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Abstract.

Whether single-molecule trajectories, observed experimentally or in molecular simulations, can
be described using simple models such as biased diffusion is a subject of considerable debate.
Memory effects and anomalous diffusion have been reported in a number of studies, but
directly inferring such effects from trajectories, especially given limited temporal and/or spatial
resolution, has been a challenge. Recently we proposed that this can be achieved with
information-theoretical analysis of trajectories, which is based on the general observation that
non-Markov effects make trajectories more predictable and thus more “compressible” by
lossless compression algorithms. Toy models where discrete molecular states evolve in time
were shown to be amenable to such analysis, but its application to continuous trajectories
presents a challenge: the trajectories need to be digitized first, and digitization itself introduces
non-Markov effects that depend on the specifics of how trajectories are sampled. Here we
develop a milestoning-based method for information-theoretical analysis of continuous
trajectories and show its utility in application to Markov and non-Markov models and to
trajectories obtained from molecular simulations.
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1. Introduction.

Experimental single-molecule studies report on the time evolution of molecular degrees
of freedom. Experimental observables are low-dimensional; the dynamics of such low-
dimensional projections of high-dimensional molecular motion are known to be complex if not
intractable (in practice)!. Two key challenges in the field, then, are to (1) construct adequate
models describing the dynamics of experimental observables directly from data and (2) to learn
about the underlying molecular motions from the observed low-dimensional projections (aka
experimental signals).

The progress toward the first of these goals has so far mostly consisted of
fitting/modeling data with postulated dynamical models of increasing complexity. These range
from diffusive models of barrier crossing?® or random walks’ to - more recently - models with
“hidden” states®!!, generalized Langevin equation with memory!?8, non-Markov master
equations!® 2, and other models of non-Markov dynamics?23. The second goal, involving
solving an inverse problem, have only seen a handful of valiant efforts® 24 25,

In a different approach to these objectives?®-28, several exact results have been derived
that address questions of principle. For example, instead of looking for the best fit of the
observed single-molecule dynamics using the assumption that it is one-dimensional diffusive
dynamics, one may ask whether the data can be described by such a model in principle. Indeed,
some properties of the observed trajectories may be fundamentally inconsistent with diffusive
dynamics?’. Most such studies focused on molecular transition paths - short trajectory

segments crossing the transition region between metastable “reactant” and “product” states®.



Another recent method3® quantifies violations of the Chapman-Kolmogorov equation and
compares experimental trajectories to Markov processes.

Recently, we have proposed an information-theoretical approach to detecting memory
effects in discrete single-molecule trajectories3!. In a nutshell, a trajectory that has a memory
of the past states that it has visited is “more predictable” than a memoryless, Markov
trajectory. As such itis more compressible when presented to a data-compression algorithm.
Even before the advent of computers and compression algorithms, Shannon used this idea in
his classic work on information content of printed English32: memory of preceding letters in a
text allows one to predict the subsequent letters with less uncertainty. As a result, English text
can be encoded with fewer bits per character than random strings of letters. The purpose of
this paper is to show how this method can be used for continuous trajectories, which are more
common in single-molecule experiments. We start with summarizing our method in application

to discrete data.

2. Method applied to discrete observables

Consider an ergodic single-molecule trajectory i(t), where 1 < i < N is a discrete index
enumerating the observable states of the system and t is time. In practice, the time is sampled
at discrete intervals and thus is effectively discrete; without loss of generality we thus can
assume that t is an integer. If i(t) is a Markovian random walk, then the probability p; to find

the system in state j at time t + 1 obeys the master equation

pi(t+1) =%, T pi(0) (1)



Here ’1}21) is the transition probability, i.e. the conditional probability to find the system in state
j attimet + 1 given that it wasin i at t. In particular, for a system in a steady state, we have
=27 (1)29155; (2)

where pfs is the steady-state probability for being in state j, which is simply the frequency of
the state j appearing in the (sufficiently long) sequence i(1),i(2), ....

The random walk model can be generalized by defining a k-th order Markov process in
which the system has memory of its k previous steps. Let p; ;. (t) be the joint probability of
finding the system in state i), at time t, i,_jattime t — 1, ..., i; at time t — k+1. This probability

evolves according to
@+ D) =Y. T®  p (@), (3)
plk+1,....l2 l1 lk+1,lk,...,llplkr---rll( )'

where Tig?l Lo is the conditional probability of observing i ., given that the previous

k states visited by the system were iy, ..., {;. The steady-state solution p;’ ; is the fixed point
of the map in Eq. 3:

Pigr1rmis = iy li'j)l ipoisPieis ()

Recording a trajectory i(1), ..., i(M) on a computer without compression requires M log, N
bits, or log, N bits per symbol. Shannon showed that, for a long trajectory (M > 1) obeying a
k-th order Markov process, a compressed representation is possible only requiring h®) M bits,

or h® bits per symbol, where

k T T
h( ) = _le i2,mlk41 lk+1 ik, llplk lng Ukt 1lks i1 (5)

is the information or entropy rate of i(t).



