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Abstract.  
 
Whether single-molecule trajectories, observed experimentally or in molecular simulations, can 
be described using simple models such as biased diffusion is a subject of considerable debate.  
Memory effects and anomalous diffusion have been reported in a number of studies, but 
directly inferring such effects from trajectories, especially given limited temporal and/or spatial 
resolution, has been a challenge. Recently we proposed that this can be achieved with 
information-theoretical analysis of trajectories, which is based on the general observation that 
non-Markov effects make trajectories more predictable and thus more “compressible” by 
lossless compression algorithms. Toy models where discrete molecular states evolve in time 
were shown to be amenable to such analysis, but its application to continuous trajectories 
presents a challenge: the trajectories need to be digitized first, and digitization itself introduces 
non-Markov effects that depend on the specifics of how trajectories are sampled.  Here we 
develop a milestoning-based method for information-theoretical analysis of continuous 
trajectories and show its utility in application to Markov and non-Markov models and to 
trajectories obtained from molecular simulations. 
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1. Introduction.  

Experimental single-molecule studies report on the time evolution of molecular degrees 

of freedom. Experimental observables are low-dimensional;  the dynamics of such low-

dimensional projections of high-dimensional molecular motion are known to be complex if not 

intractable (in practice)1. Two key challenges in the field, then, are to (1) construct adequate 

models describing the dynamics of experimental observables directly from data and (2) to learn 

about the underlying molecular motions from the observed low-dimensional projections (aka 

experimental signals).  

    The progress toward the first of these goals has so far mostly consisted of 

fitting/modeling data with postulated dynamical models of increasing complexity. These range 

from diffusive models of barrier crossing2-6 or random walks7 to - more recently - models with 

“hidden” states8-11, generalized Langevin equation with memory12-18, non-Markov master 

equations19, 20, and other models of non-Markov dynamics21-23. The second goal, involving 

solving an inverse problem, have only seen a handful of valiant efforts9, 24, 25.      

 In a different approach to these objectives26-28, several exact results have been derived 

that address questions of principle. For example, instead of looking for the best fit of the 

observed single-molecule dynamics using the assumption that it is one-dimensional diffusive 

dynamics, one may ask whether the data can be described by such a model in principle. Indeed, 

some properties of the observed trajectories may be fundamentally inconsistent with diffusive 

dynamics27. Most such studies focused on molecular transition paths - short trajectory 

segments crossing the transition region between metastable “reactant” and “product” states29.   



Another recent method30 quantifies violations of the Chapman-Kolmogorov equation and 

compares experimental trajectories to Markov processes. 

 Recently, we have proposed an information-theoretical approach to detecting memory 

effects in discrete single-molecule  trajectories31.  In a nutshell, a trajectory that has a memory 

of the past states that it has visited is “more predictable” than a memoryless, Markov 

trajectory.  As such it is more compressible when presented to a data-compression algorithm. 

Even before the advent of computers and compression algorithms, Shannon used this idea in 

his classic work on information content of printed English32: memory of preceding letters in a 

text allows one to predict the subsequent letters with less uncertainty. As a result, English text 

can be encoded with fewer bits per character than random strings of letters. The purpose of 

this paper is to show how this method can be used for continuous trajectories, which are more 

common in single-molecule experiments. We start with summarizing our method in application 

to discrete data. 

 

2. Method applied to discrete observables 

 Consider an ergodic single-molecule trajectory !(#), where 1 ≤ 	! ≤ ( is a discrete index 

enumerating the observable states of the system and # is time. In practice, the time is sampled 

at discrete intervals and thus is effectively discrete; without loss of generality we thus can 

assume that # is an integer.  If !(#) is a Markovian random walk, then the probability )!  to find 

the system in state * at time # + 1 obeys the master equation  

)!(# + 1) = ∑ .!"
($))"(#)"    (1) 



Here .!"
($) is the transition probability, i.e. the conditional probability to find the system in state 

* at time # + 1	given that it was in !	at #.  In particular, for a system in a steady state, we have  

   )!&& = ∑ .!"
($))"&&" , (2) 

where )!&& is the steady-state probability for being in state *, which is simply the frequency of 

the state * appearing in the (sufficiently long) sequence !(1), !(2), ….  

 The random walk model can be generalized by defining a 3-th order Markov process in 

which the system has memory of its 3 previous steps. Let )"!,…,""(#) be the joint probability of 

finding the system in state !) at time #, !)*$at time # − 1, …, !$ at time # − 3+1. This probability 

evolves according to 

)"!#",…,"$(# + 1) = ∑ ."!#","!,…,""
()) )"!,…,""(#)"" ,		 (3) 

where ."!#","!,…,""
())  is the conditional probability of observing !)+$ given that the previous 

3	states visited by the system were !$, … , !).  The steady-state solution  )"!,…,""
&&  is the fixed point 

of the map in Eq. 3: 

)"!#",…,"$
&& = ∑ ."!#","!,…,""

()) )"!,…,""
&&

""   (4) 

Recording a trajectory !(1), … , !(5) on a computer without compression requires 5 log,( 

bits, or log,( bits per symbol. Shannon showed that, for a long trajectory (5 ≫ 1) obeying a 

3-th order Markov process, a compressed representation is possible only requiring ℎ())5 bits, 

or ℎ()) bits per symbol, where     

ℎ()) = −∑ ."!#","!,…,""
()) )"!,…,""

&& log, ."!#","!,…,""
())

"","$,…,"!#"  (5) 

is the information or entropy rate of !(#).  



