New Version, New Answer: Investigating
Cybersecurity Static-Analysis Tool Findings

15t A.M. Reinhold
ORCID 0000-0003-0411-3486

4™ Derek Reimanis
ORCID 0000-0002-0747-0457

Abstract—Automated detection of vulnerabilities and weak-
nesses in binary code is a critical need at the frontier of
cybersecurity research. Cybersecurity static-analysis tools aim
to detect and enumerate vulnerabilities and weaknesses. Two
popular tools are CVE Binary Tool (cve-bin-tool) and cwe-
checker. Cve-bin-tool reports vulnerabilities using Common Vul-
nerabilities and Exposures (CVE) whereas cwe-checker reports
weaknesses using Common Weakness Enumeration (CWE). De-
spite widespread use, the consistency with which these tools
report vulnerabilities and weaknesses (herein, “findings”) was
unaddressed. We conducted a systematic investigation of 660
unique binaries taken from a Kali Linux distribution, evaluated
each binary with multiple versions of the static-analysis tools, and
investigated how the findings changed according to the version
of the static-analysis tool used. We expected some variation in
findings commensurate with the software-development life cycle.
However, we were surprised by the number and magnitude of
the changes in findings reported across versions. New versions
gave new answers.

Index Terms—binary, code security, detection, CWE, CVE

I. INTRODUCTION

Static-analysis tools report warnings and statistics about
a program without executing the program. In the domain
of cybersecurity, static-analysis tools detect potential security
threats in a program, including weaknesses and vulnerabilities.
CVE Binary Tool (“cve-bin-tool” developed by Intel; [1])
and cwe-checker (developed by German research organization
Fraunhofer FKIE; [2]) are two commonly-employed static-
analysis tools that provide an objective evaluation of the vul-
nerabilities and weaknesses in program binaries, respectively.

A.M. Reinhold, Derek Reimanis, and Clemente Izurieta: Funded by the
Department of Homeland Security (DHS) Science and Technology (S&T)
Directorate under contract number 70RSAT22CB0000005. Travis Weber and
Colleen Lemack: Portions of this material are based upon work supported by
the United States National Science Foundation under Grant No. CCF-1947750.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
the National Science Foundation and DHS S&T.

AM. Reinhold, Derek Reimanis, and Clemente Izurieta are with the
Software Engineering and Cybersecurity Laboratory, Gianforte School of
Computing, Montana State University, Bozeman, MT 59717 USA (email:
reinhold @montana.edu). Travis Weber and Colleen Lemack were 2022 NSF
REU Summer Scholars in the Gianforte School of Computing, Montana State
University, Bozeman, MT 59717 USA.

978-1-6654-9952-1/22/$31.00 ©2022 IEEE

2" Travis Weber
ORCID 0000-0003-0444-0997

3" Colleen Lemak
ORCID 0000-0001-8064-0806

5% Clemente Izurieta
ORCID 0000-0002-1002-3906

Cwe-checker and cve-bin-tool have the common purpose
of assessing program security but operate differently. Cwe-
checker decompiles binary files using the United States’
National Security Agency Reverse Engineering Framework,
ghidra [3], for the purpose of identifying buggy or weakness-
prone classes in the program. Cwe-checker uses the Common
Weakness Enumeration catalog [4] to classify potential weak-
nesses, reported as CWEs [5].

In contrast, cve-bin-tool [1] checks for strings via pattern
matching within a binary file. Specifically, cve-bin-tool per-
forms regular expression matching between the bytes in a
binary file and signatures of many versions of commonly-
used compiled programs, such as mysql [6] and nano [7]. In
the event of a positive regular expression match, cve-bin-tool
determines that the compiled program exists within the binary
under analysis, and then queries the National Vulnerabilities
Database (NVD) [8] and the Open Source Vulnerabilities
Database (OSV) [9] to collect all known vulnerabilities (CVEs;
Table I) associated with a particular compiled program (e.g.,
mysql or nano).

Within binary analysis, cwe-checker and cve-bin-tool op-
erate at the frontier of cybersecurity research and offer a
promising solution to the challenging problem of identifying
and enumerating an incredibly vast suite of potential threats.
Decision-making based on output from these tools presupposes
that they provide a direct measure of key aspects of code secu-
rity. However, the readme of both tools features a disclaimer
stating that the results of the tools should be used at an end-
user’s discretion. The developers of these tools do not claim
that the tools work perfectly.

