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Abstract

Hybrid (i.e., grey-box) models are a powerful and flexible paradigm for predictive science and
engineering. Grey-box models use data-driven constructs to incorporate unknown or compu-
tationally intractable phenomena into glass-box mechanistic models. The pioneering work of
statisticians Kennedy and O’Hagan introduced a new paradigm to quantify epistemic (i.e., model-
form) uncertainty. While popular in several engineering disciplines, prior work using Kennedy-
O’Hagan hybrid models focuses on prediction with accurate uncertainty estimates. This work
demonstrates computational strategies to deploy Bayesian hybrid models for optimization under
uncertainty. Specifically, the predictive posterior distributions of Bayesian hybrid models pro-

vide a principled uncertainty set for stochastic programming, chance-constrained optimization,
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or robust optimization. Through two illustrative case studies, we demonstrate the efficacy of hy-
brid models, composed of a structurally inadequate glass-box model and Gaussian process, for
decision-making using limited training data. From these case studies, we develop recommended

best practices and explore the trade-offs between different hybrid model architectures.
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Figure 0: GRAPHICAL ABSTRACT

1 Introduction

Predictive models are fundamental to process systems engineering [1, 2] with ubiquitous appli-
cations in design, control, and decision-making applications. In practice, glass-box (i.e., first-
principles) models are developed from foundational scientific theory. When accurately formu-
lated and computationally tractable, these models can offer exceptional extrapolation capabili-
ties [3]. When constructing these models, one must consider the trade-off in accurately capturing
the underlying physics, the uncertainty of the parameter estimates, the computational burden, and
the necessary data for calibration and validation. Furthermore, decreasing the bias between the
model outputs and reality requires augmenting the mathematical model with additional terms,
thereby increasing the total number of model parameters to be estimated [4]. For these reasons,

glass-box models can be tedious to build and validate, especially when the underlying physics
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spans multiple length and time scales. Alternatively, black-box (i.e., surrogate) models are easier
to develop and, once trained, facilitate fast optimization. Due to their entirely data-driven nature,
these models suffer in physical interpretability and can be unreliable for extrapolation outside the
training set range [5]. At the intersection of these paradigms, grey-box (i.e., hybrid) models fuse
glass-box and data-driven constructs. The resulting framework offers superior physics-informed
extrapolation and prediction accuracy due to data-based automatic (re)learning [6] of unmodeled

or simplified phenomena.

Regardless of the modeling paradigm, all models are prone to uncertainty [7]. Left unac-
counted for, uncertainty can bias decision-making due to over- or under-confident predictions.
Non-systematic or aleatoric uncertainty arises from uncontrollable phenomena such as exper-
imental variability and is generally quantifiable by repeating the number of experiments con-
ducted. Epistemic or model-form uncertainty, however, induces systematic bias between a pre-
dictive model and the observed phenomena. Epistemic uncertainty can arise when simplifying
a mechanistic model or when the underlying phenomena are (partially) misspecified. Epistemic

uncertainty is harder to evaluate as it seeks to quantify an abstraction, i.e., unknown unknowns.

This paper proposes a Bayesian hybrid modeling framework for decision-making under aleatoric
and epistemic uncertainty. Building upon the pioneering work of Kennedy and O’Hagan [8], we
integrate mechanistic or physics-informed glass-box models with data-driven Gaussian process
(GP) discrepancy functions into a grey-box hybrid model. Literature to date using Kennedy and
O’Hagan paradigm for epistemic UQ focuses on prediction. In contrast, the novel contribution
of this work is the extension of Bayesian hybrid models to optimization under both aleatoric and
epistemic uncertainty. Specifically, the joint posterior prediction distribution of the Bayesian hy-
brid model defines the uncertainty sets for a stochastic program. Computational experiments

in two case studies demonstrate the performance of Bayesian hybrid models for small data sets.
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Through the case studies, we establish best practices regarding the choice of model architecture

and estimation methods.

The remainder of the paper is organized as follows. Section 2 reviews related literature. Sec-
tion 3 describes the general modeling framework and computational implementation. Section 4
describes a ballistics case study, which shows the superiority of Bayesian hybrid models compared
to two alternatives. Section 5 develops further computational simplifications in a reaction kinetics
case study using the best practices from this first case study. Finally, Section 6 summarizes the key

findings and identifies future research directions.

2 Literature Review

2.1 Machine learning and hybrid modeling in chemical engineering

Machine learning (ML) in chemical engineering was explored in the 90s by researchers such as
Ydstie [9], Kramer [10], and Bakshi and Stephanopoulos [11], however progress slowed due to
computational challenges in training deep networks [12]. ML resurged as a popular technology
in the 21st century with many applications across domains, prompting its revival in the chemi-
cal engineering community. Jackson, Webb, and Pablo [13], Haghighatlari and Hachmann [14],
Lee, Shin, and Realff [12], and Ning and You [15] discuss recent ML advances in domains such
as molecular modeling and simulation, soft materials design, process systems engineering, and
optimization under uncertainty. Of particular interest, Haghighatlari and Hachmann [14] identify
the crucial need to develop ML techniques trained on small or sparse data for applications where
data generation is the bottleneck. Lee, Shin, and Realff [12] pose the challenge of balancing ex-
ploitation or improving the objective versus exploration or reducing model uncertainty for future

ML applications. These challenges are complementary since understanding the model uncertainty
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can enable active learning for improved model building with small datasets.

Prompting the advancement of ML, the advent of the big data environment catalyzed the de-
velopment of hybrid modeling paradigms [4], and was further motivated by problems such as
process control [16]. Pioneered by Psichogios and Ungar [17], a combination of first-principles
and artificial neural networks (ANN) were devised to improve the model for a fedbatch bioreac-
tor whose dynamic behavior is tough to model despite the use of complex kinetic expressions due
to the presence of unmodeled interactions between living cells. Their use of hybrid models evaded
overfitting issues neural networks faced and demonstrated a significantly lower data requirement.
The works by Thompson and Kramer [18] underscored Psichogios and Ungar’s findings and pro-
posed ANN-hybrid models for sparse and noisy data to maximize the value of domain specific
knowledge. These early successes lead to new grey-box modeling [6, 19, 20] in diverse applica-
tions such as design of reactors [21, 22, 23, 24] and distillation columns [25], polymerization [26],
crystallization [27], hydraulic fracturing [28], fluid catalytic cracking [29], model predictive con-

trol [30], separations [5], smart manufacturing and digital twins [31], and many more.

More recently, methodological advances to hybrid modeling leverage system derivatives and
mechanistic parameters of ordinary differential equations with neural networks in the emerging
paradigm of neural differential equations [32]. Motivated by the fouling of an electrodialysis
membrane, De Jaegher et al. [33] pioneered fundamental contributions to this line of inquiry by
developing neural differential equations to accurately predict decreasing fluxes across the mem-
brane despite simplifying assumptions in the underlying force balance equations. Across these
studies, ANN-based ML dominates the choice for the surrogate model and fails to consider epis-
temic uncertainty. Investigations into explicitly accounting for model uncertainty with ANNs
involve the development of several surrogate models for strategies such as bootstrapping, lead-

ing to an increased computational workload [34] impractical for online applications and iterative
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model development.

Reaction networks are often too complex to formulate as mathematical models to embed in
optimization problems or are (partially) unknown, making reactive systems well-suited for hy-
brid models [35]. Under sequential hybrid model architectures, parameters of kinetic models can
be estimated with black-box models, which are used to generate outputs from a the glass-box
component that describes the known physics. Alternatively, the black-box model can provide a
data-driven correction term to the white-box model. Regarding the former approach, Saraceno et
al. [36] developed a coupled neural network with a logic condition model to predict the kinetic
parameters for the fermentation production of ethanol. Later, Azarpour et al. [37, 38] applied a
neural network model to calculate the reaction rates for a terephthalic acid three-phase reaction
system to solve mass balance equations. Recently, Bui et al. [39] used partial least squares and
Kalman filtering to estimate and update the activity of a catalyst bed to predict the catalyst life-

time of industrial-scale PFRs with real plant data.

2.2 UQ and Kennedy-O’Hagan in chemical engineering

In their 2001 seminal work, Kennedy and O’Hagan [8] proposed a statistical framework for the
calibration of models under both epistemic (model-form) and aleatoric uncertainty. They were
the first to use Gaussian process (GP) discrepancy functions to quantify the systematic bias be-
tween the model predictions and truth. In contrast, classical (non)linear regression theory often
assumes that the model structure is correct and the errors are independent and identically dis-
tributed (i.i.d.) normal [40]. When these assumptions fail, estimates of the model parameters are
biased and unreliable. Moreover, input-dependent errors can lead to predictions that have large
random deviations from the observations. Kennedy and O’Hagan [8] overcame this limitation

by quantifying model bias using correlations between control variables via the GP discrepancy
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function.

Over the past two decades, Kennedy and O’'Hagan (KOH) models for uncertainty quantifica-
tion (UQ) have been successful in various applications such as water quality management [41, 42],
thermal engineering [43, 44], fluid dynamics [45], energy storage [46], structural dynamics [47],
surrogate-based optimization [48], and carbon capture [49]. Kalyanaraman et al. [50] demon-
strated how KOH models can be used to overcome model discrepancy and predict the break-
through in a rapid thermal swing adsorption process for CO, capture. However, the complexity
of estimating multiple hyperparameters of the discrepancy function was noted as a computational
barrier. Such barriers often impede iterative model development. Mebane et al. [51] used quan-
tum chemical calculations and experimental data to identify parameter uncertainty and model

discrepancy for CO, adsorption with mesoporous silica-supported amines.

