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Abstract. Quantifying biomolecular dynamics has become a major task of single-molecule
fluorescence spectroscopy methods. In single-molecule Forster resonance energy transfer
(smFRET), kinetic information is extracted from the stream of photons emitted by attached
donor and acceptor fluorophores. Here, we describe a time-resolved version of burst variance
analysis (BVA) that can quantify kinetic rates at microsecond to millisecond timescales in
smFRET experiments of diffusing molecules. Bursts are partitioned into segments with a fixed
number of photons. The FRET variance is computed from these segments and compared with
the variance expected from shot noise. By systematically varying the segment size, dynamics at
different timescales can be captured. We provide a theoretical framework to extract kinetic
rates from the decay of the FRET variance with increasing segment size. Compared to other
methods such as filtered FCS, recurrence analysis of single particles (RASP), and 2D-FLCS, fewer
photons are needed to obtain reliable timescale estimates, which reduces the required

measurement time.

Why it Matters. Single-molecule fluorescence spectroscopy, particularly in combination
with FRET (smFRET), has been extremely successful in quantifying the dynamics of
biomolecules. A toolbox of different methods is available to date that extracts dynamic
information from the stream of photons emitted from donor and acceptor dyes. Yet, some
of these methods require long integration times. In others, the presence or absence of
dynamics is difficult to judge by eye and only fits with kinetic models provide this
information. We therefore extended the popular method of burst variance analysis (BVA)
to overcome some of these limitations. The new method termed time-resolved BVA
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(trBVA) quantifies dynamics from 5 ps to 5 ms at high accuracy with as little as 5000
bursts. Static and dynamic heterogeneity can be distinguished from each other and even
dynamics slower than the diffusion time can be quantified. TrBV A is a natural extension
of classical BVA and therefore easy to implement by researchers in the field of smFRET.

The flexibility of proteins is key for their function. Resolving structural heterogeneity and
quantifying the timescales at which proteins interconvert between different structural states
has been a major goal in single-molecule fluorescence spectroscopy’ % > 4. SmFRET has
particularly been used in the past two decades to study conformational changes in
biomolecules>®. Most smFRET experiments use freely diffusing molecules. These experiments
are easy to realize and avoid tethering of molecules to surfaces. Naturally, a range of methods
has been developed to extract dynamic information during the time molecules reside in the
excitation volume of a confocal microscope (~ 1 ms). These methods range from dynamic PDA
(photon distribution analysis)’, over maximum likelihood (ML) approaches® 9 10 11 12 gnd
equivalent Hidden-Markov model fitting such as H*MM?** 14 and multi-parameter H*MM?, fitting
of FRET-histograms with different time binning®®, lifetime-filtered fluorescence correlation
spectroscopy (fFCS)Y” 8, two-dimensional lifetime correlation spectroscopy (2D-FLCS) 29 21
recurrence analysis of single particles (RASP)?**%, and lately a particularly promising approach
using Bayesian nonparameterics (BNP-FRET)?* 2526, Each method has its merits and pitfalls. For
instance, HYMM and ML directly use the photon arrival times to optimize the parameters of a
kinetic model and capture dynamics over a broad range of timescales. Dynamic PDA computes
FRET efficiency histograms by integrating the probability density that a molecule spends a
certain time in each state of a kinetic model. The fit quality in these methods is often judged by
generating FRET-distributions from the model fit and comparing them to the experimental FRET-
histograms. Other methods such as fFCS, 2D-FLCS, and RASP, first process the photon arrival
times by computing correlation functions, frequency domain maps, or FRET-histograms at
different delay times. The pre-processed data are then used for model fitting. As an advantage,
the presence of dynamics can already be inferred from the pre-processed data by eye, thus
simplifying a model guess. On the other hand, these methods often require long measurements
to obtain a high signal-to-noise in the processed data.

Not standardly accounted for in these methods is static heterogeneity due to dye
isomers or permutations of donor and acceptor positions. The latter is particularly prevalent in
smFRET as donor- and acceptor labeling is often done at cysteine residues, thus resulting in a
mixture of labeling permutations. Burst variance analysis (BVA)?’ is a popular tool to identify
both static and dynamic heterogeneity. Yet, BVA has mainly been used as a qualitative indicator

for dynamics® as kinetic rates remain inaccessible. Here, we present an extension of burst
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variance analysis (BVA)?’ termed time-resolved BVA (trBVA) that is also able to quantify kinetic
rates from smFRET experiments of freely diffusing molecules between 200 ms™ (5 ps) and
0.2 ms™ (5 ms) with an error of a factor of 1.5. The method does not require long measurements
and is easy to implement. To benchmark the robustness of trBVA, we performed smFRET
simulations of dynamic particles and also applied the method to real single-molecule data of
labeled DNA and protein. We hope that trBVA will be a useful extension of the current smFRET

analysis toolbox to identify biomolecular dynamics at timescales from micro- to milliseconds.
Methods

Theory. A photon burst i from a biomolecule labeled with donor (D) and acceptor (A) that
diffuses through the confocal volume of a microscope contains d; donor and a; acceptor
photons. The total number of detected photons in the burst is n; = a; + d; (including
background photons) and the total number of bursts is N. We denote the uncorrected FRET
efficiency as € and the corrected FRET efficiency as E (corrected for the differences in quantum
yield of the dyes, cross-talk between channels, background, and acceptor direct excitation — see
section Burst identification and data pre-processing). The idea of classical BVA is to partition
photons of a burst into segments of m (typically m = 5) consecutive photons. For each of these
M; = |n;/m] photon segments, the uncorrected FRET efficiency €;j (segment index j) is

computed. Finally, we then calculate the variance of € using all segments of the N bursts

L M; 2
st = [ 122 (e = (o))