As users of these binary static-analysis tools who make
decisions based on their outputs, we sought to understand the
consistency and reliability with which cwe-checker and cve-
bin-tool report findings from one version to the next. We began
by combing the academic literature; however, after surveying
the IEEE Archives [10], Google Scholar [11], and Web of
Science [12], we found no studies that systematically evaluated
the consistency or reliability in which these tools report
“findings” (defined in Table I). Thus, our research addresses
the question: How consistent are the outputs of cwe-checker
and cve-bin-tool across versions of each tool? We predicted
that some variation would be present between versions of the

TABLE I
DEFINITIONS

Term Definition Source(s)
vulnerability | program code that an attacker may exploit | NVD [8]
to gain access into a system or network
weakness code having the potential to develop into | CWE
a software vulnerability catalog [4]
findings herein, CVE occurrences reported by cve- | the authors
bin-tool; CWE occurrences reported by
cwe-checker

tools as, e.g., developers make updates to ensure relevance,
but that large fluctuations in reported findings would not occur
between sequential versions.

II. METHODS

To address our research question, we ran 660 publicly
available binaries (herein, “collection of binaries”) from a
Kali Linux distribution through as many functioning versions
of each tool as were available (collection of binaries can
be downloaded from our github page at https://github.c
om/MSUSEL/tool-evolution and are described in detail
in [13]). For cwe-checker, we acquired and reported results
for three working versions: versions 0.4, 0.5, 0.6. Versions
0.1, 0.2, and 0.3 of cwe-checker required the installation of
outdated and deprecated dependencies, which required sub-
stantive changes to environment configuration; consequently,
our analysis herein focused on versions 0.4, 0.5, and 0.6.
For cve-bin-tool, we acquired eleven working versions. Two
working versions of cve-bin-tool were omitted because they
appeared to have bugs; these versions reported identical scores
for all 660 binaries. Thus, nine versions of cve-bin-tool were
included in our results: versions 1.0, 1.1, 2.0, 2.1, 2.1postl,
22,221, 3.0, 3.1.1.

Importantly, in order to be able to attribute the variation
in tool output to differences in the versions of the static-
analysis tools, we controlled for multiple factors. One, we
assessed the same version of each binary in the collection
with multiple versions of the static-analysis tools; thus, all
versions of the static-analysis tools evaluated the exact same
binary code. Two, to ensure that the differences in cve-bin-
tool output were due to the differences in cve-bin-tool versions
and not differences in the NVD or OSV, we used the NVD
and OSV acquired on 18 July 2022. Thus, differences in tool
output from different versions of cve-bin-tool are not the result
of different versions of the NVD and OSV.

Data were analyzed using the R Language and Environment
for Statistical Computing [14], using the “ggplot2” package
[15] to generate all plots and selecting colors with the “viridis”
package [16]. We visualized the variability in tool outputs
across versions as follows. One, we plotted the total number of
findings reported by each version of each tool for each binary
(Fig. 1A-B). Two, we used Jenks natural breaks optimization, a
1-D clustering approach, to group the total number of findings
(function “getJenksBreaks” in the “BAMMTtools” package

[17]). We explored a range of groups from k£ = 3 to k = 12.
We selected & = 8 groups based on visual inspection; k < 8
groups resulted in compression of practical variability of the
data whereas k£ > 8 resulted in visualizing variability in the
data that lacked practical significance. We plotted the scores
for each tool for each binary in an alluvial plot (Fig. 1C-
D). For this and the subsequent effort, we used all working
versions of cwe-checker, but focused on the major (i.e., “.0”)
releases of cve-bin-tool. Three, we calculated the differences
in the number of findings reported by the static-analysis tools
between versions and plotted these in symmetrical density
(violin) plots (Fig. 1E-F).

