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Abstract. Quantifying biomolecular dynamics has become a major task of single-molecule 19 
fluorescence spectroscopy methods. In single-molecule Förster resonance energy transfer 20 
(smFRET), kinetic information is extracted from the stream of photons emitted by attached 21 
donor and acceptor fluorophores. Here, we describe a time-resolved version of burst variance 22 
analysis (BVA) that can quantify kinetic rates at microsecond to millisecond timescales in 23 
smFRET experiments of diffusing molecules. Bursts are partitioned into segments with a fixed 24 
number of photons. The FRET variance is computed from these segments and compared with 25 
the variance expected from shot noise. By systematically varying the segment size, dynamics at 26 
different timescales can be captured. We provide a theoretical framework to extract kinetic 27 
rates from the decay of the FRET variance with increasing segment size. Compared to other 28 
methods such as filtered FCS, recurrence analysis of single particles (RASP), and 2D-FLCS, fewer 29 
photons are needed to obtain reliable timescale estimates, which reduces the required 30 
measurement time.  31 
 32 
Why it Matters. Single-molecule fluorescence spectroscopy, particularly in combination 33 
with FRET (smFRET), has been extremely successful in quantifying the dynamics of 34 
biomolecules. A toolbox of different methods is available to date that extracts dynamic 35 
information from the stream of photons emitted from donor and acceptor dyes. Yet, some 36 
of these methods require long integration times. In others, the presence or absence of 37 
dynamics is difficult to judge by eye and only fits with kinetic models provide this 38 
information. We therefore extended the popular method of burst variance analysis (BVA) 39 
to overcome some of these limitations. The new method termed time-resolved BVA 40 
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(trBVA) quantifies dynamics from 5 μs to 5 ms at high accuracy with as little as 5000 41 
bursts. Static and dynamic heterogeneity can be distinguished from each other and even 42 
dynamics slower than the diffusion time can be quantified. TrBVA is a natural extension 43 
of classical BVA and therefore easy to implement by researchers in the field of smFRET. 44 
 45 
 46 
 47 
The flexibility of proteins is key for their function. Resolving structural heterogeneity and 48 
quantifying the timescales at which proteins interconvert between different structural states 49 
has been a major goal in single-molecule fluorescence spectroscopy1, 2, 3, 4. SmFRET has 50 
particularly been used in the past two decades to study conformational changes in 51 
biomolecules5, 6. Most smFRET experiments use freely diffusing molecules. These experiments 52 
are easy to realize and avoid tethering of molecules to surfaces. Naturally, a range of methods 53 
has been developed to extract dynamic information during the time molecules reside in the 54 
excitation volume of a confocal microscope (~ 1 ms). These methods range from dynamic PDA 55 
(photon distribution analysis)7, over maximum likelihood (ML) approaches8, 9, 10, 11, 12 and 56 
equivalent Hidden-Markov model fitting such as H2MM13, 14 and multi-parameter H2MM15, fitting 57 
of FRET-histograms with different time binning16, lifetime-filtered fluorescence correlation 58 
spectroscopy (fFCS)17, 18, two-dimensional lifetime correlation spectroscopy (2D-FLCS)19, 20, 21, 59 
recurrence analysis of single particles (RASP)22, 23, and lately a particularly promising approach 60 
using Bayesian nonparameterics (BNP-FRET)24, 25, 26. Each method has its merits and pitfalls. For 61 
instance, H2MM and ML directly use the photon arrival times to optimize the parameters of a 62 
kinetic model and capture dynamics over a broad range of timescales. Dynamic PDA computes 63 
FRET efficiency histograms by integrating the probability density that a molecule spends a 64 
certain time in each state of a kinetic model. The fit quality in these methods is often judged by 65 
generating FRET-distributions from the model fit and comparing them to the experimental FRET-66 
histograms. Other methods such as fFCS, 2D-FLCS, and RASP, first process the photon arrival 67 
times by computing correlation functions, frequency domain maps, or FRET-histograms at 68 
different delay times. The pre-processed data are then used for model fitting. As an advantage, 69 
the presence of dynamics can already be inferred from the pre-processed data by eye, thus 70 
simplifying a model guess. On the other hand, these methods often require long measurements 71 
to obtain a high signal-to-noise in the processed data.  72 

Not standardly accounted for in these methods is static heterogeneity due to dye 73 
isomers or permutations of donor and acceptor positions. The latter is particularly prevalent in 74 
smFRET as donor- and acceptor labeling is often done at cysteine residues, thus resulting in a 75 
mixture of labeling permutations. Burst variance analysis (BVA)27 is a popular tool to identify 76 
both static and dynamic heterogeneity. Yet, BVA has mainly been used as a qualitative indicator 77 
for dynamics3 as kinetic rates remain inaccessible. Here, we present an extension of burst 78 
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variance analysis (BVA)27 termed time-resolved BVA (trBVA) that is also able to quantify kinetic 79 
rates from smFRET experiments of freely diffusing molecules between 200 ms-1 (5 s) and 80 
0.2 ms-1 (5 ms) with an error of a factor of 1.5. The method does not require long measurements 81 
and is easy to implement. To benchmark the robustness of trBVA, we performed smFRET 82 
simulations of dynamic particles and also applied the method to real single-molecule data of 83 
labeled DNA and protein. We hope that trBVA will be a useful extension of the current smFRET 84 
analysis toolbox to identify biomolecular dynamics at timescales from micro- to milliseconds.  85 
 86 
Methods 87 
 88 
Theory. A photon burst 𝑖 from a biomolecule labeled with donor (D) and acceptor (A) that 89 
diffuses through the confocal volume of a microscope contains 𝑑𝑖  donor and 𝑎𝑖  acceptor 90 
photons. The total number of detected photons in the burst is 𝑛𝑖 = 𝑎𝑖 + 𝑑𝑖  (including 91 
background photons) and the total number of bursts is 𝑁. We denote the uncorrected FRET 92 
efficiency as 𝜖 and the corrected FRET efficiency as 𝐸 (corrected for the differences in quantum 93 
yield of the dyes, cross-talk between channels, background, and acceptor direct excitation – see 94 
section Burst identification and data pre-processing). The idea of classical BVA is to partition 95 
photons of a burst into segments of 𝑚 (typically 𝑚 = 5) consecutive photons. For each of these 96 
𝑀𝑖 = ⌊𝑛𝑖/𝑚⌋  photon segments, the uncorrected FRET efficiency 𝜖𝑖𝑗  (segment index 𝑗 ) is 97 

computed. Finally, we then calculate the variance of 𝜖 using all segments of the 𝑁 bursts 98 
 99 
𝑠2 = 1

(∑ 𝑀𝑖
𝑁
𝑖=1 )−1

∑ ∑ (𝜖𝑖𝑗 − 〈𝜖〉)2𝑀𝑖
𝑗=1

𝑁
𝑖=1   100 

 101 
with  〈𝜖〉 = 1

∑ 𝑀𝑖
𝑁
𝑖=1

∑ ∑ 𝜖𝑖𝑗
𝑀𝑖
𝑗=1

𝑁
𝑖=1 = ∑ 𝑎𝑖

𝑁
𝑖=1 ∑ 𝑛𝑖

𝑁
𝑖=1⁄  .     (1) 102 

 103 
The expected FRET variance of these segments in the absence of both dynamic and static 104 
heterogeneity1, i.e., assuming the presence of only a single state, is due only to shot noise, and 105 
is given by  106 
 107 
 108 
𝜎2 = 〈𝜖〉(1−〈𝜖〉)

𝑚
.          (2) 109 

 110 
The excess variance due to conformational heterogeneity is then given by the difference 111 
between eq. 1 and 2 112 
 113 
                                                        
1 Notably, eq. 2 is also correct in the limit at which multiple states interconvert at timescales faster than the inter-
photon time. 
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𝑆2 = 𝑠2 − 𝜎2.          (3) 114 
  115 
Importantly, the analysis can also be performed with a subset of the 𝑁 bursts. For instance, in a 116 
FRET-resolved trBVA version, the excess variance (eq. 3) is computed for a set of bursts that lie 117 
within a chosen FRET efficiency range. If 𝑆2 > 0, the FRET variance exceeds the shot noise 118 
expectation, thus indicating static or dynamic heterogeneity. The basic idea of trBVA is to vary 119 
the length 𝑚 of the photon segments (Fig. 1A). Clearly, both variances 𝑠2 and 𝜎2 will change 120 
with 𝑚, but these changes will not be identical such that 𝑆2 is itself a function of 𝑚. This 121 
function therefore contains information about the heterogeneity among and within bursts, 122 
which either is static or dynamic, i.e., time dependent. To extract this information, we derived 123 
an analytical expression for the excess variance of the subset of m-photon segments with 124 
specific time duration 𝑡, which we call the ”t-specific excess variance” (Appendix I). Here, 𝑡 is 125 
defined as the length of the time interval between the first and the last photon of a segment. 126 
Writing the FRET autocorrelation function as 𝑔(𝑡) = 〈𝛿𝜖(0)𝛿𝜖(𝑡)〉 with 𝛿𝜖(𝑡) = 𝜖(𝑡) − 〈𝜖〉, we 127 
obtain  128 
 129 
Δ𝑠2(𝑚, 𝑡) = 1

𝑚2 [2 𝑔(𝑡) + 4(𝑚−2)
𝑡 ∫ 𝑔(𝑡′)𝑑𝑡′ + 2(𝑚−2)(𝑚−3)