. 1 M;
with (e) = SN Y ijl €jj = Y ia/Yrn; . (1)
i=1 L

The expected FRET variance of these segments in the absence of both dynamic and static
heterogeneity?, i.e., assuming the presence of only a single state, is due only to shot noise, and

is given by

52 = 0=

m

(2)

The excess variance due to conformational heterogeneity is then given by the difference
between eq. 1 and 2

1 Notably, eq. 2 is also correct in the limit at which multiple states interconvert at timescales faster than the inter-
photon time.
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§2 =5%—02. (3)

Importantly, the analysis can also be performed with a subset of the N bursts. For instance, in a
FRET-resolved trBVA version, the excess variance (eq. 3) is computed for a set of bursts that lie
within a chosen FRET efficiency range. If S2 > 0, the FRET variance exceeds the shot noise
expectation, thus indicating static or dynamic heterogeneity. The basic idea of trBVA is to vary
the length m of the photon segments (Fig. 1A). Clearly, both variances s? and 2 will change
with m, but these changes will not be identical such that S?is itself a function of m. This
function therefore contains information about the heterogeneity among and within bursts,
which either is static or dynamic, i.e., time dependent. To extract this information, we derived
an analytical expression for the excess variance of the subset of m-photon segments with
specific time duration t, which we call the “t-specific excess variance” (Appendix I). Here, t is
defined as the length of the time interval between the first and the last photon of a segment.
Writing the FRET autocorrelation function as g(t) = (5€(0)de(t)) with §e(t) = e(t) — (€), we

obtain

1 4m=2) ;t oy~ g0, 2m=2)(M=3) ft,. N i gt
Bs?(m, 1) = = [2 9(0) + 52 [ (¢t + T [Tt — g (¢) dt | @
Importantly, for the ensemble of all m-photon segments, the time window tis a random
variable with a conditional probability density function P(t|m). Once P(t|m) is known, the

excess variance due to conformational dynamics as function of m can be calculated from:

S2(m) = [ P(tlm) As?(m, t)dt. (5)

The change of S? with increasing m can therefore be computed by knowing the autocorrelation
function (6€(0)8e(t)) and the distribution P(t|m). The autocorrelation function can easily be
computed for any kinetic model. If Kis the rate matrix of the model, p.4 is the population
vector of conformational states at equilibrium (Kp., = 0), and € is a diagonal matrix with the
same dimensions as K whose diagonal elements are the FRET efficiencies of each

conformational state, then the FRET autocorrelation function can be expressed as®
2
g(t) =1TeeXfep,, — (1Tep,q), (6)

where 1 is a vector of ones. For instance, a model, in which two states with FRET efficiencies €,

and €, interconvert with rates k;, and k54, has the correlation function

k12k21

(852 o—(kiz+ha)t i 2y _
g(t) = (fe*)e™Krzti2)l with (§e®) Frasthor)?

(€2 — €1)2. (7)
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A fit of S? with eq. 4, 5, and 7 would provide the two unknown quantities (§€2) and k,ps =
ki, + kyq if P(t|m) was known. In fact, this distribution can be extracted from the experimental
data directly. We first determine the time duration of all photon segments of length m for all
bursts or a subset of bursts within a chosen FRET window E; < E < E; + AE in the FRET-
resolved version. A histogram of these times H(t;|m) for equally spaced time bins t; with i =
{1,2,3, ..., K} then provides a reasonable estimate for P(t|m). For data fitting, we therefore use

eq. 5 in discrete form
§% =YK H(t;im)As?(m, t;) /2, H(t;|m). (8)

For completeness, we also provide the explicit forms of As?(m, t) for a 2-state and a 3-state
system in Appendix Il. For comparison, we also computed the donor-acceptor cross-correlation
function Gp, (1) = (np (t)nu(t' + 1))/(np){(n,) for the selected bursts. Here, np (t") and n,(t")
are the photon counts at time t’. To extract the relaxation time, Gp,(7) was fitted with the

empirical function
f() = a(1— e FopsT) + be=@/t) 4 ¢ (9)

Here, k,ps = k12 + kyq is the observed rate of conformational changes, tp is an empirical

timescale to describe the decay of Gp4(7) due to diffusion, and S is a stretching exponent.

Data simulation. To test the accuracy of trBVA in extracting kinetic rates from single-molecule
FRET experiments, we simulated photon time traces of diffusing particles that switch between
two conformational states (1 and 2) described by kinetic rate coefficients k;, and k,;. The FRET
efficiencies of the two states were E; = 0.1 and E, = 0.9, respectively. The diffusion of the
particle through the confocal volume was modelled via Brownian dynamics simulations with the

software package Fretica (https://schuler.bioc.uzh.ch/programs/), developed by Daniel Nettels

and Benjamin Schuler (University of Zurich). The Stokes radius of the particles was set to 4.3 nm,
which corresponds to a medium-sized protein, and the particles diffused in a solvent with the
viscosity of water at 25°C, i.e., 1 mPas, resulting in a diffusion coefficient of 5 1073 umz/us. The
simulation was initialized by randomly placing particles in a simulation sphere with a radius of
R = 3 um. The number of initial particles was drawn from a Poisson distribution with a mean
ng = %chO with a bulk particle concentration of ¢, = 50 pM. The simulation was performed in
spherical coordinates assuming for simplicity radial symmetry of the confocal volume, which is
located at the origin. Brownian motion is simulated using:

r(t + At) = r(t) + %A)t + Ar. (10)
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Here, r(t) is the radial distance at simulation stepst = 1...T, where T is the length of the
simulation in steps of At = 1 ys, i.e., the time between two simulation steps, D is the diffusion
coefficient, and Ar is a random distance drawn from a normal distribution with zero mean and a
variance g, = 2DAt. Each particle is simulated until it leaves the simulation sphere. To ensure
a constant mean concentration of particles near the center of the sphere, the particle loss at the
sphere’s surface is compensated by periodically (periodicity Ty.,,) placing new particles inside
the sphere near the boundary. The distribution of new particles c,,,, (') that entered the sphere

after time T,,,,, is obtained by solving the radial diffusion equation

ac_D(azc_l_zac) (11)

ac " \orz ' ror

with the initial condition c(r < R,t = 0) = 0 and the boundary conditions c(r = R,t) = ¢, and
c(r - 0,t) = 0. The solution is known? and given by
c(r,t)