 Now consider an arbitrary ergodic trajectory !(#) that is not necessarily a 3-th order 

Markov process with a finite k. We can construct a 3-th order Markov model of the underlying 

dynamics from this trajectory. Indeed, the transition probability can be estimated to any order 

by measuring the joint probabilities as frequencies  

)"!,…,""
&& ≈ -./012	45	67/18	819.1-:1	"",…,"!	78	1-:4.-6121;	7-	"(<)

=*)+$ , (6) 

and using  

."!#","!,…,""
()) =

>%!#",%!,…,%"
((

>%!,…,%"
((  (7) 

Shannon has constructed such models, of increasing order 3, for the case where !(#) represents 

the sequence of characters in printed English. His key observation is that if the order 3 of the 

model is increased, the information rate decreases, ℎ($) ≥	ℎ(,) ≥ ℎ(?) ≥ ⋯ ≥ ℎ	, where	ℎ is 

the true information rate which provides the ultimate limit to which the original text can be 

compressed. This is because accounting for more memory of the preceding states makes the 

trajectory !(#) more predictable, thus lowering the information content of each letter. Of 

course if, at some value 3 = 3@, the 3-th order Markov model happens to be exact, (i.e., 

ℎ())) = ℎ), then increasing 3 does not change the information rate, (ℎ()) = ℎ for 3 ≥ 3@).  

This procedure allows us to construct increasingly more accurate higher-order Markov 

models of the observed experimental signal !(#);  moreover, for each Markov order we will 

have computed the coefficients .()) in the master equation, Eq. 3. If, at some 3@, ℎ()A))) 

becomes independent of 3	then the model can no longer be improved; the value of 3@ then 

quantifies the temporal extent of memory in the observed trajectory.  



 In practice, this program can be accomplished only for modest values of 3@, and it is 

thus impractical for systems that display long memory. As an alternative to constructing high-

order Markov models explicitly, we used31 a lossless compression algorithm, such as the one 

due to Lempel and Ziv33, to estimate the true information rate ℎ. When this estimated value is 

significantly lower than that of the Markov model ℎ($), we know that the process !(#) is non-

Markov. If, for some 3@, ℎ())) ≈ ℎ, we anticipate that the 3@-th order Markov model captures 

most of the memory. 

 

3. Digitizing continuous trajectories. 

 While information theory deals with discrete data, its practical applications often have 

to handle continuous signals such as the pressure of the sound wave in an audio recording. 

Discretization of such signals usually relies on the sampling theorem34, and often involves 

binning of the data. In contrast, single-molecule trajectories are stochastic and not bandwidth-

limited in the range of timescales of interest. Moreover, our goal here is not to accurately 

record or transmit a single-molecule trajectory >(#), but to construct an accurate dynamical 

model that can generate it. As a consequence, discretization of continuous trajectories requires 

special care. We also note that entropy metrics directly applicable to continuous trajectories, 

such as the Kolmogorov-Sinai entropy, have been developed for deterministic systems; 

although they have also been applied to stochastic processes in some of the work35, such 

applications were mostly focused on the general properties of the entropy for certain classes of 

stochastic processes rather than on approaches to its computation or on differentiating 

between different dynamical models.     



 To illustrate why discretization of continuous stochastic trajectories is a nontrivial 

problem, consider a trajectory >(#) of a particle undergoing free diffusion. Diffusion is a Markov 

process, and its trajectory is a fractal, self-similar object. We wish to map >(#) onto a discrete-

state trajectory ?(#), with ?	numbering discrete bins of width Δ> (Fig.1). On physical grounds, 

we hope that a discrete model of diffusion should be close to a Markov random walk. As such, 

the sequence of distinct states visited by this walk (i.e. one obtained by counting each 

continuous trajectory fragment where the state ?(#) does not change once) should also be a 

Markovian random walk).   

 Naïve binning of the data, ?(#) = [>(#)/Δ>], however, results in a highly non-Markov 

sequence of discrete states. To see this, approximate >(#) itself by a discrete random walk with 

a much finer step length D> ≪ Δ>. Thus each bin of length Δ> contains F = Δ>/D> discrete 

“microsites”. One can show31 that if a particle enters a bin ? from the left, it will exit it back to 

the left with probability .B*$,B,B*$ =
C

C+$ and to the right with probability .B+$,B,B*$ =
$
C+$. 

Similar expressions are obtained for particle entering the bin from the right. Moreover,	the 

sequence of bins visited by the particle is a second-order Markov process: since >(#) is 

Markovian only the previous bin is remembered. Using Eq. 5 one finds the information rate 

associated with the sequence of bins to be 

ℎ = ℎ(,) 	= − $
C+$ log,

$
C+$ −

C
C+$ log,

C
C+$  , (8) 

which becomes vanishingly small in the continuous limit D> → 0 (i.e. F → ∞). This rather 

pathological behavior of the stochastic process describing the sequence of bins visited by a 

diffusive particle is related to the properties of diffusive dynamics: a diffusive particle that 

crosses a certain point (e.g., a boundary between bins) will repeatedly cross it an infinite 



number of times (on the average)36. As a result, when observed with an infinite resolution, it 

has zero probability to traverse a bin relative to the probability of exiting the bin through the 

same boundary it entered it! The repeated recrossings of boundaries come in bursts, resulting 

in a highly non-Markov process. In contrast to the above observation, one feels that, when 

continuous dynamics along > is mapped onto a discrete random walk with a finite step size, the 

information rate should be 1 bit per step, since at each step one learns one bit of information 

(i.e. whether the walker has stepped left or right).  

A chemical reaction rate theory expert may recognize the above issue as the “recrossing 

problem” encountered when attempting to identify transitions between two spatial domains37 

– a diffusive trajectory will, on the average, recross a boundary between the two an infinite 

number of times – this results in the overcounting of the number of transitions. Here we 

propose to solve this problem and to map continuous dynamics onto a discrete random walk 

using a milestoning-type of approach36, 38-41 illustrated in Fig. 1a. In this approach, only the first 

crossing of each new “milestone” (i.e., the boundary between two bins) counts.  Subsequent 

recrossings of the same milestone do not change the discrete state ?	of the system until a new 

milestone is encountered.  