𝑡2
𝑡

0 ∫ (𝑡 − 𝑡′)𝑔(𝑡′)𝑡
0 𝑑𝑡′]   (4) 130 

 131 
Importantly, for the ensemble of all m-photon segments, the time window 𝑡 is a random 132 
variable with a conditional probability density function 𝑃(𝑡|𝑚). Once 𝑃(𝑡|𝑚) is known, the 133 
excess variance due to conformational dynamics as function of 𝑚 can be calculated from: 134 
 135 
𝑆2(𝑚) = ∫ 𝑃(𝑡|𝑚)∞

0 Δ𝑠2(𝑚, 𝑡)𝑑𝑡.       (5) 136 

  137 
The change of 𝑆2 with increasing 𝑚 can therefore be computed by knowing the autocorrelation 138 
function 〈𝛿𝜖(0)𝛿𝜖(𝑡)〉 and the distribution 𝑃(𝑡|𝑚). The autocorrelation function can easily be 139 
computed for any kinetic model. If 𝐊 is the rate matrix of the model, 𝐩𝑒𝑞 is the population 140 
vector of conformational states at equilibrium (𝐊𝐩𝑒𝑞 = 0), and 𝛜 is a diagonal matrix with the 141 

same dimensions as 𝐊  whose diagonal elements are the FRET efficiencies of each 142 
conformational state, then the FRET autocorrelation function can be expressed as8 143 
 144 
𝑔(𝑡) = 𝟏T𝛜 𝑒𝐊 𝑡𝛜 𝐩𝑒𝑞 − (𝟏T𝛜 𝐩𝑒𝑞)2 ,       (6) 145 

 146 
where 𝟏 is a vector of ones. For instance, a model, in which two states with FRET efficiencies 𝜖1 147 
and 𝜖2 interconvert with rates 𝑘12 and 𝑘21, has the correlation function  148 
 149 
𝑔(𝑡) = 〈𝛿𝜖2〉𝑒−(𝑘12+𝑘21)𝑡  with 〈𝛿𝜖2〉 = 𝑘12𝑘21

(𝑘12+𝑘21)2 (𝜖2 − 𝜖1)2.    (7) 150 
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 5 

A fit of 𝑆2 with eq. 4, 5, and 7 would provide the two unknown quantities 〈𝛿𝜖2〉 and 𝑘𝑜𝑏𝑠 =151 
𝑘12 + 𝑘21 if 𝑃(𝑡|𝑚) was known. In fact, this distribution can be extracted from the experimental 152 
data directly. We first determine the time duration of all photon segments of length 𝑚 for all 153 
bursts or a subset of bursts within a chosen FRET window 𝐸𝑙 ≤ 𝐸 < 𝐸𝑙 + Δ𝐸 in the FRET-154 
resolved version. A histogram of these times 𝐻(𝑡𝑖|𝑚) for equally spaced time bins 𝑡𝑖  with 𝑖 =155 
{1,2,3, … , 𝐾} then provides a reasonable estimate for 𝑃(𝑡|𝑚). For data fitting, we therefore use 156 
eq. 5 in discrete form 157 
 158 
𝑆2 = ∑ 𝐻(𝑡𝑖|𝑚)Δ𝑠2(𝑚, 𝑡𝑖)𝐾

𝑖=1 ∑ 𝐻(𝑡𝑖|𝑚)𝐾
𝑖=1⁄ .      (8) 159 

 160 
For completeness, we also provide the explicit forms of Δ𝑠2(𝑚, 𝑡) for a 2-state and a 3-state 161 
system in Appendix II. For comparison, we also computed the donor-acceptor cross-correlation 162 
function 𝐺𝐷𝐴(𝜏) = 〈𝑛𝐷(𝑡′)𝑛𝐴(𝑡′ + 𝜏)〉 〈𝑛𝐷〉〈𝑛𝐴〉⁄  for the selected bursts. Here, 𝑛𝐷(𝑡′) and 𝑛𝐴(𝑡′) 163 
are the photon counts at time 𝑡′. To extract the relaxation time, 𝐺𝐷𝐴(𝜏) was fitted with the 164 
empirical function 165 
 166 
𝑓(𝜏) = 𝑎(1 − 𝑒−𝑘𝑜𝑏𝑠𝜏) + 𝑏𝑒−(𝜏 𝑡𝐷⁄ )𝛽 + 𝑐 .      (9) 167 

 168 
Here, 𝑘𝑜𝑏𝑠 = 𝑘12 + 𝑘21  is the observed rate of conformational changes, 𝑡𝐷  is an empirical 169 
timescale to describe the decay of 𝐺𝐷𝐴(𝜏) due to diffusion, and 𝛽 is a stretching exponent. 170 
 171 
Data simulation. To test the accuracy of trBVA in extracting kinetic rates from single-molecule 172 
FRET experiments, we simulated photon time traces of diffusing particles that switch between 173 
two conformational states (1 and 2) described by kinetic rate coefficients 𝑘12 and 𝑘21. The FRET 174 
efficiencies of the two states were 𝐸1 = 0.1 and 𝐸2 = 0.9, respectively. The diffusion of the 175 
particle through the confocal volume was modelled via Brownian dynamics simulations with the 176 
software package Fretica (https://schuler.bioc.uzh.ch/programs/), developed by Daniel Nettels 177 
and Benjamin Schuler (University of Zurich). The Stokes radius of the particles was set to 4.3 nm, 178 
which corresponds to a medium-sized protein, and the particles diffused in a solvent with the 179 
viscosity of water at 25°C, i.e., 1 mPas, resulting in a diffusion coefficient of 5 10−5  μm2 μs⁄ . The 180 
simulation was initialized by randomly placing particles in a simulation sphere with a radius of 181 
𝑅 = 3 μm. The number of initial particles was drawn from a Poisson distribution with a mean 182 
𝑛0 = 4

3
𝜋𝑅𝑐0 with a bulk particle concentration of 𝑐0 = 50 pM. The simulation was performed in 183 

spherical coordinates assuming for simplicity radial symmetry of the confocal volume, which is 184 
located at the origin. Brownian motion is simulated using: 185 
 186 
𝑟(𝑡 + Δt) = 𝑟(𝑡) + 2𝐷Δ𝑡

𝑟(𝑡) + Δ𝑟.        (10) 187 
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 188 
Here, 𝑟(𝑡) is the radial distance at simulation steps 𝑡 = 1 … 𝑇, where 𝑇 is the length of the 189 
simulation in steps of Δ𝑡 = 1 μs, i.e., the time between two simulation steps, 𝐷 is the diffusion 190 
coefficient, and Δ𝑟 is a random distance drawn from a normal distribution with zero mean and a 191 
variance 𝜎Δ𝑟

2 = 2𝐷Δ𝑡. Each particle is simulated until it leaves the simulation sphere. To ensure 192 
a constant mean concentration of particles near the center of the sphere, the particle loss at the 193 
sphere’s surface is compensated by periodically (periodicity 𝑇𝑛𝑒𝑤) placing new particles inside 194 
the sphere near the boundary. The distribution of new particles 𝑐𝑛𝑒𝑤(𝑟) that entered the sphere 195 
after time 𝑇𝑛𝑒𝑤 is obtained by solving the radial diffusion equation 196 
 197 
𝜕𝑐
𝜕𝑡

= 𝐷 (𝜕2𝑐
𝜕𝑟2 + 2

𝑟
𝜕𝑐
𝜕𝑟

)         (11) 198 

 199 
with the initial condition 𝑐(𝑟 < 𝑅, 𝑡 = 0) = 0 and the boundary conditions 𝑐(𝑟 = 𝑅, 𝑡) = 𝑐0 and 200 
𝑐(𝑟 → 0, 𝑡) = 0. The solution is known28 and given by  201 
 202 
𝑐(𝑟,𝑡)

𝑐0
= 1 + 2𝑅

𝜋𝑟
∑ (−1)𝑛

𝑛
∞
𝑛=1 𝑠𝑖𝑛 (𝑛𝜋𝑟

𝑅
) 𝑒𝑥𝑝(− 𝐷𝑛2𝜋2𝑡 𝑅2⁄ )  with 𝑐𝑛𝑒𝑤(𝑟) = 𝑐(𝑟, 𝑇𝑛𝑒𝑤). (12) 203 

 204 
The mean number of new particles entering the sphere is then computed by integrating over the 205 
volume of the sphere 206 
 207 
𝑛𝑛𝑒𝑤

𝑛0
= 1 + 6

𝜋2 ∑ 1
𝑛2

∞
𝑛=1 𝑒𝑥𝑝(− 𝐷𝑛2𝜋2𝑇𝑛𝑒𝑤 𝑅2⁄ ).      (13) 208 

 209 
After each time interval 𝑇𝑛𝑒𝑤, a random number of new particles was drawn from the Poisson 210 
distribution with mean 𝑛𝑛𝑒𝑤. The particles were placed at radial distances randomly chosen 211 
from the distribution with the density function 𝑃𝑛𝑒𝑤(𝑟) = 4𝜋𝑟2 𝑐𝑛𝑒𝑤(𝑟) 𝑛𝑛𝑒𝑤⁄  for 𝑟 < 𝑅. In 212 
total, we simulated particle trajectories for 1800 s.  Once the particle trajectories were 213 
simulated, we added conformational dynamics simulated according to the rate equation 214 
 215 
𝑑𝐩
𝑑𝑡

= 𝐊𝐩          (14) 216 

 217 
where 𝐩 is the population vector of four states: low FRET (𝐷𝐴1) with FRET efficiency 𝐸1, high 218 
FRET (𝐷𝐴2) with FRET efficiency 𝐸2 , donor-only (𝐷), and acceptor-only (𝐴) in the basis 219 
{𝐷, 𝐷𝐴1, 𝐷𝐴2, 𝐴}. The rate matrix 𝐊 is a combination of the rate matrix 𝐊0 for conformational 220 
transitions between 𝐷𝐴1  and 𝐷𝐴2  and the rate matrix 𝐊bl  describing photophysical effects, 221 
photobleaching in our case, 222 
 223 
𝐊 = 𝐊0 + 𝐼(𝑟)𝐊bl  with       (15) 224 
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 225 