2R
——=14+=>%
Co nr Zn—l

="

sin (%) exp(— Dn?m?t/R?) with Cppy, (1) = ¢(1, Tpew).  (12)

The mean number of new particles entering the sphere is then computed by integrating over the

volume of the sphere

n 6 1
Z—eow =1+ X0 exp(— Dn?m?Ty,,,, /R?). (13)
After each time interval T;,,,,, @ random number of new particles was drawn from the Poisson
distribution with mean n,,,,. The particles were placed at radial distances randomly chosen
from the distribution with the density function P,.,, (1) = 411? Cyoy () /Mpew for r < R. In
total, we simulated particle trajectories for 1800s. Once the particle trajectories were

simulated, we added conformational dynamics simulated according to the rate equation

v _
ol Kp (14)
where p is the population vector of four states: low FRET (DA;) with FRET efficiency E;, high
FRET (DA,) with FRET efficiency E,, donor-only (D), and acceptor-only (A4) in the basis
{D,DA,,DA,, A}. The rate matrix Kis a combination of the rate matrix K, for conformational
transitions between DA; and DA, and the rate matrix Ky, describing photophysical effects,

photobleaching in our case,

K= KO + I(T)Kbl with (15)
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0 0 0 0
_ [0 —kiz ky1 O
Ko=lo kyp —ky o 16
0 0 0 0
0 kaE1 kaEZ 0
[0 —keEy — k(1 - E) 0 0
Ko =1 g 0 kB, —ky(1—E,) 0 (17)
0 kq(1—E;) ky(1-Ey) 0

with the bleaching rates k, and k; for acceptor and donor fluorophores located at the origin
(r = 0), respectively. We assumed a bleaching timescale of k, = k; =5 X 10™* ps~! for the
simulations. The position-dependent profile I(r) that accounts for the illumination intensity at

different positions in the confocal volume is given by

2
I(r) = exp (— %) with wy = 0.4 um. (18)

For each particle with the diffusion trajectory r(t) and starting time t,, a random state
trajectory s; is simulated according to eq. 14-18 with the program Fretica. The initial state s(t;)
was chosen randomly according to the initial probabilities for the four states given by the vector
Po With the same basis as p. We chose an equal distribution of high- and low FRET species and

the same number of donor-only and acceptor only molecules with pgy=

k21 klZ

T
(0.1 08— 08— 0.1) . In addition, we set the total photon rate at the center of
ki2+k21 ki2+k21

the excitation volume to A,y = 0.4 s~ and introduced realistic background photon rates of
Ag = 5.6 1073 ps~1 for the donor channel and 2, = 3 1073 us™?! for the acceptor channel. To
model the experimental situation in a realistic fashion, we also introduced different detection
efficiencies for the dyes (y = Qun4/Qanq = 1.16), where Q, 4 and 1, 4 are the quantum yields
and detection efficiencies for acceptor and donor dye, crosstalk (leakage) between of donor
photons in the acceptor channel (§ = 0.054), and the probability to directly excite the acceptor
with the donor excitation laser (@« = 0.048). As we introduced donor-only and acceptor-only
molecules together with the possibility of photobleaching, we also simulated pulsed-interleaved
excitation (PIE) of both dyes with yp;z = 2.%%° To this end, experimental instrumental response
functions (IRF) were used to generate the photon distributions after donor- and acceptor
excitation within one PIE period. Finally, a TTTR (time-tagged time-resolved) file containing the
simulated photons was generated. Simulations of a 3-state model were performed in the same

manner.
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Burst identification and data pre-processing. After simulating photon traces based on the kinetic
model described above, the TTTR-file was processed with standard single-molecule analysis
tools® for generating corrected FRET efficiency histograms. Importantly, for the calculation of
variances for BVA, raw photon counts, without correction, were used to calculate apparent FRET
efficiencies, also known as proximity ratios. Unless stated otherwise, the photon trajectory was
binned into time windows of 100 us. A burst is defined as a collection of consecutive bins with
more than 2 photons per bin and a total photon number of at least 100 photons after donor
excitation. The corrections included background, differences in the brightness of donor and
acceptor, channel crosstalk, and acceptor direct excitation. The procedure is described in detail
elsewhere® *, The corrected photon numbers of donor (npp) and acceptor (np,) after donor

exciation were used to compute the FRET efficiency of the burst via

F—_"Da (19)

npa+npp

To exclusively identify molecules that contain both dyes, we computed the stoichiometry ratio

for each burst via

Npa+Npa (20)
NpAtNpa+YpIENAA

Spig =
Only bursts with Sp;z < 0.65 were retained for further analysis. Since bursts were identified
based on photon counts after donor excitation, molecules without donor were automatically
excluded from the analysis. To also exclude bursts in which the acceptor bleached during the
transit of the particle through the confocal volume, we further selected bursts in which the

mean detection time of photons was similar after donor and acceptor excitation. We define

apig = (tpex) — (taex) (21)

where (tpex) and (tse,) are the mean detection times (in ms) after donor and acceptor
excitation, respectively. Including shot noise, the asymmetry value ap;; has a standard deviation

given by

T 1 1
Opig = —= 22
PIE Zﬁ\/n’DD"'n’DA niga ( )

where the prime indicates the uncorrected photon counts. We chose a restrictive threshold of

oprg < 0.15 to exclude bursts with bleached acceptors.