Extensions to KOH models by Bhat et al. [52] include the development of dynamic discrepancy
models based on BSS-ANOVA GPs [53]. This work enabled uncertainty propagation in multiscale
systems but highlighted the computational complexity of the process and suggested the investiga-
tion of adaptive techniques to economize on the Markov chain Monte Carlo (MCMC) calibration
of the Bayesian models. Additional experiments using dynamic discrepancy models with BSS-
ANOVA GPs were motivated by Li et al. [54], who propagated uncertainty from the bench to
process scale for CO; capture using reaction-diffusion kinetics on solid adsorbents in a bubbling
fluidized-bed. Most recently, Ostace et al. [55] incorporated a discrepancy function with a Lang-
muir adsorption model and used the Bayesian information criterion to guard against overfitting.
Their stochastic Langmuir model demonstrated robust predictions over variability in operating
conditions due to the inclusion of model-form and parameter uncertainty. These contributions
demonstrate the potential to upscale uncertainty to large-scale systems, resulting in less conserva-

tive designs and models suitable for optimization under uncertainty.
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Outside the aforementioned contributions, UQ of reactive systems predominantly focuses on
parameter uncertainty. Notably, Chaffart et al. [56] propagated parameter uncertainty in a cat-
alytic reactor model to the concentration of the reactor products using power series expansion
[56]. Similarly, Kiamev et al. [57] motivated the investigation of parameter uncertainty by study-
ing chemical vapor deposition and catalytic flow reactors using polynomial chaos expansion and
multilevel Monte Carlo. We advocate that consideration of parameter and epistemic uncertainty
for calibration and prediction is critical in the data-limited regime of reactive systems. Moreover,
decision-making frameworks for optimization under uncertainty that leverage the demonstrated

benefits of KOH models with GP discrepancy functions are mainly absent.

2.3 Decision-making under uncertainty

Optimization under uncertainty is a cornerstone of process systems engineering, often utilizing
stochastic programming, chance-constrained optimization, robust optimization, and constraint
back-off approaches. In stochastic programming, uncertain parameters are modeled using proba-
bility distributions and the objective optimizes an expected value across all the realizations of this
uncertainty [58]. The parameter uncertainty in a stochastic program is approximated as scenar-
ios, which are the discrete realizations of a probability distribution. Popular chemical engineering
applications of stochastic programming include flowsheet optimization [59], supply chain man-
agement [60], energy systems [61], control [62], and beyond [63]. Chance-constrained optimization
seeks to optimize an objective ensuring that the constraints are satisfied within a specified proba-
bility range, relying on probability distributions to capture the uncertainty in parameters [64]. This
framework enables custom definition of risk levels, but can suffer in computational tractability [65,
66]. Chance constrained optimization may be regarded as a generalization of robust optimiza-

tion [67], which avoids the need for probability distributions by defining parameter uncertainty
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using sets, thereby safeguarding against a worst case scenario in this set.

Recent data-driven extensions of these techniques (see review by Ning and You [15]) bridge the
gap between uncertainty modeling and decision making. For example, the emerging paradigm
of distributionally robust optimization (DRO) safeguards against the worst-case in an ambiguous
set of probability distributions inferred using statistics and big data analytics. DRO was used
by Shang and You [68] in a process network planning and scheduling problem demonstrating
less conservative solutions, potentially contributing to higher profits. Another extension is data-
driven adaptive robust optimization, which integrates Bayesian ML in the form of a nonpara-
metric Dirichlet process mixture model in an optimization problem to account for uncertainty by
exploiting big data from process industries [69]. The final approach uses constraint back-offs in op-
timization problems to prevent constraint violation under uncertainty [70]. At large, this method
has the lowest computational burden for optimization under uncertainty [71] despite the use of
iterative techniques for the calculation of back-off terms, defined using the second statistical mo-
ment of the active constraints [72, 73]. Optimization with constraint back-offs have been demon-
strated to robustify designs for fixed bed reactors [74], polymerization processes [75], enzyme
catalyzed reactions [76], nonlinear model predictive control [77], and model based experimental
campaigns [78]. Despite the unprecedented capabilities offered by the reviewed techniques, we
identify two limitations, specifically optimization under epistemic (model-form) uncertainty and

leveraging small or sparse data sets are not considered.

Optimization with hybrid models is closely related to Bayesian optimization (BO) [79], a class
of adaptive sampling algorithms often deployed for the sequential design of experiments and
derivative-free optimization. Importantly, BO can model prior information about the uncertainty
of the process, making it a natural optimization algorithm for hybrid models. Recently, Gonzalez

and Zavala [80] developed a level-set partitioning algorithm for parallel sequential design of ex-
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periments, in which the algorithm proposes multiple experiments in a single iteration. Using
a reactor case study, the authors empirically demonstrated that their approach reduced search
time and increased the probability of identifying a globally optimal solution while overcoming
a known challenge of repeated experiments. Similarly, Cosenza et al. [81] experimentally vali-
dated a multi-source BO algorithm for cell culture media optimization. Their algorithm reduced
experimental effort by 38% compared to a traditional DOE. Finally, Folch et al. [82] developed and
empirically validated a novel BO algorithm for multi-source and asynchronous experiments, in

which the algorithm selects new experiments before revealing prior results.

Regarding theoretical contributions to BO algorithms of hybrid models, Paulson and Lu [83]
have made several to their novel COnstrained Bayesian optimizAtion of computationally expen-
sive grey-box models exploiting derivaTive information (COBALT) algorithm. Moreover, COBALT
is a one-step Bayes optimal algorithm that aims to tackle efficient constrained global optimization
of multivariate composite functions (hybrid models). Using a bioreactor calibration case study,
the authors initially demonstrated the promising performance of the algorithm. In the absence of
constraints and the limit of infinite samples, COBALTs convergence is guaranteed. At the time,
however, theoretical performance was not established on the bounds of the convergence rate for fi-
nite cases. Toward these ends, the authors recently proposed a novel Constrained Upper Quartile
Bound (CUQB) algorithm [84], which provides improved theoretical guarantees on convergence
rate bounds to the optimal global solution under mild regularity assumptions. Closely related,
model-based design of experiments (MBDoE) provides a framework to sequentially optimize data
collection to minimize uncertainty or discern between candidate models or both [85]. However,
numerous research opportunities exist to integrate statistical theory supporting MBDoE with in-
formation theory and algorithms for BO. These advances would provide a theoretical foundation

for optimization under uncertainty with hybrid models. In this context, this paper explores the
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impact of hybrid model architectures on decision-making.

3 Methods: Bayesian hybrid modeling framework

Regarding notation, we use lowercase bold font to indicate vectors and uppercase bold font to
indicate matrices. We use the notation f(-) to denote a function f with one input variable. We use

hats to denote point estimates, e.g., § is a point estimate of the random variable y.

3.1 Kennedy-O’Hagan models for uncertainty quantification

In their seminal work, statisticians Kennedy and O’Hagan proposed a Bayesian framework to cal-
ibrate computationally expensive computer models from measured outputs of a physical system.

The first statistical model in this framework is a true process model:

vi =C((x;) +€&i, €1,...,6p b N(0,X%,). (3.1)
Here, y; = [yi1,...,%id)" € R< is a vector of observations from an experiment i € N : i < n.
The observations are assumed to be generated by an unknown process {(-) which is a function of
the experiment’s controlled (i.e., independent) variables x; = [z 1,...,Zin]T € R™, which we call
controls. For all experiments, the outputs of the unknown process are corrupted by independent
and identically distributed (i.i.d.) Gaussian measurement error € with an unknown variance-
covariance matrix X..
Though we can formulate high-fidelity representations of the true process ¢(-) from expert
scientific knowledge, building a model that captures every detail of a real-world system is im-

possible. Moreover, there will always be uncertainty between a mathematical model and the true
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process. Toward these ends, KOH propose an additive statistical model to explain the true process:

C(xi) = n(xi,0) +ad(xi; @). 3.2)

The first component in Eq. (3.2) is a mechanistic model n : R™ x © — R? that represents the
modeler’s working knowledge of the underlying physics of the true process. The mechanistic
model has two inputs: known control variables x; and unknown physically meaningful parame-
ters @ € © C RP. The second component of the HM is a data-driven discrepancy term a 6(-) that
accounts for bias between the true process and the mechanistic model as a function of the con-
trol variables and unknown hyperparameters ¢. Hence, Eq. (3.2) can be thought of as a “hybrid
model” because it combines physical intuition with hidden trends from data through n(-, -) and

a o(-), respectively.

Though vector-valued representations of the discrepancy term exist for KOH models in liter-
ature [86], we limit this introduction to scalar discrepancies that propagate in a known way to a
multivariate system. Moreover, we use a known projection coefficient a € R? to project the dis-
crepancy of the true process to the system outputs. The discrepancy is modeled using a Gaussian
Process (GP) in the original KOH framework. KOH employed a GP for the same reason normal
distributions are often used in statistics. That is, GP’s are convenient, flexible, and often realis-
tic. That being said, joint normality should be a feature of prior beliefs about (-) for this to be
a reasonable modeling choice. If this condition is not met, other nonparametric methods can be

used.

Combining Eq. (3.1) with Eq. (3.2) yields what we shall refer to as the (Bayesian) hybrid model
((B)HM) from here on out:
yi =n(xi,0) +ad(xi;P) + e (3.3)

12
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In this work, we deploy the KOH HM for cases where the mechanistic model is computationally
inexpensive and misspecified in functional form. Furthermore, we use the KOH framework to

quantify bias between an inadequate first-principles model and experimental data.

3.2 Gaussian process regression

A Gaussian process (GP) is a time-continuous stochastic process (i.e., a set of random variables
indexed by a continuous variable) for which every finite subset of random variables follows a
multivariate normal distribution. The distribution of a GP is the joint distribution of all the its
random variables, and as such, a GP can be thought of as an infinite-dimensional generalization
of a multivariate normal distribution. Furthermore, a GP is a distribution over functions with a
continuous domain [87, 88, 89, 90, 91]. We use the notation f(-) ~ GP(m(-),c(+,-)) to denote that

f() follows a GP distribution with mean and covariance functions

m(x) = E[f(x)] (3.4)

and

c(x,x') := Cov[f(x), f(X)], (3.5)

respectively. To model m(-) and ¢(+, -), we assume that the process is stationary. That is, we assume
that the process does not change when shifted in time. We impose this belief in the mean function
by setting m(-) = 0. We choose a zero mean function for ease of notation, though any function
that satisfies the property m(x) = m(x + dx) may be used. Furthermore, the covariance c(,-) is
modeled as

c(x,x') = a]%k(x, x') = U]%k:(x —x') (3.6)

13


http://dowlinglab.nd.edu

274

275

276

277

278

279

281

282

Bayesian Hybrid Models http://dowlinglab.nd.edu

where UJ% is an unknown common variance of the process and k(-, -) is a chosen correlation func-

tion that satisfies £(0) = 1.