𝐊0 = (

0 0 0 0
0 −𝑘12 𝑘21 0
0 𝑘12 −𝑘21 0
0 0 0 0

)         (16) 226 

 227 

𝐊bl = (

0 𝑘𝑎𝐸1 𝑘𝑎𝐸2 0
0 −𝑘𝑎𝐸1 − 𝑘𝑑(1 − 𝐸1) 0 0
0 0 −𝑘𝑎𝐸2 − 𝑘𝑑(1 − 𝐸2) 0
0 𝑘𝑑(1 − 𝐸1) 𝑘𝑑(1 − 𝐸2) 0

)    (17) 228 

 229 
with the bleaching rates 𝑘𝑎 and 𝑘𝑑 for acceptor and donor fluorophores located at the origin 230 
(𝑟 = 0), respectively. We assumed a bleaching timescale of 𝑘𝑎 = 𝑘𝑑 = 5 × 10−4 μs−1 for the 231 
simulations. The position-dependent profile 𝐼(𝑟) that accounts for the illumination intensity at 232 
different positions in the confocal volume is given by 233 
 234 

𝐼(𝑟) = 𝑒𝑥𝑝 (− 2𝑟2

𝑤0
2 ) with 𝑤0 = 0.4 μm.       (18) 235 

 236 
For each particle with the diffusion trajectory 𝑟(𝑡) and starting time 𝑡0 , a random state 237 
trajectory 𝑠𝑡 is simulated according to eq. 14-18 with the program Fretica. The initial state 𝑠(𝑡0) 238 
was chosen randomly according to the initial probabilities for the four states given by the vector 239 
𝐩0 with the same basis as 𝐩. We chose an equal distribution of high- and low FRET species and 240 
the same number of donor-only and acceptor only molecules with 𝐩0 =241 

(0.1 0.8 𝑘21
𝑘12+𝑘21

0.8 𝑘12
𝑘12+𝑘21

0.1)
𝑇

. In addition, we set the total photon rate at the center of 242 

the excitation volume to 𝜆𝑡𝑜𝑡 = 0.4 μs−1 and introduced realistic background photon rates of 243 
𝜆𝑑 = 5.6 10−3 μs−1 for the donor channel and 𝜆𝑎 = 3 10−3 μs−1 for the acceptor channel. To 244 
model the experimental situation in a realistic fashion, we also introduced different detection 245 
efficiencies for the dyes (𝛾 = 𝑄𝑎𝜂𝑎 𝑄𝑑𝜂𝑑⁄ = 1.16), where 𝑄𝑎,𝑑 and 𝜂𝑎,𝑑 are the quantum yields 246 
and detection efficiencies for acceptor and donor dye, crosstalk (leakage) between of donor 247 
photons in the acceptor channel (𝛽 = 0.054), and the probability to directly excite the acceptor 248 
with the donor excitation laser (𝛼 = 0.048). As we introduced donor-only and acceptor-only 249 
molecules together with the possibility of photobleaching, we also simulated pulsed-interleaved 250 
excitation (PIE) of both dyes with 𝛾𝑃𝐼𝐸 = 2.6, 29 To this end, experimental instrumental response 251 
functions (IRF) were used to generate the photon distributions after donor- and acceptor 252 
excitation within one PIE period. Finally, a TTTR (time-tagged time-resolved) file containing the 253 
simulated photons was generated. Simulations of a 3-state model were performed in the same 254 
manner. 255 
 256 
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 8 

Burst identification and data pre-processing. After simulating photon traces based on the kinetic 257 
model described above, the TTTR-file was processed with standard single-molecule analysis 258 
tools6 for generating corrected FRET efficiency histograms. Importantly, for the calculation of 259 
variances for BVA, raw photon counts, without correction, were used to calculate apparent FRET 260 
efficiencies, also known as proximity ratios. Unless stated otherwise, the photon trajectory was 261 
binned into time windows of 100 s. A burst is defined as a collection of consecutive bins with 262 
more than 2 photons per bin and a total photon number of at least 100 photons after donor 263 
excitation. The corrections included background, differences in the brightness of donor and 264 
acceptor, channel crosstalk, and acceptor direct excitation. The procedure is described in detail 265 
elsewhere6, 30. The corrected photon numbers of donor (𝑛𝐷𝐷) and acceptor (𝑛𝐷𝐴) after donor 266 
exciation were used to compute the FRET efficiency of the burst via 267 
 268 
𝐸 = 𝑛𝐷𝐴

𝑛𝐷𝐴+𝑛𝐷𝐷
.          (19) 269 

 270 
To exclusively identify molecules that contain both dyes, we computed the stoichiometry ratio 271 
for each burst via 272 
 273 
 𝑆𝑃𝐼𝐸 = 𝑛𝐷𝐴+𝑛𝐷𝐴

𝑛𝐷𝐴+𝑛𝐷𝐴+𝛾𝑃𝐼𝐸𝑛𝐴𝐴
.        (20) 274 

 275 
Only bursts with 𝑆𝑃𝐼𝐸 < 0.65 were retained for further analysis. Since bursts were identified 276 
based on photon counts after donor excitation, molecules without donor were automatically 277 
excluded from the analysis. To also exclude bursts in which the acceptor bleached during the 278 
transit of the particle through the confocal volume, we further selected bursts in which the 279 
mean detection time of photons was similar after donor and acceptor excitation. We define  280 
 281 
𝛼𝑃𝐼𝐸 = 〈𝑡𝐷𝑒𝑥〉 − 〈𝑡𝐴𝑒𝑥〉         (21) 282 
  283 
where 〈𝑡𝐷𝑒𝑥〉 and 〈𝑡𝐴𝑒𝑥〉  are the mean detection times (in ms) after donor and acceptor 284 
excitation, respectively. Including shot noise, the asymmetry value 𝛼𝑃𝐼𝐸  has a standard deviation 285 
given by 286 
 287 

𝜎𝑃𝐼𝐸 = 𝑇
2√3 √ 1

𝑛′𝐷𝐷+𝑛′𝐷𝐴
+ 1

𝑛′𝐴𝐴
        (22) 288 

where the prime indicates the uncorrected photon counts. We chose a restrictive threshold of 289 
𝜎𝑃𝐼𝐸 < 0.15 to exclude bursts with bleached acceptors.  290 
 291 
Results 292 
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Global trBVA. To test the ability of trBVA (Fig. 1A) in quantifying timescales of conformational 293 
dynamics, we simulated the photon emission process for freely diffusing molecules in a photon-294 
by-photon manner. We modeled molecules that switch between two conformational states 1 295 
and 2 with ‘forward’ rate 𝑘12 and ‘backward’ rate 𝑘21. The corrected FRET efficiencies (𝐸) of the 296 
two states were 𝐸1 = 0.1 and 𝐸2 = 0.9, which corresponds to the uncorrected values 𝜖1 ≈ 0.2 297 
and 𝜖2 ≈ 0.9. For simplicity, we assumed identical rates in both directions. At a slow exchange 298 
rate of 𝑘12 = 𝑘21 = 0.1 ms−1, i.e., one transition per ten milliseconds on average, the FRET 299 
efficiency histogram shows two well separated peaks with shot-noise limited width at the 300 
expected FRET efficiencies (Fig. 1B). Intermediate values between the dominant peaks become 301 
prominent with increasing exchange rates, as more molecules change their conformation while 302 
diffusing through the confocal volume. At higher rates, the FRET peaks start to coalesce, and at 303 
the highest exchange rate of 𝑘12 = 𝑘21 = 50 ms−1, the FRET peaks merged completely, thus 304 
giving the impression of a single conformational state. To analyze these data with trBVA, we 305 
computed the variance of FRET fluctuations by partitioning bursts into consecutive segments 306 
with 𝑚 photons (Fig. 1A). As outlined in the theory section, computing the variance of these 307 
segments and subtracting the shot noise contribution one would have if there was a single state 308 
with a FRET efficiency equal to the population weighted mean of the states, provides the excess 309 
variance 𝑆2 (eq. 1-3). Figure 2A demonstrates that 𝑆2 first increases and then decreases with 310 
increasing size of the photons segments 𝑚. The trBVA traces obtained from the data (Fig. 2A) 311 
can now be used to determine the apparent relaxation time 𝜏 = (𝑘12 + 𝑘21)−1  of the 312 
conformational fluctuations using the experimentally determined distribution 𝐻(𝑡𝑖|𝑚) of the 313 
time duration of 𝑚 -photon segments. Examples are shown in Fig. 2B. For 𝑚 = 2 , the 314 
distribution is a decaying function as expected based on photon counting theory8. For higher 315 
values of 𝑚, 𝐻(𝑡𝑖|𝑚) shows a clear maximum due to the fact that a successive emission of 316 
several photons causes a delay between the first and the 𝑚’th photon that leads to the rise at 317 
short times. To fit the trBVA traces, we use eq. 4, 7 and 8 to compute 𝑆2 for each value of 𝑚 and 318 
minimize the least squares difference 𝜒2 = ∑ [𝑆𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