Results
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Global trBVA. To test the ability of trBVA (Fig. 1A) in quantifying timescales of conformational
dynamics, we simulated the photon emission process for freely diffusing molecules in a photon-
by-photon manner. We modeled molecules that switch between two conformational states 1
and 2 with “forward’ rate k,, and ‘backward’ rate k,;. The corrected FRET efficiencies (E) of the
two states were E; = 0.1 and E; = 0.9, which corresponds to the uncorrected values €; = 0.2
and €, = 0.9. For simplicity, we assumed identical rates in both directions. At a slow exchange

1 i.e., one transition per ten milliseconds on average, the FRET

rate of k1, = ky; = 0.1 ms™
efficiency histogram shows two well separated peaks with shot-noise limited width at the
expected FRET efficiencies (Fig. 1B). Intermediate values between the dominant peaks become
prominent with increasing exchange rates, as more molecules change their conformation while
diffusing through the confocal volume. At higher rates, the FRET peaks start to coalesce, and at
the highest exchange rate of k;, = k,; = 50 ms™!, the FRET peaks merged completely, thus
giving the impression of a single conformational state. To analyze these data with trBVA, we
computed the variance of FRET fluctuations by partitioning bursts into consecutive segments
with m photons (Fig. 1A). As outlined in the theory section, computing the variance of these
segments and subtracting the shot noise contribution one would have if there was a single state
with a FRET efficiency equal to the population weighted mean of the states, provides the excess
variance S? (eq. 1-3). Figure 2A demonstrates that S2 first increases and then decreases with
increasing size of the photons segments m. The trBVA traces obtained from the data (Fig. 2A)
can now be used to determine the apparent relaxation time t = (kq, + k,;)™! of the
conformational fluctuations using the experimentally determined distribution H(t;|m) of the
time duration of m-photon segments. Examples are shown in Fig.2B. For m = 2, the
distribution is a decaying function as expected based on photon counting theory®. For higher
values of m, H(t;|m) shows a clear maximum due to the fact that a successive emission of
several photons causes a delay between the first and the m’th photon that leads to the rise at
short times. To fit the trBVA traces, we use eq. 4, 7 and 8 to compute S? for each value of m and
minimize the least squares difference y2 = Zm[Serperiment(m) - szit(m)]z. The fit contains
two parameters, the amplitude of the FRET-correlation function (§€?) and the kinetic rate
kops = k12 + ko1 (eq. 7), i.e., the eigenvalue of the rate matrix. The fits provide an excellent
description of the experimental data over a broad range of exchange rates (Fig.2A). An
alternative method to determine kinetic rates would be to compute the FRET autocorrelation
function directly or analogously, the donor-acceptor cross-correlation
Gpa(t) = (ny(®)np(t + 7)) /(ny){np) for the data (Fig. 2C). Distance dynamics lead to a rise of
the cross-correlation amplitude since donor and acceptor signal are anti-correlated. Yet, the
finite burst duration causes an additional decay in Gp4(7) at the timescale at which molecules
diffuse through the confocal spot. This diffusion amplitude dominates Gp,(7) and slow
dynamics at timescales close to the diffusion are difficult to identify (Fig. 2C). This problem is

circumvented with trBVA.
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A comparison of the apparent relaxation times 7 = (kq; + kp;)~ ! from the trBVA-
analysis with the true values used in the simulation demonstrates an excellent agreement
(Fig. 2D). For dynamics across three orders of magnitude (5pus to 5ms), trBVA provides
estimates of T with less than 2-fold deviation from the ground truth (Fig. 2E). Even dynamics
slower than the diffusion of molecules through the confocal spot can be obtained. The reason
for this surprising result is that S? is bounded by two limits. For dynamics much faster than the
experimental inter-photon time, the lower boundary is given by S?(m) = 0 (Appendix IlI). Yet,
for extremely slow dynamics, the FRET auto-correlation function is approximately constant
(g(t) = (5€?)) but different from zero. Under this condition, the excess variance is given by
§2 = (6€?)(1 — m™1), which is an increasing function of m and represents the upper boundary
(Fig. 2A, top). Notably, this increase is not in conflict with the central limit theorem. The total
variance indeed decreases with increasing m (Appendix lll). Instead, the increase of S? results
from an inaccurate estimate of shot noise (eq. 2) in the presence of static heterogeneity
(Appendix Il1). Importantly, even slight deviations from the (1 — m~1)-dependence requires a
finite decay time in g(t), which explains the success of trBVA at slow timescales. Notably, this is
a helpful feature to identify static heterogeneity. For instance, labeling proteins with donor and
acceptor is often done via two cysteine residues, which unavoidably results in two labeling
permutations. If the molecular brightness of the dyes differs in the two variants, they will exhibit
different FRET efficiencies and S?will follow the (1 —m™')-dependence. In comparison to
trBVA, the relaxation times from the donor-acceptor cross-correlation function Gp,(7) are
highly inaccurate at the diffusion timescales (Fig. 2D).

Compared to the 1.5-fold error in trBVA, the cross-correlation analysis deviates from the ground

truth 7-fold at a relaxation time of 1 ms.