For n evaluations of f(-), this GP is equivalent to the multivariate normal distribution:

[f(x1),-- -, f(xn)] ~ N(0,K),

K= (Kij)ZjZD Kij = O'chk(Xi,Xj; ¢), V(Z,j) S {1, .. .,n}2.

When the process is corrupted by Gaussian noise, i.e.,:

iid.
g(Xl):f(Xl)+5zv 51)"'58711}\/ N(O7O§))

the additive property of Gaussian distributions allows us to write:

[Q(Xl)v s vg(Xn)] NN(07K+ 25),

e = (Zsij)zj:17 by

= OEAU’ v(i,j) € {17"'7n}27

Eij

where A;; is the Kronecker delta function.

3.2.1 Kernel functions

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

We consider two correlation functions k(- -) to define the GP. The first is the Radial basis function

(RBF) also known as the Exponentiated Quadratic or Squared Exponential kernel [92]:

k(x,%') = exp [—; (”X;"/')Q] .

14

(3.12)
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253 Here, ( is a length scale parameter that determines how far apart x and x’ need to be before
264 f(x) can be very different from f(x’). Moreover, ¢ controls the smoothness of the process. A

285 generalization of Eq. (3.12) would be to write:

k(x,x") = exp [—(X —x)TA(x — X')] ) (3.13)
256 where A is an unknown symmetric positive definite matrix with the form A = diag(¢1,...,0n).
287 The second kernel we consider is the Matern 3/2 kernel:

k(x,x) = (1 n V?’”X[X”Q> exp [—W] . (3.14)

2.8 This correlation function is defined using a positive parameter v = 3/2 [93]. As v — oo, the

280 Matern kernel is equivalent to the RBF kernel.

200 3.2.2 Likelihood model

291 For the training inputs X = [x],...,x}], we write the corresponding observed values as g =
22 [g(x1),...,9(xn)]. For predictions outside the training data X* = [x|7, ..., x3"], let f* = [f(x}),..., f(x})]
203 denote the corresponding function evaluations. The joint distribution of the training data and the

204 predictions is:

g K + 25 K’X,X*
~N]| o, . (3.15)

£ Klx-x Klx-x-

205 Conditioning on the observed values g, the predictive distribution is:

£X, g, X* ~ N (1, K5). (3.16)

15
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where p% and K* are the predictive mean and variance, given b
uy f p g y

p;=Kix-x(K+3) 'g 3.17)

and

b =K|x-x- — K|x- x(K+ Z.) 'K|x x+, (3.18)

respectively.

3.3 Model calibration

For the HM (Eq. (3.3)) to be fully defined, we need to estimate all unknown model parameters

w = [07,¢T7, 0], also referred to as model calibration. For ease of notation, we use a scalar case of

the hybrid model.

3.3.1 Bayesian approach

We use Bayes’ rule to perform Bayesian calibration of the HM:

likelihood prior

(Dlw) p(w)

prw) plw
p(w|D) =

[ (Dlw)p(w)dew

posterior

(3.19)

evidence

In Eq. (3.19), we use D = {x;,y;}]~; to denote the training data. In the Bayesian approach, the
unknown HM parameters w are treated as random variables. Furthermore, prior information
about w is incorporated through a probability distribution p(w) called the prior. The training data
D are used to construct likelihood model p(w|D), which is always independent of the prior. The

evidence integral (i.e., marginal likelihood) quantifies the agreement between the data and the
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prior. Use of these terms as governed by Eq. (3.19) yields the posterior distribution p(w|D) or the

updated probability of observing the parameters after considering the data.

3.3.2 Simultaneously calibrated Bayesian hybrid model

The simultaneously calibrated BHM (hereafter referred to as the simultaneous model) is trained by
jointly inferring the unknown physically-meaningful parameters 8 and the model discrepancy

hyperparameters ¢. The Bayesian hierarchical model is:

y|0(x),e ~ GP(n(x,0), c(x,x; ) + 02 Ax x), (3.20a)
5(x)|p ~ GP(0,c(x, %5 9)), elo? ~ N(0,02), (3.20b)
0 Npe(')7 ¢ Np(;b(')a U? Npag(')a (320C)

where p,(-) denotes the probability distribution for some random variable z.

3.3.3 Incrementally calibrated Bayesian hybrid model

Kahrs and Marquardt [94] proposed the incremental identification of hybrid models by decompos-
ing a penalized least squares parameter estimation approach into a series of more straightforward
subproblems. Similarly, Wong, Storlie, and Lee [95] developed a frequentist approach to computer
model calibration that theoretically justifies dividing the model calibration problem into two steps.
Building upon these methods, we define the incrementally calibrated Bayesian hybrid model
(hereafter referred to as the incremental model). First, the glass-box model is fit to the experimental
observations ignoring the discrepancy. That is, we (incorrectly) assume the model explains the

observations:
y=n(x,0)+¢, (3.21)
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where ¢,, is a measurement error term. The hierarchical model for Eq. (3.21) is:

yl0, e, ~ N(n(x,0),02 ), (3.22a)
57]|0§n ~ N(Ov 0-2,7)7 (322b)
0 ~po(). 02 ~pe2 () (3.220)

In Eq. (3.22b), we impose a mean-zero Gaussian structure for the error, which we discuss the
implications of below.

In step two, the GP is fit to the residuals between experimental observations and the predic-
tions of the glass-box model r(x) = y — n(x, 8|D) where 8|D is a draw from the posterior p(8|D).
The model for the residuals is:

r(x) = 0(x) + &5 (3.23)

where €5 is another measurement error term. The hierarchical model for step two is:

r(x)|6(x), €5 ~ GP(0, ¢(x,X'; ) + 02, A 1), (3.24a)
5(x)|¢ ~ GP(0,c(x,x';$)), esloZ, ~N(0,02,), (3.24b)
[ Nptf)(')a 035 Npa'gé(')' (3.24¢)

Again, we impose a mean-zero Gaussian error structure for ¢5 which is technically misspecified.
This is the critical difference between the incremental model proposed in Eq. (3.21)-(3.24) and the
work of Wong, Storlie, and Lee. Furthermore, Wong, Storlie, and Lee proposed a more theoret-
ically sound frequentist approach in which nonparametric bootstrap is used to build confidence
intervals for 6 and (-) thereby circumventing the need to assume an error structure. The frame-

work proposed here does not use this method, as bootrapping is computationally unrealistic for
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iterative model development and online optimization. These more rigorous approaches should

be considered for applications with significant model discrepancies.

3.3.4 Frequentist approach to incremental calibration

Without prior information, frequentist inference is a computationally less demanding alternative
to MCMC. In step one, Bayesian calibration can be replaced with (non)linear least squares regres-

sion to obtain estimates of the physically meaningful parameters 6:

= ar minl = :— n(x; 2
6 = argmin —M(6), M(6) = (v —n(x:, )" (3.25)

62 = <1> M(6). (3.26)

2

In step two, the remaining (hyper)parameters ¥ = [0Z,,

¢7] can be estimated with maximum

likelihood estimation (MLE):

1/AJMLE =argmax L(v), L(¢) = logp(r|X) (3.27)
P

where log p(r|X) is the log marginal likelihood:

1 1
log p(r|X) = —§rT(K + 05261)711' -3 log |K + 0351] — glog 27. (3.28)

~

Here, r is an n-dimensional vector of the residuals [y; — n(x;, 8)]!;, I is the identity matrix, and

| - | is the determinant.

3.3.5 Posterior approximation

Because the evidence integral is high-dimensional, Eq. (3.19) is most often analytically intractable,

and the target posterior must be sampled from an empirical posterior constructed with MCMC.
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We compare three approximations for approximating the HM posterior below. All Bayesian model
calibration was performed using the open source Pyt hon package PyMC3 [96]. Specifically, Hamil-
tonian Monte Carlo implemented in the No-U-Turn Sampler NUTS) [97] was used via the PyMC3 . sample ()

method to estimate posteriors using 4 chains of 1000 samples each.

MO: Full estimation uses the traceplots of the model parameters w obtained from MCMC
to generate a sample set S of the empirical distribution. For the GP, each sample s is propa-
gated through the conditional mean and variance formulas, which necessitates recalculating the
prediction mean and variance across |S| = O(10%) samples of parameters. This computation in
PyMC3 [96] can take about 10 s per sample or about 3 hours to fully evaluate the model prediction
and uncertainty with 1000 samples. This method is included for completeness but is not discussed
further due to its computationally intensive nature. Moreover, three hours is too long for many

online applications and extremely inconvenient for iterative model development.

M1: Composite estimation uses the maximum-a-posteriori (MAP) (i.e., posterior mode) esti-

mate of the GP hyperparameters:

dmap  arg max p(d]¢) p(¢) (3.29)
Ped

and the samples from the sample set S of the remaining parameters.

M2: Composite estimation neglecting GP uncertainty only uses samples of the standard de-
viation of the random noise model to calculate the hybrid model uncertainty. This method has
computational complexity similar to that of M1 and helps study the performance of a hybrid
model in which the discrepancy function is a conventional machine-learning model that does not
provide uncertainty estimates. This is sometimes done under the name of Kriging interpolation

where the statistical interpretation of the GP kernel matrix is ignored [98].
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3.4 Benchmark models

We consider two references models to benchmark the HM.

The simple physics model represents a set of equations that do not completely capture all the
phenomena governing a process due to lack of knowledge, coarse-graining for tractability, etc.
These simplifications result in a systematic bias between experimental observations and model
predictions, leading to epistemic uncertainty in the system. We define the simple physics model
as:

y=n(x,0)+e, &~N(0, 03). (3.30)

The GP-only model is a purely data-driven surrogate model; it is calibrated using experimental
observations contained in a training set and does not incorporate scientific knowledge or physi-
cal intuition (unless a specialized kernel is employed). In our framework, the GP-only model is
defined as:

y=206(x)+e, e~N(0,02). (3.31)

3.5 Optimization under uncertainty with Bayesian hybrid models

Ultimately, we wish to use the Bayesian hybrid models for decision-making. Let a general utility
function u(y) encode the consequences of a decision x. For example, in the first case study, we
consider a ballistic trajectory, and u(-) is the proximity to the target. In the second case study, u(-)
is the value of a reactor effluent. In the context of Bayesian optimization, u(-) is an acquisition
function such as expected improvement, probability of improvement, or the lower confidence
bound.