Now consider an arbitrary ergodic trajectory i(t) that is not necessarily a k-th order
Markov process with a finite k. We can construct a k-th order Markov model/ of the underlying
dynamics from this trajectory. Indeed, the transition probability can be estimated to any order

by measuring the joint probabilities as frequencies

number of times sequence iq,...ig is encountered in i(t)
~

SS
Pip,.iy = Y , (6)
and using
ss ,
(k) _ plk+1,1k,...,ll (7)
ikt volkomois p3S .
I.k,...,ll

Shannon has constructed such models, of increasing order k, for the case where i(t) represents
the sequence of characters in printed English. His key observation is that if the order k of the
model is increased, the information rate decreases, R > h(® > h® > ... > h , where his
the true information rate which provides the ultimate limit to which the original text can be
compressed. This is because accounting for more memory of the preceding states makes the
trajectory i(t) more predictable, thus lowering the information content of each letter. Of
course if, at some value k = k, the k-th order Markov model happens to be exact, (i.e.,
h(ko) = h), then increasing k does not change the information rate, (h(®) = h for k > k).
This procedure allows us to construct increasingly more accurate higher-order Markov
models of the observed experimental signal i(t); moreover, for each Markov order we will
have computed the coefficients T(¥) in the master equation, Eq. 3. If, at some k,, h(k>ko)
becomes independent of k then the model can no longer be improved; the value of k, then

quantifies the temporal extent of memory in the observed trajectory.



In practice, this program can be accomplished only for modest values of k, and it is
thus impractical for systems that display long memory. As an alternative to constructing high-
order Markov models explicitly, we used3! a lossless compression algorithm, such as the one
due to Lempel and Ziv33, to estimate the true information rate h. When this estimated value is
significantly lower than that of the Markov model h(1), we know that the process i(t) is non-
Markov. If, for some k,, h®o) ~ h, we anticipate that the ko-th order Markov model captures

most of the memory.

3. Digitizing continuous trajectories.

While information theory deals with discrete data, its practical applications often have
to handle continuous signals such as the pressure of the sound wave in an audio recording.
Discretization of such signals usually relies on the sampling theorem?3?*, and often involves
binning of the data. In contrast, single-molecule trajectories are stochastic and not bandwidth-
limited in the range of timescales of interest. Moreover, our goal here is not to accurately
record or transmit a single-molecule trajectory x(t), but to construct an accurate dynamical
model that can generate it. As a consequence, discretization of continuous trajectories requires
special care. We also note that entropy metrics directly applicable to continuous trajectories,
such as the Kolmogorov-Sinai entropy, have been developed for deterministic systems;
although they have also been applied to stochastic processes in some of the work®, such
applications were mostly focused on the general properties of the entropy for certain classes of
stochastic processes rather than on approaches to its computation or on differentiating

between different dynamical models.



To illustrate why discretization of continuous stochastic trajectories is a nontrivial
problem, consider a trajectory x(t) of a particle undergoing free diffusion. Diffusion is a Markov
process, and its trajectory is a fractal, self-similar object. We wish to map x(t) onto a discrete-
state trajectory m(t), with m numbering discrete bins of width Ax (Fig.1). On physical grounds,
we hope that a discrete model of diffusion should be close to a Markov random walk. As such,
the sequence of distinct states visited by this walk (i.e. one obtained by counting each
continuous trajectory fragment where the state m(t) does not change once) should also be a
Markovian random walk).

Naive binning of the data, m(t) = [x(t)/Ax], however, results in a highly non-Markov
sequence of discrete states. To see this, approximate x(t) itself by a discrete random walk with
a much finer step length §x << Ax. Thus each bin of length Ax contains [ = Ax/éx discrete

“microsites”. One can show3! that if a particle enters a bin m from the left, it will exit it back to

the left with probability Ty;,—1 ym—1 = ﬁ and to the right with probability T, 11 mm-1 = T

Similar expressions are obtained for particle entering the bin from the right. Moreover, the
sequence of bins visited by the particle is a second-order Markov process: since x(t) is
Markovian only the previous bin is remembered. Using Eq. 5 one finds the information rate

associated with the sequence of bins to be

—h@ = _1 L b L
h=h I+1 log; I+1  1+1 log, I+1 ! (8)

which becomes vanishingly small in the continuous limit §x — 0 (i.e. [ = o0). This rather
pathological behavior of the stochastic process describing the sequence of bins visited by a

diffusive particle is related to the properties of diffusive dynamics: a diffusive particle that

crosses a certain point (e.g., a boundary between bins) will repeatedly cross it an infinite



number of times (on the average)®. As a result, when observed with an infinite resolution, it
has zero probability to traverse a bin relative to the probability of exiting the bin through the
same boundary it entered it! The repeated recrossings of boundaries come in bursts, resulting
in a highly non-Markov process. In contrast to the above observation, one feels that, when
continuous dynamics along x is mapped onto a discrete random walk with a finite step size, the
information rate should be 1 bit per step, since at each step one learns one bit of information
(i.e. whether the walker has stepped left or right).

A chemical reaction rate theory expert may recognize the above issue as the “recrossing
problem” encountered when attempting to identify transitions between two spatial domains3’
— a diffusive trajectory will, on the average, recross a boundary between the two an infinite
number of times — this results in the overcounting of the number of transitions. Here we
propose to solve this problem and to map continuous dynamics onto a discrete random walk
using a milestoning-type of approach3® 3841 jllustrated in Fig. 1a. In this approach, only the first
crossing of each new “milestone” (i.e., the boundary between two bins) counts. Subsequent
recrossings of the same milestone do not change the discrete state m of the system until a new

milestone is encountered.
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Figure 1. (a) Milestoning discretization illustrated using 3 milestones. The discrete state m of
the system (indicated by a number next to the trajectory) changes only when a new (different
than the previous one) milestone is crossed. (b) A diffusion trajectory (black) discretized using

binning (green) and milestoning (red).

