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ABSTRACT

Oblique collisions of three solid spheres coated with thin viscous layers are simulated, both to elucidate the interesting physics of the collision
outcomes and to lay the groundwork for a new approach to modeling flows of many wet particles. Included in the analysis are fluid viscous
and capillary forces, as well as solid contact and friction forces. A novel approach is developed based on a rotating polar coordinate system
for each particle pair in near contact, including the possibility that a given particle is in simultaneous contact with both other particles. As the
Stokes number (a dimensionless ratio of particle inertia and viscous forces) is increased, the collision outcome progresses from full
agglomeration (all three particles sticking together due to viscous and capillary forces) to partial agglomeration (two particles sticking
together while the third one separates) to full separation (all three particles separating post-collision). The results are also sensitive to various
physical and geometrical properties, such as the ratio of fluid film thickness to particle diameter, the coefficient of friction, and the collision

angles.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0171810

I. INTRODUCTION

Dense flows of particles are prevalent in both nature (e.g, ava-
lanches, mud slides, and river sediments) and in industry (e.g., phar-
maceutical powders, paints, fracking media, agricultural grains and
fertilizer pellets). It has been estimated that 50% of the world energy is
derived from granular systems (Blumenfeld ef al., 2015) and that 75%
of new materials in the chemical industry are in granular form
(Nedderman, 1992).

Early theoretical and computational research on dense particulate
processing primarily falls in two distinct categories: (i) dry granular
flows, dominated by particle inertia and forces acting through particle-
particle contacts, and (ii) wet suspension flows, in which fluid-particle
forces dominate and particle interactions are mediated through the
fluid, often with viscous forces dominating over inertia. The former
may be described by the discrete element method (DEM) (Cundall
and Strack, 1979), whereas the latter may be described by Stokesian
dynamics (Brady and Bossis, 1988) and related methods.

More recent research has blended these two perspectives, such as
gas-solid flows (e.g., gas fluidization) where particle inertia and
particle-particle collision are still prevalent but drag forces on the par-
ticles by the gas phase are also key (Gidaspow, 1994). Another blended
scenario is where the solid particles are not fully immersed in a liquid
but rather are coated with thin layers of a viscous liquid such as in par-
ticle coating and agglomeration or de-agglomeration processes (Ennis
et al., 1991; Guo and Curtis, 2015).

In recent years, the discrete element method (DEM) has been
extended to wet or cohesive granular systems (Kantak ef al, 2009;
Anand et al, 2009; Radl et al., 2010; Liu et al., 2013; Umer and Siraj,
2018; Péhtz et al,, 2019; Tang et al., 2019; and Kasper et al., 2021).
These studies show that a small amount of liquid can drastically alter
the behavior of granular flows (Liu ef al, 2013; Pahtz et al, 2019).
However, application of DEM to wet systems has proved challenging
(Andreotti et al., 2013; Tang et al., 2019; and Kasper et al., 2021). In
part, the difficulty is due to the relatively nascent understanding of the
microscope nature of wet granular collisions, but it is also caused by
challenges involved with time-step requirements and numerical stabil-
ity (Washino et al, 2016). Moreover, most of the work has assumed
that capillary forces dominate (Washino ef al, 2013; Zhang and Li,
2017; Umer and Siraj, 2018; and Schmelzle and Nirschl, 2018), which
is valid for fine powders with low-viscosity coatings like water. For
larger particles with viscous coatings (polymers, oils, sirups, etc.), vis-
cous lubrication forces will dominate except at very low collision
velocities.

A key aspect of simulating flows of wet-particle systems is an
accurate description of the fluid-mediated microphysical interaction of
two wetted, colliding particles. Research on collisions of a wet solid
particle with a surface or another particle was initiated nearly 40 years
ago and sometimes referred to as “elastohydrodynamic collisions”
(Davis et al, 1986). The key concept is that there is a critical Stokes
number, St, = muv, o/ (6mpa’), below which the particles stick due to
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FIG. 1. Wet coefficient of restitution vs Stokes number for normal collisions of
chrome steel spheres covered with a viscous oil (,,—) and of stainless-steel
spheres covered with a less viscous oil (o,- - -). The symbols are experimental data
from Donahue et al. (2012), and the curves are the model predictions of Davis and
Sitison (2020).