A decision-maker seeks to maximize the expected value of the utility function over the random

variables w:
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x" = argmax E,[u(y(x))], (3.32a)

X

s.t. y(x) = 1(x,0|D) + 5(x; ¢|D) + ¢|o?. (3.32b)

s« Eq. (3.32) is a single-stage stochastic program if there is no recourse.

395 We now discuss approximations for the expected value. We start by drawing samples s € S

a6 from trace of the posterior.

Eo[u(0,6,¢)] = /@ /OO /OO u(0,0,¢) p(0,4,¢) dd de df (3.33a)
- /@ /_ ) /_ _u(8,6,) p(6,<16) p(6) do de B (3.33b)

1 oo o0
~~ @ SEZS/_OO /_OO u(6s,9,¢) p(0,e|0s) dd de (3.33¢)

se7  where p(d,|6,) is the joint conditional distribution for § and e given a sample s of the marginal

s posterior of 6.

399 Next, we exploit the fact that the kernels of the GP model 6(-) and observation error ¢ are addi-
a0 tive to define the random variable f := ¢ + ¢ which follows a Gaussian distribution with first and
401 second moments iy and UJ%, respectively. This allows us to approximate the remaining integral
w02 with a 7-degree Gauss-Hermite quadrature [99, 100], implemented via NumPy polynomial.hermite.

403 hermgauss ():
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Eo[u(8,6,¢)] Z/ ) p(f|0s) df (3.34a)
es

2
~ W%T'S'Z / w(B,, f) exp { (f Q_Ugf ) ] df. (3.34b)

seS T

w04 As Eq. (3.34b) does not exactly correspond to a Hermite polynomial, we use a change of variables:

[ —uy

o = f=pup+V204¢ (3.35)

£:=

s05 and integration by substitution to obtain:

2
Eo[u(6, \ﬂ 5 ;es: / (O, 115 + V20 1€) exp(—£€?) d¢ (3.36a)
ﬁrsl SGSjEJwJu( iy +V2008)) ( )

s where w; and ¢; are the weights and nodes contained in the set of quadrature points J and 1//7

a7 normalizes the Gauss-Hermite quadrature rule.

408 Using these approximations, we assemble the following optimization problem:
argmax ;o Z Z wj Us,j, (3.37a)
x ’ ’ \F ses jeJ
s.t. us; = U(ys,j)’ Vse S,jed (3.37b)
o = 10, 05) + m(x|®) + \/2(03|bs + 02]) &, Vs € S,j € (3:370)

w09 One disadvantage of optimization problem (Eq. (3.37)) is that the conditional GP mean and vari-
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ance must be evaluated for all samples s from the posterior trace. This is computationally expen-

sive and can be avoided by using a point estimate for ¢ such as the MAP.

Fig. 1 summarizes the alternative modeling and computational strategies in the proposed mod-

eling framework.
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Figure 1: Proposed framework for hybrid model calibration and optimization. This framework
supports both simultaneous and incremental hybrid model architectures as well as frequentist or
Bayesian statistical paradigms.
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4 Case study: Ballistics with Bayesian hybrid models

We compare several Bayesian hybrid model architectures and calibration methods in this first case

study using a ballistics decision-making problem.

4.1 Problem statement, models, and data

Consider a projectile with constant and known mass m (kg) launched from the origin (y = 0,
z = 0) using a cannon. The gunner manipulates two control variables: the firing angle 1 (°) and
the initial velocity vy (m s™1), to hit a target at y! = 100 m. However, the value of acceleration
due to gravity g (m s~2) and the full physics of projectile motion are unknown. Using information
observed in prior experiments, the gunner must recommend a firing angle 1* and velocity v to

hit the target despite parameter and epistemic uncertainty.

4.1.1 Ground truth model and training data

A complete physical model was used to simulate ground truth experiments. Assuming the pro-
jectile experiences drag due to air resistance, its flight may be described using four coupled differ-

ential equations along with initial conditions:

dv dy
m—t = =Cpvy, o =vy, vy(0) =vocos(y), y(0) =0 (4.38)
dv, dz
m L =—mg— CDUz|Uz’, E = Vs, ’UZ(O) = 9, Z(O) =0 (439)

where ¢ (s) is time, Cp (kg m™!) is the coefficient of drag and vy and v, (m s~1) are projectile
velocity’s horizontal and vertical components, respectively. We solve this initial value problem
by splitting the flight into two time domains: upward motion (¢ € [0,,]) and downward motion

(t € (tp,t¢]). We refer the reader to our prior work for a full description of the final solution for the
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horizontal displacement of the projectile [101]:

((x;) = C% In (Cp v cos(y) ty +m) (4.40)

where x; = [vp, ¢|T. The training data shown in Table 1 and Fig. 2 were generated via true process
¢(-) usingm=1kg, Cp =0.01 kg m~!, and g =9.8 m s~2 and then corrupted with i.i.d. mean zero

Gaussian measurement error with standard deviation o, = 5.

Table 1: Training data for the pro-
jectile motion experiments.

Legend Vo ) Vi
ms™H () (@m
a 71 85 43.24
b 60 25.7 118.18
c 75 60 143.21
d 70 30 159.79
e 80 36 174.14
f 90 45  181.67
(A) (B) 100 —r 200
— 80 - -T 175 E
g b 150 >
N 601 ~E— 80 125 g
- ° 2
= > 1oo§
=) > - s 9
Q> G 007 =
T ) 50 &
T, o
fl s 25 g

I
o

0 50 100 150 200 40
Displacement, y (m) Angle, y (°)

Figure 2: True trajectories simulated using the ground truth model. (A) Trajectories and impact
locations calculated using ground truth simulations (Eq. (4.40)). Green x’s are the six training data
labeled a-f. (B) The firing velocity and angle are plotted on the vertical and horizontal axes, re-
spectively. The contours of the heat map indicate the horizontal distance traveled by the projectile
tired from location y = 0.

Fig. 2 shows the importance of air resistance when simulating the ballistic trajectory. Specifi-
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s37  cally, Fig. 2 (B) shows that at a constant velocity, firing the cannon using a shallow angle (¢ < 45°)

&)

438 instead of its steeper complement will result in farther horizontal displacement of the projectile.
439 This case study aims to demonstrate how Bayesian hybrid models correct the bias of neglecting

a0  air resistance in the glass-box model.

w1 4.1.2 Bayesian projectile motion models

«2  We consider four model architectures for decision-making.

443 (1) The simple physics model predicts an ideal parabolic trajectory by neglecting air-resistance:
208
n(x,0) = — sin(y) cos(v)). (4.41)
9

ss  Thus, the simple physics model is linear in parameters when 6 = g~ '. The hierarchical represen-

w5 tation of the simple physics model is:

ylo.e ~ N(n(x,0),07), (4.42a)
glo? ~ N(0,02), (4.42b)
O ~U1073 1), o.~U(1,9). (4.42c)

ws  For all models, we use uniform priors to represent weak prior information about the behavior of

w7 the parameters in some known range of the values.

448 (2) The data-driven GP-only model does not explicitly use physical information to predict the

a9 distance traveled. The hierarhical modelis: g
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yl8(x),e ~ GP(0, 03k (x,x'; ) + 02 Ay xr), (4.43a)
§(x)|02, 0 ~ GP(0,03k(x,%x'; 1)), e|o? ~N(0,52), (4.43b)
o5 ~U(1,15), 0.~ Gamma(25,5), (4.43¢)

¢ ~U(1,15). (4.43d)

Eq. (4.43a) says that at any point x, y(x) is Gaussian with a mean of 0 and variance o7k(x,x'; {) +
02Ax . In Eq. (4.43b) we set the mean of §(-) to 0 because we do not have a prior expectation
that the observations are more likely to be positive than they are to be negative. The variance o3
expresses a prior belief that §(-) is not likely to be outside the range +205. The correlation k(-, -) is
governed by the Matern 3/2 kernel (Eq. (3.14)) with a single unknown length scale parameter /.
The wide range of the length scale ¢ reflects weak prior information about the smoothness of the
function. The Gamma prior enforces that the standard deviation of the noise is strictly positive.
In PyMC, the default Gamma distribution uses the rate-shape parameterization (i.e., E[o.] = 5,
V]o:] = 1). Empirical evaluations of predictive performance demonstrated that the Matern 3/2
kernel was superior to the RBF kernel. Thus, the GP-only model uses the Matern 3/2 kernel.

(3) The simultaneous hybrid model augments the simple physics model 7(-, -) with a GP. The

hierarchical model is:

ylo,e ~ GP(n(x,0),05k(x,x';£) + 02 Ax /), (4.44a)

glo? ~ N(0,02), (4.44Db)

0 ~ Gamma(0.56,5.6), o5 ~U(1,15), o~ Gamma(25,5), (4.44¢)
0 ~U(1,15). (4.444)
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Here, k(-, ) is the RBF kernel (Eq. (3.12)) with a single unknown length scale parameter ¢. We used

the RBF kernel because the simple physics model is smooth.

(4) The incremental hybrid model borrows the simple physics components of the simultane-

ous hybrid model in step one:

yl0. ey ~ N(n(x,0),721), (4.45a)
eglst ~ N(0, 721, (4.45b)
§ ~ Gamma(0.56, 5.6), 7-5771 ~ Gamma(5, 5), (4.45¢)

where 7., =1/ agn is the precision. In step two, the discrepancy function is fit to the residuals:

y —n(x,0)|0(x),e5 ~ GP(0,03k(x,x'; £) + 02 A x0r), (4.46a)
5(x)|¢ ~ GP(0,05k(x,%x';0)), eslo?, ~N(0,02), (4.46b)
o5 ~U(1,15), 0., ~ Gamma(25,5), (4.46¢)

I ~U(1,15). (4.46d)

To compare the incremental model with the simultaneous performance, the incremental model

also used an RBF kernel.