Figure 1b illustrates the differences between discretizing a trajectory of a diffusing particle
using binning and milestoning, the latter eliminating multiple events where the trajectory exits
and reenters intervals between adjacent bins.

Time discretization of trajectories is simpler and can be accomplished by sampling the
milestone coordinate at a specified sampling rate. Thus a continuous trajectory, after being
discretized both in time and space, can be represented as a discrete sequence

m(0), m(At), m(2At), ..., which is in the form amenable to the treatment of Section 2. This,



however, is not the only possible (and useful) representation: alternatively we could represent

the same data, for example, as {my, 8,},{m,, 6,}, ..., where m;, m,, ... is the sequence of

milestones visited by the trajectory and 8; = [%] ,0, = [%] , ... are the corresponding times of

arrival at those milestones measured with time resolution At. Although the latter
representation is not a stationary process because the time 8,, increases without bounds, we
can further replace it by the equivalent lag-time representation {m,, 0, — 6,},{m,, 6; —
6,},{ms, 08, — 65} ..., which records the sequence m,, of milestones crossed and the lagtimes

0,,+1 — 0, between crossing events.

4. Information rate in a continuous-time random walk.

Continuous-time random walks (CTRWs), also known as semi-Markov processes, are an
important, extensively studied class of non-Markov models** 43, If, using the milestone picture
we think of i, = {m,, t,,} as the state of the system (note that, for simplicity of notation, we do
not differentiate between the milestone crossing time t,, and its discretized counterpart 6,,),

then the transition probability matrix for a CTRW can be written as:

T(l) = ¢mn+1,mnlpmn+1,mn(tn+1 - tTL)' (9)

{mn+1,tn+1}-{mn,tn}
Here ¢, , . m, is the conditional probability that the next milestone crossed is m, 4 given that
the current one is my, and Yy, . . m, (t) is the probability distribution of the lag time between
crossing these two milestones. In this representation, CTRW is a 1°* order Markov process,

which implies that there is only memory of the last state:

ik+1olkoenia Ik+1lk

T =71 . (10)



Physically, the CTRW picture is as follows: the sequence of milestones visited by the process is a
(1% order) Markov random walk defined by the conditional probabilities Pm,yyq,m,, OF Visiting the
next milestone m,, ., given the previously visited one m,,. The lag timet = t,,,; — t,, i.e., the
time the system spends on a milestone m,, before transitioning to m,, 1, is drawn from a
probability density ¥, .., (7) that may depend on these milestones, and the lag times are
statistically independent. A CTRW trajectory m(t) is “almost Markov” in that the only memory
comes from non-exponentiality of the distribution ¥, .. ., (7) [note that, when viewed as a
sequence of states i,, introduced above, this process is simply Markov]. The trajectory

m(t) becomes Markov if this distribution is exponential and independent of m,,,.;%*,

Ym (@) = Tpe Tm, (12)

where I};! is the average dwell time on a milestone m.

It is instructive to consider the case where ¥, ,,(t) = ¥(7) is milestone-independent. In
this case the milestone trajectory is completely specified by a milestone sequence m;, m,, ...
and a lag time sequence 14, 75, ...., With the two sequences being statistically independent of
one another. The corresponding information rate is the sum of the information rates of these
two processes,

h = hy + h, (12)

and thus their mutual information®* I = h — hy, — h, is zero. Here h,, is the information rate of
the milestone sequence given by (cf. Eq. 5), which can be interpreted as the “spatial
component” of information rate:

hy = = Xmn Pmn 1082 b n pi° bits per milestone crossing, (13)

with p;?® satisfying (cf. Eq. 4)



P = Xn Pmaln’  (14)

and h,, which may be interpreted as “temporal component” of the information rate, is related
to the differential entropy of the distribution (1),

he = — [ drip(2) log, P(7) + log; 1/At, (15)

where the last term results from discretization of the distribution with a time resolution of At,

34 Importantly, for a fixed distribution mean (1) = fooo dtty(t) the maximum value of h,,

max h, = ﬁ + log, %, is provided when the distribution is exponential®*, (1) = e~ 7,
where I' = (7)1, This illustrates the fact that memory effects (i.e. non-exponentiality of the
distribution) reduce the information rate of a CTRW. To further quantify this effect, it may be

beneficial to measure h; relative to its maximum value, that is to consider the quantity

Ah, = h, —maxh, = — [* drip(7) log, Y (1) — log,(t) — —— (15a)
which is no longer dependent on the time step.
Egs. 12-15 are readily generalized when the lag time distributions depend on the

milestone: Egs. 12 -14 remain the same, but with h, becoming

hr = f0°° dt Zm,n (pm,npfls l/}m,n(ﬁ’-—) 1082 l/)m,n(‘[) + 1082 1/At- (16)
If the lag time distribution between two milestones, ¥,,, , (7), depends on the initial but not the

final milestone, Y, , () = Y, (1), then Eq. 16 is further simplified to give

he = = [ dt S P ¥ (1) log, ¥ () + log, 1/At. (17)

