incremental hybrid
model and M1 (composite estimation). The control variables of the ballistics experiment, firing
velocity v0 and angle  , are plotted on the vertical and horizontal axes, respectively. The dashed
blue contour shows true experimental conditions needed to satisfy the goal of the experiment,
corresponding to the 100 m contour in Fig. 2. Green ⇥’s are the training data and the purple
dot is the optimum recommendation of the framework. (A) incremental model predictions. (B)
Uncertainty in incremental model predictions. (C) Objective values calculated via M1 (composite
estimation). (D) True error. (E) Absolute true error.

The incremental hybrid model surpasses the simultaneous model with an absolute error of566

0.1±10.7 m for an experiment predicted at  ⇤=73� and v⇤0=71 m s�1 as shown by the purple dot567

in Fig. 6. As shown in Fig. 3 (K), the simultaneous model recommends a decision far away from568

the training data. In contrast, Fig. 6 (A) shows the incremental model recommends a decision569

between two observations (i.e., interpolates). Fig. 6 (B) shows the incremental model uncertainties570

and has a maximum value of 35.1 m at [45�, 41 m s�1 ]; this is 1.6 times higher than the maximum571

simultaneous model uncertainty, which is the next highest and is shown in Fig. 3 (L). The regions572

of lowest uncertainty surround all but one of the data points, the exception lies in the second573

lowest region due to the influence of glass-box uncertainty. Outside of the range of the training set,574

near the top and bottom of Fig. 6 (B), the contour values rapidly increase and adopt a horizontal575
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shape further indicating the incremental model’s inability to extrapolate the effect of firing angle576

 on the systematic bias. In general, the contours in Fig. 6 (A-E) (incremental model) have similar577

shapes to Fig. 3 (K-O). Recall, that the hybrid model shapes are a combination of the glass-box578

and black-box models (see SM Fig. S2), and for the incremental hybrid model, the influence of579

the black-box model is more pronounced (see SM Fig. S3). We hypothesize this is because the580

incremental hybrid model trains the GP after calibrating (and fixing) the glass-box model. As581

such, the black-box model needs to correct for larger residuals.582

4.2.4 Summary583

Finally, Fig. 7 compares the top 1% of decisions generated from all studied model architectures.584

The horizontal axis shows the absolute true error |yerr|. The vertical axis is the cumulative density,585

i.e., the fraction of top decisions with an absolute true error less than the value on the horizon-586

tal axis. Fig. 7, shows that the inadequate glass-box (simple physics) model makes the worst587

decisions, followed by the black-box (GP-only) model for the reasons discussed above. The in-588

cremental hybrid models perform the next best, and the simultaneous hybrid models perform the589

best. Thus, in summary, this case study shows the benefits of hybrid models for more accurate590

predictions and decision-making under uncertainty. The difference between including (M1) and591

neglecting (M2) GP uncertainty is less influential than using an incremental versus simultaneous592

hybrid model architecture. The incremental models sacrifice modest performance for computa-593

tionally more straightforward inference calculations by decomposing the training into two steps.594

In the following case study, we explore nonlinear regression to infer parameters in the glass-box595

model. This further simplifies the computational workflow by eliminating the need for Bayesian596

model calibration for highly nonlinear models.597
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Figure 7: Hybrid models outperform the glass-box and black-box models in decision-making. The
top 1% of decisions (N=55) recommended using alternate model architectures are compared in
this figure utilizing the cumulative density of the absolute true errors. The red and blue are for the
hybrid simultaneous models (M1 and M2), the pink and grey curves correspond to incremental
hybrid models (M1 and M2), the green curve is for the GP-only model, and the black curve is for
the simple physics model.