We tested for the effect of version on the number of findings
reported for each static-analysis tool using a Friedman test
(function “friedman.test” in the “stats” package [14]). We
used a Friedman test because the findings reported for each
tool failed to meet the assumptions of parametric statistics,
but needed to be modeled with a statistic that accounts for
repeated measures. We ran one Friedman test for cwe-checker
and another for cve-bin-tool. In both tests, tool findings were
modeled as the dependent variable, versions of the static-
analysis tools were modeled as the independent variable, and
binaries were modeled as the blocking variable to account for
the fact that each binary was evaluated with multiple versions
of the static-analysis tool.

To understand the patterns underpinning the variation across
versions of the static-analysis tools, we explored summary
statistics in the tool outputs for each CWE (cwe-checker)
and for each CVE prefix—which corresponds to the year that
the CVE was cataloged (cve-bin-tool). Findings reported as
“UNKN” indicate those wherein cve-bin-tool could not parse
the output received from the NVD; cve-bin-tool reports these
findings as “UNKNOWN?”, and they are included here (e.g.,
Figs. 2B and 3B). The plots of the summary statistics (standard
deviations [Figs. 2 and 4] and medians [Fig. 3]) explore the
CWEs and CVE-year prefixes driving the variation in the
findings summarized in Fig. 1.

III. RESULTS

The outputs from the cybersecurity static-analysis tools
varied according to the version of the tool (cwe-checker:
Friedman chi-squared = 591.7, degrees of freedom [DF] =
2, P-value < 2.2e-16; cve-bin-tool: Friedman chi-squared =
4,715.5, DF = 8, P-value < 2.2e-16; Fig. 1). Although only one
version of each binary was evaluated, the number of findings
was rarely constant across all versions of the static-analysis
tools.

Only 14.1% of of the 660 binaries evaluated were found to
have the same number of findings by all versions of cwe-
checker. The majority of these—90 of 93 binaries—were
reported to have zero findings across all versions of cwe-
checker. Results for cve-bin-tool were similar. Of the 660
binaries evaluated, only 2.3% of binaries were found to have
the same number of findings by all versions of cve-bin-tool.
The majority of these—14 of 15 binaries—were reported to
have zero findings across all versions of cve-bin-tool. Thus,

cwe-checker cve-bin-tool

150
100
50
0
)\.
Cc D
600 600
=
<. 400 o, 400
S S
© ©
£ £
m m
200 200
0 0
QP‘ QO.J Q‘.b \.Q Q/.Q %‘Q
Wo- H 3-274 Hos [Po2
[275-549 [l 550- 893 W5 Wss-75
[894- 1208 [1299- 2026 [76-84 [0 &5-95
[] 2027- 2906 [] 2907 - 4344 [96- 106 [] 107- 147
E F
3000
1001
2000
* w507
o) (o)
S 10004 =S
S o
< =
o) co]
< <
-1000 4 -100 4
-2000 1 -150 1
\a} © Q Q
/AQ' /QQ. /\\(2/. ,\\(3)4
QQP(AQ?‘) A\'Q {Z/‘Q

Fig. 1. Findings reported by different versions of cwe-checker and cve-bin-tool outputs for the collection of binaries. One version of each binary was run
through multiple versions of each static-analysis tool; thus, variation in tool outputs is attributable to the differences in the versions of the static-analysis
tools. A-B: Sum of reported findings versus version of static-analysis tool. Each line represents one of the binaries analyzed. C-D: Alluvial plots depicting
changes in the sum of reported findings for the collection of binaries. The color of the stacked bars denotes the sum of findings reported by the version of the
static-analysis tool indicated on the x-axis. Between stacked bars, each binary is represented by a thin line; lines connecting bars of different colors indicate
binaries which were assessed as having different numbers of findings by different versions of the static-analysis tools. The ranges in findings associated with
the color ramp were determined using Jenks natural breaks optimization (see Methods). E-F: Symmetrical density plots depicting mathematical differences in
the number of findings associated with different versions of the static-analysis tools. For each binary, the sum of the findings reported by the newer version of
the static-analysis tool was subtracted from the sum of the findings reported by the older version of the static-analysis tool. Thus, the density plots represent
the distribution of differences in reported findings between the versions of static-analysis tools indicated on the x-axis.