5. A case study: Mapping biased continuous diffusion onto a CTRW.



We now illustrate the milestoning discretization in application to the simplest
continuous Markov process, diffusion of a Brownian particle in the presence of a constant force
F at temperature T. The probability p(x, t) of finding the particle at coordinate x at time ¢ is
described by the Smoluchowski equation

ap(x,t) n vap(x.t) azp(x t)

D
at dx

(18)

where D is the diffusivity and v = FD /kgT is the mean drift velocity caused by the constant
force F. Periodic boundary conditions are used here, which is equivalent to considering
diffusion on a ring. We further use evenly spaced milestones with a distance Ax = L between
them. Since only transitions to neighboring milestones are possible, the only nonzero
conditional probabilities ¢, ,, are ¢, = P11, and ¢_ = ¢y_1 - To determine these
probabilities, as well as the dwell time distribution 1(t), we imagine a particle that has just
crossed, at T = 0, a milestone located, say, at x = 0. We track this particle until it either
crosses the milestone to the left (located at x_ = —L) or to the right (located at x, = +L)
thereby exiting the interval (—L, L), and we record the time 7_or 7, when it happened. By
repeating this experiment multiple times one can determine the distribution of the exit times 7_
or 7, as well as the probabilities ¢_ and ¢, of exiting the interval (—L, L) to the left or right.
An analytical solution of this problem of calculating exit time distributions and probabilities has
been given in the literature®> %6, Although it is not immediately obvious, the distribution of the

times 7_and 7, are identical, and thus we drop the subscript £ to denote this distribution

simply Y (¢). Its Laplace transform, P¥(s) = [ dre 5T (7) is given by:
0

FL
B(s) = (eszT e szT sinh L / /cosh 2L / . (19)



Since this is an even function of the force F, it is clear from Eq. 19 that this distribution is
indeed independent of whether the next milestone crossed is in the direction of the force or

opposite this direction. The probabilities ¢ are given by

Because the steady-state occupation probabilities are the same for all milestones (given the
periodic boundary conditions), the information rate of our process is given by Eq. 12 with

hy = —¢_log, ¢_ — ¢, log, ¢, (21)

and with h; that can be estimated using Eq. 15. Eq. 21 is simply the entropy rate of a random
walk that makes a step right with a probability ¢, and left with a probability ¢_ =1 — ¢,. The
entropy h, of the lag-time distribution, however, is different from that expected for a
Markovian process, since the distribution described by Eq. 19 is clearly not an exponential one.
Indeed, since it takes a finite time to reach one milestone from another, Y (7) must vanish at

T = 0, in contrast to the exponential distribution (Eq. 11) expected for a Markov process. As a
result, the milestoning description of Brownian motion is not a Markov random walk, but rather
a semi-Markov process.

To get further insight into how the information rate of a discretized trajectory depends
on the spacing between milestones, consider the case of free diffusion (i.e., zero force). In this
case we have ¢_ = ¢, = 1/2, and hy; = 1 bit/milestone crossing. Notice that the Laplace-
transformed distribution of Eq. 19 in this case is a function of the dimensionless frequency

parameter sL?/D. Equivalently, the lag time distribution can be written in the form

¥@ =2p(3) 22



where p(y) is a function that is independent of the inter-milestone spacing L or diffusivity D.

Performing the integral in Eq.15 and using Eqg. 22, we now find

= —J.” p(») log; p(y) dy + log; —— ~ 0.26 + Ing— (23)

It is instructive to compare this result with the case of the purely exponential distribution. To do

so, we replace the true distribution 1 (7) with an exponential one

Ye(r) = e @/(t), (24)
where the average lag time (7) is the same as the one for the true distribution, Egs. 19. To find

the latter, we write

FL

day(s) _ LkpT kpT_1
0= = 29)
§=0 ekBT +1

which results, at F — 0, in
() = — .(26)
Also note that the asymptotic behavior of () for T > L?/D is precisely given by Eq.24, which

can be ascertained by considering the limit s < D/L? in Eq. 19. Using 1, (7) instead of (1) in

Eqg. 15, we find

hy = —+ log, 2

1 2
e ngt——2—1+ log2—~044+10g2 oy (27)

Comparing this with Eq.23, we see that the estimates of h, obtained using the fully Markov
approximation (corresponding to an exponential distribution of the lag times) and the CTRW

differ by a constant.



6. Dependence on spatial resolution and infinite resolution limit.

In the above discussion of biased diffusion, we have fixed the spatial resolution L, with
which the trajectory is observed. As the resolution is decreased, L — 0, the observed motion
looks increasingly like a random walk, with the probabilities ¢ (Eq. 20) approaching %, as
thermal motion dominates over drift3®. Moreover, the random walk is self-similar, looking the
same at all (sufficiently short) length scales. This is disconcerting: if the trajectory looks like a
self-similar, unbiased random walk at all sufficiently short length scales then by analyzing the
trajectory x(t) with better time resolution we appear to learn less about the underlying
process (particularly about the force that causes drift). We anticipate a similar problem to arise
when studying trajectories x(t) with memory, obeying, e.g., a generalized Langevin equation —
see next Section. At sufficiently short time/length scales the dynamics, again, becomes diffusive
36,47 'with entropy rate thus approaching that of a Markov process despite the underlying

memory.