5 Case study: Reactor optimization598

5.1 Problem statement, models, and data599

As a second illustrative case study, we consider parameter and epistemic uncertainty in a series-600

like kinetic model used to optimize the controls of an isothermal batch reactor. In the kinetic601

model, species A reacts to form the desired product B via a non-elementary reversible reaction,602

which subsequently decomposes to undesired product C. The goal is to maximize the final con-603

centration of B and minimize the concentrations of A and C without knowing the true kinetic604

mechanism of the productive reaction. This is done by manipulating three decision variables: the605
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starting concentration of species A, cA0 (M), the temperature of the reactor, T (K), and the duration606

of the reaction, t (h).607

5.1.1 True kinetic model and training data608

The true kinetic model (TKM) takes the form:609

A
1

��*)��
3

B
2
��! C (5.49)

where  = [1,2,3] are the rate constants for each reaction computed with the Arrhenius equa-610

tion:611

h = ↵h exp
⇣
�
⌫h
RT

⌘
, h 2 {1, 2, 3}. (5.50)

Here, ↵ = [200 h�1, 100 M�2h�1, 50 h�1] are the pre-exponential factors, ⌫ = [10, 20, 15] (J mol�1)612

are the activation energies, and R (J mol�1 K�1) is the universal gas constant.613

The rates of reaction are described by a system of ordinary differential equations:614

dcA
dt

= �1cA + 3cB, (5.51)

dcB
dt

= 1cA � 2c
3
B � 3cB, (5.52)

dcC
dt

= 2c
3
B, (5.53)

which are solved numerically with initial conditions615

cA(t = 0) = cA0, cB(t = 0) = 0, cC(t = 0) = 0. (5.54)

In this formulation, we have assumed that the kinetics are non-elementary. Following notation616

introduced in Eq. (3.3), the vector-valued TKM ⇣(·) is written as the numerical solution to the617
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ODE system:618

⇣(xi) = [cA(xi), cB(xi), cC(xi)], (5.55)

xi = [t, T, cA0], (5.56)

t 2 [0, 1], T 2 [293, 493], cA0 2 [0, 5.0]. (5.57)

The observation noise is assumed to be independent and identically distributed for all species and619

time, i.e.,:620

"i = ["A,i, "B,i, "C,i], i 2 {1, . . . , n}, (5.58)

"i
i.i.d.
⇠ N (0,⌃"), ⌃" = �2"I, (5.59)

where �" = 0.03 M.621

Following Eq. (3.3), the observations yi are:622

yi = ⇣(xi) + "i. (5.60)

Training data D is generated by sampling the design space T ⇥ cA0 with a Latin hypercube623

design of twenty experiments. Experiments are randomly selected in sets of four to serve as the624

training data for ten different cases, as described in Table S1 of the SM.625

5.1.2 Hybrid kinetic model626

A simple kinetic model (SKM) has series kinetics,627

A
k1

��! B
k2

��! C , (5.61)
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where k = [k1, k2] (h�1) is the rate constant of reaction and is computed with pre-exponential628

factor � = [�1,�2] (h�1) and activation energy ⇢ = [⇢1, ⇢2] (J mol�1) following Eq. (5.50):629

kb = �b exp
⇣ ⇢b
RT

⌘
, b 2 {1, 2}. (5.62)

The rates of reaction are derived assuming the proposed kinetics are elementary,630

dcA
dt

= �k1cA, (5.63)

dcB
dt

= k1cA � k2cB, (5.64)

dcC
dt

= k2cB, (5.65)

with initial conditions in Eq. (5.54). This system of equations has a known analytical solution:631

cA(t) = cA0 exp (�k1t) , (5.66)

cB(t) =
k1

k2 � k1
cA0 (exp(�k1t)� exp(�k2t)) , (5.67)

cC(t) = cA0 � cB(t)� cA(t). (5.68)

Thus, the SKM ⌘(·, ·) is632

⌘(xi,✓) = [cA(xi,✓), cB(xi,✓), cC(xi,✓)], (5.69)

✓ = [�|,⇢|]. (5.70)