2 (𝑚) − 𝑆𝑓𝑖𝑡
2 (𝑚)]2

𝑚 . The fit contains 319 

two parameters, the amplitude of the FRET-correlation function 〈𝛿𝜖2〉 and the kinetic rate 320 
𝑘𝑜𝑏𝑠 = 𝑘12 + 𝑘21 (eq. 7), i.e., the eigenvalue of the rate matrix. The fits provide an excellent 321 
description of the experimental data over a broad range of exchange rates (Fig. 2A). An 322 
alternative method to determine kinetic rates would be to compute the FRET autocorrelation 323 
function directly or analogously, the donor-acceptor cross-correlation 324 
𝐺𝐷𝐴(𝜏) = 〈𝑛𝐴(𝑡)𝑛𝐷(𝑡 + 𝜏)〉 〈𝑛𝐴〉〈𝑛𝐷〉⁄  for the data (Fig. 2C). Distance dynamics lead to a rise of 325 
the cross-correlation amplitude since donor and acceptor signal are anti-correlated. Yet, the 326 
finite burst duration causes an additional decay in 𝐺𝐷𝐴(𝜏) at the timescale at which molecules 327 
diffuse through the confocal spot. This diffusion amplitude dominates 𝐺𝐷𝐴(𝜏)  and slow 328 
dynamics at timescales close to the diffusion are difficult to identify (Fig. 2C). This problem is 329 
circumvented with trBVA. 330 
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A comparison of the apparent relaxation times 𝜏 = (𝑘12 + 𝑘21)−1 from the trBVA-331 
analysis with the true values used in the simulation demonstrates an excellent agreement 332 
(Fig. 2D). For dynamics across three orders of magnitude (5 s to 5 ms), trBVA provides 333 
estimates of 𝜏 with less than 2-fold deviation from the ground truth (Fig. 2E). Even dynamics 334 
slower than the diffusion of molecules through the confocal spot can be obtained. The reason 335 
for this surprising result is that 𝑆2 is bounded by two limits. For dynamics much faster than the 336 
experimental inter-photon time, the lower boundary is given by 𝑆2(𝑚) = 0 (Appendix III). Yet, 337 
for extremely slow dynamics, the FRET auto-correlation function is approximately constant 338 
(𝑔(𝑡) ≈ 〈𝛿𝜖2〉) but different from zero. Under this condition, the excess variance is given by 339 
𝑆2 = 〈𝛿𝜖2〉(1 − 𝑚−1), which is an increasing function of 𝑚 and represents the upper boundary 340 
(Fig. 2A, top). Notably, this increase is not in conflict with the central limit theorem. The total 341 
variance indeed decreases with increasing 𝑚 (Appendix III). Instead, the increase of 𝑆2 results 342 
from an inaccurate estimate of shot noise (eq. 2) in the presence of static heterogeneity 343 
(Appendix III). Importantly, even slight deviations from the (1 − 𝑚−1)-dependence requires a 344 
finite decay time in 𝑔(𝑡), which explains the success of trBVA at slow timescales. Notably, this is 345 
a helpful feature to identify static heterogeneity. For instance, labeling proteins with donor and 346 
acceptor is often done via two cysteine residues, which unavoidably results in two labeling 347 
permutations. If the molecular brightness of the dyes differs in the two variants, they will exhibit 348 
different FRET efficiencies and 𝑆2will follow the (1 − 𝑚−1)-dependence. In comparison to 349 
trBVA, the relaxation times from the donor-acceptor cross-correlation function 𝐺𝐷𝐴(𝜏) are 350 
highly inaccurate at the diffusion timescales (Fig. 2D).  351 
Compared to the 1.5-fold error in trBVA, the cross-correlation analysis deviates from the ground 352 
truth 7-fold at a relaxation time of 1 ms.  353 
 354 
FRET-resolved trBVA. Similar to regular BVA, also the time-resolved version can be used to 355 
investigate dynamics in different regions of the FRET efficiency histogram. In FRET-resolved 356 
trBVA, the segments of bursts within a particular FRET-range are analyzed. Importantly, 357 
selecting bursts within a FRET range means selecting trajectories according to their mean FRET 358 
efficiency. In a two-state system, 𝑆2 for bursts with FRET-values different from the ensemble 359 
average will therefore be biased. Bursts with FRET-values substantially lower than the ensemble 360 
average will contain trajectories with longer dwell times in the low-FRET state and shorter dwell 361 
times in the high-FRET state (Fig. 3A). The opposite happens when bursts with substantially 362 
higher FRET than the ensemble average are being selected. As the observed rate is a sum of 363 
forward and backward rate, the faster rate, i.e., the shorter dwell time, dominates. Hence, at 364 
the flanks of the FRET efficiency distribution, the observed exchange rates will in general be 365 
higher than the correct value (Fig. 3B, top). The steep change of the rate at the flanks of the 366 
distribution is therefore indicative of leaving the FRET regime in which dynamics occur. Similar 367 
information is contained in the amplitude 〈𝛿𝜖2〉 of the FRET auto-correlation function. For a 368 
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two-state system, the populations of both states in a trajectory with an arbitrarily chosen 369 
uncorrected FRET-value 𝜖 ̅are given by 𝑝1

′ = (𝜖2 − 𝜖)̅ (𝜖2 − 𝜖1)⁄  and  𝑝2
′ = (𝜖̅ − 𝜖1) (𝜖2 − 𝜖1)⁄ , 370 

respectively. The primes indicate that these occupancies differ from those of the whole 371 
ensemble of molecules.  The amplitude of the FRET-autocorrelation at this FRET-value is 〈𝛿𝜖̅2〉 =372 
𝑝1

′  𝑝2
′ (𝜖2 − 𝜖1)2 (see also eq. 7), which can be re-written as 373 

 374 
 〈𝛿𝜖̅2〉 = −(𝜖̅ − 𝜖1)(𝜖̅ − 𝜖2).         (23) 375 
 376 
Hence, the amplitude follows a second-order polynomial in 𝜖 ̅where the roots identify the 377 
position of the states (Fig. 3B). Notably, this relationship is independent of the true relative 378 
populations of the two states (𝑝1 and 𝑝2). The amplitude analysis is therefore suited to identify 379 
the (uncorrected) FRET-values of the interconverting states 𝜖1 and 𝜖2. In general, FRET-resolved 380 
trBVA experiments can be used to identify the positions of FRET states. However, kinetic rates 381 
should always be inferred from 𝑆2 using all bursts and not from FRET-resolved trBVA! This is 382 
important as the FRET-dependent rates will always exhibit a minimum at a FRET-value centered 383 
between 𝜖2 and 𝜖1, i.e., the point at which 𝑝′1 = 𝑝′2, irrespective of the abundance of both 384 
conformers in the whole ensemble. Moreover, the observed rate at the minimum is higher than 385 
the eigenvalue of the system (Fig. 3B, top) because trajectories without transitions (bursts with 386 
𝜖1 and 𝜖2) are underrepresented in this FRET range. To exemplify this deviation, we simulated a 387 
more complicated system in which three states with different FRET efficiencies (𝐸1 = 0.1, 𝐸2 =388 
0.5, 𝐸3 = 0.9) interconvert at different timescales (Fig. 3C). We assume that state 1 and 2 389 
exchange at a slow timescale with the rates 𝑘12 = 𝑘21 = 1 𝑚𝑠−1  whereas state 2 and 3 390 
exchange an order of magnitude faster with 𝑘23 = 𝑘32 = 10 𝑚𝑠−1. A comparison with the case 391 
in which exchange is hundredfold slower than the diffusion time through the detection volume 392 
shows how drastically dynamics can alter the appearance of FRET efficiency distributions (Fig. 393 
3C). In the presence of fast exchange at two different timescales, the FRET efficiency histogram 394 
shows a major peak at an apparent FRET efficiency value of 0.7, a minor peak at 0.1, and a floor 395 
of events in between the peaks. In a quantitative global analysis, we first computed 𝑆2 for all 396 
bursts. As expected, the trBVA trace increases and decreases with 𝑚 (Fig. 3D). A fit with a single-397 
exponential FRET-correlation function (eq. 4, 7, and 8) already provides a reasonable fit (Fig. 3D, 398 
top). Yet, the residuals clearly show discrepancies between data and fit. Indeed, a fit with a 399 
double-exponential correlation function, which corresponds to the correct 3-state-model 400 
(Appendix II) provides an excellent description of the data (Fig. 3D, bottom) and gives the 401 
correct eigenvalues (Fig. 3E). To exemplify how static heterogeneity would manifest in trBVA, we 402 
set the fitted rates in the correlation functions to zero (Fig. 3D). The comparison shows that 403 
dynamics lowers the amplitude of the trBVA trace and introduces the decay at large 𝑚. In the 404 
more qualitative FRET-resolved rate analysis, we calculated trBVA traces for bursts with 405 
different FRET efficiency values. An empirical fit with a single-exponential FRET correlation 406 
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function provides apparent exchange rates for the individual FRET efficiency values. These rates 407 
exhibit a non-trivial FRET-dependence (Fig. 3E). A minimum is observed at FRET-values between 408 
state 1 and 2. Starting from the minimum, the exchange rates increase towards lower FRET-409 
values as expected (compare to Fig. 3B, top). However, while the rates also increase towards 410 
higher FRET-values, a flattening of this dependence between state 2 and 3 is found. The position 411 
coincides with the position of the major peak at high FRET, which can be taken as indication that 412 
molecules in this peak dynamically switch at a fast timescale. Yet, the analysis is qualitative as 413 
the rates at both minimum and flattening point are substantially higher than the eigenvalues 414 
(Fig. 3E).  415 