 



        

(a)                                                                   (b) 

 

Figure 1. (a) Milestoning discretization illustrated using 3 milestones. The discrete state ? of 

the system (indicated by a number next to the trajectory) changes only when a new (different 

than the previous one) milestone is crossed. (b) A diffusion trajectory (black) discretized using 

binning (green) and milestoning (red). 

 

Figure 1b illustrates the differences between discretizing a trajectory of a diffusing particle 

using binning and milestoning, the latter eliminating multiple events where the trajectory exits 

and reenters intervals between adjacent bins.   

 Time discretization of trajectories is simpler and can be accomplished by sampling the 

milestone coordinate at a specified sampling rate. Thus a continuous trajectory, after being 

discretized both in time and space, can be represented as a discrete sequence  

?(0),?(Δ#),?(2Δ#), …, which is in the form amenable to the treatment of Section 2. This, 
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however, is not the only possible (and useful) representation: alternatively we could represent 

the same data, for example, as  {?$, K$}, {?,, K,}, …	, where ?$, ?,, … is the sequence of 

milestones visited by the trajectory and K$ = M<"D6N , K, = M<$D<N , …  are the corresponding times of 

arrival at those milestones measured with time resolution Δ#. Although the latter 

representation is not a stationary process because the time KE increases without bounds, we 

can further replace it by the equivalent lag-time representation {?$, K, − K$}, {?,, K? −

K,}, {??, KF − K?}…	, which records the sequence ?E of milestones crossed and the lagtimes 

KE+$ − KE	 between crossing events. 

 

4. Information rate in a continuous-time random walk.   

Continuous-time random walks (CTRWs), also known as semi-Markov processes, are an 

important, extensively studied class of non-Markov models42, 43. If, using the milestone picture  

we think of  !E = {?E, #E} as the state of the system (note that, for simplicity of notation, we do 

not differentiate between the milestone crossing time #E and its discretized counterpart KE), 

then the transition probability matrix for a CTRW can be written as:    

.GB*#",<*#"H,{B*,<*}
($) = OB*#",B*PB*#",B*(#E+$ − #E). (9) 

Here OB*#",B*  is the conditional probability that the next milestone crossed is ?E+$ given that 

the current one is ?E, and PB*#",B*(#) is the probability distribution of the lag time between 

crossing these two milestones.  In this representation, CTRW is a 1st order Markov process, 

which implies that there is only memory of the last state:  

."!#","!,…,""
()) = ."!#","!

($) .  (10) 



Physically, the CTRW picture is as follows: the sequence of milestones visited by the process is a 

(1st order) Markov random walk defined by the conditional probabilities OB*#",B*  of visiting the 

next milestone ?E+$ given the previously visited one ?E. The lag time Q = #E+$ − #E, i.e., the 

time the system spends on a milestone ?E before transitioning to ?E+$, is drawn from a 

probability density PB*#",B*(Q) that may depend on these milestones, and the lag times are 

statistically independent. A CTRW trajectory ?(#)	is “almost Markov” in that the only memory 

comes from non-exponentiality of the distribution PB*#",B*(Q) [note that, when viewed as a 

sequence of states !E introduced above, this process is simply Markov].  The trajectory 

?(#)	becomes Markov if this distribution is exponential and independent of ?E+$44,  

PC,B(Q) = ΓBS*K+L, (11) 

where ΓB*$ is the average dwell time on a milestone ?.     

 It is instructive to consider the case where  PC,B(Q) = P(Q) is milestone-independent. In 

this case the milestone trajectory is completely specified by a milestone sequence ?$, ?,, … 

and a lag time sequence Q$, Q,, …., with the two sequences being statistically independent of 

one another. The corresponding information rate is the sum of the information rates of these 

two processes,  

ℎ = ℎ= + ℎL,  (12) 

and thus their mutual information34 T = ℎ − ℎ= − ℎL is zero. Here ℎ= is the information rate of 

the milestone sequence given by (cf. Eq. 5), which can be interpreted as the “spatial 

component” of information rate:    

ℎ= = −∑ OB,E log, OB,E )E&&B,E  bits per milestone crossing,  (13) 

with )E&& satisfying (cf. Eq. 4) 



 

)B&& = ∑ OB,E)E&&E    , (14) 

and ℎL, which may be interpreted as “temporal component” of the information rate, is related 

to the differential entropy of the distribution P(Q), 

ℎL = −∫ VQP(Q) log, P(Q)
M
@ + log, 1/Δ#,  (15) 

where the last term results from discretization of the distribution with a time resolution of Δ#, 

34.  Importantly, for a fixed distribution mean 〈Q〉 = ∫ VQQP(Q)M
@ 	the maximum value of ℎL,  

maxℎL =
$
N- , +	log,

〈L〉
D<  , is provided when the distribution is exponential34, P(Q) = ΓS*KL, 

where Γ = 〈Q〉*$. This illustrates the fact that memory effects (i.e. non-exponentiality of the 

distribution) reduce the information rate of a CTRW. To further quantify this effect, it may be 

beneficial to measure ℎL relative to its maximum value, that is to consider the quantity 

ΔℎL = ℎL −maxℎL = −∫ VQP(Q) log, P(Q)
M
@ − log,〈Q〉 −

$
N- , (15a) 

which is no longer dependent on the time step.     