In this workflow, nonlinear regression (Eqs. (3.25) and (3.26)) is used to fit observations gener-633

ated from the decisions to the SKM in Eqs. (5.56) and (5.69), respectively, yielding estimates of634

the parameters ✓̂. Following frequentist inference of the SKM, the hybrid kinetic model (HKM)635
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discrepancy a �(·) is trained on species B only, i.e., a = [0, 1, 0] in Eq. (3.3), using Bayesian GP re-636

gression. The GP was constructed with a zero mean function m(x) = 0 and the Matern 3/2 kernel637

(Eq. (3.14)) for the covariance term c(x,x0;�). The hierarchical model for Bayesian inference is638

thus:639

y|�(x), " ⇠ GP(0,�2�k(x,x
0; `) + �2"�x,x0), (5.71a)

�(x)|� ⇠ GP(0,�2�k(x,x
0; `)), "|�2" ⇠ N (0,�2"), (5.71b)

�� ⇠ Gamma(2.5, 1), �" ⇠ Gamma(9, 300), (5.71c)

`1, `2, `3
ind.
⇠ U(0.1, 1). (5.71d)

In Eq. (5.71), we used the generalized RBF kernel (Eq. (3.13)) to encode a prior belief in the smooth-640

ness along each input variable. Moreover, a uniform prior over the length scale hyperparameters641

was chosen to reflect weak prior knowledge in the smoothness of the process. Gamma priors642

were chosen for the standard deviations because the Gamma distribution has a positive support.643

The PyMC3 marginal likelihood implementation was used for GP regression. PyMC3.sample()644

provides the MAP estimate of the hyperparameters �̂MAP where � = [��, `|].645

5.1.3 Optimization with the Hybrid Model646

We now optimize the batch reactor to promote the formation and proliferation of the desired647

product B by manipulating reactor temperature and batch time:648

argmax
x

w|c(xi), (5.72a)

s.t. t 2 [0, 1], T 2 [293, 493], (5.72b)
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where w = [�1/2, 1,�1/2]| and the optimized concentration profiles c(xi) are generated from the649

model choice:650

c(xi) =

8
>><

>>:

⌘(xi, ✓̂) simple kinetics model, (5.73a)

⌘(xi, ✓̂) + a �(xi; �̂) hybrid kinetics model. (5.73b)

5.2 Results and discussion651

5.2.1 Benchmarking hybrid kinetic model predictive performance652

Fig. 8 compares the SKM (8a, solid lines) and HKM (8b, dashed lines) concentration predictions653

for case one at (i) 300, (ii) 350, (iii) 400, and (iv) 450 K holding the initial concentration at 2.0 M.654

Shaded regions represent point-wise prediction intervals constructed using a nominal coverage655

probability (NCP) of 68% [108]. The predicted concentration profiles of the remaining case studies656

can be found in SM Figs. S4-S12.657

Fig. 9 reports the mean absolute error (MAE, pink), root mean squared error (RMSE, blue),658

and actual coverage probability (ACP) of the SKM (solid) and HKM (stripes) predictions made in659

Fig. 8 for case one. We define the ACP as the percent of total predictions within their respective660

prediction interval across all temperatures. This process was repeated for all ten case studies,661

whose respective bar charts are shown in SM Figs. S13-S21.662

Figs. 8 and 9 show the structural inadequacy of the SKM. The model-form uncertainty violates663

the fundamental assumption of (non)linear least squares regression, thus motivating the HKM664

framework. In Fig. 8b, the prediction bands of the HKM capture all of the observations, whereas665

those of the SKM (Fig. 8a) do not. Furthermore, Fig. 9 reports the ACP of the SKM and HKM666

as 69.7% and 100%, respectively. All of the HKM and 80% of the SKM cases show conservative667

prediction, i.e., ACP > NCP. Namely, the ACP of cases six and eight are 67.4% and 66.7% and are668
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(a) (b)

Figure 8: Case one concentration of all chemical species vs. time for (a) SKM (solid lines) and (b)
HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C is shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (±�̂).

not permissible as the maximum type I error (i.e., false positive) rate exceeds the nominal level.669

Figs. 8 and 9 demonstrate that the HKM outperforms the SKM in predictive accuracy. In670