As a rule of thumb, steep changes in exchange rates along the FRET coordinate indicate 416 
regions with biased trajectories and therefore regions close to the positions of the FRET states. 417 
FRET-independent exchange rates (minima or flat regions in the rate profile) indicate 418 
trajectories with strong exchange between states. Yet, care has to be taken as (i) flattening of 419 
the rate profile might not always be clearly visible and (ii) states in exchange rarely have 420 
identical populations such that exchange rates should not be inferred from the rate-FRET profile 421 
but always from the trBVA decay of the whole ensemble. 422 
 423 
Probing the dynamics of double-stranded DNA (dsDNA). As an application of trBVA, we probed 424 
the dynamics of dsDNA breathing. Structural fluctuations in dsDNA have previously been 425 
measured using fluorescence quenching31. A relaxation time of ~50 s was found for these local 426 
opening-closing motions, a timescale well within the regime that can  427 
 428 
be probed with trBVA. We performed smFRET experiments on dsDNA at neutral and acidic pH. 429 
At acidic pH, dsDNA is known to be destabilized32 due to the protonation of DNA bases and we 430 
expect a significant difference in the amplitude and/or timescales of these motions between pH 431 
7 and pH 4. We generated 12 dsDNA samples of 84 bp length each that were derived from a 432 
naturally occurring promoter sequence in Bacillus subtilis33. The samples were site-specifically 433 
labeled with AlexaFluor488 as donor and AlexaFluor594 as acceptor at varying positions, thus 434 
spanning the full FRET efficiency range from low to high values. We performed short 5 - 10 min 435 
long experiments using pulsed-interleaved excitation (PIE)29 and identified bursts as described in 436 
the methods section. As expected, the FRET efficiency histograms of these samples span the full 437 
FRET range (Fig. 4A). Notably, the widths of the FRET efficiency histograms are significantly 438 
increased at pH 4 compared to pH 7, suggesting that the drop in pH either alters the timescales 439 
of distance dynamics or the amplitude or both (Fig. 4A). We then used trBVA to analyse FRET-440 
fluctuations in these samples. A comparison of 𝑆2 at 𝑚 = 5 shows a substantially increased 441 
fluctuation amplitude at pH 4 compared to pH 7 (Fig. 4A). This variance is reduced at 𝑚 = 46, 442 
suggesting a pronounced microsecond decay. An overview of the decays indeed demonstrates 443 
the presence of structural fluctuations that are intensified at low pH (Fig. 4B). A fit with a two-444 
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state model provides an empirical description of these data with relaxation times that are in 445 
rough accord with the previous estimate of 50 s at dsDNA-samples with intermediate FRET 446 
efficiencies whereas substantially larger relaxation times were found for samples with extremely 447 
low and high FRET values. However, the fits do not properly capture the trBVA decays. To obtain 448 
a better description of the traces, we also fitted with double-exponential FRET-autocorrelation 449 
functions, which is equivalent to a model with three states. This model describes all trBVA traces 450 
well and results in two relaxation times (Fig. 4C). The fast relaxation time is closest to the 451 
previous estimate of 50 s at samples with low FRET efficiencies (Fig. 4C, bottom). Yet, for 452 
samples with high FRET efficiency, the fast relaxation time drops to values in the order of 2 - 453 
10 s. This a very fast timescale could be caused by transitions of the dyes into photo-physical 454 
triplet states or by direct contacts between donor and acceptor that lead to quenched dye 455 
complexes (Fig. 4C). However, we also identify a slow timescale in the order of 500 – 2000 s, 456 
which apparently represents slower motional modes the structure of the DNA. In fact, previous 457 
results demonstrated that dsDNA breathing motions exhibit non-exponential dynamics31 such 458 
that our 3-state model only provides a simplified description of the true dynamics.  459 

As a second example, we determined the folding-unfolding dynamics of the B-domain of 460 
protein A (BDPA) from Staphylococcus aureus, a protein that had previously been used to 461 
benchmark RASP22. The particular variant used here (F13W/Y14C/G29A/P57C) has a folding 462 
relaxation time of 0.93 ms-1 at 2.5 M of the denaturant guanidinium chloride (GdmCl) at 37°C. 463 
The protein was labeled at position 14 and 57 using AlexaFluor488 and AlexaFluor594 and other 464 
details of the experiments (buffer, laser intensity etc.) can be found in Hoffmann et al.22. Since 465 
the experiment was not performed with PIE, we selected the burst for trBVA based on their 466 
FRET value to exclude molecules with inactive acceptor (Fig. 5A inset). The trBVA trace cannot 467 
be described with a single-exponential FRET correlation function (Fig. 5A) and a double-468 
exponential function was required. Whereas the fast rate (1 = 411 ms-1 or 2.4 s) is associated 469 
with the smaller amplitude (36%) and is well in the regime of dye triplet blinking, the slower rate 470 
( 2 = 0.9 ms-1 or 1.1 ms) dominates the amplitude and indeed corresponds to the timescale 471 
observed with RASP (1.4 ms-1) and temperature jump experiments (0.93 ms-1).  472 

In summary, the relaxation times of DNA breathing and of the folding and unfolding of 473 
BDPA obtained with trBVA agree well with previous measurements. Compared to our 474 
simulations, a very fast relaxation component at timescales of a few microseconds is found in 475 
both data sets and might reflect the triplet blinking of our dyes. 476 
 477 
Conclusion 478 
We presented a time-resolved version of burst variance analysis termed trBVA and developed a 479 
theoretical framework to apply trBVA in a quantitative manner to smFRET experiments of 480 
diffusing molecules. TrBVA is capable of identifying dynamics in biomolecules at timescales from 481 
5 s up to 5 ms with remarkable accuracy. Using simulated data, we also showed that trBVA can 482 
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be used in a FRET-resolved manner to identify the FRET-values of states that are in exchange. In 483 
more complicated cases in which more than two states exchange, FRET-resolved trBVA merely 484 
provides qualitative information about the FRET efficiency values of the states. In general, FRET-485 
resolved trBVA is a qualitative tool to understand the complexity of the dynamics at hand.  486 

Finally, we demonstrated the ability of trBVA to identify dynamics in real experiments 487 
using the examples of the breathing motions in double stranded DNA and of fast 488 
folding/unfolding kinetics of a protein. We are therefore convinced that trBVA is an excellent 489 
addition to the existing toolset of smFRET.  490 
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Appendix I 507 
To arrive at eq. 4, we start from three common assumptions: 508 
 509 

1. The total photon rate does not fluctuate in time. 510 
2. The probability, 𝜖(𝑥(𝑡)), of observing an acceptor photon is determined by the spatial 511 

distance 𝑥(𝑡) between donor and acceptor dyes. 512 
3. Dye excitation-emission cycles are fast compared to the inter-photon time. 513 

 514 
For an m-photon segment with a given set of photon arrival times {𝑡𝑖}𝑖=1…𝑚 resulting from a 515 
single trajectory 𝑥(𝑡), the probabilities for the individual photons to be detected in the acceptor 516 
channel are given by {𝜖𝑖}𝑖=1…𝑚 where 𝜖𝑖 = 𝜖(𝑥(𝑡𝑖)). Our goal is to first compute the first and 517 

second moment of the distribution of 𝜖 for a single trajectory and then to average them over all 518 
trajectories. The probability to observe 𝑎 acceptor photons is therefore given by the Poisson 519 
binomial distribution34 𝑃𝑝𝑏(𝑎|{𝜖𝑖}𝑖=1

𝑚 ), which generalizes the ordinary binomial distribution in 520 
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that the probabilities for individual trials do not need to be equal. The mean of the distribution 521 
is known to be 〈𝑎〉 = ∑ 𝜖𝑖

𝑚
𝑖=1  and the variance is 𝜎𝑎

2 = ∑ 𝜖𝑖(1 − 𝜖𝑖)𝑚
𝑖=1 . For the given set of 522 

arrival times {𝑡𝑖} we then get the mean and variance of 𝜖 as: 523 
 524 

〈𝜖〉{𝑡𝑖} = ⟨ 𝑎
𝑚

⟩
{𝑡𝑖}

= 1
𝑚

∑ 𝜖𝑖
𝑚
𝑖=1          (I.1) 525 

and 526 
 527 
𝜎{𝑡𝑖}

2 = 〈𝜖2〉{𝑡𝑖} − 〈𝜖〉{𝑡𝑖}
2 = 1

𝑚2 ∑ 𝜖𝑖(1 − 𝜖𝑖)𝑚
𝑖=1  .      (I.2) 528 

 529 
For the second moment, we can then write: 530 
 531 
〈𝜖2〉{𝑡𝑖} = 1

𝑚2 [∑ 𝜖𝑖(1 − 𝜖𝑖)𝑚
𝑖=1 + (∑ 𝜖𝑖

𝑚
𝑖=1 )2] = 1

𝑚2 [∑ 𝜖𝑖
𝑚
𝑖=1 + ∑ 𝜖𝑖𝜖𝑗𝑖≠𝑗 ].   (I.3) 532 

 533 
We now need to average over all sets of arrival times. To this end, consider photon segments 534 
that have a fixed duration 𝑡 between the first and last photon whereas all 𝑚 − 2 photons in 535 
between the first and last photon have random arrival times. For the moment, we only consider 536 
a specific trajectory 𝑥(𝑡′) of a molecule but we will average over all trajectories at a later stage. 537 
To compute the total probability of obtaining 𝑎 acceptor photons in a photon segment, we need 538 
to average over all possible arrival times {𝑡𝑖}𝑖=1…𝑚. Note that the arrival times are not an 539 
ordered set. Whereas the arrival times are fixed for the first and last photon (𝑡1 = 0 and 𝑡𝑚 =540 
𝑡 ), the arrival times of the remaining 𝑚 − 2  photons are independently and uniformly 541 
distributed random values between 0 and 𝑡. The probability density function of such sets 542 
{𝑡𝑖}𝑖=1…𝑚 is given by 543 
 544 
𝑃({𝑡𝑖}𝑖=1