To understand this limit better, consider our model of biased diffusion in the limit % «
B

1. Expanding Eq. 21 in a Taylor series in kFLT, we obtain, to lowest nontrivial order
B
F21?
hy =1 - 8In2(kgT)? (28)

As anticipated, h), approaches 1 bit per milestone step as L is decreased, with the biased effect
of the force becoming increasingly negligible. Yet let us consider the information H,,(t) gained
after some finite and sufficiently long time t, during which the trajectory will perform t/(t)

transitions between milestones:

Hy (t) = hyt/(1). (29)



Using Eq. 25, and, again, expanding in Taylor series to lowest nontrivial order, we obtain

2Dt F2D 2Dt 1
Hu(®) ~ 2% =2 (

e =~ G~ )t 60

The first term in Eqg. 30 is the (spatial component of) the information corresponding to free
diffusion. As expected, it diverges as spatial resolution is increased, i.e. as L — 0. Importantly,
however, Eq. 30 contains a second term, which is independent of the resolution L and is
proportional to the rate Fv/kgT at which energy is dissipated by the force-driven particle. It is

negative because a biased random walk is less random than an unbiased one, and thus it has

lower information than an unbiased one. This result shows that resolution-independent
information rate can be obtained by subtracting the “free diffusion” part %. In practice, this
can be achieved by considering the linear dependence of H,,(t) on 1/L?: the second term in
Eqg. 30 is the intercept obtained by extrapolating this dependence to Liz - 0.

Figure 2 illustrates this approach using simulations. We integrate, numerically,

stochastic trajectories obeying the Langevin equation

kpT dx

e —F + (1), (31)

with {(t) being a Gaussian-distributed random force with zero mean satisfying the fluctuation-
2
dissipation theorem ({(t){(t")) = @ 6(t —t"). Eq. 31 provides a stochastic description of

trajectories whose ensemble obeys the Smoluchowski equation, Eq. 18. By applying the
milestone analysis and computing the dependence of hy, /(t) on 1/L? directly from the
simulated trajectories, we, indeed, can recover the force-dependent intercept, which agrees

with the prediction of Eq. 30.
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Figure 2: Information rate h,, per unit time plotted against the inverse square of the inter-
milestone distance L obtained from simulations of overdamped Langevin trajectories on a ring
in the presence of a constant driving force F. The distance units are R, the time units are RZ/D,
and the force units are kzT /R, where R is the ring length. Each system was integrated with the
Euler-Maruyama integrator with a timestep of 10~7 units, until 5 X 10® milestone crossings
were obtained. The black lines show the values predicted by Eq. 30, and the colored dots show
the values estimated via milestoning. Since Equation 30 is only valid in the limit of L — 0, we
restrict our experiment data to milestones which are closely spaced. However, plotting data in
the entire range of L (particularly for large values of 1/L?) makes it difficult to examine the

lines of best fit and whether they agree with theory. Here, we obtain data for experiments up



to Liz = 15876, and generate the colored best-fit lines for all the experiments, but restrict the

1 . . . . .
plot to = 4000 in order to maintain visual clarity.

7. Inferring memory from trajectories: generalized Langevin equation

We now proceed to test the ability of the above analysis to detect memory effects in the
observed non-Markovian dynamics. We first start with dynamics on a ring obeying a
generalized Langevin equation of the form

0=—[" T(t—tHx)dt' +(t) . (32)

Here

[(t) = ks exp(==2) + 2y8(1) (33)
is a memory kernel, and {(t) is a Gaussian-distributed random force with zero mean obeying
the fluctuation-dissipation theorem of the form ({(t){(t')) = kgTT'(t — t'). Eq. 32 is obeyed
by a particle that experiences an intrinsic friction force —y,x, and which is coupled to another
degree of freedom y that experiences friction force —yy via a harmonic potential
ks(y — x)? /4. This offers a practical method of integrating Eq. 323% %8, In the results reported
here we use y = 30y, and k; = 1000 '%T, where R is the length of the ring. The simulation

7 R?yo

timestep used is 6t = 10~ .
kgT

Figure 3 shows the spatial component of the information rate (i.e. the information rate

associated with the sequence of milestones crossed by the trajectory x(t)) evaluated for

k =1,2, and 3. The fact that hl(;) < hl(wz) < hz(v}) immediately informs us that we are not dealing



with a Markov process. Moreover, the dependence hl(vlf) (Liz) exhibits an intercept, when

extrapolated to Liz — 0, a behavior similar to that found for diffusive dynamics in the presence

of force. This indicates that the observed dynamics is more predictable (i.e. has lower

information) than diffusive or Markovian dynamics. We expect that, as the Markov order k is

increased, hl(vlf) will eventually converge to the “true” value h,,, but evaluation of higher order
entropy rates quickly becomes expensive computationally and unreliable*®. We therefore resort
to the recently reported compression-based method3! to estimate hy,. In brief, the information
in the milestone sequence m,, m,, ... is estimated from the size of the data after it was
compressed using a lossless compression algorithm; although compression algorithms rarely
compress finite-size data to the true information limit, this error can be corrected by comparing
the compression-derived information rate with the theoretically known true information rate
for a suitably chosen Markov process. The result is shown in Fig. 3, where the estimated
information rate hy, is found to be significantly lower than its finite-Markov-order estimates,

indicating long memory.
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Figure 3: The spatial component of the information rate per unit time plotted against the
inverse square of the inter-milestone distance, for a particle on a ring obeying the generalized
Langevin equation with exponential memory, Eq. 32. The ring length R is used as the unit
length, and the time is measured in units of R?y, /kgT. The integration scheme is the same as
in Figure 2, with the same number of milestone crossings observed. The solid black line shows
the result for ordinary Langevin equation without memory (Eq. 30 with F = 0; also see Fig. 2).