Fig. 8a, the SKM prediction lack of fit to the observations is evident. In contrast, the HKM predic-671

tions (Fig. 8b) better fit the observations, indicating that the GP successfully corrects for epistemic672

uncertainty in the SKM. This is supported by the MAE and RMSE values reported in Fig. 9. More-673

over, Fig. 9 represents the observed trend in predictive error, in which the SKM error far exceeds674

the HKM error. Across all ten cases, we observed 97.5% of the HKM MAE values were less than675

those of SKM, averaging 2.6 times less error. Similarly, 95% of the HKM RMSE values were sub-676

stantially less than those of the SKM, averaging 3.2 times lower error.677
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Figure 9: Case one mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.

5.2.2 Optimization with the hybrid model678

Next, we compared the HKM and the SKM for optimization under uncertainty. Table 2 shows the679

error, defined as positive (negative) for underprediction (overprediction), of each model in opti-680

mizing the objective function (Eq. (5.72a)) and the corresponding time and temperature decisions681

for all ten cases. An error value of zero occurs when the optimal value is at a global minimum682

(*) or maximum (**) in both the ground truth and model predictions. Experiments represent the683

collection of training data generated from the Latin hypercube design decisions (Table S1) for each684

case study.685

Table 2 confirms that superior predictive performance of the HKM translates to optimization686

under uncertainty. Here, the SKM underpredicts the TKM optimal time for all cases, whereas687

the HKM misses 70% with 4.5 times smaller MAE. Moreover, the HKM MAE for computing the688

maximum objective is 1.6 times smaller than that of the SKM. Cases five and nine are unique689
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Temperature, T (K) Time, t (h) Objective (M)
Case SKM HKM SKM HKM SKM HKM Experiments

1 0.00⇤ 0.00⇤ 0.32 0.00⇤⇤ 0.22 -0.19 1, 10, 14, 19
2 0.00⇤ 0.00⇤ 0.37 0.11 0.44 -0.38 3, 4, 12, 18
3 0.00⇤ 0.00⇤ 0.16 0.11 0.27 -0.02 6, 7, 11, 13
4 0.00⇤ 0.00⇤ 0.21 0.00⇤⇤ 0.31 -0.23 1, 5, 15, 16
5 -180.00⇤⇤ 0.00⇤ 0.79 0.16 0.31 -0.03 11, 12, 16, 17
6 0.00⇤ 0.00⇤ 0.16 0.11 0.25 -0.11 5, 13, 15, 20
7 0.00⇤ 0.00⇤ 0.26 0.16 0.31 -0.15 2, 6, 17, 20
8 0.00⇤ 0.00⇤ 0.21 0.11 0.24 -0.16 8, 17, 18, 20
9 -180.00⇤⇤ 0.00⇤ 0.79 0.00⇤⇤ 0.16 -0.27 1, 5, 9, 16
10 0.00⇤ 0.00⇤ 0.26 0.11 0.10 0.09 9, 11, 13, 14

Table 2: SKM and HKM deviation from ground truth optimal time, temperature, and objective
value for cases one through ten. Predictions made at global minima or maxima are indicated with
* and **, respectively. A deviation value of zero occurs when an optimal value is at a global mini-
mum or maximum for both the ground truth value and model prediction. Experiments represent
the collection of training data from the Latin hypercube design.

in that the SKM predicts the optimal temperature at the global maximum instead of the TKM690

global minimum. We explain this behavior in further analysis and emphasize here that the HKM691

effectively corrects for this extreme model-form uncertainty.692

To further illustrate observations made in the previous discussion, Fig. 10 compares the objec-693

tive function landscape for the TKM, SKM, and HKM for cases one (Fig. 10a) and five (Fig. 10b).694

Case one (Fig. 10a) represents most of the SKM objective function landscapes in which the max-695

imum objective is found at longer batch times and lower operating temperatures. Case five696