FRET-resolved trBVA. Similar to regular BVA, also the time-resolved version can be used to
investigate dynamics in different regions of the FRET efficiency histogram. In FRET-resolved
trBVA, the segments of bursts within a particular FRET-range are analyzed. Importantly,
selecting bursts within a FRET range means selecting trajectories according to their mean FRET
efficiency. In a two-state system, S2 for bursts with FRET-values different from the ensemble
average will therefore be biased. Bursts with FRET-values substantially lower than the ensemble
average will contain trajectories with longer dwell times in the low-FRET state and shorter dwell
times in the high-FRET state (Fig. 3A). The opposite happens when bursts with substantially
higher FRET than the ensemble average are being selected. As the observed rate is a sum of
forward and backward rate, the faster rate, i.e., the shorter dwell time, dominates. Hence, at
the flanks of the FRET efficiency distribution, the observed exchange rates will in general be
higher than the correct value (Fig. 3B, top). The steep change of the rate at the flanks of the
distribution is therefore indicative of leaving the FRET regime in which dynamics occur. Similar

information is contained in the amplitude (§€?) of the FRET auto-correlation function. For a

10
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two-state system, the populations of both states in a trajectory with an arbitrarily chosen
uncorrected FRET-value € are given by p; = (€, — €)/(e, —€1) and pj = (€ — €1)/(e; — €1),
respectively. The primes indicate that these occupancies differ from those of the whole
ensemble of molecules. The amplitude of the FRET-autocorrelation at this FRET-value is (§€2) =

p1 py(€; — €1)? (see also eq. 7), which can be re-written as
(6€%) = —(€— €1)(€—€). (23)

Hence, the amplitude follows a second-order polynomial in € where the roots identify the
position of the states (Fig. 3B). Notably, this relationship is independent of the true relative
populations of the two states (p; and p,). The amplitude analysis is therefore suited to identify
the (uncorrected) FRET-values of the interconverting states €; and €,. In general, FRET-resolved
trBVA experiments can be used to identify the positions of FRET states. However, kinetic rates
should always be inferred from S2 using all bursts and not from FRET-resolved trBVA! This is
important as the FRET-dependent rates will always exhibit a minimum at a FRET-value centered
between €, and €;, i.e., the point at which p’; = p’,, irrespective of the abundance of both
conformers in the whole ensemble. Moreover, the observed rate at the minimum is higher than
the eigenvalue of the system (Fig. 3B, top) because trajectories without transitions (bursts with
€, and €,) are underrepresented in this FRET range. To exemplify this deviation, we simulated a
more complicated system in which three states with different FRET efficiencies (E; = 0.1, E, =
0.5, E5 = 0.9) interconvert at different timescales (Fig. 3C). We assume that state 1 and 2

1 whereas state 2 and 3

exchange at a slow timescale with the rates ki, = ky; = 1ms™
exchange an order of magnitude faster with k,; = k3, = 10 ms~1. A comparison with the case
in which exchange is hundredfold slower than the diffusion time through the detection volume
shows how drastically dynamics can alter the appearance of FRET efficiency distributions (Fig.
3C). In the presence of fast exchange at two different timescales, the FRET efficiency histogram
shows a major peak at an apparent FRET efficiency value of 0.7, a minor peak at 0.1, and a floor
of events in between the peaks. In a quantitative global analysis, we first computed S? for all
bursts. As expected, the trBVA trace increases and decreases with m (Fig. 3D). A fit with a single-
exponential FRET-correlation function (eq. 4, 7, and 8) already provides a reasonable fit (Fig. 3D,
top). Yet, the residuals clearly show discrepancies between data and fit. Indeed, a fit with a
double-exponential correlation function, which corresponds to the correct 3-state-model
(Appendix II) provides an excellent description of the data (Fig. 3D, bottom) and gives the
correct eigenvalues (Fig. 3E). To exemplify how static heterogeneity would manifest in trBVA, we
set the fitted rates in the correlation functions to zero (Fig. 3D). The comparison shows that
dynamics lowers the amplitude of the trBVA trace and introduces the decay at large m. In the
more qualitative FRET-resolved rate analysis, we calculated trBVA traces for bursts with

different FRET efficiency values. An empirical fit with a single-exponential FRET correlation
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function provides apparent exchange rates for the individual FRET efficiency values. These rates
exhibit a non-trivial FRET-dependence (Fig. 3E). A minimum is observed at FRET-values between
state 1 and 2. Starting from the minimum, the exchange rates increase towards lower FRET-
values as expected (compare to Fig. 3B, top). However, while the rates also increase towards
higher FRET-values, a flattening of this dependence between state 2 and 3 is found. The position
coincides with the position of the major peak at high FRET, which can be taken as indication that
molecules in this peak dynamically switch at a fast timescale. Yet, the analysis is qualitative as
the rates at both minimum and flattening point are substantially higher than the eigenvalues
(Fig. 3E).

As a rule of thumb, steep changes in exchange rates along the FRET coordinate indicate
regions with biased trajectories and therefore regions close to the positions of the FRET states.
FRET-independent exchange rates (minima or flat regions in the rate profile) indicate
trajectories with strong exchange between states. Yet, care has to be taken as (i) flattening of
the rate profile might not always be clearly visible and (ii) states in exchange rarely have
identical populations such that exchange rates should not be inferred from the rate-FRET profile

but always from the trBVA decay of the whole ensemble.