The colored circles are estimates of the h%‘), estimated with the compression method. Similarly

to Figure 2, we gather data for very closely spaced milestones, up to Liz = 3249, but only plot

results in the range Liz < 1000 in order to keep the differences between individual lines visible

in the plot.



As the order k of the estimate is increased the information rate hl(vlf) decreases toward the

compression-based “true” rate h,,, indicating non-Markovianity of the dynamics.

8. Inferring memory from molecular trajectories: atomistic simulations of end-to-end
dynamics of an intrinsically disordered protein

Dynamics of the distance between the ends of a biopolymer chain has been the subject
of extensive experimental and theoretical work (see, e.g., refs.>0,51,18,5255 56-59) '\Whjle theory
predicts such dynamics to be highly non-Markov?*” %962 direct demonstration of non-
Markovianity in simulated or experimentally measured dynamics is often difficult and indirect:
for example, analysis of transition paths®, modeling of trajectories using a generalized Langevin
equation??, and analysis of the scaling behavior of the loop formation rate>® %! have been
invoked to probe non-Markov effects. To see if our information-theoretical analysis can directly
inform us about memory effects, here we have analyzed the end-to-end dynamics of a model
unstructured polypeptide, the 11-residue peptide fragment with the Gly-Ser repeat?¥ %4, using
atomistic simulations (Fig. 4).

In comparison to the above examples and to earlier studies of discrete random walks3?,
this example presents two challenges. First, the length of the trajectory (measured relative to
the characteristic relaxation time of the problem) is much shorter. As a result, numerical
evaluation of Eq. 5 may become unreliable®. Likewise, the compression-based method used in
the previous Section to evaluate the “true” information rate h,; may be affected by the

insufficient trajectory length3?.



Second, unlike the above examples, where we could use larger numbers of milestones
for the analysis, here the time evolution of the polypeptide’s end-to-end distance x(t) was
discretized using only seven equally spaced milestones placed as shown in Fig. 4. This particular
choice of milestone spacing is dictated by practical considerations that are likely to be common
to the analysis of both molecular simulations and experimental data. Specifically, the sampling
rate of both types of data is often limited by data storage demands, by the speed of a camera,
or by the inherent time resolution of the experiment. In the simulation described here, the
molecular structures were saved every At = 5 ps, a time interval that is 3 orders of magnitude
longer than the simulation timestep. If the spacing between the milestones is too small,
multiple milestones can be crossed during this time interval. Such missed milestone crossings
will lead in errors in estimating the entropy rates. While the recently proposed stochastic
algorithm that reintroduces missed crossings probabilistically®® partially remedies this problem,
it does not consider the possibility that multiple milestones are crossed while the trajectory is
unobserved. Note that At exceeds the velocity relaxation time for the trajectory considered
here; thus the effect of inertia on the information rate h;, cannot be observed (similarly to
most experimental studies?®).

To test whether our method can differentiate between Markov and non-Markov
dynamics when the trajectory length and the number of milestones are limited by the above
considerations, we have computed the information rates both for the original trajectory x(t)

and for its Markovian model, a trajectory that obeys the overdamped Langevin equation

kpT dx

LS = —U'(x) + {(1). (34)



The potential U(x) (shown in Fig. 4) was chosen such that the corresponding equilibrium
distribution is the same as that for the original trajectory, and the diffusion coefficient D =
9.04 x 10~* nm? /ps was chosen such that the mean lag time between milestone crossings is
the same. The Langevin trajectory, starting from the same initial value of x as the molecular
simulation, was sampled at the same time intervals and analyzed in the same way as the
original trajectory using the same set of milestones, and as with the earlier figures, we assess
h,, the spatial component of the entropy. As seen from Figure 5, the information rate for the
original trajectory decreases with the Markov order, while the corresponding values for the
Markovian model are virtually the same. Although the errors in compression-based estimates
of the information rate are quite large (see Appendix C for further error analysis, which shows
that these errors originate in the relatively short length of the molecular trajectory), the

method detects the non-Markov character of the molecular trajectory reliably.
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Figure 4. The potential of mean force U(x) = —kgT In p(x) for the end-to-end distance x of a
Gly-Ser repeat peptide shown at the top. Here p(x) is the equilibrium distribution of x. The
locations of the milestones used to analyze the trajectory x(t) are shown as vertical dashed