4.1.3 Optimization under uncertainty for decision-making

We consider optimization problem (Eq. (3.37)) with the goal of hitting a target located at y' = 100

m: 30
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2@3 .
Ns = ; sin(¢)) cos(v), Vse S (4.47a)

8; = m(x|map) + i/ 202 |pmap, Vi€ J (4.47b)

1 . .
Ysj =MNs + 05 +€j, Aysj =Ysj — yT, usj=1-— Emln(\Ay&jl,yT), VseS,jeJ (4470

The utility function u(-) scales linearly from unity for a direct hit to zero for a miss of y' m or more.
In this work, we solved Egs. (3.37) and (4.47) by enumerating solutions vy € [40,100] (m s~1) and
¥ € [1,90] (°) on a mesh grid 5490 points with a step size of 1 in each dimension to facilitate visual-
ization. For larger problems, we recommend gradient-based computation optimization [102]. We
highlight that the mechanistic model 7, is only indexed over posterior trace samples s € S, and
the GP plus observation error is indexed over quadrature nodes j € J. Thus, the MAP approx-
imation and Eq. (3.37) avoid the computational bottleneck of evaluating the GP prediction mean

and variance for all trace samples.

4.1.4 True model error

To evaluate the proposed models, we define the true model error (true error) as:

yerr(x) =Yy — y* (X) (448)

where y* is the hybrid model prediction and y is the data.

4.2 Results and discussion

Using the ballistic case study, we now demonstrate the advantages of the hybrid models and

discuss best practices.
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421 Hybrid models outperform the glass-box and black-box models by overcoming system-

atic bias utilizing limited data

Fig. 3 compares the performance of the Bayesian hybrid, simple physics, and GP-only models for
decision-making. The left column, Fig. 3 (A-E), are the results from the simple physics model; the
middle column, Fig. 3 (F-]), are the results using the GP-only model; and the right column, Fig. 3
(K-O), are results of the simultaneous hybrid model. Row 1, Fig. 3 (A, E K), plots the distance
traveled as predicted by the model. Row 2, Fig. 3 (B, G, L), shows the uncertainty in predictions.
Row 3, Fig. 3 (C, H, M), is the objective value of the single-stage stochastic program. The optimum
decisions are marked with purple dots. Row 4, Fig. 3 (D, I, N), shows yerr and the model used in
the framework Fig. 3 (A, F, K). Row 5, Fig. 3 (E, ], O), is the absolute value of the true error plotted

in row 4, which is representative of the utility function for the ballistic experiments.
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Figure 3: Results from the Bayesian decision-making framework. In each plot, the two control
variables, firing velocity vy (m s™!) and angle v (°), are plotted on the vertical and horizontal
axes, respectively. The dashed blue contour shows true experimental conditions needed to satisfy
the objective of hitting the target and corresponds to the y* = 100 m contour in Fig. 2. Green
x’s are the training data, and the purple dot is the optimum decision. The left column (A-E)
shows the simple physics model, the middle column (E-J) shows the GP-only model and the right
column (K-O) shows the hybrid model. Row 1 (A, E K) shows the distance traveled predictions
of the model. The red contour highlights decisions corresponding to the prediction y = 100 m.
Row 2 (B, G, L) shows the uncertainties in the model prediction. Row 3 (C, H, M) displays the
values of the optimization objective. Row 4 (D, I, N) shows the error between the ground truth
and the model prediction. Row 5 (E, J, O) plots3§1e absolute errors between the truth and model
predictions.
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The simple physics model misses the target with the highest absolute error of 14.24-9.3 m by
recommending an experiment at 1)*=72° and v$;=78 m s~! as shown by the purple dot in Fig. 3
(A-E). As highlighted in Fig. 3 (A), the simple model predictions are symmetric around )= 45°,
whereas the ground truth model (dashed blue line) which includes air resistance is not. Fig. 3 (B)
shows the prediction uncertainty for the simple physics model increases with vy. However, these
uncertainties are much smaller than the absolute error shown in Fig. 3 (E) because the simple

physics model neglects model-form (epistemic) uncertainty.

Decision-making using the data-driven GP-only model misses the target by 0.9+10 m with an
experiment proposed at *=75° and v}=78 m s~!, shown by the purple dot in Fig. 3 (F-]). The
order of magnitude improvement in absolute error over the simple physics model is because this
surrogate model interpolates the optimum experiment between observations in the training set at
[60°, 75 ms™! ] and [85°, 71 m s~ ! ] (Fig. 3 (])). However, the exclusion of physical information in
the GP-only framework leads to the possibility of several physically impractical predictions. For
example, at 1) = 45°, increasing the velocity above 90 m s™! (topmost green x in Fig. 3 (F)) leads
to a decrease in the horizontal displacement of the projectile which is contrary to physical intu-
ition irrespective of the consideration of air-resistance effects. Additionally, the GP cannot learn
the sensitivity of impact location to firing angle ¢» as noted by the mismatch between the elliptical
and U-shaped contours of the GP-only model predictions and the truth, respectively. In general,
due to their reliance on interpolation, pure ML models often perform poorly for prediction and
decision-making using small datasets or weakly informative priors [103, 104, 105, 106, 107]. Exper-
imental observations are often sparse or expensive for many (chemical) engineering applications,

and informative priors are challenging to specify. These limitations motivate hybrid models.

The simultaneous hybrid model is superior with the least absolute prediction error of 0.5+7.9

m for an experiment recommended at ¢*=13° and v;=64 m s~! shown by the purple dot in Fig. 3
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(K-O). The hybrid model’s glass-box (simple physics) component encodes physics-based informa-
tion, e.g., the form of the ideal trajectory of the projectile. The black-box (GP) component leverages
observations to learn the discrepancy between the simple glass-box model and the real process.
The horseshoe-shaped contours in Fig. 3 (K) highlight the hybrid model predictions are a linear
combination of the U-shaped simple physics model prediction and elliptical GP-only model pre-
diction. Moreover, the simultaneous hybrid model’s predictions, shown by the red contour in
Fig. 3 (K), overlap the dashed blue truth contour at several points, in contrast to Fig. 3 (A, F). Fig. 3
(L) shows the hybrid model’s prediction uncertainty also combines the shapes of the glass-box
and black-box models, Fig. 3 (B, G). In Fig. 3 (L), there are two regions with prediction uncertain-
ties less than 8 m, which are near training data. As a consequence of these improved predictions,
Fig. 3 (M) shows that two segments of the truth contour (dashed blue) pass through regions with
objective values above 0.9 or higher (recall that 1 is a direct hit, i.e., yerr = 0). Fig. 3 (N, O) shows
the true error and absolute true error contours both incorporate visual features from similar con-
tours for the glass-box Fig. 3 (D, E) and black-box Fig. 3 (I, J) models. Thus, in summary, Fig. 3
illustrates how hybrid models combine the advantages of both glass-box and black-box models to

enable more accurate predictions with limited training data.

4.2.2 Explicitly accounting for epistemic uncertainty leads to better decision-making.

Next, we compare two instances of the hybrid model: M1, which is the standard model, and M2,
ignores the GP uncertainty (i.e., treats it as a Kriging model). Fig. 4 compares the top 1% decisions
calculated with M1 and M2. Fig. 4 (A, B) are parity plots that compare the absolute values of the
true error |yerr| and the model prediction error |y’ — y*| on the horizontal and vertical axes respec-
tively. As expected, the means and standard deviations of absolute prediction errors are larger for

M1. Moreover, Fig. 4 (B) shows a handful of optimal decisions for M2 have absolute true errors
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above 15 m, which is not the case for M1 in Fig. 4 (A). Fig. 4 (C) sorts these top 1% decisions for
M1 and M2 from lowest to higher absolute error to facilitate comparisons. For example, approxi-
mately 78% of the top decisions for M1 have an absolute error of less than 6 m compared to only
61% for M2. Ultimately, Fig. 4 shows that including the GP prediction uncertainty in M1 helps

safeguard against poor decisions.

25
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Absolute true error (m) Absolute true error (m) Absolute true error (m)

Figure 4: Considering epistemic uncertainty improves decision-making with hybrid models. The
best 55 decisions (top 1% of objective values) are shown in this figure. Parity plots for the simul-
taneous hybrid model trained via (A) M1 (composite estimation) and (B) M2 (composite estima-
tion neglecting GP uncertainty). The horizontal and vertical axes represent the absolute values of
the true and model prediction errors, respectively. Each dot corresponds to a decision from the
Bayesian framework, and the error bars indicate the uncertainty corresponding to the decision.
(C) Compares M1 and M2 utilizing the cumulative density of the absolute true errors from the
parity plots (A, B) and its inset repeats the same comparison using a smaller batch of top 0.1% of
decisions.

To better understand the importance of epistemic uncertainty, Fig. 5 shows the objective and
uncertainty contours for M2 and is analogous to Fig. 3 (K, L) for M1. Neglecting GP prediction
uncertainty in M2 leads to large deviations between the best objective function value (darkest
solid blue contours) and ground truth predictions (dashed blue contour) in regions (I), (II), and
(III) of Fig. 5 (A). The prediction uncertainties of M2, shown in Fig. 5 (B), are now a function only
of the parameter variability, which leads to a maximum of 12 m uncertainty in regions (I), (II),
and (III). In the same regions of Fig. 3 (L), the inclusion of the GP uncertainty causes the total

prediction uncertainty to be as high as 16 m. The low prediction uncertainty values from M2 are
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Figure 5: Neglecting epistemic uncertainty leads to large deviations from the truth due to low un-
certainty predictions. In both figures, the two control variables of the ballistic experiment, firing
velocity vy and angle 7 are plotted on the vertical and horizontal axes, respectively. The dashed
blue contour shows true experimental conditions needed to satisfy the objective of hitting the tar-
get and corresponds to the 100 m contour in Fig. 2. Green x’s are the training data used to calibrate
the model and the purple dot is the optimum decision predicted by the framework. Simultaneous
hybrid model prediction means (A) and uncertainties (B) using M2 (composite estimation neglect-
ing GP uncertainty). Regions of largest deviation between the best model predictions (darkest
solid blue contours corresponding to objective values > 0.9) and the truth (dashed blue contour)
are highlighted using red boxes and labeled (I), (II), and (III) and may be compared with analo-
gous coordinates in Fig 3 (K, L, O). Note that Fig. 3 (O), the plot for absolute true errors is common
for both M1 and M2.

not significant enough to impact decisions in these regions, which also correspond to true errors
as high as 80 m as seen in Fig. 3 (O) thus leading to the higher maximum absolute true error for

M2.