Probing the dynamics of double-stranded DNA (dsDNA). As an application of trBVA, we probed
the dynamics of dsDNA breathing. Structural fluctuations in dsDNA have previously been
measured using fluorescence quenching®!. A relaxation time of ~50 pus was found for these local

opening-closing motions, a timescale well within the regime that can

be probed with trBVA. We performed smFRET experiments on dsDNA at neutral and acidic pH.
At acidic pH, dsDNA is known to be destabilized3? due to the protonation of DNA bases and we
expect a significant difference in the amplitude and/or timescales of these motions between pH
7 and pH 4. We generated 12 dsDNA samples of 84 bp length each that were derived from a
naturally occurring promoter sequence in Bacillus subtilis®*. The samples were site-specifically
labeled with AlexaFluor488 as donor and AlexaFluor594 as acceptor at varying positions, thus
spanning the full FRET efficiency range from low to high values. We performed short 5 - 10 min
long experiments using pulsed-interleaved excitation (PIE)? and identified bursts as described in
the methods section. As expected, the FRET efficiency histograms of these samples span the full
FRET range (Fig. 4A). Notably, the widths of the FRET efficiency histograms are significantly
increased at pH 4 compared to pH 7, suggesting that the drop in pH either alters the timescales
of distance dynamics or the amplitude or both (Fig. 4A). We then used trBVA to analyse FRET-
fluctuations in these samples. A comparison of S? at m = 5 shows a substantially increased
fluctuation amplitude at pH 4 compared to pH 7 (Fig. 4A). This variance is reduced at m = 46,
suggesting a pronounced microsecond decay. An overview of the decays indeed demonstrates

the presence of structural fluctuations that are intensified at low pH (Fig. 4B). A fit with a two-
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state model provides an empirical description of these data with relaxation times that are in
rough accord with the previous estimate of 50 ps at dsDNA-samples with intermediate FRET
efficiencies whereas substantially larger relaxation times were found for samples with extremely
low and high FRET values. However, the fits do not properly capture the trBVA decays. To obtain
a better description of the traces, we also fitted with double-exponential FRET-autocorrelation
functions, which is equivalent to a model with three states. This model describes all trBVA traces
well and results in two relaxation times (Fig. 4C). The fast relaxation time is closest to the
previous estimate of 50 pus at samples with low FRET efficiencies (Fig. 4C, bottom). Yet, for
samples with high FRET efficiency, the fast relaxation time drops to values in the order of 2 -
10 ps. This a very fast timescale could be caused by transitions of the dyes into photo-physical
triplet states or by direct contacts between donor and acceptor that lead to quenched dye
complexes (Fig. 4C). However, we also identify a slow timescale in the order of 500 — 2000 us,
which apparently represents slower motional modes the structure of the DNA. In fact, previous
results demonstrated that dsDNA breathing motions exhibit non-exponential dynamics®!' such
that our 3-state model only provides a simplified description of the true dynamics.

As a second example, we determined the folding-unfolding dynamics of the B-domain of
protein A (BDPA) from Staphylococcus aureus, a protein that had previously been used to
benchmark RASP?2. The particular variant used here (F13W/Y14C/G29A/P57C) has a folding
relaxation time of 0.93 ms? at 2.5 M of the denaturant guanidinium chloride (GdmCl) at 37°C.
The protein was labeled at position 14 and 57 using AlexaFluor488 and AlexaFluor594 and other
details of the experiments (buffer, laser intensity etc.) can be found in Hoffmann et al.?2. Since
the experiment was not performed with PIE, we selected the burst for trBVA based on their
FRET value to exclude molecules with inactive acceptor (Fig. 5A inset). The trBVA trace cannot
be described with a single-exponential FRET correlation function (Fig.5A) and a double-
exponential function was required. Whereas the fast rate (1; = 411 ms™ or 2.4 pns) is associated
with the smaller amplitude (36%) and is well in the regime of dye triplet blinking, the slower rate
(A12=0.9 ms? or 1.1 ms) dominates the amplitude and indeed corresponds to the timescale
observed with RASP (1.4 ms™) and temperature jump experiments (0.93 ms™).

In summary, the relaxation times of DNA breathing and of the folding and unfolding of
BDPA obtained with trBVA agree well with previous measurements. Compared to our
simulations, a very fast relaxation component at timescales of a few microseconds is found in

both data sets and might reflect the triplet blinking of our dyes.

Conclusion

We presented a time-resolved version of burst variance analysis termed trBVA and developed a
theoretical framework to apply trBVA in a quantitative manner to smFRET experiments of
diffusing molecules. TrBVA is capable of identifying dynamics in biomolecules at timescales from

5 us up to 5 ms with remarkable accuracy. Using simulated data, we also showed that trBVA can
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be used in a FRET-resolved manner to identify the FRET-values of states that are in exchange. In
more complicated cases in which more than two states exchange, FRET-resolved trBVA merely
provides qualitative information about the FRET efficiency values of the states. In general, FRET-
resolved trBVA is a qualitative tool to understand the complexity of the dynamics at hand.
Finally, we demonstrated the ability of trBVA to identify dynamics in real experiments
using the examples of the breathing motions in double stranded DNA and of fast
folding/unfolding kinetics of a protein. We are therefore convinced that trBVA is an excellent

addition to the existing toolset of smFRET.

Author contributions
IT and HH performed research. DN and DEM provided tools and input to the theory. HH

designed research. HH wrote the manuscript with contributions from all authors.

Acknowledgements

We particularly thank Benjamin Schuler for helpful comments on the manuscript and the
smFRET data of BDPA. This work was supported by a grant of the European Research Council
(Grant No. 864578) and by a research grant from the Corrine Koshland Instrument Fund (for
incumbent of CDC 10673) to HH. DEM was supported by the Robert A. Welch Foundation (Grant
No. F- 1514) and by the National Science Foundation (Grant No. CHE 1955552).

Declaration of interest
The authors declare no competing interest.

Appendix |

To arrive at eq. 4, we start from three common assumptions:

1. The total photon rate does not fluctuate in time.
2. The probability, e(x(t)), of observing an acceptor photon is determined by the spatial
distance x(t) between donor and acceptor dyes.