(Fig. 10b) was chosen arbitrarily over case nine and shows that the SKM optimal objective is697

achieved at shorter batch times and high-temperature operating conditions. The objective func-698

tion landscapes of the remaining case studies are shown in SM Figs. S22-S29.699

48

http://dowlinglab.nd.edu


Bayesian Hybrid Models http://dowlinglab.nd.edu

(a) Case One

(b) Case Five

Figure 10: Objective of the TKM, SKM, and HKM as a function of time and temperature for cases
(a) one and (b) five. The objective function was computed with cA0 = 2.0 M. The maximum value
of the objective function is marked with a black X.
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5.2.3 Why the simple kinetic model fails700

To understand why the SKM predicts the optimal concentration at high temperatures and short701

times in cases five and nine, we turned to the parameter estimates and training data of the SKM.702

Table 3 reports the regressed parameters ⇢1, ⇢2, �1, and �2 of the SKM for all case studies. Fig. 11703

plots the absolute true error of the objective as a function of initial concentration and temperature704

along with the training data (black X’s) for cases one (Fig. 11a) and nine (Fig. 11b) at different705

points in time (top to bottom). For demonstration purposes, case nine was chosen over case five706

because it exhibited greater error. For consistency with prior analysis, the error of the maximum707

objective at 2.0 M of the TKM and SKM are indicated with a circle and triangle, respectively. In708

the SM, additional case studies are shown in Figs. S30-S37.709

Together, Table 3 and Fig. 11 demonstrate that the SKM is not robust to random perturbations710

in the training data. Table 3 shows that the activation energy of the first reaction exceeds that711

of the second (�1 > �2) in cases five and nine only, which explains why the maximum objective712

was observed at high temperatures and long times in Fig. 10b. This is consistent with Fig. 11, in713

which the maximum absolute true error of case nine (Fig. 11b) exceeds that of case one (Fig. 11a).714

In addition, Fig. 11 demonstrates that the absolute true error increases with distance from the715

Case ⇢1 (s�1) ⇢2 (s�1) �1 (kJ mol�1) �2 (kJ mol�1)
1 72.45 49.51 6.94 12.49
2 76.60 10.40 7.23 7.51
3 139.55 88.74 9.17 14.24
4 128.45 31.22 8.83 11.26
5 123.82 5.54 8.63 5.94
6 124.86 107.16 8.89 14.78
7 89.29 27.95 7.88 10.95
8 107.24 44.97 8.22 12.48
9 197.87 4.67 9.90 6.46
10 62.70 183.59 6.55 16.61

Table 3: Regressed parameters of the SKM for all ten cases.
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Figure 11: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case (a) one and (b) nine at four snapshots in time (top to bottom). Compared with
the previous analysis, the predicted maximum objective temperature and time holding the initial
concentration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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training data. This later observation highlights the need for more refined tools to enable the data-716

limited design of experiments under epistemic uncertainty.717

6 Conclusions and outlook718

This work proposes a Bayesian hybrid modeling computational framework for decision-making719

(optimization) considering aleatoric, parameter, and epistemic uncertainty for small datasets. Epis-720

temic uncertainty is quantified using a Kennedy and O’Hagan-style Gaussian process (GP) dis-721

crepancy function, which guards against overfitting and overparameterization while providing722

a general hybrid model architecture that may be easily customized for many applications. The723

Kennedy and O’Hagan paradigm, closely related to Kriging surrogate models and grey-box hy-724

brid models, has grown in popularity over the past decade, especially in chemical engineering.725

This work extends KOH hybrid models by using their posterior distribution (or an approxima-726

tion) to define scenarios for stochastic programming.727

This work uses two illustrative case studies — ballistics firing and reaction kinetics — to sys-728

tematically explore Bayesian hybrid models for optimization under epistemic uncertainty. In both729

case studies, the hybrid model successfully integrates an inadequate glass-box model (e.g., ne-730

glects air resistance or assumes incorrect reaction pathways) with a GP discrepancy model to cor-731

rect for the systematic bias. Both case studies show the hybrid model outperforms the alternative732

models with small datasets for decision-making under uncertainty. Moreover, we compare simul-733