Verson O 04 © 05 @ 06

'e) (o]
(&)
40-
)
£ 400 -
2 30-
[T
< 20-
[} 200 -
(=}
& 10- & o © @
oo & i
@ ® ® ® e ®® &00 |3) 8 lo o- >
\'L\ %\@ qy% fﬁ’ B rb&b p;z?' ,5@ (,)@Q NQ;\ \\‘% u\"3 R ,\%7/ \QQ u\% & (2?3 4%“ &° @
CWE Id
Version © 10 O 11 O 20 O 21 O 21posti © 22 @ 221 @ 30 @ 3.1i1

St Dev in Findings

%QQ&QQQQQQQ\
W g S S (o o S

jmaq&mﬁaaanngI 1lff% %

o
,79’\ @0\ qp’\ qp’\ N r@’\ ,LQ\ @Q'\ ,79’\ (LQ(L qp@ Qq’q/ e‘lﬁ

CVE Prefix (Year)

Fig. 2. Standard deviation in the number of findings identified by cwe-checker (A) and cve-bin-tool (B) versus CWE Id and CVE Prefix, respectively. Black
vertical bars depict the range in standard deviation for the CWE or CVE prefix indicated on the x-axis; i.e., bar length indicates range of variability in
static-analysis tool output. In panel A, the CWEs on the x-axis are sorted by the maximum standard deviation calculated for the collection of binaries across

all versions of cve-bin-tool. In panel B, the CVE prefixes are sorted by year.

only three binaries were found to have consistent, nonzero
scores across all versions of cwe-checker, and only one binary
had consistent, nonzero scores across all versions of cve-bin-
tool.

We explored how the reported number of findings changed
from one version of the static-analysis tools to the next. The
number of findings reported by cwe-checker was profoundly
different for many binaries, depending on the version analyz-
ing the binary code (Figs. 1A, C, and E). The median number
of findings reported by cwe-checker was 66 higher in v0.4 than
v0.5 and the same in both v0.5 and v0.6 (Fig. 1E). However,
these medians belie the extent of the variability in the findings
(Fig. 1C and E). The differences in the findings between v0.4
and v0.5 ranged from 1,939 fewer findings to 3,118 greater
findings (standard deviation [SD] = 530.9); the differences in
the findings between v0.5 and v0.6 ranged from 480 fewer
findings to 1,601 greater findings (SD = 99.6).

With respect to the major releases, cve-bin-tool reported the
majority of the binaries as having a higher number of findings
in v2.0 than in either v1.0 or v3.0 (Fig. 1B, D, and F). More
specifically, the median number of findings reported by cve-
bin-tool was 81 fewer in v1.0 than in v2.0 but 81 higher in
v2.0 than v3.0 (Fig. 1B and F). The differences in the findings
between v1.0 and v2.0 ranged from O to 146 findings fewer

(SD = 28.6); the differences in the findings between 2.0 and
v3.0 ranged from 4 fewer findings to 123 greater findings (SD
= 27.6).

A. Detailed cwe-checker results

Four CWEs underpinned the majority of the variation in the
cwe-checker findings presented in Fig. 1A, C, and E. These
were CWE-457, CWE-787, CWE-125, and CWE-476 (Figs.
2A and 3A). The substantive decrease in the total number
of findings between v0.4 and v0.5 was primarily driven by
CWE-457, which is found in 85% of binaries by v0.4 but
no subsequent versions (Fig. 3A; see Discussion and Table
D). In addition, v0.4 reported more variation in findings for
CWE-457 than any other CWE in any version of cwe-checker
(Fig. 2A). Cwe-checker v0.5 reported the greatest variation in
findings for CWE-787 (followed closely by CWE-125); v0.6
reported the greatest variation in findings for CWE-476.

Cwe-checker v0.4 never found an instance of CWE-787 or
CWE-125 in any of the binaries, but v0.5 and v0.6 found
both of these CWEs in many binaries (Fig. 3A). CWE-787
was found in 49% of binaries by v0.5 and in 40% of binaries
by v0.6. When found in a binary, CWE-787 was generally
detected multiple times; multiple detections occurred in 79%
of binaries found to have this CWE by v0.5 and 78% by v0.6.