4.2.3 Decision-making with incremental hybrid models

A modeler faces several nuanced choices while building a Bayesian hybrid model, including the
model structure. We now compare the performance of incremental hybrid models to the simulta-
neous hybrid models (analyzed previously). Fig. 6 explores an incremental M1 hybrid model and
is analogous to the columns in Fig. 3. For completeness, Fig. S1 in the SM explores an incremental

M2 hybrid model.
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Figure 6: Results from the Bayesian decision-making framework using the incremental hybrid
model and M1 (composite estimation). The control variables of the ballistics experiment, firing
velocity vg and angle ¢, are plotted on the vertical and horizontal axes, respectively. The dashed
blue contour shows true experimental conditions needed to satisfy the goal of the experiment,
corresponding to the 100 m contour in Fig. 2. Green x’s are the training data and the purple
dot is the optimum recommendation of the framework. (A) incremental model predictions. (B)
Uncertainty in incremental model predictions. (C) Objective values calculated via M1 (composite
estimation). (D) True error. (E) Absolute true error.

The incremental hybrid model surpasses the simultaneous model with an absolute error of
0.1410.7 m for an experiment predicted at 1*=73° and v3=71 m s~! as shown by the purple dot
in Fig. 6. As shown in Fig. 3 (K), the simultaneous model recommends a decision far away from
the training data. In contrast, Fig. 6 (A) shows the incremental model recommends a decision
between two observations (i.e., interpolates). Fig. 6 (B) shows the incremental model uncertainties
and has a maximum value of 35.1 m at [45°,41 m s~ |; this is 1.6 times higher than the maximum
simultaneous model uncertainty, which is the next highest and is shown in Fig. 3 (L). The regions
of lowest uncertainty surround all but one of the data points, the exception lies in the second
lowest region due to the influence of glass-box uncertainty. Outside of the range of the training set,

near the top and bottom of Fig. 6 (B), the contour values rapidly increase and adopt a horizontal
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shape further indicating the incremental model’s inability to extrapolate the effect of firing angle
1 on the systematic bias. In general, the contours in Fig. 6 (A-E) (incremental model) have similar
shapes to Fig. 3 (K-O). Recall, that the hybrid model shapes are a combination of the glass-box
and black-box models (see SM Fig. S2), and for the incremental hybrid model, the influence of
the black-box model is more pronounced (see SM Fig. S3). We hypothesize this is because the
incremental hybrid model trains the GP after calibrating (and fixing) the glass-box model. As

such, the black-box model needs to correct for larger residuals.

424 Summary

Finally, Fig. 7 compares the top 1% of decisions generated from all studied model architectures.
The horizontal axis shows the absolute true error |yer|. The vertical axis is the cumulative density,
i.e., the fraction of top decisions with an absolute true error less than the value on the horizon-
tal axis. Fig. 7, shows that the inadequate glass-box (simple physics) model makes the worst
decisions, followed by the black-box (GP-only) model for the reasons discussed above. The in-
cremental hybrid models perform the next best, and the simultaneous hybrid models perform the
best. Thus, in summary, this case study shows the benefits of hybrid models for more accurate
predictions and decision-making under uncertainty. The difference between including (M1) and
neglecting (M2) GP uncertainty is less influential than using an incremental versus simultaneous
hybrid model architecture. The incremental models sacrifice modest performance for computa-
tionally more straightforward inference calculations by decomposing the training into two steps.
In the following case study, we explore nonlinear regression to infer parameters in the glass-box
model. This further simplifies the computational workflow by eliminating the need for Bayesian

model calibration for highly nonlinear models.
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Figure 7: Hybrid models outperform the glass-box and black-box models in decision-making. The
top 1% of decisions (N=55) recommended using alternate model architectures are compared in
this figure utilizing the cumulative density of the absolute true errors. The red and blue are for the
hybrid simultaneous models (M1 and M2), the pink and grey curves correspond to incremental
hybrid models (M1 and M2), the green curve is for the GP-only model, and the black curve is for
the simple physics model.

5 Case study: Reactor optimization

5.1 Problem statement, models, and data

As a second illustrative case study, we consider parameter and epistemic uncertainty in a series-
like kinetic model used to optimize the controls of an isothermal batch reactor. In the kinetic
model, species A reacts to form the desired product B via a non-elementary reversible reaction,
which subsequently decomposes to undesired product C. The goal is to maximize the final con-
centration of B and minimize the concentrations of A and C without knowing the true kinetic

mechanism of the productive reaction. This is done by manipulating three decision variables: the
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e06 starting concentration of species A, c4g (M), the temperature of the reactor, 7' (K), and the duration

07 of the reaction, ¢ (h).

68 5.1.1 True kinetic model and training data

609 The true kinetic model (TKM) takes the form:

A==B-2,C (5.49)

K3

st where k = [k1, K2, k3] are the rate constants for each reaction computed with the Arrhenius equa-

611 tion:

Kp = Qp €xp <—%> , he{l,23} (5.50)

stz Here, a = [200 h™t, 100 M~2h~!, 50 h_l} are the pre-exponential factors, v = [10, 20, 15] (J mol 1)

s13 are the activation energies, and R (J mol~! K™1) is the universal gas constant.

614 The rates of reaction are described by a system of ordinary differential equations:
d
aea _ —KicA + K3cp, (5.51)
dt
dCB 3
o K1CA — KoCR — K3CB, (5.52)
deo
= KaCh, (5.53)

15 which are solved numerically with initial conditions

ca(t=0)=cag, cp(t=0)=0, cc(t=0)=0. (5.54)

st6 In this formulation, we have assumed that the kinetics are non-elementary. Following notation

17 introduced in Eq. (3.3), the vector-valued TKM ((-) is written as the numerical solution to the
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ODE system:

C(xi) = [ca(xi), ep(xi), co(xi)],
Xi = [thv CAO]a

tel0,1], T e[293,493], cap € [0,5.0].

(5.55)
(5.56)

(5.57)

sto The observation noise is assumed to be independent and identically distributed for all species and

620

621

622

624

6!

N

5

626

627

time, i.e.,:

€; = [€ai€Bi,€c), 1 €11,...,n},

e N0, T =02,

where . = 0.03 M.

Following Eq. (3.3), the observations y; are:

yi = C(xi) + €.

(5.58)

(5.59)

(5.60)

Training data D is generated by sampling the design space T x co with a Latin hypercube

design of twenty experiments. Experiments are randomly selected in sets of four to serve as the

training data for ten different cases, as described in Table S1 of the SM.

5.1.2 Hybrid kinetic model

A simple kinetic model (SKM) has series kinetics,

LN NN
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where k = [k, k2] (h™1) is the rate constant of reaction and is computed with pre-exponential

factor A = [A1, Ao] (h™!) and activation energy p = [p1, p2] (] mol™!) following Eq. (5.50):

Ky = Apexp (%), be {1,2). (5.62)

The rates of reaction are derived assuming the proposed kinetics are elementary,

dcy
— =k 5.63
dt 1CA, ( )
dc
ch = kica — kocp, (5.64)
dco
— =k 5.65
dt 2CB, ( )

with initial conditions in Eq. (5.54). This system of equations has a known analytical solution:

ca(t) = capexp (—kit), (5.66)
en(t) = - i a0 (exp(—hat) — exp(—kat)). (5.67)
2 — ki
co(t) = cap — cp(t) —cal(t). (5.68)
Thus, the SKM n(-, -) is
n(xia 9) = [CA(XZ'? 0)7 CB(Xiv 9), CC(Xia 0)]’ (569)
9 =\, pT]. (5.70)

In this workflow, nonlinear regression (Egs. (3.25) and (3.26)) is used to fit observations gener-
ated from the decisions to the SKM in Egs. (5.56) and (5.69), respectively, yielding estimates of

the parameters 6. Following frequentist inference of the SKM, the hybrid kinetic model (HKM)
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discrepancy a §(-) is trained on species B only, i.e., a = [0, 1, 0] in Eq. (3.3), using Bayesian GP re-
gression. The GP was constructed with a zero mean function m(x) = 0 and the Matern 3/2 kernel
(Eq. (3.14)) for the covariance term c(x,x’; ¢). The hierarchical model for Bayesian inference is

thus:

yl6(x),e ~ GP(0,03k(x,x'; £) + 02 Ax x1), (5.71a)
3(x)|p ~ GP(0,03k(x,X';£)),  elo? ~ N(0,02), (5.71b)
os ~ Gamma(2.5,1), 0. ~ Gamma(9,300), (5.71¢)
1,00, 05 ™ 14(0.1,1). (5.71d)

In Eq. (5.71), we used the generalized RBF kernel (Eq. (3.13)) to encode a prior belief in the smooth-
ness along each input variable. Moreover, a uniform prior over the length scale hyperparameters
was chosen to reflect weak prior knowledge in the smoothness of the process. Gamma priors
were chosen for the standard deviations because the Gamma distribution has a positive support.
The PyMC3 marginal likelihood implementation was used for GP regression. PyMC3.sample ()

provides the MAP estimate of the hyperparameters ¢yap where ¢ = [0, £7].

5.1.3 Optimization with the Hybrid Model

We now optimize the batch reactor to promote the formation and proliferation of the desired

product B by manipulating reactor temperature and batch time:

argmax wic(x;), (5.72a)

st. te0,1],T € [293,493), (5.72b)
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where w = [—1/2,1, —1/2|T and the optimized concentration profiles c(x;) are generated from the

model choice:

x) n(x;, 0) simple kinetics model, (5.73a)
C\X;) =

1n(x;,0) +ad(x;;¢) hybrid kinetics model. (5.73b)

5.2 Results and discussion

5.2.1 Benchmarking hybrid kinetic model predictive performance

Fig. 8 compares the SKM (8a, solid lines) and HKM (8b, dashed lines) concentration predictions
for case one at (i) 300, (ii) 350, (iii) 400, and (iv) 450 K holding the initial concentration at 2.0 M.
Shaded regions represent point-wise prediction intervals constructed using a nominal coverage
probability (NCP) of 68% [108]. The predicted concentration profiles of the remaining case studies
can be found in SM Figs. 54-512.