viscous losses and above which they bounce with a reduced coefficient
of restitution (as some of their initial kinetic energy is lost to viscous dis-
sipation)—see Fig. 1. Here, m and a are the reduced mass and radius,
respectively, of the two colliding objects, v,, ¢ is their initial relative veloc-
ity in the direction normal to their surfaces, and y is the fluid viscosity.
Subsequent research on the microphysics of wet-particle colli-
sions has included both fully immersed collisions (Davis, 1987;
Gondret et al., 1999; Joseph et al., 2001; Lian et al., 1996; and Yang and
Hunt, 2006) and collisions involving thin liquid layers (Barnocky and
Davis, 1988; Davis et al., 2002; Donahue et al., 2012; Gollwitzer et al.,
2012; Ma et al., 2013; Criiger et al, 2016; Buck et al, 2018; and
Danczyk et al., 2022). Miiller and Huang (2016) used an energy model
to examine the conversion of kinetic energy to viscous dissipation,
fluid inertia, and contact losses. They demonstrated that a plot of the
wet coefficient of restitution vs inverse Stokes number yields a straight
line, as predicted by Barnocky and Davis (1988). While initial research
focused on normal or head-on collisions, recent studies have included
oblique collisions (Kantak and Davis, 2004, 2006; Joseph and Hunt,
2004; Donahue et al., 2012; Sutkar et al., 2015; Buck et al., 2017; Davis
and Sitison, 2020; and Punch et al., 2023). For particle collisions with a
flat, wetted surface, key findings include that the normal motion is
nearly unaffected by the tangential motion and that the sliding lubrica-
tion resistance to tangential motion is relatively small, though the latter
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can impact sphere rotation and reduce dry friction (Kantak and Davis,
2006; Ma et al., 2013; and Buck et al., 2017). A nice review of modeling
approaches and comparison with experiments is provided by Buck
and Heinrich (2019). Oblique collisions of two wetted spheres have rel-
atively rich physics (Fig. 2), including sticking or agglomeration at low
Stokes numbers, rapid bouncing at high Stokes numbers, and a stick-
rotate-separate phenomenon at intermediate Stokes numbers, where
the two spheres initially stick together due to viscous losses, rotate as a
doublet due to conservation of angular momentum, and then slowly
separate due to centrifugal forces if the capillary suction in the pendant
liquid bridge is not sufficiently strong (Donahue et al., 2012; Davis and
Sitison, 2020).

This paper provides a theoretical examination of the microphys-
ics and outcomes of oblique collisions involving three wetted particles.
While an extension to three-particle collisions may seem to be a small
step beyond two-particle collisions, the possible outcomes are relatively
rich, including full-agglomeration (FA), where all three spheres stick
together, partial agglomeration (PA), where two spheres stick together
and the third one (which can be any of the three spheres, depending
on the conditions) separates, and full separation (FS), where all three
spheres separate after the collision. Moreover, the dynamics are com-
plicated by the possibility of a sphere being in simultaneous contact
with more than one neighboring spheres, and developing the tools to
handle this situation is a key step in designing a new DEM approach
for flows of many wet particles. To our knowledge, microphysical sim-
ulations and experiments with a few (e.g., 3-5) wet spheres are largely
absent from the literature, with exceptions including the special case of
colinear configurations (Donahue et al., 2010; Davis, 2019) and DEM
simulations of a cohesive singlet colliding with an agglomerated dou-
blet (Liu ef al., 2017). In what follows, the problem formulation is first
presented in general terms for an unspecified number N spheres, with
each sphere potentially in close contact with multiple neighboring
spheres. Newton’s laws of motion are recast in a rotating polar coordi-
nate system for each pair of interacting spheres. Next, the governing
equations for the special case of three equal spheres are presented, fol-
lowed by results and discussion and then concluding remarks.

Il. GENERAL PROBLEM FORMULATION

We initially consider the general case of N spheres of radius a;
(i=1,2,...,N), each coated with a thin viscous fluid of viscosity p
and thickness J; < a; and having mass m; (neglecting the thin film).
Newton’s laws of motion for each sphere i are
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FIG. 2. lllustration of collisions of two wet spheres with outcomes of (a) sticking with St, = 0.95, (b) stick-rotate-separate with St, = 1.1, and (c) bounce with St, = 1.3. Figure
reprinted with permission from Donahue et al., J. Fluid Mech. 708, 128-148 (2012). Copyright 2012 Cambridge University Press.
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m,-dv,-/dt = —Z Fik + mig, (1)
dx,‘/dtz’l)i, i:1,2,...N, (2)

where v; is the translational velocity of the center of sphere 7, located at
x;, g is the gravitational acceleration, and —Fj = +Fj; is the hydrody-
namic force acting on sphere i via the thin fluid film between spheres i
and k. The sum is over all spheres that are in close contact (i.e., having
overlapped liquid layers) with sphere i.

An illustration for the special case of three equal spheres is shown
in Fig. 3. For simplicity, the motion is confined to a plane formed by
the centers of the three spheres. It is further assumed that the only
forces exerted on the spheres are gravity plus viscous lubrication and
capillary forces from overlapping liquid layers when two spheres are
nearly touching; any drag forces from the surrounding air are
neglected. Figure 3 shows the initial configuration at time ¢t = 0, when
the striker sphere (sphere 1) first collides with a target sphere (sphere
2), which is already agglomerated with the third sphere. The collision
interaction begins when the films on spheres 1 and 2 first overlap. At
t =0, the 2-3 doublet is assumed stationary, whereas sphere 1 has
velocity of magnitude v; o and moves at an angle « from the x-axis.
Also shown are polar coordinates, defined such that rj; is the distance
from the center of the sphere i to the center of sphere j and 0;; is the
angle from the x-axis to the line-of-centers of spheres i and j. Note that
the polar coordinate system for each particle pair will rotate with time,
whereas the Cartesian coordinates are fixed.