 Eqs. 12-15 are readily generalized when the lag time distributions depend on the 

milestone: Eqs. 12 -14 remain the same, but with ℎL becoming 

ℎL = −∫ VQ ∑ OB,E)E&&B,E PB,E(Q) log, PB,E(Q)
M
@ + log, 1/Δ#.  (16) 

If the lag time distribution between two milestones, PB,E(Q), depends on the initial but not the 

final milestone, PB,E(Q) = PE(Q), then Eq. 16 is further simplified to give 

ℎL = −∫ VQ ∑ )E&&E PE(Q) log, PE(Q) + log, 1/Δ#
M
@ . (17)     

 

5. A case study: Mapping biased continuous diffusion onto a CTRW.     



We now illustrate the milestoning discretization in application to the simplest 

continuous Markov process, diffusion of a Brownian particle in the presence of a constant force 

\ at temperature ..  The probability )(>, #) of finding the particle at coordinate > at time # is 

described by the Smoluchowski equation 

Q>(R,<)
Q< + ] Q>(R,<)QR = ^ Q$>(R,<)

QR$    (18) 

where ^ is the diffusivity and ] = \^/3S. is the mean drift velocity caused by the constant 

force \. Periodic boundary conditions are used here, which is equivalent to considering 

diffusion on a ring. We further use evenly spaced milestones with a distance Δ> = _ between 

them. Since only transitions to neighboring milestones are possible, the only nonzero 

conditional probabilities  OB,E are O+ = OB+$,B	and O* = OB*$,B . To determine these 

probabilities, as well as the dwell time distribution P(#), we imagine a particle that has just 

crossed, at Q = 0,	 a milestone located, say, at > = 0.  We track this particle until it either 

crosses the milestone to the left (located at >* = −_) or to the right (located at >+ = +_) 

thereby exiting the interval (−_, _), and we record the time Q_ or Q+ when it happened. By 

repeating this experiment multiple times one can determine the distribution of the exit times Q_ 

or Q+, as well as the probabilities O* and O+ of exiting the interval (−_, _) to the left or right. 

An analytical solution of this problem of calculating exit time distributions and probabilities has 

been given in the literature45, 46. Although it is not immediately obvious, the distribution of the 

times Q_ and Q+ are identical, and thus we drop the subscript ± to denote this distribution 

simply P(#). Its Laplace transform,  Pb(c) = ∫ VQS*&LP(Q)M
@  is given by: 

Pb(c) = dS
,-

$!./ + S*
,-

$!./e sinh _j&
T + k

U
).V

l
,
/ cosh 2_j&

T + k
U
).V

l
,
	.   (19) 



Since this is an even function of the force \, it is clear from Eq. 19 that this distribution is 

indeed independent of whether the next milestone crossed is in the direction of the force or 

opposite this direction.  The probabilities O± are given by 

O± =
$

X$+Y∓
,-
!./Z

. (20) 

Because the steady-state occupation probabilities are the same for all milestones (given the 

periodic boundary conditions), the information rate of our process is given by Eq. 12 with 

ℎ= = −O* log, O* −O+ log, O+	(21) 

and with ℎL that can be estimated using Eq. 15. Eq. 21 is simply the entropy rate of a random 

walk that makes a step right with a probability O+ and left with a probability O* = 1 − O+. The 

entropy ℎL of the lag-time distribution, however, is different from that expected for a 

Markovian process, since the distribution described by Eq. 19 is clearly not an exponential one. 

Indeed, since it takes a finite time to reach one milestone from another, P(Q) must vanish at 

Q = 0, in contrast to the exponential distribution (Eq. 11) expected for a Markov process.  As a 

result, the milestoning description of Brownian motion is not a Markov random walk, but rather 

a semi-Markov process.  

 To get further insight into how the information rate of a discretized trajectory depends 

on the spacing between milestones, consider the case of free diffusion (i.e., zero force). In this 

case we have O* = O+ = 1/2, and ℎ= = 1	bit/milestone crossing.  Notice that the Laplace-

transformed distribution of Eq. 19 in this case is a function of the dimensionless frequency 

parameter c_,/^. Equivalently, the lag time distribution can be written in the form 

P(Q) = T
[$ n k

LT
[$l, (22) 



where n(o) is a function that is independent of the inter-milestone spacing _ or diffusivity ^.  

Performing the integral in Eq.15 and using Eq. 22, we now find 

ℎL = −∫ n(o)M
@ log, n(o) Vo + log,

[$
TD< ≈ 0.26 + log,

[$
TD<	 (23) 

 

It is instructive to compare this result with the case of the purely exponential distribution. To do 

so, we replace the true distribution P(Q) with an exponential one 

PY(Q) = S*
1
〈1〉/〈Q〉, (24) 

where the average lag time 〈Q〉 is the same as the one for the true distribution, Eqs. 19. To find 

the latter, we write 

〈Q〉 = \]̂(&)
\& q

&_@
= [).V

UT
Y
,-
!./*$

Y
,-
!./+$

	 , (25) 

which results, at \ → 0, in  

 〈Q〉 = [$
,T	 . (26) 

Also note that the asymptotic behavior of P(Q)	 for Q ≫ _,/^ is precisely given by Eq.24, which  

can be ascertained by considering the limit c ≪ ^/_,	in Eq. 19. Using PY(Q) instead of P(Q) in 

Eq. 15, we find 

ℎL =
$
N- , +	log,

〈L〉
D< =

$
N- , − 1 +	 log,

[$
T`< ≈ 0.44 + log,

[$
T`<	     (27) 

Comparing this with Eq.23, we see that the estimates of ℎL obtained using the fully Markov 

approximation (corresponding to an exponential distribution of the lag times) and the CTRW 

differ by a constant. 