𝑚 |𝑡) = 4
𝑡𝑚−2 𝛿(𝑡1 − 0)𝛿(𝑡𝑚 − 𝑡)  with ∫ ⋯ ∫ 𝑃({𝑡𝑖}𝑖=1

𝑚 |𝑡) 𝑑𝑡1 … 𝑑𝑡𝑚
𝑡

0
𝑡

0 = 1.  (I.4) 545 

 546 
As mentioned above, the number of acceptor photons for a given set {𝑡𝑖} obeys Poisson 547 
binomial statistics. The mean FRET efficiency for the trajectory 𝑥(𝑡′) is then given by 548 
 549 
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〈𝜖〉(𝑚, 𝑡, 𝑥(𝑡′)) = ∫ ⋯ ∫ 〈𝜖〉{𝑡𝑖} 𝑃({𝑡𝑖}𝑖=1
𝑚 |𝑡) 𝑑𝑡1 … 𝑑𝑡𝑚

𝑡

0

𝑡

0
550 

= ∫ ⋯ ∫ (
1
𝑚

∑ 𝜖(𝑥(𝑡𝑖)) 
𝑚

𝑖=1

)  𝑃({𝑡𝑖}𝑖=1
𝑚 |𝑡) 𝑑𝑡1 … 𝑑𝑡𝑚

𝑡

0

𝑡

0
551 

=
1
𝑚

∑ ∫ ⋯ ∫ 𝜖(𝑥(𝑡𝑖)) 𝑃({𝑡𝑖}𝑖=1
𝑚 |𝑡) 𝑑𝑡1 … 𝑑𝑡𝑚

𝑡

0

𝑡

0

𝑚

𝑖=1

552 

=
1
𝑚

[𝜖(𝑥(0)) + 𝜖(𝑥(𝑡)) +
1

𝑡𝑚−2 ∑ ∫ ⋯ ∫ 𝜖(𝑥(𝑡𝑖))  𝑑𝑡2 … 𝑑𝑡𝑚−1

𝑡

0

𝑡

0

𝑚−1

𝑖=2

]553 

=
1
𝑚

[𝜖(𝑥(0)) + 𝜖(𝑥(𝑡)) + (𝑚 − 2)
1
𝑡

∫ 𝑑𝑡′𝜖(𝑥(𝑡′))
𝑡

0
] 554 

 556 
           (I.5) 555 
Similarly, with the use of eq. I.3, the second moment is  557 
 558 

〈𝜖2 〉(𝑚, 𝑡, 𝑥(𝑡′)) = ∫ ⋯ ∫ 〈𝜖2〉{𝑡𝑖} 𝑃({𝑡𝑖}𝑖=1
𝑚 |𝑡) 𝑑𝑡1 … 𝑑𝑡𝑚

𝑡

0

𝑡

0
559 

=
1

𝑚2 ∫ ⋯ ∫ [∑ 𝜖(𝑥(𝑡𝑖))
𝑚

𝑖=1

+ ∑ 𝜖(𝑥(𝑡𝑖))𝜖 (𝑥(𝑡𝑗))
𝑖≠𝑗

]  𝑃({𝑡𝑖}𝑖=1
𝑚 |𝑡) 𝑑𝑡1 … 𝑑𝑡𝑚

𝑡

0

𝑡

0
560 

=
1
𝑚

〈𝜖〉(𝑚, 𝑡, 𝑥(𝑡′))561 

+
1

𝑚2
1

𝑡𝑚−2 ∑ ∫ ⋯ ∫ 𝜖(𝑥(𝑡𝑖))𝜖 (𝑥(𝑡𝑗)) 4𝛿(𝑡1 − 0)𝛿(𝑡𝑚 − 𝑡)𝑑𝑡1 … 𝑑𝑡𝑚

𝑡

0

𝑡

0

𝑚

𝑖≠𝑗

562 

=
1
𝑚

〈𝜖〉(𝑚, 𝑡, 𝑥(𝑡′))563 

+
1

𝑚2 {2[𝜖(𝑥(0))𝜖(𝑥(𝑡))] + 2(𝑚 − 2)
1
𝑡

∫ 𝑑𝑡′[𝜖(𝑥(0))𝜖(𝑥(𝑡′))]
𝑡

0
564 

+ 2(𝑚 − 2)
1
𝑡

∫ 𝑑𝑡′[𝜖(𝑥(𝑡))𝜖(𝑥(𝑡′))]
𝑡

0
565 

+ (𝑚 − 2)(𝑚 − 3)
1
𝑡2 ∫ ∫ 𝑑𝑡′𝑑𝑡′′

𝑡

0

𝑡

0
[𝜖(𝑥(𝑡′))𝜖(𝑥(𝑡′′))]} 566 

(I.6) 567 
 568 
At this stage, we average both results (I.5 and I.6) over the ensemble of distance trajectories and 569 
denote this average as 〈… 〉𝑥. In this notation, the FRET efficiency averaged over all trajectories 570 
〈𝜖(𝑥(𝑡))〉𝑥 and 𝛿𝜖(𝑥(𝑡)) are then written as  571 

 572 
〈𝜖〉𝑥 ≡ 〈𝜖(𝑥(𝑡))〉𝑥;  𝛿𝜖(𝑥(𝑡)) = 𝜖(𝑥(𝑡)) − 〈𝜖〉𝑥 with 〈𝛿𝜖(𝑥(𝑡))〉𝑥 = 0 574 

           (I.7) 573 
 575 
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After averaging, the result for the mean FRET efficiency is 576 
 577 

〈𝜖〉𝑥(𝑚, 𝑡) = 〈〈𝜖〉(𝑚, 𝑡, 𝑥(𝑡′))〉𝑥 =
1
𝑚

[〈𝜖(𝑥(0))〉𝑥 + 〈𝜖(𝑥(𝑡))〉𝑥 + (𝑚 − 2)
1
𝑡

∫ 𝑑𝑡′〈𝜖(𝑥(𝑡′))〉𝑥

𝑡

0
]579 

= 〈𝜖〉𝑥 580 
             (I.8) 578 
 581 
Similarly, averaging eq. I.6 gives 582 
 583 

〈𝜖2〉𝑥(𝑚, 𝑡) = 〈〈𝜖2〉(𝑚, 𝑡, 𝑥(𝑡′))〉𝑥584 

=
1
𝑚

〈𝜖〉𝑥 + (1 −
1
𝑚

) 〈𝜖〉𝑥
2585 

+
1

𝑚2 [2〈𝛿𝜖(𝑥(0))𝛿𝜖(𝑥(𝑡′))〉𝑥586 

+ 4(𝑚 − 2)
1
𝑡

∫ 𝑑𝑡′〈𝛿𝜖(𝑥(0))𝛿𝜖(𝑥(𝑡′))〉𝑥

𝑡

0
587 

+ (𝑚 − 2)(𝑚 − 3)
2
𝑡2 ∫ 𝑑𝑡′(𝑡 − 𝑡′)〈𝛿𝜖(𝑥(0))𝛿𝜖(𝑥(𝑡′))〉𝑥

𝑡

0

] 588 

(I.9) 589 
 590 
The variance of segments with length 𝑚 and time duration 𝑡 is then 591 
 592 

𝜎𝑥
2(𝑚, 𝑡) = 〈𝜖2〉𝑥(𝑚, 𝑡) − 〈𝜖〉𝑥

2 =
〈𝜖〉𝑥(1 − 〈𝜖〉𝑥)

𝑚
+ Δ𝑠2(𝑚, 𝑡) 594 

           (I.10) 593 
 595 
where the first term is the variance of a Binomial distribution. The second term is the t-specific 596 
excess variance that contains information about the conformational fluctuations and with 597 
𝑔(𝑡) = 〈𝛿𝜖(0)𝛿𝜖(𝑡)〉𝑥 is given by 598 
 599 

Δ𝑠2(𝑚, 𝑡) =
1

𝑚2 [2 𝑔(𝑡) +
4(𝑚 − 2)

𝑡
∫ 𝑔(𝑡′)𝑑𝑡′ +

2(𝑚 − 2)(𝑚 − 3)
𝑡2

𝑡

0
∫ (𝑡 − 𝑡′)𝑔(𝑡′)

𝑡

0
𝑑𝑡′] 600 

(I.11) 601 
 602 
which is identical to eq. 4 in the main text. It is noteworthy that the above result is similar to the 603 
result obtained by Gopich and Szabo for the case of fixed time bins instead of variable segment 604 
lengths16. The main difference is that all photons in a fixed time bin are randomly distributed 605 
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whereas in BVA the arrival time of the first and the last photon in a segment are fixed. When 606 
relaxing this constraint, the probability density function in eq. I.4 becomes 607 
 608 
𝑃({𝑡𝑖}𝑖=1

𝑚 |𝑡) = 1
𝑡𝑚         (I.12) 609 

 610 
and solving the integrals in I.5 and I.6, the t-specific excess variance becomes 611 
 612 
Δ𝑠2(𝑚, 𝑡) = (1 − 1

𝑚
) 2

𝑡2 ∫ (𝑡 − 𝑡′)𝑔(𝑡′)𝑡
0 𝑑𝑡′,      (I.13) 613 

 614 
which is similar to eq. 3.8 in Gopich and Szabo16 if only bins of time 𝑡 with 𝑚 photons are 615 
considered. 616 
 617 
Appendix II 618 
Here we provide the formulas for the t-specific excess variance ∆𝑠2(𝑚, 𝑡) used for data fitting 619 
with the 2-state and 3-state model. As outline in eq. 7, the correlation function of a 2-state 620 
model is given by 𝑔2−𝑆𝑡𝑎𝑡𝑒(𝑡) = 𝑎 𝑒−𝜆𝑡  where 𝑎 = 𝑘12𝑘21