lines.
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Figure 5: Compression-derived3! k-th order information rate hl(;) (Eq.5) associated with the
sequence of milestones visited by a trajectory x(t) describing the time evolution of the end-to-
end distance x of a Gly-Ser repeat peptide (green). The compression-derived estimate h,, for
the infinite-order information rate is shown at the rightmost points, connected to the rest of
the data points by a dashed line. The same information computed using Eq. 5 directly is shown
in purple. Since the trajectories used are quite short, we repeatedly estimate the entropy and
compute statistics over the trials to obtain the values and 95™-percentile errors shown. The
exact estimation procedure is detailed in Appendix B, and the source of the difference between

the two estimators is discussed in Appendix C. While the estimates do not agree with each



other numerically, hz(\f) decreases with increasing k regardless of the estimator used, indicating
non-Markov behavior. To verify that this is a signature of non-Markovian dynamics and is not a
consequence of artifacts associated with finite time resolution of the trajectory or the relatively
small number of milestones used, we have simulated overdamped Langevin dynamics of a one-
dimensional particle that has the same potential of mean force U(x) as the peptide, and
analyzed the resulting trajectory, sampled at the time intervals of the same duration, using the
same methods. The estimated information rate for such a Langevin trajectory is virtually

independent of the Markov order k, as expected for a Markov process.

9. Summary

This work extends the recent information-theory-based method?! for detecting and quantifying
memory effects in discrete random walks to continuous trajectories such as those observed in
molecular simulations and single-molecule experiments. Doing so requires solving two related
problems. First, this requires discretization of trajectories, which, in general, introduces
spurious memory effects that are absent in true dynamics. Second, for a stochastic process the
information in a trajectory diverges as the resolution with which it is sampled is increased®®.
Our approach to solve these problems is to use milestoning, a method introduced originally as a
computational tool, as a data analysis tool. Milestoning naturally maps continuous trajectories
onto continuous-time discrete random walks, whose information rates can then be computed
either directly or using compression algorithms3!. Although those information rates depend on
the resolution with which the observed trajectory is discretized and diverge when the distance

between the milestones goes to zero, the divergent part, when it results from diffusive



dynamics at short timescales, is well understood and can be subtracted to get a resolution-
independent component of the entropy rate resulting from non-Markov effects. We have
shown the utility of this method in detecting memory effects in generalized Langevin equation

dynamics and in end-to-end dynamics of an intrinsically disordered peptide.

In principle, this method automatically produces a hierarchy of k-th order continuous-
time random walk models of the observed trajectory®” 8, whose quality can be judged by the
convergence of the information rate h®) toward the k = oo value?*. While not necessarily
“physical”, such models may provide clues to the physical nature of the observed process
and/or discriminate between its alternative physical explanations — an illustration of that is
given in ref.3, where information theory was used to discriminate between static and dynamic
disorder.

Finally, let us note that using the information rate h() to assess the quality of a k-th
order Markov model is not the only possible approach. One can, for example, ascertain the

validity of the k-th order Markov model by verifying that the conditional probabilities

igcli iy io ATE independent of i, (i.e. there is only memory of k previously visited states).

Such an alternative approach is briefly explored in Appendix D. Although we have no proof that
the information-theory based approach is always superior, we find this to be anecdotally the

case for all the systems studied here (Appendix D and Fig. 7).
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Appendix A: Details of molecular simulations of Gly-Ser repeat peptide.

All-atom molecular dynamics simulations of this peptide were performed using the
GROMACS software package®® with the CHARMM?27 parameter set’?. The peptide was solvated
with TIP3P water molecules in a cubic box so that the minimal distance of the peptide from any
edge of the cubic box was at least 10 A, which gave us a box dimension of 36.6 x 36.6 x 36.6 A3,
Electroneutrality of the system was achieved by randomly replacing water molecules with Na*
and Cl™ions keeping the salt concentration fixed at 100 mM using the genion module of
GROMACS. The structure of the peptide was energy-minimized by using the steepest descent
algorithm to generate a configuration with no steric hindrance. This conformation was then
subjected to two consecutive equilibration phases — 500 ps of NVT equilibration at 300 K using
the modified Berendsen weak coupling method’* and 500 ps of NPT equilibration at 300 K and
1.0 bar using the Parrinello-Rahman barostat’2. For both equilibration phases, the peptide was
kept at the center of the cubic box using a force constant of 1000 kJ mol™ nm=2 and position
restraints applied to all the heavy atoms throughout. The system was then allowed to evolve
freely for 12 microseconds. Other simulation parameters are as follows: (1) 2 fs integration
time step; (2) 5 ps resolution for storing snapshots, (3) 10 step resolution for the nonbonded

interactions list update, (4) LINCS algorithm’3 to constrain hydrogen atom containing bonds,



with a warning angle of 30°, (5) temperature baths with a relaxation constant of 0.1 ps, (6)
barostats with a relaxation constant of 1.0 ps and isothermal compressibility of 4.5 x 107 bar™?,
(7) periodic boundary conditions with the standard minimum image convention in all three
directions, (8) particle mesh Ewald method with a real-space cutoff at 9 A to treat the long-
range electrostatics, and (9) a 9 A cutoff for Lennard-Jones interactions with a 1.2 A Fourier

spacing.

Appendix B. Details of entropy estimation and error analysis from a molecular trajectory.