 



6. Dependence on spatial resolution and infinite resolution limit. 

 In the above discussion of biased diffusion, we have fixed the spatial resolution _, with 

which the trajectory is observed. As the resolution is decreased, _ → 0, the observed motion 

looks increasingly like a random walk, with the probabilities O± (Eq. 20) approaching ½, as 

thermal motion dominates over drift36. Moreover, the random walk is self-similar, looking the 

same at all (sufficiently short) length scales. This is disconcerting: if the trajectory looks like a 

self-similar, unbiased random walk at all sufficiently short length scales then by analyzing the 

trajectory >(#) with better time resolution we appear to learn less about the underlying 

process (particularly about the force that causes drift). We anticipate a similar problem to arise 

when studying trajectories >(#) with memory, obeying, e.g., a generalized Langevin equation – 

see next Section. At sufficiently short time/length scales the dynamics, again, becomes diffusive 

36, 47 , with entropy rate thus approaching that of a Markov process despite the underlying 

memory. 

 To understand this limit better, consider our model of biased diffusion in the limit U[).V
≪

1. Expanding Eq. 21 in a Taylor series in U[).V
, we obtain, to lowest nontrivial order 

ℎ= ≈ 1 − U$[$
a N- ,().V)$

  .  (28) 

As anticipated, ℎ= approaches 1 bit per milestone step as _	is decreased, with the biased effect 

of the force becoming increasingly negligible. Yet let us consider the information s=(#) gained 

after some finite and sufficiently long time #, during which the trajectory will perform #/〈Q〉 

transitions between milestones: 

s=(#) = ℎ=#/〈Q〉. (29) 



Using Eq. 25, and, again, expanding in Taylor series to lowest nontrivial order, we obtain 

s=(#) ≈
,T<
[$ −

U$T
F N- ,().V)$

= ,T<
[$ − k

$
F N- , −

$
bl

Uc
).V

#. (30) 

The first term in Eq. 30 is the (spatial component of) the information corresponding to free 

diffusion. As expected, it diverges as spatial resolution is increased, i.e. as _ → 0. Importantly, 

however, Eq. 30 contains a second term, which is independent of the resolution _ and is 

proportional to the rate \]/3S.  at which energy is dissipated by the force-driven particle. It is 

negative because a biased random walk is less random than an unbiased one, and thus it has 

lower information than an unbiased one. This result shows that resolution-independent 

information rate can be obtained by subtracting the “free diffusion” part  ,T<[$ . In practice, this 

can be achieved by considering the linear dependence of   sB(#) on 1/_,: the second term in 

Eq. 30 is the intercept obtained by extrapolating this dependence to $[$ → 0.      

 Figure 2 illustrates this approach using simulations. We integrate, numerically, 

stochastic trajectories obeying the Langevin equation 

).V
T

\R
\< = −\ + t(#), (31) 

with t(#) being a Gaussian-distributed random force with zero mean satisfying the fluctuation-

dissipation theorem 〈t(#)t(#d)〉 = ,().V)$
T 	D(# − #d). Eq. 31 provides a stochastic description of 

trajectories whose ensemble obeys the Smoluchowski equation, Eq. 18. By applying the 

milestone analysis and computing the dependence of ℎ=/〈Q〉 on 1/_,	 directly from the 

simulated trajectories, we, indeed, can recover the force-dependent intercept, which agrees 

with the prediction of Eq. 30.  

 



 

Figure 2: Information rate ℎ= per unit time plotted against the inverse square of the inter-

milestone distance _ obtained from simulations of overdamped Langevin trajectories on a ring 

in the presence of a constant driving force \. The distance units are u, the time units are u,/^, 

and the force units are 3S./u, where u is the ring length. Each system was integrated with the 

Euler-Maruyama integrator with a timestep of 10*e	units, until 5 × 10b milestone crossings 

were obtained. The black lines show the values predicted by Eq. 30, and the colored dots show 

the values estimated via milestoning. Since Equation 30 is only valid in the limit of _ → 0, we 

restrict our experiment data to milestones which are closely spaced. However, plotting data in 

the entire range of  _	(particularly for large values of 1/_,) makes it difficult to examine the 

lines of best fit and whether they agree with theory. Here, we obtain data for experiments up 



to $[$ = 15876, and generate the colored best-fit lines for all the experiments, but restrict the 

plot to $[$ = 4000  in order to maintain visual clarity. 

 

7. Inferring memory from trajectories: generalized Langevin equation  

 

We now proceed to test the ability of the above analysis to detect memory effects in the 

observed non-Markovian dynamics.  We first start with dynamics on a ring obeying a 

generalized Langevin equation of the form  

0 = −∫ Γ(# − #d)>̇(#d)V#d +<
*M t(#)  . (32)   

Here  

Γ(#) = 3& exp(−
)(<
f ) + 2}@D(#)	  (33) 

is a memory kernel, and t(#) is a Gaussian-distributed random force with zero mean obeying 

the fluctuation-dissipation theorem of the form 〈t(#)t(#d)〉 = 3S.Γ(# − #d).  Eq. 32 is obeyed 

by a particle that experiences an intrinsic friction force −}@>̇, and which is coupled to another 

degree of freedom o that experiences friction force −}ȯ via a harmonic potential 

3&(o − >),/4. This offers a practical method of integrating Eq. 3236, 48. In the results reported 

here we use } = 30}@ and 3& = 1000 ).Vg$ , where u is the length of the ring. The simulation 

timestep used is D# = 10*e g
$f)
).V

. 