taneous versus incremental hybrid model architectures. We also discuss computational approx-734

imations to quickly calibrate hybrid models, which is essential for iterative model development735

and real-time control and optimization applications.736

These two illustrative case studies highlight several future research directions beyond new ap-737

plications. While both case studies consider only a single GP discrepancy function, the framework738
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can be extended to multiple GPs. Similarly, efficient gradient-based optimization with hybrid739

models is an open research area [102, 109]. Future work should explore the behavior of Bayesian740

hybrid models for sequences of experiments. Recently, we showed that physics-informed glass-741

box models for thickness control in additive manufacturing require significantly less data to train742

and globally gave more accurate predictions than black-box GP models [110]. Interestingly for743

this specific application, there was sufficient training data at thin film thickness such that the GP744

model was more accurate than the glass-box model. We suspect the glass-box models used in this745

paper and Wang et al. suffer from structural inadequacy that could not be overcome with addi-746

tional data, i.e., the inadequate glass-box models will fail to converge to the true process, whereas747

a GP model will converge given enough data. This motivates several research questions related to748

the convergence of hybrid models, how to select the optimal sequence of experiments, and how749

to quantify the minimum dataset needed to reliably use a Bayesian hybrid model. Finally, this750

paper compares Bayesian hybrid models against GP models, one of the best ML architectures for751

small data sets. Future work should benchmark against more ML alternatives, such as deep neural752

networks, random forests, and ensembles, especially in higher dimensional case studies.753
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Ballistics Case Study

Figure S1: Results from the Bayesian decision-making framework using the incremental hybrid
model and M2 (composite estimation neglecting GP uncertainty). The control variables of the bal-
listics experiment, firing velocity v0 and angle  , are plotted on the vertical and horizontal axes,
respectively. The dashed blue contour shows true experimental conditions needed to satisfy the
goal of the experiment, corresponding to the 100 m contour in Fig. 2. Green ⇥’s are the train-
ing data and the purple dot is the optimum recommendation of the framework. (A) incremental
model predictions. (B) Uncertainty in incremental model predictions. (C) Objective values calcu-
lated via M2 (composite estimation neglecting GP uncertainty). (D) True error. (E) Absolute true
error.
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Figure S2: The additive hybrid model is a linear combination of the assumed physical glass-box
model and GP discrepancy function. (A) Predictions of the glass-box model. Notice that the
contour shapes are identical to the simple physics model predictions in Fig. 3(A). (B) Predictions of
the GP discrepancy function. Notice the qualitative agreement with the contours for the GP-only
model prediction in Fig. 3(F). (C) Values of the hybrid model predictions are a linear combination
of the values in (A) and (B). Note that this plot is identical to Fig. 3(K).
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Figure S3: Component predictions of the incremental hybrid model. (A) Predictions of the glass-
box model. Notice that the contour shapes are identical to the simple physics model predictions
in Fig. 3(A). (B) Predictions of the GP discrepancy function. Notice the horizontal contour lines
and orientation of the ellipse (unlike Fig. 3(F)) indicating high uncertainty in learning the effect of
firing angle  on the model discrepancy. (C) Values of the hybrid model predictions are a linear
combination of the values in (A) and (B). Note that this plot is identical to Fig. 6(C). (D) The GP
standard deviation has irregularly shaped contours surrounding the training data but is nearly
horizontal elsewhere which is another indication of the GP’s inability to learn the influence of
angle.
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Reactions Case Study

Case Experiment cA0 (M) T -0.65 (K)
1 10 1.1 369

13 4.3 432
18 3.1 306
1 2.3 324

2 3 1.5 387
2 3.5 468
12 2.7 441
18 3.1 306

3 7 1.9 396
13 4.2 432
6 4.5 315
11 1.7 342

4 5 4.7 297
15 3.7 423
16 1.3 450
1 2.3 324

5 17 3.9 360
12 2.7 441
11 1.7 342
16 1.3 450

6 20 2.1 333
15 3.7 423
13 4.2 432
5 4.7 297

7 2 3.5 468
6 4.5 315
20 2.1 333
16 1.3 450

8 8 2.9 414
17 3.9 360
20 2.1 333
18 3.1 306

9 9 2.5 405
5 4.7 297
16 1.3 450
1 2.3 324

10 13 4.2 432
14 4.1 378
11 1.7 342
9 2.5 405

Table S1: Training data for case studies 1-10 generated with a random sampling of experiments
1-20 in the Latin hypercube design.
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(a) (b)