A Median . .
0 20 40 60 80
Detectons @ 25 @ 50 @ 75 @ 100
e}
= 457-
" o
3 676-
Qb(Q(Q Q-
Version
Median - _
0123 456
Detections @ 25 @ 50 @ 75 @ 100
787 - () [)
125- o
476 - o o o
416- ° ()
190 - () (] o
782 - (] o ([
134 - ° °
415- ° Y
T 119- ° ®
g 467 - ® ° °
O 560- ° o o
367 - ° ° °
332- ° ° °
243 - ° ° °
78 -
426 -
248 -
215-
121 -
o ® o®
Version

B Median 0.

Detectons @ 25 @ 50 @ 75 @ 100
UNKN - e o o o

5 10 15

202- o @@ OO © ¢ o o
2021- @ e o6 o o
2020- e [] [] [] []
2019- e e o o o
2018- e e o o o
2017- e [] [] [} ()
2016- e [] [] [] []
2015- e e o o o

2014- e ° °
g 2013 - e o o o
8 2012- e ° ° ° °
‘*E, 2011- o« @ @ @ @ ¢ o o o
E 2010-« @@ @@ ¢ ¢ o o
& 2009- 00O - - -
2008- e °) ° ° ° ° ° °
2007- e ° ° o ° ° ° ° °

2006- o« ® @® O O o o
2005 - e e o o . ° ° °

2004- o« @ © © © o o

2003- o« ®© ©®© © O o o
2002- e [J [J [J [J ° °

2001- e ° ° ° . ° °

2000- e ° ° ° ° . .
1999 - ° ° ° ° ° ° ° °
"D AN S Qo(j\'\ ¥ qﬂ,’.\ od ‘bt\)’\

QN
Version

Fig. 3. Percent of files with detections of CWEs (A) and CVEs (B) versus version of cwe-checker and cve-bin-tool, respectively. Point size depicts the percent
of binaries in which cwe-checker and cve-bin-tool detected the respective CWEs or CVEs indicated on the y-axis for each version of the static-analysis tool
indicated on the x-axis; the absence of a point indicates that the CWE or CVE on the y-axis was not detected in the version of the static-analysis tool on the
x-axis. Point color depicts the median number of findings within each binary for each CWE or CVE in each version of the static-analysis tool.

Although the median number of findings for CWE-787 was 0
for all versions of cwe-checker, associated SDs were 46.0 and
8.6 for v0.5 and v0.6, respectively (Fig. 2A). Thus, this CWE
is not found consistently across versions of cwe-checker.
Cwe-checker v0.5 and v0.6 found CWE-125 in more bina-
ries than CWE-787 (Fig. 3A). CWE-125 was found in 68%
of binaries by v0.5 and 51% of binaries by v0.6. Similar to
CWE-787, multiple detections of CWE-125 within the same
binary was common; multiple detections occurred in 91% of
binaries found to have this CWE by v0.5 and 79% by vO0.6.
Median findings for CWE-125 were 3 (SD = 44.4) and 1 (SD
= 8.3) for v0.5 and v0.6, respectively (Fig. 2A). Thus, CWE-
125 is not found consistently across versions of cwe-checker.
All versions of cwe-checker detected CWE-476 in the
binaries, but detections varied according to the version of cwe-
checker (Fig. 3A). Cwe-checker v0.4, v0.5, and v0.6 detected
this CWE in 45%, 41%, and 70% of the binaries, respectively.
Multiple detections of CWE-476 within the same binary was
common; multiple detections occurred in 78% of binaries
found to have this CWE by v0.4, 82% by v0.5, and 94% by

v0.6. Median findings were O for v0.4 (SD = 5.7), 0 for v0.5
(SD = 8.6), and 6 for v0.6 (SD = 42.7; Fig. 2A). Thus, findings
of CWE-476 are inconsistent across versions of cwe-checker.

B. Detailed cve-bin-tool results

Across versions, cve-bin-tool reported relatively low num-
bers of findings for CVEs dating from 1999-2008 (Fig. 3B).
Commensurately, the variation in the number of findings was
low for these older CVEs (SD < 1; Fig. 2B). However, a
starkly different pattern emerged for CVEs from years 2009-
2022.