Fig. 9 reports the mean absolute error (MAE, pink), root mean squared error (RMSE, blue),
and actual coverage probability (ACP) of the SKM (solid) and HKM (stripes) predictions made in
Fig. 8 for case one. We define the ACP as the percent of total predictions within their respective
prediction interval across all temperatures. This process was repeated for all ten case studies,

whose respective bar charts are shown in SM Figs. 513-521.

Figs. 8 and 9 show the structural inadequacy of the SKM. The model-form uncertainty violates
the fundamental assumption of (non)linear least squares regression, thus motivating the HKM
framework. In Fig. 8b, the prediction bands of the HKM capture all of the observations, whereas
those of the SKM (Fig. 8a) do not. Furthermore, Fig. 9 reports the ACP of the SKM and HKM
as 69.7% and 100%, respectively. All of the HKM and 80% of the SKM cases show conservative

prediction, i.e., ACP > NCP. Namely, the ACP of cases six and eight are 67.4% and 66.7% and are
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Figure 8: Case one concentration of all chemical species vs. time for (a) SKM (solid lines) and (b)
HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C is shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (+65).

not permissible as the maximum type I error (i.e., false positive) rate exceeds the nominal level.
Figs. 8 and 9 demonstrate that the HKM outperforms the SKM in predictive accuracy. In
Fig. 8a, the SKM prediction lack of fit to the observations is evident. In contrast, the HKM predic-
tions (Fig. 8b) better fit the observations, indicating that the GP successfully corrects for epistemic
uncertainty in the SKM. This is supported by the MAE and RMSE values reported in Fig. 9. More-
over, Fig. 9 represents the observed trend in predictive error, in which the SKM error far exceeds
the HKM error. Across all ten cases, we observed 97.5% of the HKM MAE values were less than
those of SKM, averaging 2.6 times less error. Similarly, 95% of the HKM RMSE values were sub-

stantially less than those of the SKM, averaging 3.2 times lower error.
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Figure 9: Case one mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.

5.2.2 Optimization with the hybrid model

Next, we compared the HKM and the SKM for optimization under uncertainty. Table 2 shows the
error, defined as positive (negative) for underprediction (overprediction), of each model in opti-
mizing the objective function (Eq. (5.72a)) and the corresponding time and temperature decisions
for all ten cases. An error value of zero occurs when the optimal value is at a global minimum
(*) or maximum (**) in both the ground truth and model predictions. Experiments represent the
collection of training data generated from the Latin hypercube design decisions (Table S1) for each

case study.

Table 2 confirms that superior predictive performance of the HKM translates to optimization
under uncertainty. Here, the SKM underpredicts the TKM optimal time for all cases, whereas
the HKM misses 70% with 4.5 times smaller MAE. Moreover, the HKM MAE for computing the

maximum objective is 1.6 times smaller than that of the SKM. Cases five and nine are unique
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' Temperature, T (K) | Time, t (h) | Objective (M) | |

Case SKM HKM SKM HKM | SKM HKM | Experiments
1 0.00* 0.00* 0.32  0.00** | 0.22 -0.19 | 1,10,14,19
2 0.00* 0.00* 0.37 0.11 0.44 -0.38 |3,4,12,18
3 0.00* 0.00* 0.16 0.11 0.27 -0.02 |6,7,11,13
4 0.00* 0.00* 0.21 0.00** | 0.31 -023 | 1,5,15,16
5 -180.00** 0.00* 079 016 | 0.31 -0.03 | 11,12,16,17
6 0.00* 0.00* 0.16 0.11 0.25 -0.11 | 5,13,15,20
7 0.00* 0.00* 026 016 | 0.31 -0.15 | 2,6,17,20
8 0.00* 0.00* 0.21  0.11 0.24 -0.16 | 8,17,18,20
9 -180.00** 0.00* 0.79 0.00** | 0.16 -0.27 |1,5,9,16
10 0.00* 0.00* 026 0.11 0.10 0.09 9,11,13,14

Table 2: SKM and HKM deviation from ground truth optimal time, temperature, and objective
value for cases one through ten. Predictions made at global minima or maxima are indicated with
*and **, respectively. A deviation value of zero occurs when an optimal value is at a global mini-
mum or maximum for both the ground truth value and model prediction. Experiments represent
the collection of training data from the Latin hypercube design.

in that the SKM predicts the optimal temperature at the global maximum instead of the TKM
global minimum. We explain this behavior in further analysis and emphasize here that the HKM
effectively corrects for this extreme model-form uncertainty.

To further illustrate observations made in the previous discussion, Fig. 10 compares the objec-
tive function landscape for the TKM, SKM, and HKM for cases one (Fig. 10a) and five (Fig. 10b).
Case one (Fig. 10a) represents most of the SKM objective function landscapes in which the max-
imum objective is found at longer batch times and lower operating temperatures. Case five
(Fig. 10b) was chosen arbitrarily over case nine and shows that the SKM optimal objective is
achieved at shorter batch times and high-temperature operating conditions. The objective func-

tion landscapes of the remaining case studies are shown in SM Figs. S22-529.

48


http://dowlinglab.nd.edu

Bayesian Hybrid Models http://dowlinglab.nd.edu

TKM SKM

1.0 2.0 1.6

0.8
1.2
08

-
Zo 0.8 E
o 04 )
bt >
- 0.4 =
g ]
E 0.4 0.0 o
(= 0.0 g

0.2

HKM
. 2.0
16
=l 12
6F 0.8
0.4
: 0.0
-0.4
. -0.8
-12

00300 350 400 450 o 350 400 450 2 003007350 400 450
Temperature, T (K) Temperature, T (K) Temperature, T (K)
(a) Case One
TKM SKM HKM

1.0

0.8

Time, t (h)
Objective (M)

0.2

2.0 1.0 15 1.0 2.0
16 12 1.6
0.8 0.9 0.8
1.2 1.2
0.6
0.8 0.6 0.6 0.8
0.3
0.4 0.4
0.0
0.0 0.4 0.4 0.0
-0.3
-0.4 o6 -0.4
0.2 - 0.2
-0.8 _0.0 -0.8
-1.2 0.0 -1.2 0.0 -1.2

350 400 450 7300 350 400 450 300 350 400 450
Temperature, T (K) Temperature, T (K) Temperature, T (K)

(b) Case Five

0'0300

Figure 10: Objective of the TKM, SKM, and HKM as a function of time and temperature for cases
(a) one and (b) five. The objective function was computed with ¢4 = 2.0 M. The maximum value
of the objective function is marked with a black X.
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5.2.3 Why the simple kinetic model fails

To understand why the SKM predicts the optimal concentration at high temperatures and short
times in cases five and nine, we turned to the parameter estimates and training data of the SKM.
Table 3 reports the regressed parameters pi, p2, A1, and A2 of the SKM for all case studies. Fig. 11
plots the absolute true error of the objective as a function of initial concentration and temperature
along with the training data (black X’s) for cases one (Fig. 11a) and nine (Fig. 11b) at different
points in time (top to bottom). For demonstration purposes, case nine was chosen over case five
because it exhibited greater error. For consistency with prior analysis, the error of the maximum
objective at 2.0 M of the TKM and SKM are indicated with a circle and triangle, respectively. In

the SM, additional case studies are shown in Figs. S30-S37.

Together, Table 3 and Fig. 11 demonstrate that the SKM is not robust to random perturbations
in the training data. Table 3 shows that the activation energy of the first reaction exceeds that
of the second (A1 > A2) in cases five and nine only, which explains why the maximum objective
was observed at high temperatures and long times in Fig. 10b. This is consistent with Fig. 11, in
which the maximum absolute true error of case nine (Fig. 11b) exceeds that of case one (Fig. 11a).

In addition, Fig. 11 demonstrates that the absolute true error increases with distance from the

Case p1(s™)) p2(s™h) A (Kmol™) Ay (kJmol™) |

1 72.45 49.51 6.94 12.49
2 76.60 10.40 7.23 7.51
3 139.55 88.74 9.17 14.24
4 128.45 31.22 8.83 11.26
5 123.82 5.54 8.63 5.94
6 124.86 | 107.16 8.89 14.78
7 89.29 27.95 7.88 10.95
8 107.24 44.97 8.22 12.48
9 197.87 4.67 9.90 6.46
10 62.70 | 183.59 6.55 16.61

Table 3: Regressed parameters of the SKM for all ten cases.
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Figure 11: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case (a) one and (b) nine at four snapshots in time (top to bottom). Compared with
the previous analysis, the predicted maximum objective temperature and time holding the initial
concentration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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training data. This later observation highlights the need for more refined tools to enable the data-

limited design of experiments under epistemic uncertainty.

6 Conclusions and outlook

This work proposes a Bayesian hybrid modeling computational framework for decision-making
(optimization) considering aleatoric, parameter, and epistemic uncertainty for small datasets. Epis-
temic uncertainty is quantified using a Kennedy and O’Hagan-style Gaussian process (GP) dis-
crepancy function, which guards against overfitting and overparameterization while providing
a general hybrid model architecture that may be easily customized for many applications. The
Kennedy and O’Hagan paradigm, closely related to Kriging surrogate models and grey-box hy-
brid models, has grown in popularity over the past decade, especially in chemical engineering.
This work extends KOH hybrid models by using their posterior distribution (or an approxima-
tion) to define scenarios for stochastic programming.

This work uses two illustrative case studies — ballistics firing and reaction kinetics — to sys-
tematically explore Bayesian hybrid models for optimization under epistemic uncertainty. In both
case studies, the hybrid model successfully integrates an inadequate glass-box model (e.g., ne-
glects air resistance or assumes incorrect reaction pathways) with a GP discrepancy model to cor-
rect for the systematic bias. Both case studies show the hybrid model outperforms the alternative
models with small datasets for decision-making under uncertainty. Moreover, we compare simul-
taneous versus incremental hybrid model architectures. We also discuss computational approx-
imations to quickly calibrate hybrid models, which is essential for iterative model development
and real-time control and optimization applications.