Figure S4: Case two concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (±�̂).
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(a) (b)

Figure S5: Case three concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (±�̂).
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(a) (b)

Figure S6: Case four concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (±�̂).
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(a) (b)

Figure S7: Case five concentration of all chemical species vs. time for (a) SKM (solid lines) and (b)
HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (±�̂).
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(a) (b)

Figure S8: Case six concentration of all chemical species vs. time for (a) SKM (solid lines) and (b)
HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (±�̂).
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(a) (b)

Figure S9: Case seven concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (±�̂).
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(a) (b)

Figure S10: Case eight concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (±�̂).
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(a) (b)

Figure S11: Case nine concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (±�̂).
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(a) (b)

Figure S12: Case ten concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (±�̂).
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Figure S13: Case two mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.

Figure S14: Case three mean absolute error (MAE, pink) and root mean squared error (RMSE,
blue) for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual
coverage probability (ACP) across all temperatures is reported for both models.
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Figure S15: Case four mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.

Figure S16: Case five mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.
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Figure S17: Case six mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.

Figure S18: Case seven mean absolute error (MAE, pink) and root mean squared error (RMSE,
blue) for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual
coverage probability (ACP) across all temperatures is reported for both models.
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Figure S19: Case eight mean absolute error (MAE, pink) and root mean squared error (RMSE,
blue) for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual
coverage probability (ACP) across all temperatures is reported for both models.

Figure S20: Case nine mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.
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Figure S21: Case ten mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.

Figure S22: Objective of the TKM, SKM, and HKM as function of time and temperature for case
two. The objective function was computed with cA0 = 2.0 M. The maximum value of the objective
function is marked with a black X.
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Figure S23: Objective of the TKM, SKM, and HKM as function of time and temperature for case
three. The objective function was computed with cA0 = 2.0 M. The maximum value of the objective
function is marked with a black X.

Figure S24: Objective of the TKM, SKM, and HKM as function of time and temperature for case
four. The objective function was computed with cA0 = 2.0 M. The maximum value of the objective
function is marked with a black X.
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Figure S25: Objective of the TKM, SKM, and HKM as function of time and temperature for case
six. The objective function was computed with cA0 = 2.0 M. The maximum value of the objective
function is marked with a black X.

Figure S26: Objective of the TKM, SKM, and HKM as function of time and temperature for case
seven. The objective function was computed with cA0 = 2.0 M. The maximum value of the objec-
tive function is marked with a black X.
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Figure S27: Objective of the TKM, SKM, and HKM as function of time and temperature for case
eight. The objective function was computed with cA0 = 2.0 M. The maximum value of the objective
function is marked with a black X.

Figure S28: Objective of the TKM, SKM, and HKM as function of time and temperature for case
nine. The objective function was computed with cA0 = 2.0 M. The maximum value of the objective
function is marked with a black X.
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Figure S29: Objective of the TKM, SKM, and HKM as function of time and temperature for case
ten. The objective function was computed with cA0 = 2.0 M. The maximum value of the objective
function is marked with a black X.
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Figure S30: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case two at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S31: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case three at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S32: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case four at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S33: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case five at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S34: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case six at four snapshots in time (top to bottom). For comparison with the previ-
ous analysis, the predicted maximum objective temperature and time holding the initial concen-
tration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.

S28

http://dowlinglab.nd.edu


Supplementary Material http://dowlinglab.nd.edu

Figure S35: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case seven at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S36: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case eight at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S37: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case ten at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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