Across versions, cve-bin-tool reported highly variable find-
ings for CVEs from years 2009-2022 (Figs. 2B and 3B).
The ranges in the standard deviations of findings were larger
for CVEs from 2009-2022 than from 1999-2008 (Fig. 2B);
the versions of cve-bin-tool that contributed most to this
result were v1.1 through v2.1postl. These versions of cve-bin-
tool reported a greater number of binaries containing CVEs
than other versions of cve-bin-tool (Detections in Fig. 3B).
These versions of cve-bin-tool also had the highest median

Severity . CRITICAL . HIGH D MEDIUM D LOwW

1.0 20 3.0
w 05-
2
5 04-
£
i 03-
£
>
(0]
2o 41 4‘ & ﬁ
500.2 8
R @ w* IS @ w* @
AR\ N PO » (9 W
QRO O R O ©®0\»
& ¢ BN ¢ &Y
Severity

Fig. 4. Symmetrical density plots depicting the standard deviation in cve-bin-
tool findings according to major-release version (panels) and CVE severity
(colors).

number of findings for the CVEs from years 2009-2022,
with a noticeable peak for CVEs cataloged in 2015. Thus,
cve-bin-tool outputs were variable both in terms of reporting
which binaries contained vulnerabilities and the number of
vulnerabilities present in those binaries.

Because our team wanted to know if cve-bin-tool reported
more consistent findings for CVEs of higher severity, we
investigated the relationship between CVE severity and the
standard deviation in reported findings (Fig. 4). We find no
evidence in support of this claim. Rather, the version of cve-
bin-tool appears a much stronger determinant of the reported
findings than CVE severity.

IV. DISCUSSION

Practitioners need confidence in the instrument fidelity of
cybersecurity static-analysis tools. They need to know that
the tools reliably identify and enumerate any vulnerabilities
or weaknesses in code. Yet, this is a particularly challenging
objective in binary analysis, with myriad potential sources of
Type I and Type II errors. The observed variability in the tool
outputs across versions underscores this challenge (Figs. 1, 2,
3). Unfortunately, this variability also hampers confidence in
decisions made based on outputs from these tools.

With respect to cwe-checker, we had posited that differences
in how the tool versions operate underpin differences in
reported findings (Table II). Note that v0.4 aims to detect
instances of CWEs 248 and 457, but no subsequent versions
detect these two CWE:s (see changelog from v0.4 to v0.5 [18]).
From our detailed analyses, however, we know that only CWE
457 contributes to this pattern; CWE 248 was never detected
(Fig. 3A).

Conversely, we had posited that increases in the number
of findings between v0.4 and v0.5 were attributable to v0.5
evaluating code for five additional CWEs than v0.4 (Table
II). Only three of the CWEs contributed to this pattern; these
were CWEs 119, 415, and 416. CWEs 78 and 121 were never
detected.

Likewise, we posited that differences in findings reported
between v0.5 and v0.6 were attributable to differences in
detection methods for CWEs 78, 119, and 416. The developers
significantly changed how cwe-checker detects instances of
these CWEs with the release of v0.6 [19]. However, we
observed only small differences between v0.5 and v0.6 for
CWEs 119 and 416; again, CWE 78 was never detected.

With respect to cve-bin-tool, we sought to understand the
drivers of the rise in findings from v1.0 to v1.1 and the
subsequent drop from v2.1postl to v2.2. We extracted the ver-
sion release notes from v1.1 and v2.2 in search of significant
changes to the manner with which vulnerabilities are detected.
We note that in v1.1 the developers wrote “This is a minor
bug fix release to address an issue with the NVD download,”
suggesting that a bug in the NVD download process was
affecting results prior to v1.1. Our results show that number of
reported vulnerabilities increased dramatically in v1.1, which
we attribute to the bug fix (Figs. 1, 2, 3).

While our research does not address the accuracy of cve-
bin-tool directly, we interpreted that developer-stated bug fixes
resulted in a more accurate tool. Following these bug fixes,
cve-bin-tool results were generally consistent from v1.1 to
v2.1postl. However, this changed with the release of v2.2
which was accompanied with the note “There are also a
number of new checkers and bug fixes.” Despite this increase
in the number of checkers, the number of reported vulnera-
bilities decreased precipitously between v2.1postl and v2.2.
This decline in findings was surprising given the increase in
the number of checkers. Thus, the decline in findings should
be a result of bug fixes.