𝑘12+𝑘21
(𝜖1 − 𝜖2)2  and 𝜆 = 𝑘12 + 𝑘21. 621 

Similarly, the correlation function for a 3-state model can be obtained from eq. 6 using the 622 
appropriate rate matrix 𝐊 and the diagonal matrix containing the FRET efficiencies of the three 623 
states 𝛜. For instance, for the model shown in Fig. 3C (top), we have 624 
 625 

𝐊 = (
−𝑘12 𝑘21 0
𝑘12 −(𝑘21 + 𝑘23) 𝑘32
0 𝑘23 −𝑘32

)  and  𝛜 = (
𝜖1 0 0
0 𝜖2 0
0 0 𝜖3

)    (II.1) 626 

 627 
with the equilibrium state vector 628 
 629 
 𝐩𝐞𝐪 = (𝑘21𝑘32 + 𝑘12𝑘32 + 𝑘12𝑘23)−1(𝑘21𝑘32 𝑘12𝑘32 𝑘12𝑘23).   (II.2) 630 

 631 
The rate matrix 𝐊 has two non-zero eigenvalues 𝜆1 and 𝜆2, and the correlation function can 632 
written as 𝑔3−𝑆𝑡𝑎𝑡𝑒(𝑡) = 𝑎1 𝑒−𝜆1𝑡 + 𝑎2 𝑒−𝜆2𝑡. Inserting these expressions in eq. 4 and solving 633 
the integrals gives  634 
 635 

∆𝑠2−𝑆𝑡𝑎𝑡𝑒
2 (𝑚, 𝑡) = 1

𝑚2 {2𝑎𝑒−𝜆𝑡 + 4(𝑚 − 2) 𝑎(1−𝑒−𝜆𝑡)
𝜆𝑡

+ 2(𝑚 − 2)(𝑚 − 3) 𝑎(𝑒−𝜆𝑡−1+𝜆𝑡)
𝜆2𝑡2 }  (II.3) 636 

 637 
 638 

Jo
urn

al 
Pre-

pro
of



 19 

∆𝑠3−𝑆𝑡𝑎𝑡𝑒
2 (𝑚, 𝑡) = 1

𝑚2 {2[𝑎1𝑒−𝜆1𝑡 + 𝑎2𝑒−𝜆2𝑡] + 4(𝑚 − 2) [𝑎1(1−𝑒−𝜆1𝑡)
𝜆1𝑡

+ 𝑎2(1−𝑒−𝜆2𝑡)
𝜆2𝑡

] +639 

2(𝑚 − 2)(𝑚 − 3) [𝑎1(𝑒−𝜆1𝑡−1+𝜆1𝑡)
𝜆1

2𝑡2 + 𝑎1(𝑒−𝜆2𝑡−1+𝜆2𝑡)
𝜆2

2𝑡2 ]} .     (II.4) 640 

 641 
Appendix III 642 
For dynamics that are slow compared to the duration of a segment 𝑡, we can approximate the 643 
correlation function by a constant number 〈𝛿𝜖(0)𝛿𝜖(𝑡′)〉𝑥 ≈ 〈𝛿𝜖2〉𝑥 for 𝑡′ ∈ (0, 𝑡). In this case, 644 
the t-specific excess variance (I.11) simplifies to 645 
 646 
∆𝑠2(𝑚, 𝑡) = 𝑚−1

𝑚
〈𝛿𝜖2〉𝑥 = (1 − 1

𝑚
) 𝜎𝜖

2        (III.1) 647 

 648 
where 𝜎𝜖

2 ≡ 〈𝛿𝜖2〉𝑥 = 〈𝜖2〉𝑥 − 〈𝜖〉𝑥
2 is the variance of the FRET efficiency over all conformational 649 

states. Note that eq. III.1 is an increasing function with 𝑚. Following eq. I.10, the total t-specific 650 
variance in the static case is then 651 
 652 
𝜎𝑥

2(𝑚, 𝑡) = 〈𝜖〉𝑥(1−〈𝜖〉𝑥)
𝑚

+ (1 − 1
𝑚

) 𝜎𝜖
2 = 𝜎𝜖

2 + 1
𝑚

(〈𝜖〉𝑥 − 〈𝜖〉𝑥
2 − 𝜎𝜖

2) = 𝜎𝜖
2 + 〈𝜖(1−𝜖)〉𝑥

𝑚
 . (III.2) 653 

 654 
From the last expression, it is clear that the total t-specific variance is a decaying function of 𝑚 655 
(third term in III.2), as expected based on the central limit theorem. Using the expression 656 
〈𝜖〉𝑥(1 − 〈𝜖〉𝑥) 𝑚⁄  to estimate shot noise using binomial statistics, which is only correct in the 657 
absence of heterogeneity, causes the factor (1 − 𝑚−1) in the t-specific excess variance (III.1). A 658 
better estimate for shot noise in the static case is therefore 〈𝜖(1 − 𝜖)〉𝑥 𝑚⁄ . 659 
 The other limit is given when the timescale of conformational dynamics (𝜏) is much 660 
faster than the inter-photon time. Hence, the time duration of any segment (𝑡) is much longer 661 
than 𝜏  or equivalently, 𝑃(𝑡|𝑚) ≪ 1  for 𝑡~𝜏 . When evaluating the integral in eq. 5, the 662 
distribution 𝑃(𝑡|𝑚) has nonzero weights only for those values of Δ𝑠2(𝑚, 𝑡) for which 𝑔(𝑡)~0 663 
and therefore Δ𝑠2(𝑚, 𝑡)~0. Correspondingly, eq. 5 evaluates to 𝑆2~0, which is the lower 664 
boundary of 𝑆2. 665 
 666 
Appendix IV 667 

To judge the accuracy of the parameters that can be obtained from trBVA traces, we provide a 668 
lower limit for the amplitude of the autocorrelation function. In a 2-state system, the amplitude 669 
of the FRET-autocorrelation function will increase with ∆𝜖2 = (𝜖2 − 𝜖1)2 (see eq. 7, Fig. S1A). 670 
Clearly, the higher the FRET-separation of the two states, the higher the amplitude of the 671 
autocorrelation function. A lower limit of ∆𝜖 should be given by shot noise. For simplicity, we 672 
assume that the two states exchange with slow dynamics compared to the diffusion time 673 
through the confocal volume. In addition, we assume that their shot noise variance is identical 674 
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and given by 𝜎. To distinguish the two states in a FRET efficiency histogram, the separation 675 
between the states should exceed the combined shot noise variance of both states. We 676 
therefore require 677 

∆𝜖 > 2𝜎.          (IV.1) 678 

From this expression, we can get a lower limit for the amplitude of the FRET-autocorrelation 679 
function. The amplitude is given 𝑎 = 𝑘12𝑘21∆𝜖2 𝜆2⁄  where 𝜆 = 𝑘12 + 𝑘21. Given a value for the 680 
difference Δ𝜖, the best possible case (the highest amplitude) would be at 𝑘12 = 𝑘21. Any other 681 
combination of 𝑘12  and 𝑘21  would result in even smaller amplitudes. With 𝑘12 = 𝑘21 , the 682 
amplitude reduces to 𝑎 = ∆𝜖2 4⁄  and with eq. IV.1, we would require 683 

𝑎 > 𝜎2.           (IV.2) 684 

Importantly, even if 𝜎 of a single state cannot be reliably determined because of a high overlap 685 
between the states or because of fast exchange dynamics, the above inequality would still 686 
provide a lower limit for the amplitude below which a determination of the FRET-687 
autocorrelation function becomes unreliable. For instance, for a measured FRET distribution 688 
centered at 𝜖 = 0.5 and a threshold of 100 photons, one would ideally like to have an amplitude 689 
of 𝑎 > 0.52 100⁄ = 2.5 10−3  and Δ𝜖 > 2√0.52 100⁄ = 0.1 . We tested this estimate with 690 
simulations assuming identical kinetic rates (𝑘12 = 𝑘21 = 1 𝑚𝑠−1) but different values of ∆𝜖 (Fig. 691 
S1). The apparent kinetic rate 𝜆 is obtained with good accuracy down to a value of ∆𝜖 = 0.2. 692 
However at Δ𝜖 ≈ 0.1 and at an amplitude of 𝑎 ≈ 3.5 10−3, i.e., close to our accuracy estimates 693 
of Δ𝜖 > 0.1 and 𝑎 > 2.5 10−3, the fitted rate exceeds the ground truth threefold (Fig. S1B), 694 
indicating that the parameters of the FRET-autocorrelation function cannot be reliably 695 
determined. In addition, we tested the sensitivity of trBVA to the photon threshold used to 696 
identify bursts. Simulations show that the photon threshold has no impact on the determined 697 
kinetic rates from trBVA as long as the FRET efficiency separation between the states fulfills eq. 698 
IV.1 (Fig. S1B, inset). Yet, at an extremely low separation Δ𝜖 ≈ 0.1 a doubling of the photon 699 
threshold from 𝑇 = 100 to 𝑇 = 200, indeed lowers the discrepancy between fitted rate and 700 
ground truth. 701 
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 849 
 850 
 851 
 852 
Figure Legends 853 
 854 