Although we are working with a single molecular trajectory for a Gly-Ser repeat peptide, the
method of ref. ®° introduces additional stochastic component by adding missed milestone
crossings probabilistically. Starting with the same molecular trajectory, we thus apply this
method to generate 500 different milestone sequences. For each such sequence, we estimate
the k-th order entropy by (i) measuring the probabilities T (c.f. Eq. 3), (i) sampling a k-th
order Markov process according to the measured transition probabilities, and (iii) applying the
compression method as described in ref.3! to obtain an estimate for hl(vlf) (green datain Fig. 5).
The infinite-order estimates for h,, are obtained by applying the compression method to the
original milestone sequences. The “histogram estimates” (purple data in Fig. 5) are obtained by
applying Eq. 5 to the measured transition probabilities T®). The error bars reported in Fig. 5
represent the 5™ and 95 percentile values. We emphasize that those only reflect the

statistical errors arising due the stochastic procedure of ref.%>. Other errors such as



compression algorithm errors or the statistical errors arising from the finite length of the
molecular trajectory itself cannot be estimated this way. Finally, the same procedure is applied
to estimate the information rates corresponding to a Langevin trajectory (Eq. 34) of the same

length as the molecular trajectory (red and orange curves in Fig. 5).

Appendix C: Accuracy of entropy estimates from short trajectories

As observed in Fig. 5, the compression-based estimates of the entropy rates for a molecular
trajectory are significantly higher than the estimates based on the direct use of Eq. 5. We
propose that this discrepancy results from an insufficient simulation time of the Gly-Ser
peptide. As much longer molecular simulation trajectories are unavailable to us here, below we
explore how the finite trajectory length affects the performance of both methods using the
previously studied model of a single-file random walk3!, for which very long trajectories can be
obtained. This system has three discrete sites on a ring (Fig. 6). At every discrete timestep, one
of the two walkers (with equal probability) moves into the vacant site. The trajectory of one
selected walker is a highly non-Markov process, with the exact information rate known to be

hy = 1 bit per step3.

We simulate such a trajectory for N=45000 timesteps, to create data of a similar length to the
milestoned trajectory, and then compare the compression-based and Equation 5-estimated
entropy values in Figure 6. A comparison between the information rates estimated, as in Fig. 5,

for a short trajectory (N = 45000) with that for a much longer trajectory (N = 2 X 107) shows



that, indeed, the compression algorithm overestimates the information rates, but its error is

significantly reduced for longer trajectories, a behavior similar to that observed in Fig. 5.
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Figure 6: Entropy rates for a discrete single-file random walk of a tagged particle on a ring — see
inset. Comparison of Eq.5-based and compressor-based estimates for the entropy rates
computed for a short trajectory (N=45000) and long trajectory (N = 2 X 107) shows that the

discrepancy between the two estimates is due to insufficient length of the trajectory. Note that,
for the longer trajectory the hl(vlf) values approach the theoretical value (hy, = 1) as the Markov

order k increases. The error bars reported here have been obtained from 100 simulated single-

file random walk trajectories of given length N.



Appendix D: Alternative Markov order estimates

. . k .
Once we have obtained estimates of T . . and pi¥ ., there are several possible
L+15tlksenle lseenla

k-
estimators of Markov order that can be computed. For example, a k' order Markov process
obeys the k" order Markov property, namely that:

T = 7D (D1)

I+ 1,0k mlt lk+1lk i1,l0

It also must obey the generalized form of the Chapman-Kolmogorov equations, the simplest

form of which can be written as

() _yv 7® )
Tavikoio = 2tk Ty nin Tikgiks,mnio (D2)
where Tig?l A is defined as the probability of i}, ; conditional on observing the sequence

gy s lpg—q-
By summing these quantities over all possible values and taking the difference between
the right hand side and left hand side, we can quantify how non-Markov the process is at order

k. For Equation D1, we can write this as

AM® =%, i T — | (D3).

ik+1,ik,...,i1 ik+1,ik,...,i1,i0
If a process is ki order Markov, then AM® should be zero (note, however, that this is a
necessary but not sufficient condition). A similar expression can be written for Equation D2 —in

the special case of k = 2, this would be equivalent to taking a matrix norm.



We examined these estimators for the three systems studied in this paper, as well as for a
coarse-grained random walk, which is known to be second-order Markov3!. As shown in Figure
7, the estimator correctly indicates that the overdamped Langevin system is at least 1st order,
and the coarse-grained random walk is at least second order. In fact, the former is exactly 1st
order and the latter is exactly 2" order3!, and thus we should expect that AM®) should be zero
for all higher orders. However, in practice, the error rapidly accumulates past k=3, and the
estimator incorrectly reports the Langevin system as non-Markov at third or higher orders. In
contrast, comparing these observations to Figure 5, we can see that both Equation 5 and the
compression method correctly report that the Langevin system is Markov to order 9 without

any significant loss of statistics.
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Figure 7: An attempt to quantify the Markov order of various systems using Equation

D3. A nonzero value at k indicates that the process is not Markov at that order. The estimator is
accurate at low orders, correctly indicating that the overdamped Langevin system is 1% order
Markov and the coarse-grained random walk is second-order3l. However, the error rapidly
grows for higher orders, and incorrectly reports that these systems are not Markov to any order
higher than k = 3. Similar behavior was observed when using the Chapman-Kolmogorov
equations (Eg. D2). In contrast, Equation 5 and the compression technique both correctly show

that overdamped Langevin dynamics is Markov even at 9t" order (Fig. 5).
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