Our team had also posited that CVEs with higher severities
would receive more attention by the developers. Supposing this
was true, we predicted that cve-bin-tool results for CVEs with
higher severities would have more consistent findings across
the versions than CVEs with lower severities. However, our
results did not support this contention (Fig. 4).

A. Implications for practitioners and end users

Our analyses suggest that cwe-checker and cve-bin-tool
have not yet solved the numerous challenges associated with
binary analysis. Neither static-analysis tool consistently finds
weaknesses or vulnerabilities in code. For both tools, it
remains unclear which findings are—and are not—actually
present in the collection of binaries. While these tools are
promising, they are not yet mature. More development, vali-
dation, and verification are required to improve the usefulness
of cwe-checker and cve-bin-tool in a decision-making context.

Practitioners make decisions about software security based
on newer versions of static-analysis tools, often assuming that
latest releases are most relevant. However, our results indicate
that this practice is precarious. Moving forward, our team will
only make comparisons about software security across projects
if the same version of the same tool is used. Likewise, we will
only track the security of a binary over time if the same version
of the same tool is used. We suggest practitioners do the same.

TABLE II
WEAKNESSES DETECTED BY THE VERSIONS OF CWE-CHECKER
Weakness v0.4 v0.5 v0.6
CWE-78%* - X X
CWE-119* - X X
CWE-121 - X X
CWE-125 X X X
CWE-134 X X X
CWE-190 X X X
CWE-215 X X X
CWE-243 X X X
CWE-248 X - -
CWE-332 X X X
CWE-367 X X X
CWE-415 - X X
CWE-416* - X X
CWE-426 X X X
CWE-457 X - -
CWE-467 X X X
CWE-476 X X X
CWE-560 X X X
CWE-676 X X X
CWE-782 X X X
CWE-787 X X X

*Detection code altered from v0.5 to v0.6.

B. Threats to Validity

Because our analysis was highly controlled—we evaluated
the same collection of binaries across all versions of the
static-analysis tools and used the same NVD and OSV for all
versions of cve-bin-tool—we attribute variation in tool output
to differences in the versions of the static-analysis tools. We
do not perceive significant threats to the repeatability of our in-
vestigation. Rather, the entire investigation can be repeated by
following the data pipeline that will be permanently archived
on Zenodo upon acceptance.

Great effort was made to ensure that the internal validity
[20] of our investigation was sound; i.e., that the differences
in tool outputs are the result of differences in the versions of
the tools. However, if there are factors beyond the scope of
what we controlled for, then a threat to internal validity is
an issue. For instance, each version of the two static-analysis
tools was run with the same version of Python (cwe-checker:
v3.9.7; cve-bin-tool: v3.7.3). If the static-analysis tools provide
different outputs on different versions of Python, then that
is a threat to internal validity. Other potential threats to
internal validity include whether the static-analysis tools report
different numbers of findings depending on multithreading,
operating system, or if changes in the data interpretation within
the tool impact outputs (e.g., if the NVD or OSV updated the
data structure that their API returns).

The external validity [20] of our investigation is limited to
the collection of publicly available binaries that we acquired.
Extrapolating our results beyond these binaries should be done
with nuance and care. For instance, if another investigator
should evaluate a binary in a “similar family” to the programs

we evaluated, the potential threat to external validity is low. If,
however, they evaluate a binary that is much larger, smaller,
or of a totally different family than we assessed here, then we
caution against that extrapolation.

C. Future Plans

Our results here raise two critical questions: are the findings
truly present in the binary code or not? and which versions of
the tools are most accurate? Our future research will address
both of these questions, keeping an eye towards understanding
the mechanisms that underpin the sources of variability in tool
outputs and identifying the use cases where these tools can be
used with confidence and where they cannot.