 Figure 3 shows the spatial component of the information rate (i.e. the information rate 

associated with the sequence of milestones crossed by the trajectory >(#)) evaluated for 

3 =1,2, and 3. The fact that ℎ=
(?) < ℎ=

(,) < ℎ=
($) immediately informs us that we are not dealing 



with a Markov process. Moreover, the dependence ℎ=
())( $[$) exhibits an intercept, when 

extrapolated to $[$ → 0, a behavior similar to that found for diffusive dynamics in the presence 

of force. This indicates that the observed dynamics is more predictable (i.e. has lower 

information) than diffusive or Markovian dynamics.  We expect that, as the Markov order 3 is 

increased,  ℎ=
()) will eventually converge to the “true” value ℎ=, but evaluation of higher order 

entropy rates quickly becomes expensive computationally and unreliable49. We therefore resort 

to the recently reported compression-based method31 to estimate ℎ=. In brief, the information 

in the milestone sequence ?$, ?,, … is estimated from the size of the data after it was 

compressed using a lossless compression algorithm; although compression algorithms rarely 

compress finite-size data to the true information limit, this error can be corrected by comparing 

the compression-derived information rate with the theoretically known true information rate 

for a suitably chosen Markov process. The result is shown in Fig. 3, where the estimated 

information rate ℎ= is found to be significantly lower than its finite-Markov-order estimates, 

indicating long memory.       

   

 

 



 

Figure 3: The spatial component of the information rate per unit time plotted against the 

inverse square of the inter-milestone distance, for a particle on a ring obeying the generalized 

Langevin equation with exponential memory, Eq. 32. The ring length u is used as the unit 

length, and the time is measured in units of u,}@/3S.. The integration scheme is the same as 

in Figure 2, with the same number of milestone crossings observed. The solid black line shows 

the result for ordinary Langevin equation without memory (Eq. 30 with \ = 0; also see Fig. 2). 

The colored circles are estimates of the ℎ=
()), estimated with the compression method. Similarly 

to Figure 2, we gather data for very closely spaced milestones, up to $[$ = 3249, but only plot 

results in the range  $[$ ≤ 1000  in order to keep the differences between individual lines visible 

in the plot. 



As the order 3	of the estimate is increased the information rate ℎ=
()) decreases toward the 

compression-based “true” rate ℎ=, indicating non-Markovianity of the dynamics. 

 

8. Inferring memory from molecular trajectories: atomistic simulations of end-to-end 

dynamics of an intrinsically disordered protein 

 Dynamics of the distance between the ends of a biopolymer chain has been the subject 

of extensive experimental and theoretical work (see, e.g., refs.50,51,18, 52-55,56-59). While theory 

predicts such dynamics to be highly non-Markov47, 60-62, direct demonstration of non-

Markovianity in simulated or experimentally measured dynamics is often difficult and indirect: 

for example, analysis of transition paths63, modeling of trajectories using a generalized Langevin 

equation12, and analysis of the scaling behavior of the loop formation rate59, 61 have been 

invoked to probe non-Markov effects. To see if our information-theoretical analysis can directly 

inform us about memory effects, here we have analyzed the end-to-end dynamics of a model 

unstructured polypeptide, the 11-residue peptide fragment with the Gly-Ser repeat21, 64, using 

atomistic simulations (Fig. 4).   

 In comparison to the above examples and to earlier studies of discrete random walks31, 

this example presents two challenges. First, the length of the trajectory (measured relative to 

the characteristic relaxation time of the problem) is much shorter. As a result, numerical 

evaluation of Eq. 5 may become unreliable49. Likewise, the compression-based method used in 

the previous Section to evaluate the “true” information rate ℎ= may be affected by the 

insufficient trajectory length31.     



 Second, unlike the above examples, where we could use larger numbers of milestones 

for the analysis, here the time evolution of the polypeptide’s end-to-end distance >(#)	 was 

discretized using only seven equally spaced milestones placed as shown in Fig. 4.  This particular 

choice of milestone spacing is dictated by practical considerations that are likely to be common 

to the analysis of both molecular simulations and experimental data. Specifically, the sampling 

rate of both types of data is often limited by data storage demands,  by the speed of a camera, 

or by the inherent time resolution of the experiment.  In the simulation described here, the 

molecular structures were saved every Δ# = 5 ps, a time interval that is 3 orders of magnitude 

longer than the simulation timestep. If the spacing between the milestones is too small, 

multiple milestones can be crossed during this time interval. Such missed milestone crossings 

will lead in errors in estimating the entropy rates. While the recently proposed stochastic 

algorithm that reintroduces missed crossings probabilistically65 partially remedies this problem, 

it does not consider the possibility that multiple milestones are crossed while the trajectory is 

unobserved.  Note that  Δ# exceeds the velocity relaxation time for the trajectory considered 

here; thus the effect of inertia on the information rate ℎ= cannot be observed (similarly to 

most experimental studies28).   

To test whether our method can differentiate between Markov and non-Markov 

dynamics when the trajectory length and the number of milestones are limited by the above 

considerations, we have computed the information rates both for the original trajectory >(#) 

and for its Markovian model, a trajectory that obeys the overdamped Langevin equation 

).V
T

\R
\< = −Å′(>) + t(#). (34) 



The potential Å(>) (shown in Fig. 4) was chosen such that the corresponding equilibrium 

distribution is the same as that for the original trajectory, and the diffusion coefficient ^ =

9.04 × 10*F	nm,/ps	 was chosen such that the mean lag time between milestone crossings is 

the same. The Langevin trajectory, starting from the same initial value of > as the molecular 

simulation,  was sampled at the same time intervals and analyzed in the same way as the 

original trajectory using the same set of milestones, and as with the earlier figures, we assess 

ℎ=, the spatial component of the entropy. As seen from Figure 5, the information rate for the 

original trajectory decreases with the Markov order, while the corresponding values for the 

Markovian model are virtually the same. Although the errors in compression-based estimates 

of the information rate are quite large (see Appendix C for further error analysis, which shows 

that these errors originate in the relatively short length of the molecular trajectory), the 

method detects the non-Markov character of the molecular trajectory reliably.  

 

 



 

Figure 4. The potential of mean force Å(>) = −3S. ln )(>)	for the end-to-end distance > of a 

Gly-Ser repeat peptide shown at the top. Here )(>) is the equilibrium distribution of >. The 

locations of the milestones used to analyze the trajectory >(#) are shown as vertical dashed 

lines. 