3. Dye excitation-emission cycles are fast compared to the inter-photon time.

For an m-photon segment with a given set of photon arrival times {t;};—; _, resulting from a
single trajectory x(t), the probabilities for the individual photons to be detected in the acceptor
channel are given by {€;};-;_m where ; = €(x(¢;)). Our goal is to first compute the first and
second moment of the distribution of € for a single trajectory and then to average them over all
trajectories. The probability to observe a acceptor photons is therefore given by the Poisson
binomial distribution®* P, (al{€;}%,), which generalizes the ordinary binomial distribution in
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that the probabilities for individual trials do not need to be equal. The mean of the distribution
is known to be (a) = Y/%, €; and the variance is of = )i, €;(1 — ¢;). For the given set of

arrival times {t;} we then get the mean and variance of € as:

=(&) =Lym o
@={) =7 0.1)
and
2 (2 Y2 Y ym 1—e P
Oy = (€ ){ti} (€>{ti} T m2? Zizl 61( El) . (1.2)

For the second moment, we can then write:
1 1
(€%)ey = — DR e(1—e)+ QR €)% = — [Z € + Tixj €65 (1.3)

We now need to average over all sets of arrival times. To this end, consider photon segments
that have a fixed duration t between the first and last photon whereas all m — 2 photons in
between the first and last photon have random arrival times. For the moment, we only consider
a specific trajectory x(t") of a molecule but we will average over all trajectories at a later stage.
To compute the total probability of obtaining a acceptor photons in a photon segment, we need
to average over all possible arrival times {t;};—1 . Note that the arrival times are not an
ordered set. Whereas the arrival times are fixed for the first and last photon (t; = 0and t,, =
t), the arrival times of the remaining m — 2 photons are independently and uniformly

distributed random values between 0 and t. The probability density function of such sets

{ti}i=1.m is given by

P({t; 3, 10) = t,%zd(tl —0)8(ty, — t) with fot---fOtP({ti}{';llt) dty ..dt,, = 1. (1.4)

As mentioned above, the number of acceptor photons for a given set {t;} obeys Poisson

binomial statistics. The mean FRET efficiency for the trajectory x(t') is then given by
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550 (©)(m, &, x(t")) = f f (€ PLEITA1E) diy .. dity
0 0

t t 1 m
551 :fo fo (EZ E(x(ti))) P{t;}i%,1t) dty ...dty,

=1

m

1 t t
552 =3[ [ elae) P10 dty ey

mido o

1 1 &t
553 - [e(x(O)) +e(©) + iz D [ [ elx@) de, ...dtm_1]

i=2 "0 70

1 1t

554 = €(x(0)) + e(x(®) + (m — 2);] dt'e(x(t"))
0

556
555 (1.5)
557 Similarly, with the use of eq. I.3, the second moment is
558

t t
559 (€2 )(m, t,x(t") =f f €3y PALIE,10) dty .. diy,
0 0

560 = %fot fot [i e(x(t) + Z e(x(t))e (x(tj))

P{t;31%,1t) dt; ...dt,

i#j
561 = %(6)(% t,x(t"))
1 1 Mmoot t
562 + th_”;fo fo e(x(t))e (x(tj)) 48(ty — 0)8(t,, — t)dty ...dty,
563 = l<6)(m, t,x(t"))
I 1t
564 oo eG)eGr)] + 26m - D7 [ atle(x@)elx(®))]
0
565 +2(m— 2)%ftdt'[f(x(t))f(x(t'))]
0 1 t ot
566 +(m—2)(m - 3)t—zf j dt'dt"” [E(x(t'))f(x(f"))]}
0 Y0
567 (1.6)
568

569 At this stage, we average both results (1.5 and 1.6) over the ensemble of distance trajectories and
570 denote this average as (... ). In this notation, the FRET efficiency averaged over all trajectories
571 (e(x(t)))x and 6e(x(t)) are then written as

572

574 (€)x = (e(x(0))y; Se(x(®)) = e(x()) — (€), with (Se(x(£))), = 0

573 (1.7)
575
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After averaging, the result for the mean FRET efficiency is

1 1t
()x(m, 1) = (e)(m, t,x(t)))x = - (e(x(0)))x + {e(x(®)))x + (m — 2);[ dt'(E(x(t’))>x]
0

= <6>x
(1.8)

Similarly, averaging eq. 1.6 gives

(€2)x(m,t) = ((62)1("1. t,x(t"))x
= (E>x + (

m

erz

1——
m

1
+ — | 2(8€(x(0))de (x ("))

1 t
+4(m—2) ?f dt'(8e(x(0))8e(x(t"))x
0

t

2
+ (m—2)(m-3) t—zf dt'(t — t’)(56(x(0))56(x(t’)))x
0
(1.9)

The variance of segments with length m and time duration t is then

om0 = (€m0 — (@3 = P09 4 sz 1)

(1.10)

where the first term is the variance of a Binomial distribution. The second term is the t-specific

excess variance that contains information about the conformational fluctuations and with
g(t) = (6e(0)Se(t)), is given by

1 4(m—2) (t 2(m—=2)(m=3) *
As*(m,t) = — 12 g®) + ¥f gHdt" + ( )2( )f (t—tHg(t)dt
m t 0 t 0
(1.11)
which is identical to eq. 4 in the main text. It is noteworthy that the above result is similar to the

result obtained by Gopich and Szabo for the case of fixed time bins instead of variable segment

lengths®®. The main difference is that all photons in a fixed time bin are randomly distributed
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whereas in BVA the arrival time of the first and the last photon in a segment are fixed. When

relaxing this constraint, the probability density function in eq. 1.4 becomes

Pt = (1.12)
and solving the integrals in 1.5 and 1.6, the t-specific excess variance becomes

As?(m,t) = (1 - %)tz—zfot(t —thg(t)dt, (1.13)

which is similar to eq. 3.8 in Gopich and Szabo®® if only bins of time t with m photons are

considered.