Figure 1. Scheme of the trBVA procedure and simulated FRET efficiency histograms 855 
(corrected) for a freely diffusing dynamic particle. (A) In trBVA, the photons from acceptor 856 
(red) and donor (green) in a burst i are partitioned into segments of length m. For each segment, 857 
apparent (uncorrected) FRET values 𝜖𝑖𝑗 are computed and the variance of these FRET values is 858 

studied as function of m. (B) Illustration of the trBVA variance analysis. The FRET efficiencies of 859 
individual segments within a burst i are depicted as function of time for two scenarios: a 860 
hypothetical burst without dynamics, i.e., only including shot noise, (left column) and a ‘measured’ 861 
burst with a conformational transition (right column). The FRET efficiencies are shown for three 862 
values of segment lengths m (indicated). The variances of FRET efficiencies are depicted as gray 863 
shaded areas. The trBVA excess variance is the difference between the measured variance 864 
(right) and the shot noise variance (left). Importantly, trBVA excess variance for a given segment 865 
length m is computed from the segments of all bursts, not only for a single burst as shown in B.  866 
(C) Brownian dynamics simulation of FRET efficiency histograms (corrected) for a particle 867 
diffusing freely through a confocal spot including bleaching of donor and acceptor. The particles 868 
switched between two states with corrected FRET efficiencies E1 = 0.9 and E2 = 0.1. The kinetic 869 
forward (k12) and backward (k21) rates were assumed to be identical. The FRET efficiency 870 
histograms are shown for different values of k12 and k21 (bottom). 871 
 872 
Figure 2. Kinetic analysis with trBVA. (A) Traces of the excess variance 𝑆2 with increasing 873 
number m in the photon segments for different values of k12 = k21 (indicated). Solid lines are fits 874 
with eq. 4, 7 and 8. The fits had two fitting parameters, the amplitude 〈𝛿𝜖2〉 and the observed rate 875 
𝑘𝑜𝑏𝑠 = 𝑘12 + 𝑘21 . (B) Distribution of the duration of the photon segments 𝐻(𝑡𝑖|𝑚) for different 876 
photon numbers (indicated). (C) Donor-acceptor cross-correlation functions for two exchange 877 
rates (indicated). The solid line is a fit to eq. 9. (D) Comparison of the relaxation times (𝑘12 +878 
𝑘21)−1 between simulation (ground truth) and extracted from trBVA (red circles). Gray circles are 879 
relaxation times obtained from the cross-correlation functions (see C). Solid line is the identity 880 
line. (E) Ratio of the relaxation times between simulation and the analysis with trBVA (red circles) 881 
and the analysis of the cross-correlation (gray circles). 882 
 883 
Figure 3. Benefits and pitfalls of FRET-resolved trBVA. (A) FRET-histogram of a 2-state 884 
system interconverting at a rate of 1 ms-1 (same as in Fig. 1). Three FRET-ranges are indicated. 885 
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Idealized schematics of trajectories that might be found in the three ranges (top). (B) Exchange 886 
rate as function of FRET for the data shown in A obtained with single-exponential correlation 887 
functions (top). The true rate (eigenvalue) is indicated as dashed line. Amplitudes 〈𝛿𝜖2〉 of the 888 
FRET autocorrelation function as a function of corrected FRET efficiency for the data in A 889 
(bottom). The solid line is a fit with the second-order polynomial eq. 23. Error bars are from 5 890 
independent simulations. (C) Model of a three-state system (top) and simulated FRET-histograms 891 
without (middle) and with (bottom) fast exchange. The forward and backward rates for the 892 
individual reactions are indicated. (D) Decays of the excess variance as function of m and fits with 893 
eq. II.3 and 8 (solid black lines) for a 2-state model with a single-exponential correlation function 894 
(top) and a 3-state model (eq. II.4 and 8) with a double-exponential correlation function (bottom). 895 
The dashed line indicates the component with the low eigenvalue. Gray lines indicate the static 896 
case estimated from the fit obtained by setting all eigenvalues to zero. (E) Observed exchange 897 
rate obtained with single-exponential fits as function of the corrected FRET efficiency for the 3-898 
state system (white circles). Horizontal dashed lines indicate the true eigenvalues of the system 899 
and the arrows highlight regimes of exchange. The rates obtained from a fit of all bursts with a 3-900 
state model (see D, bottom) are shown as red circles. Error bars are from 5 independent 901 
simulations. 902 
 903 
Figure 4. Probing dsDNA breathing motions. (A) FRET-histograms (top) and trBVA amplitudes 904 
(bottom) for dsDNA samples at pH7 (left) and pH4 (right). Solid lines are fits to a 4th-order 905 
polynom. (B) TrBVA traces and fits of all dsDNA samples with eq. 4, 6, and 8. Using a FRET-906 
autocorrelation function with one (dashed, eq. II3) and two (solid, eq. II4) exponentials. Colors are 907 
identical to A. (C) Relaxation rates of dsDNA motions at pH 7 (open circles) and pH 4 (filled 908 
circles) for the fits with one (top) and two (bottom) exponentials. A relaxation time of 50 s is 909 
indicated. 910 
 911 
Figure 5. Probing the folding and unfolding of a protein. (A) TrBVA decay of BDPA (circles) 912 
and a fit with a 2-state model (solid line). Inset: FRET efficiency histograms of BDPA. Red shaded 913 
area highlights bursts used for trBVA. The gray area indicated molecules without an active 914 
acceptor.  (B) Same data as in A with a fit of a 3-state model (solid line). The dashed line shows 915 
the contribution from the slow decay component with a rate of 0.9 ms-1 and a relative amplitude of 916 
64%. 917 
 918 
 919 

Jo
urn

al 
Pre-

pro
of



A B 

C 

Jo
urn

al 
Pre-

pro
of



10 20 30 

40 

40 
60 

3 10 100 10,000 

3 

10 

100 

10,000 

Number of photons (m) Simulation (k12+k21) -1 (µs) 

A
na

ly
si

s 
(k

12
+

k 2
1)

 -1
 (µ

s)
 

1 10 100 1000 
Duration of photon segment (µs) 

m = A B 

C 

D 
Ex

ce
ss

 v
ar

ia
nc

e 
S2

 (x
10

-3
 )  

2 4 6 12 20 40 

60 

1 10 100 1000 10000 
Lag time (µs) 

20 

60 

80 

60 
80 

100 ms-1 
Diffusion artefact 

2 

x 100 
4 

G
D

A
 

1 ms-1 

Dynamics 

0.1 0 

2 
4 
6 

Fo
ld

 c
ha

ng
e 

 

E 

80 

60 
80 

80 
100 

40 

50 ms-1 

25 ms-1 

8 ms-1 

3 ms-1 

1 ms-1 

0.5 ms-1 

10-6 ms-1 Static case 

1000 

1000 

Jo
urn

al 
Pre-

pro
of



State 1 
k12

State 2 State 3 

k21

k23

k32

0.01 ms-1 

0.01 ms-1 

0.01 ms-1 

0.01 ms-1 

1 ms-1 

1 ms-1 

10 ms-1 

10 ms-1 

1.0 
Transfer efficiency (E) 

0.8 0.6 0.4 0.2 

2 
3 

O
bs

er
ve

d 
ra

te
 (m

s-
1 )

 
21 ms-1 

10 20 30 40 

D 

E 
1.0 

Transfer efficiency (E) 
0.8 0.6 0.4 0.2 0.0 

1.5 ms-1 

1.0 0.8 0.6 0.4 0.2 
Transfer efficiency (E) 

10 

O
bs

er
ve

d 
ra

te
 (m

s-
1 )

 
A 

B 

Number of photons (m) 

10 
20 

50 

Ex
ce

ss
 v

ar
ia

nc
e 

(1
0-

3 )
 C 

1.0 
Transfer efficiency (E) 

0.8 0.6 0.4 0.2 0.0 

Range 1 Range 2 Range 3 Time 

1.0 0.8 0.6 0.4 0.2 
Transfer efficiency (E) 

0.05 

A
m

pl
itu

de
 

S 2

10 20 30 40 

60 

		0.0 

		
100 

Eigenvalue: k12 + k21 

2 ms-1 2 

		0.0 
0.00 

		δε 2
0.10 

E1 E2 

		

		
1 

0.0 

90 

0 

0 

40 

70 

80 

0.5 

-0.5 Re
si

du
al

s 

50 

Ex
ce

ss
 v

ar
ia

nc
e 

(1
0-

3 )
 

60 

40 

70 

80 

0.5 

-0.5 Re
si

du
al

s 

2 exponentials 

1 exponential 

Slow component 

Estimated static case 

Estimated static case 

Jo
urn

al 
Pre-

pro
of



A 

25 50 25 50 25 50 25 50 
Number of photons (m) 

0.01 

Transfer efficiency (E) 
0.2 0.4 0.6 0.8 1.0 

Re
la

xa
tio

n 
tim

e 
(µ

s)
 

C B 

10 

100 

100 

A 

1.0 
Transfer efficiency (E) 

0.75 0.5 0.25 

0.01 

0.02 
Ex

ce
ss

 v
ar

ia
nc

e 
pH 7 

1.0 0.75 0.5 0.25 
Transfer efficiency (E) 

pH 4 

0.0 

Ex
ce

ss
 v

ar
ia

nc
e 

0.01 

0.00 

0.01 

Ex
ce

ss
 v

ar
ia

nc
e 

0.00 

0.00 
0 0 0 

S 2

0.0 
0.00 

0.03 

m = 5 

m = 46 
m = 46 

m = 5 
S 2

0.01 

0.02 

0.00 

0.03 

pH 7 

pH 4 0.02 

0.02 

0.02 

0 

S 2

200 
300 

50 
50 µs 

400 

0.0 
2 

1000 

50 µs 

Jo
urn

al 
Pre-

pro
of



10 20 30 40 50 60 10 20 30 40 50 60 
Number of photons (m) Number of photons (m) 

Ex
ce

ss
 v

ar
ia

nc
e 

(x
10

-2
) S 2

A B 

0.0 0.2 0.4 0.6 0.8 1.0 
Transfer efficiency (E) 

Slow decay 
5.5 

6.0 

0 

5.0 

0 

Jo
urn

al 
Pre-

pro
of