 



 

Figure 5: Compression-derived31 3-th order information rate ℎ=
())	 (Eq.5) associated with the 

sequence of milestones visited by a trajectory >(#) describing the time evolution of the end-to-

end distance > of a Gly-Ser repeat peptide (green). The compression-derived estimate ℎ= 	for 

the infinite-order information rate is shown at the rightmost points, connected to the rest of 

the data points by a dashed line. The same information computed using Eq. 5 directly is shown 

in purple. Since the trajectories used are quite short, we repeatedly estimate the entropy and 

compute statistics over the trials to obtain the values and 95th-percentile errors shown. The 

exact estimation procedure is detailed in Appendix B, and the source of the difference between 

the two estimators is discussed in Appendix C. While the estimates do not agree with each 



other numerically, ℎ=
())	 decreases with increasing 3 regardless of the estimator used, indicating 

non-Markov behavior. To verify that this is a signature of non-Markovian dynamics and is not a 

consequence of artifacts associated with finite time resolution of the trajectory or the relatively 

small number of milestones used, we have simulated overdamped Langevin dynamics of a one-

dimensional particle that has the same potential of mean force Å(>) as the peptide, and 

analyzed the resulting trajectory, sampled at the time intervals of the same duration, using the 

same methods. The estimated information rate for such a Langevin trajectory is virtually 

independent of the Markov order 3, as expected for a Markov process. 

 

9. Summary 

This work extends the recent information-theory-based method31 for detecting and quantifying 

memory effects in discrete random walks to continuous trajectories such as those observed in 

molecular simulations and single-molecule experiments. Doing so requires solving two related 

problems. First, this requires discretization of trajectories, which, in general, introduces 

spurious memory effects that are absent in true dynamics. Second, for a stochastic process the 

information in a trajectory diverges as the resolution with which it is sampled is increased66. 

Our approach to solve these problems is to use milestoning, a method introduced originally as a 

computational tool, as a data analysis tool. Milestoning naturally maps continuous trajectories 

onto continuous-time discrete random walks, whose information rates can then be computed 

either directly or using compression algorithms31. Although those information rates depend on 

the resolution with which the observed trajectory is discretized and diverge when the distance 

between the milestones goes to zero, the divergent part, when it results from diffusive 



dynamics at short timescales, is well understood and can be subtracted to get a resolution-

independent component of the entropy rate resulting from non-Markov effects. We have 

shown the utility of this method in detecting memory effects in generalized Langevin equation 

dynamics and in end-to-end dynamics of an intrinsically disordered peptide.     

 

 In principle, this method automatically produces a hierarchy of 3-th order continuous-

time random walk models of the observed trajectory67, 68, whose quality can be judged by the 

convergence of the information rate ℎ()) toward the 3 = ∞ value24.  While not necessarily 

“physical”, such models may provide clues to the physical nature of the observed process 

and/or discriminate between its alternative physical explanations – an illustration of that is 

given in ref.31, where information theory was used to discriminate between static and dynamic 

disorder. 

 Finally, let us note that using the information rate ℎ()) to assess the quality of a 3-th 

order Markov model is not the only possible approach. One can, for example, ascertain the 

validity of the 3-th order Markov model by verifying that the conditional probabilities 

."!#","!,…,"",")
())  are independent of !@ (i.e. there is only memory of 3	previously visited states). 

Such an alternative approach is briefly explored in Appendix D. Although we have no proof that 

the information-theory based approach is always superior, we find this to be anecdotally the 

case for all the systems studied here (Appendix D and Fig. 7).  
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Appendix A: Details of molecular simulations of Gly-Ser repeat peptide.  

All-atom molecular dynamics simulations of this peptide were performed using the 

GROMACS software package69  with the CHARMM27 parameter set70. The peptide was solvated 

with TIP3P water molecules in a cubic box so that the minimal distance of the peptide from any 

edge of the cubic box was at least 10 Å, which gave us a box dimension of 36.6 ´ 36.6 ´ 36.6 Å3.  

Electroneutrality of the system was achieved by randomly replacing water molecules with Na+ 

and Cl− ions keeping the salt concentration fixed at 100 mM using the genion module of 

GROMACS. The structure of the peptide was energy-minimized by using the steepest descent 

algorithm to generate a configuration with no steric hindrance. This conformation was then 

subjected to two consecutive equilibration phases – 500 ps of NVT equilibration at 300 K using 

the modified Berendsen weak coupling method71 and 500 ps of NPT equilibration at 300 K and 

1.0 bar using the Parrinello−Rahman barostat72. For both equilibration phases, the peptide was 

kept at the center of the cubic box using a force constant of 1000 kJ mol−1 nm−2, and position 

restraints applied to all the heavy atoms throughout. The system was then allowed to evolve 

freely for 12 microseconds.  Other simulation parameters are as follows: (1) 2 fs integration 

time step; (2) 5 ps resolution for storing snapshots, (3) 10 step resolution for the nonbonded 

interactions list update, (4) LINCS algorithm73 to constrain hydrogen atom containing bonds, 



with a warning angle of 30°, (5) temperature baths with a relaxation constant of 0.1 ps, (6) 

barostats with a relaxation constant of 1.0 ps and isothermal compressibility of 4.5 ´ 10−5 bar−1, 

(7) periodic boundary conditions with the standard minimum image convention in all three 

directions, (8) particle mesh Ewald method with a real-space cutoff at 9 Å to treat the long-

range electrostatics, and (9) a 9 Å cutoff for Lennard-Jones interactions with a 1.2 Å Fourier 

spacing. 

 

 

Appendix B. Details of entropy estimation and error analysis from a molecular trajectory.   