There were some CWEs and CVE prefixes for which
detections and enumerations were consistent. For instance,
CWE 676 was remarkably consistent across versions of cwe-
checker. Discovering the reasons for this consistency was
beyond the scope of our current work, but our future work
will investigate reasons for this consistency and determine
if consistency and accuracy are correlated. Further, we are
planning a series of experiments wherein we will strategically
inject code with specific weaknesses and vulnerabilities to
assess where tool accuracy holds and where it falters. This
research will be an asset to end users and developers alike.
End users will know which vulnerabilities and weaknesses are
consistently identified and developers can focus their attention
on the vulnerabilities and weaknesses that are not identified
with consistency.

D. Conclusions

The purpose of our work was to investigate the consistency
with which cybersecurity static-analysis tools report weak-
nesses and vulnerabilities in binary files. This work fills a
crucial gap as the consistency with which these tools report
findings was—until now—not assessed in any systematic
way. Our systematic analysis of several hundred binaries
through multiple versions of well-used, well-known cyberse-
curity static-analysis tools is a first step to understanding the
constraints on how these tools can be used with confidence.
The variability in the reported findings of cve-bin-tool and
cwe-checker causes us to use these tools with trepidation until
we can better understand the sources of variation in their
outputs.

REFERENCES

[1] Intel, “CVE Binary Tool (cve-bin-tool),” 2022. [Online]. Available:
https://github.com/intel/cve-bin-tool

[2] Fraunhofer FKIE, FKIE-CAD, ‘“cwe_checker,” 2022.
Available: {https://github.com/fkie-cad/cwe{_}checker}

[3] National Security Agency, “Ghidra software reverse engineering
framework.” [Online]. Available: https://github.com/NationalSecurity A
gency/ghidra/

[4] Mitre Corporation, “Common weakness enumeration: a community-
developed list of software and hardware weakness types.” [Online].
Available: https://cwe.mitre.org/

[5] S. Christey, J. Kenderdine, J. Mazella, and B. Miles, “The evolution of
the CWE development and research views,” Mitre Corporation, 2008.
[Online]. Available: https://cwe.mitre.org/documents/views/view-evolu
tion.html

[6] “Mysql.”” [Online]. Available: https://www.mysql.com/

[Online].

[7]
[8]
[9]
[10]
(11]
[12]

[13]

[14]

[15]

“The GNU nano text editor.” [Online]. Available: https://www.nano-edi
tor.org

National Institute of Standards and Technology (NIST), “National
Vulnerability Database.” [Online]. Available: https://nvd.nist.gov
Google, “OSV: a distributed vulnerability database for Open Source.”
[Online]. Available: https://osv.dev

“IEEE Xplore.” [Online]. Available: https://ieeexplore.ieee.org
“Google Scholar.” [Online]. Available: https://scholar.google.com/
“Web of science.” [Online]. Available: https://clarivate.com/webofscien
cegroup/solutions/web-of-science/

A. L. Johnson, “The analysis of binary file security using a hierarchical
quality model,” 2022. [Online]. Available: https://scholarworks.monta
na.edu/xmlui/handle/1/16635

R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2022. [Online]. Available: https://www.R-project.org/

H. Wickham, ggplot2: Elegant Graphics for Data Analysis. Springer-

[16]

(17]

[18]

[19]

[20]

Verlag New York, 2016. [Online]. Available: https://ggplot2.tidyverse.
org

S. Garnier, N. Ross, R. Rudis, A. P. Camargo, M. Sciaini, and C. Scherer,
viridis - Colorblind-Friendly Color Maps for R, 2021, r package
version 0.6.2. [Online]. Available: https://sjmgarnier.github.io/viridis/
D. Rabosky, M. Grundler, C. Anderson, P. Title, J. Shi, J. Brown,
H. Huang, and J. Larson, “BAMMotools: an r package for the analysis
of evolutionary dynamics on phylogenetic trees,” Methods in Ecology
and Evolution, vol. 5, pp. 701-707, 2014.

Fraunhofer FKIE, FKIE-CAD, “cwe_checker v0.5,” 2021. [Online].
Available: {{https://github.com/fkie-cad/cwe_checker/archive/refs/ta
gs/v0.5.zip} }

——, “cwe_checker v0.6,” 2022. [Online]. Available: {{https:
//github.com/fkie-cad/cwe_checker/archive/refs/tags/v0.6.zip} }

N. Juristo and A. M. Moreno, Basics of software engineering experi-
mentation. Springer Science & Business Media, 2013.