Appendix Il
Here we provide the formulas for the t-specific excess variance As?(m, t) used for data fitting
with the 2-state and 3-state model. As outline in eq. 7, the correlation function of a 2-state

. _ kizk
model is given by g,_siare(t) = a et where a = ﬁ(e1 — €)% and 1 =kyp + kyq.
12 21

Similarly, the correlation function for a 3-state model can be obtained from eq. 6 using the
appropriate rate matrix K and the diagonal matrix containing the FRET efficiencies of the three

states €. For instance, for the model shown in Fig. 3C (top), we have

—k1z k21 0 e 0 0
K= k12 —(k21 + kzg) k32 and € = <0 €y 0) (||.1)
0 k23 _k32 0 0 63

with the equilibrium state vector
Peq = (ka1ksy + kioksy + kigkys) "M (kaikszy  kigksy  Kigkas). (1.2)

The rate matrix K has two non-zero eigenvalues 1; and 1,, and the correlation function can
written as gs_state (t) = a1 e Mt 4 a, e M2t Inserting these expressions in eq. 4 and solving

the integrals gives

AS3_seate(m, t) = L{Zae"u + 4(m — 2)

m2

a(l—e‘“) a(e_’lt—1+/1t)
— +2(m—-2)(m-3) T} (1.3)
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a,(1-e *1t) n a,(1-e~%2t)
Aot At

As3_state(m,t) = %{Z[tlle_’llt + aze 2t + 4(m - 2) [

ME_142,t) + a; (e *2t-1+2,t)
A3tz Atz '

2(m — 2)(m — 3) [“1(6_ (11.4)

Appendix Il
For dynamics that are slow compared to the duration of a segment t, we can approximate the
correlation function by a constant number (5e(0)8e(t")), ~ (5€?), fort’ € (0,t). In this case,

the t-specific excess variance (I.11) simplifies to
m-1 1
As?(m, t) = "2 (5€?), = (1 - ;) o2 (1.1)

where 62 = (§€?), = (%), — (€)2 is the variance of the FRET efficiency over all conformational
states. Note that eq. Ill.1 is an increasing function with m. Following eq. 1.10, the total t-specific
variance in the static case is then

g2(m,t) = @+ (1 —%) 02 = o +%(<6)x —(€)2 — 62) = o +@. (1.2)

From the last expression, it is clear that the total t-specific variance is a decaying function of m
(third term in 111.2), as expected based on the central limit theorem. Using the expression
(€),(1 — (€),)/m to estimate shot noise using binomial statistics, which is only correct in the
absence of heterogeneity, causes the factor (1 — m™1) in the t-specific excess variance (lI1.1). A
better estimate for shot noise in the static case is therefore (¢(1 — €)),./m.

The other limit is given when the timescale of conformational dynamics () is much
faster than the inter-photon time. Hence, the time duration of any segment (t) is much longer
than T or equivalently, P(t|m) «< 1 for t~t. When evaluating the integral in eq. 5, the
distribution P(t|m) has nonzero weights only for those values of As?(m, t) for which g(£)~0
and therefore As?(m,t)~0. Correspondingly, eq. 5 evaluates to S2~0, which is the lower

boundary of S2.

Appendix IV

To judge the accuracy of the parameters that can be obtained from trBVA traces, we provide a
lower limit for the amplitude of the autocorrelation function. In a 2-state system, the amplitude
of the FRET-autocorrelation function will increase with Ae? = (€, — €;)? (see eq. 7, Fig. S1A).
Clearly, the higher the FRET-separation of the two states, the higher the amplitude of the
autocorrelation function. A lower limit of Ae should be given by shot noise. For simplicity, we
assume that the two states exchange with slow dynamics compared to the diffusion time

through the confocal volume. In addition, we assume that their shot noise variance is identical
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and given by g. To distinguish the two states in a FRET efficiency histogram, the separation
between the states should exceed the combined shot noise variance of both states. We

therefore require
Ae > 20. (IV.1)

From this expression, we can get a lower limit for the amplitude of the FRET-autocorrelation
function. The amplitude is given a = kq,k,;Ae? /A where 1 = ky, + k,,. Given a value for the
difference A¢, the best possible case (the highest amplitude) would be at k;, = k,;. Any other
combination of k;, and k,; would result in even smaller amplitudes. With k;, = k,;, the
amplitude reduces to a = Ae?/4 and with eq. IV.1, we would require

a>o?. (IV.2)

Importantly, even if g of a single state cannot be reliably determined because of a high overlap
between the states or because of fast exchange dynamics, the above inequality would still
provide a lower limit for the amplitude below which a determination of the FRET-
autocorrelation function becomes unreliable. For instance, for a measured FRET distribution
centered at € = 0.5 and a threshold of 100 photons, one would ideally like to have an amplitude
of a > 0.52/100 = 2.51073 and Ae > 2,/0.52/100 = 0.1. We tested this estimate with
simulations assuming identical kinetic rates (k;, = k,; = 1 ms~1) but different values of Ae (Fig.
S1). The apparent kinetic rate A is obtained with good accuracy down to a value of Ae = 0.2.
However at Ae =~ 0.1 and at an amplitude of a = 3.5 1073, i.e., close to our accuracy estimates
of Ae > 0.1and a > 2.5 1073, the fitted rate exceeds the ground truth threefold (Fig. S1B),
indicating that the parameters of the FRET-autocorrelation function cannot be reliably
determined. In addition, we tested the sensitivity of trBVA to the photon threshold used to
identify bursts. Simulations show that the photon threshold has no impact on the determined
kinetic rates from trBVA as long as the FRET efficiency separation between the states fulfills eq.
IV.1 (Fig. S1B, inset). Yet, at an extremely low separation Ae = 0.1 a doubling of the photon
threshold from T = 100 to T = 200, indeed lowers the discrepancy between fitted rate and
ground truth.
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