 

Although we are working with a single molecular trajectory for a Gly-Ser repeat peptide, the 

method of ref. 65 introduces additional stochastic component by adding missed milestone 

crossings probabilistically. Starting with the same molecular trajectory, we thus apply this 

method to generate 500 different milestone sequences. For each such sequence, we estimate 

the k-th order entropy by (i)  measuring the probabilities .()) (c.f. Eq. 3), (ii) sampling a 3-th 

order Markov process according to the measured transition probabilities, and  (iii) applying the 

compression method as described in ref.31 to obtain an estimate for ℎ=
()) (green data in Fig. 5). 

The infinite-order estimates for ℎ= are obtained by applying the compression method to the 

original milestone sequences. The “histogram estimates” (purple data in Fig. 5) are obtained by 

applying Eq. 5 to the measured transition probabilities .()). The error bars reported in Fig. 5 

represent   the 5th and 95th percentile values. We emphasize that those only reflect the 

statistical errors arising due the stochastic procedure of ref.65.  Other errors such as 



compression algorithm errors or the statistical errors arising from the finite length of the 

molecular trajectory itself cannot be estimated this way. Finally, the same procedure is applied 

to estimate the information rates corresponding to a Langevin trajectory (Eq. 34) of the same 

length as the molecular trajectory (red and orange curves in Fig. 5). 

 

Appendix C: Accuracy of entropy estimates from short trajectories  

 

As observed in Fig. 5, the compression-based estimates of the entropy rates for a molecular 

trajectory are significantly higher than the estimates based on the direct use of Eq. 5. We 

propose that this discrepancy results from an insufficient simulation time of the Gly-Ser 

peptide. As much longer molecular simulation trajectories are unavailable to us here, below we 

explore how the finite trajectory length affects the performance of both methods using the 

previously studied model of a single-file random walk31, for which very long trajectories can be 

obtained.  This system has three discrete sites on a ring (Fig. 6). At every discrete timestep, one 

of the two walkers (with equal probability) moves into the vacant site. The trajectory of one 

selected walker is a highly non-Markov process, with the exact information rate known to be 

ℎ= = 1 bit per step31.  

 

We simulate such a trajectory for N=45000 timesteps, to create data of a similar length to the 

milestoned trajectory, and then compare the compression-based and Equation 5-estimated 

entropy values in Figure 6. A comparison between the information rates estimated, as in Fig. 5, 

for a short trajectory (( = 45000) with that for a much longer trajectory (( = 2 × 10e) shows 



that, indeed, the compression algorithm overestimates the information rates, but its error is 

significantly reduced for longer trajectories, a behavior similar to that observed in Fig. 5. 

 

 

Figure 6: Entropy rates for a discrete single-file random walk of a tagged particle on a ring – see 

inset. Comparison of Eq.5-based and compressor-based estimates for the entropy rates 

computed for a short trajectory (N=45000) and long trajectory (( = 2 × 10e) shows that the 

discrepancy between the two estimates is due to insufficient length of the trajectory. Note that, 

for the longer trajectory the ℎ=
()) values approach the theoretical value (ℎ= = 1) as the Markov 

order 3	increases. The error bars reported here have been obtained from 100 simulated single-

file random walk trajectories of given length (.  



 

 

 

Appendix D: Alternative Markov order estimates 

Once we have obtained estimates of ."!#","!,…,""
()) and )"!,…,""

&& ,  there are several possible 

estimators of Markov order that can be computed. For example, a kth order Markov process 

obeys the kth order Markov property, namely that: 

."!#","!,…,""
()) =	."!#","!,…,"",")

()+$)    (D1) 

It also must obey the generalized form of the Chapman-Kolmogorov equations, the simplest 

form of which can be written as 

."!#","!4",…,")
()) = ∑ ."!#","!,…,""

()) ."!,"!4",…,")
())

"!   ,(D2) 

where ."!#","!4",…,")
())  is defined as the probability of !)+$ conditional on observing the sequence 

!@, … , !)*$.  

By summing these quantities over all possible values and taking the difference between 

the right hand side and left hand side, we can quantify how non-Markov the process is at order 

3. For Equation D1, we can write this as 

Δ5()) = ∑ |."!#","!,…,""
()) − ."!#","!,…,"",")

()+$) |	"!#","!,…")  (D3). 

If a process is kth order Markov, then Δ5()) should be zero (note, however, that this is a 

necessary but not sufficient condition). A similar expression can be written for Equation D2 – in 

the special case of 3 = 2, this would be equivalent to taking a matrix norm. 



We examined these estimators for the three systems studied in this paper, as well as for a 

coarse-grained random walk, which is known to be second-order Markov31. As shown in Figure 

7, the estimator correctly indicates that the overdamped Langevin system is at least 1st order, 

and the coarse-grained random walk is at least second order. In fact, the former is exactly 1st 

order and the latter is exactly 2nd order31, and thus we should expect that Δ5()) should be zero 

for all higher orders. However, in practice, the error rapidly accumulates past k=3, and the 

estimator incorrectly reports the Langevin system as non-Markov at third or higher orders. In 

contrast, comparing these observations to Figure 5, we can see that both Equation 5 and the 

compression method correctly report that the Langevin system is Markov to order 9 without 

any significant loss of statistics. 

 



 

Figure 7: An attempt to quantify the Markov order of various systems using Equation  

D3. A nonzero value at 3 indicates that the process is not Markov at that order. The estimator is 

accurate at low orders, correctly indicating that the overdamped Langevin system is 1st order 

Markov and the coarse-grained random walk is second-order31. However, the error rapidly 

grows for higher orders, and incorrectly reports that these systems are not Markov to any order 

higher than 3 = 3. Similar behavior was observed when using the Chapman-Kolmogorov 

equations (Eq. D2). In contrast, Equation 5 and the compression technique both correctly show 

that overdamped Langevin dynamics is Markov even at 9th order (Fig. 5). 
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