These two illustrative case studies highlight several future research directions beyond new ap-

plications. While both case studies consider only a single GP discrepancy function, the framework
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can be extended to multiple GPs. Similarly, efficient gradient-based optimization with hybrid
models is an open research area [102, 109]. Future work should explore the behavior of Bayesian
hybrid models for sequences of experiments. Recently, we showed that physics-informed glass-
box models for thickness control in additive manufacturing require significantly less data to train
and globally gave more accurate predictions than black-box GP models [110]. Interestingly for
this specific application, there was sufficient training data at thin film thickness such that the GP
model was more accurate than the glass-box model. We suspect the glass-box models used in this
paper and Wang et al. suffer from structural inadequacy that could not be overcome with addi-
tional data, i.e., the inadequate glass-box models will fail to converge to the true process, whereas
a GP model will converge given enough data. This motivates several research questions related to
the convergence of hybrid models, how to select the optimal sequence of experiments, and how
to quantify the minimum dataset needed to reliably use a Bayesian hybrid model. Finally, this
paper compares Bayesian hybrid models against GP models, one of the best ML architectures for
small data sets. Future work should benchmark against more ML alternatives, such as deep neural

networks, random forests, and ensemb]es, especially in higher dimensional case studies.

7 Computer code availability

Requests for copies of the computer codes for private use should be directed to the corresponding

author.
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Ballistics Case Study
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Figure S1: Results from the Bayesian decision-making framework using the incremental hybrid
model and M2 (composite estimation neglecting GP uncertainty). The control variables of the bal-
listics experiment, firing velocity vy and angle 7, are plotted on the vertical and horizontal axes,
respectively. The dashed blue contour shows true experimental conditions needed to satisfy the
goal of the experiment, corresponding to the 100 m contour in Fig. 2. Green x’s are the train-
ing data and the purple dot is the optimum recommendation of the framework. (A) incremental
model predictions. (B) Uncertainty in incremental model predictions. (C) Objective values calcu-
lated via M2 (composite estimation neglecting GP uncertainty). (D) True error. (E) Absolute true
error.
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Figure S2: The additive hybrid model is a linear combination of the assumed physical glass-box
model and GP discrepancy function. (A) Predictions of the glass-box model. Notice that the
contour shapes are identical to the simple physics model predictions in Fig. 3(A). (B) Predictions of
the GP discrepancy function. Notice the qualitative agreement with the contours for the GP-only
model prediction in Fig. 3(F). (C) Values of the hybrid model predictions are a linear combination
of the values in (A) and (B). Note that this plot is identical to Fig. 3(K).
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(A) X Training data ® Max Objective (B) X Training data ® Max Objective
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Figure S3: Component predictions of the incremental hybrid model. (A) Predictions of the glass-
box model. Notice that the contour shapes are identical to the simple physics model predictions
in Fig. 3(A). (B) Predictions of the GP discrepancy function. Notice the horizontal contour lines
and orientation of the ellipse (unlike Fig. 3(F)) indicating high uncertainty in learning the effect of
firing angle 1) on the model discrepancy. (C) Values of the hybrid model predictions are a linear
combination of the values in (A) and (B). Note that this plot is identical to Fig. 6(C). (D) The GP
standard deviation has irregularly shaped contours surrounding the training data but is nearly
horizontal elsewhere which is another indication of the GP’s inability to learn the influence of
angle.
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Reactions Case Study

Case | Experiment | c49 (M) | T-0.65 (K)
1 10 1.1 369
13 4.3 432
18 3.1 306
1 2.3 324
2 3 1.5 387
2 35 468
12 2.7 441
18 3.1 306
3 7 1.9 396
13 4.2 432
6 4.5 315
11 1.7 342
4 5 4.7 297
15 3.7 423
16 1.3 450
1 2.3 324
5 17 39 360
12 2.7 441
11 1.7 342
16 1.3 450
6 20 2.1 333
15 3.7 423
13 4.2 432
5 4.7 297
7 2 35 468
6 4.5 315
20 2.1 333
16 1.3 450
8 8 29 414
17 39 360
20 2.1 333
18 3.1 306
9 9 2.5 405
5 4.7 297
16 1.3 450
1 2.3 324
10 13 4.2 432
14 4.1 378
11 1.7 342
9 2.5 405

Table S1: Training data for case studies 1-10 generated with a random sampling of experiments
1-20 in the Latin hypercube design.
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Figure S4: Case two concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (+0).
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Figure S5: Case three concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (+0).
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Figure S6: Case four concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (+65).
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Figure S7: Case five concentration of all chemical species vs. time for (a) SKM (solid lines) and (b)
HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (+0).
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Figure S8: Case six concentration of all chemical species vs. time for (a) SKM (solid lines) and (b)
HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (+0).

510


http://dowlinglab.nd.edu

Supplementary Material http://dowlinglab.nd.edu

v A ¢ C Pl vy A ¢ C Pl
" B — SKM = B ==+ HKM
2.5 2.5

~ (i) T = 300 (K) (ii) T = 350 (K) ~ (i) T = 300 (K) (ii) T = 350 (K)
£ 20 1 £ 20f 1
v Ls| am i g EEi i gEg,, Y 15»\\ /i_-al'i‘l'l_-! 7\‘ U N S—_
g b § | X4 (W4
£ 10t % 100 % 1t
£ 0.5} 2 0.5 \(‘l W A
S g 7l Tyl ! "\W{ —¥
§ 00 S ookadt s -ETFRT | e ¥IEI Y
o (8]

-0.5 — - -0.5 :

2.5 — 2.5 — —

~ (iv) T = 450 (K) ~ (i) T = 400 (K) (iv) T = 450 (K)
£ 20 £ 20f 11
< 1.5 < 15‘\ [ Bl | ‘\ A
. 150 - 15y E--mg I
S S ’ ey (VP !'!~l..
B 10t g Lok 1t __'_':.:;Qq
b = " sl 5. v v
5 0.5H 5 0.5"1 \‘ ,’r:'.—r 1l \\‘/0 ¢
[v] [v] < ]
S 00 € oops¥ VT g vyl 4T LIV Yy vy
o o

05 02 04 06 08 100 02 04 06 08 1.0 %% 02 04 06 08 1.00 02 04 06 08 L0

Time, t (hr) Time, t (hr) Time, t (hr) Time, t (hr)
(a) (b)

Figure S9: Case seven concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (+65).
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Figure S10: Case eight concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (+0).
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Figure S11: Case nine concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (+0).
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Figure S12: Case ten concentration of all chemical species vs. time for (a) SKM (solid lines) and
(b) HKM (dashed lines) holding the initial concentration of A at 2.0 M for temperatures (i) 300, (ii)
350, (iii) 400, & (iv) 450 K. Observed concentration of A, B, and C are shown with red triangles,
green squares, and blue diamonds, respectively. Shaded regions represent point-wise prediction
intervals (+65).
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Figure S13: Case two mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.
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Figure S14: Case three mean absolute error (MAE, pink) and root mean squared error (RMSE,
blue) for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual
coverage probability (ACP) across all temperatures is reported for both models.
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Figure S15: Case four mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.
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Figure S16: Case five mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.
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Figure S17: Case six mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.
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Figure 518: Case seven mean absolute error (MAE, pink) and root mean squared error (RMSE,
blue) for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual
coverage probability (ACP) across all temperatures is reported for both models.
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Figure S19: Case eight mean absolute error (MAE, pink) and root mean squared error (RMSE,
blue) for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual
coverage probability (ACP) across all temperatures is reported for both models.
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Figure S20: Case nine mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.
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Figure S21: Case ten mean absolute error (MAE, pink) and root mean squared error (RMSE, blue)
for the SKM (solid) and HKM (stripes) across temperatures 300, 350, 400, & 450 K. Actual coverage
probability (ACP) across all temperatures is reported for both models.
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Figure 522: Objective of the TKM, SKM, and HKM as function of time and temperature for case
two. The objective function was computed with c4o = 2.0 M. The maximum value of the objective
function is marked with a black X.
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Figure 523: Objective of the TKM, SKM, and HKM as function of time and temperature for case
three. The objective function was computed with c 49 = 2.0 M. The maximum value of the objective
function is marked with a black X.
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Figure S24: Objective of the TKM, SKM, and HKM as function of time and temperature for case
four. The objective function was computed with c49 = 2.0 M. The maximum value of the objective

function is marked with a black X.
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Figure 525: Objective of the TKM, SKM, and HKM as function of time and temperature for case
six. The objective function was computed with c49 = 2.0 M. The maximum value of the objective
function is marked with a black X.
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Figure S26: Objective of the TKM, SKM, and HKM as function of time and temperature for case
seven. The objective function was computed with c49 = 2.0 M. The maximum value of the objec-
tive function is marked with a black X.
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Figure 527: Objective of the TKM, SKM, and HKM as function of time and temperature for case
eight. The objective function was computed with ¢4 = 2.0 M. The maximum value of the objective
function is marked with a black X.
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Figure S28: Objective of the TKM, SKM, and HKM as function of time and temperature for case
nine. The objective function was computed with c4¢ = 2.0 M. The maximum value of the objective
function is marked with a black X.
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Figure 529: Objective of the TKM, SKM, and HKM as function of time and temperature for case
ten. The objective function was computed with c49 = 2.0 M. The maximum value of the objective
function is marked with a black X.
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Figure S30: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case two at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S31: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case three at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S32: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case four at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S33: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case five at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S34: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case six at four snapshots in time (top to bottom). For comparison with the previ-
ous analysis, the predicted maximum objective temperature and time holding the initial concen-
tration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S35: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case seven at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S36: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case eight at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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Figure S37: Absolute true error of the objective as a function of starting concentration of A, and
temperature for case ten at four snapshots in time (top to bottom). For comparison with the
previous analysis, the predicted maximum objective temperature and time holding the initial con-
centration at 2.0 M for the SKM and TKM are represented by a circle and triangle, respectively.
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