The hydrodynamic forces in (1) are due to viscous lubrication
and capillary forces exerted by the thin film between an i—j pair of par-
ticles and may be decomposed into normal (along the line-of-centers)
and tangential (perpendicular to the line-of-centers) components
(Davis and Sitison, 2020)

F,'Jgn = 67'[#61?141),']'," [1 - hl]/(251] - hg)}z/l’l,] — 87[61,']'0'7 (3)

F,j_[ = 2n,ua,jvfj’t In [(25,] - h,])/hl]} ) (4)

where g is the liquid viscosity, ¢ is the interfacial tension of the liquid,
a;; = a;a;j/(a; + aj) is the reduced radius, v;j, = Vi, — Vj.n; is the rel-
ative velocity along the line-of-centers, h;; = r;; — a; — a; is the closest
distance separating the two surfaces, d; = 6; + J; is the separation
distance when the adjacent liquid layers first begin to overlap, and
Viie = Uiy, = Uiy, = — 7% + @6 + w;ja; is the relative velocity of
the sphere surfaces in the tangential direction (see Fig. 4). Here, r;;
is the center-to-center distance, Q,-j = d0,»j /dt is the rate of rotation of
the line-of-centers, and w; and w; are the rotational velocities of the
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FIG. 3. Defining sketch for three colliding spheres.
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FIG. 4. Tangential and rotational velocities of the i—j pair of spheres in near contact
(liquid films not shown).

individual spheres (all defined to be positive for counterclockwise rota-
tion). The first term on the right-hand-side of (3) is the viscous force that
resists relative motion in the normal direction, derived from the Reynolds
lubrication equation with a thin film of finite extent. The term in brackets
corresponds to a correction due to the finite radial extent of the film
between the two curved surfaces in near contact [see Fig. 2 of Davis and
Sitison (2020)]. Danczyk ef al. (2022) compared various models with
experimental results for colinear collisions and concluded that inclusion
of such a correction factor gave better agreement than use of the tradi-
tional viscous lubrication force between fully immersed surfaces. Equation
(3) also applies for aspherical particles, which are gaining increased atten-
tion (Guo and Curtis, 2015), provided that their local surfaces in the
region of near contact can be fitted by paraboloids—a modification would
be required if the surface curvatures differ in two orthogonal directions.
Note that the viscous term becomes negative (a suction force) when the
spheres are moving apart. Cavitation is a possibility when a negative suc-
tion pressure occurs, which would limit the suction force, but prior analy-
sis of experiments (Donahue et al, 2010, 2012) inferred that the full
suction force remained in effect (perhaps due to the short timescale and
high viscosity limiting the formation of cavitation bubbles). It is assumed
that the Reynolds number Re = puj;,,d;i/pt (with p being the fluid den-
sity) is small for thin gaps, so fluid inertia is negligible. The second term
on the right-hand-side of (3) is the capillary suction force in the thin liquid
bridge between the two spheres (Davis and Sitison, 2020). Equation (4)
comes from integrating the shear stress due to sliding motion over the
extent of the thin film where the two spheres are in near contact (Kantak
and Davis, 2006; Davis and Sitison, 2020). Both expressions assume that
the film has axial symmetry about the line-of-centers, though it may be
that the tangential motion causes the film to become distorted.

A. Normal component of translational motion

Since the hydrodynamic forces depend on the relative velocity
between the two spheres, decomposed into motion along the line-of-
centers (normal to the surfaces) and perpendicular to the line-of-
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centers (tangential to the surfaces), we recast the governing equations
into a unique polar coordinate system for each i—j pair. Rotating polar
coordinates have been used for both dry and wet collisions involving
just two spheres (Miiller and Poschel, 2012; Donahue et al,, 2012; and
Davis and Sitison, 2020), although works considering multibody colli-
sions generally use Cartesian coordinates. Starting with the normal
component for sphere i in the direction along the line-of-centers with
sphere j, the product rule and geometry yield

eij,,, . d’l)i/dt = d(e,]n . ’U,‘)/dt — ;- de,‘j,n/dt

= dl),‘,nu/df — ku d()lj/dt7 (5)

where e;;, is the unit vector in the r; direction (i.e., along the line-of-

centers from sphere i to sphere j). Furthermore, e, - Fjj = Fj;, is the

normal component of the hydrodynamic force between spheres i and

j»as given in (3). For any other sphere in contact with sphere 7, a simple

geometric analysis is needed to determine the hydrodynamic force in
the e, direction,

ejjn - Fix = Figp cos(0ix — 05) — Figey sin(0 — 05), (6)

where Fj , is in the direction of increasing rj (i.e., parallel to the i~k
line-of-centers) and Fy; is in the direction of increasing 0y, (i.e., per-
pendicular to the i—k line-of-centers). Thus, the normal component of
(1) becomes

midv,;nq/dt = miv,-.tvdf)lj/dt — Fijﬁn

— Z[F"k‘” cos (0 — 03) — Figs sin(0 — 0;)]

+ m;(gy cos 0 + g, sin 0;), (7)
where the sum is over all spheres k except sphere j in close contact
with sphere i. A similar expression applies for the normal component
of the motion of sphere j,

mjdvj,mj/dt = mjuj,tvdf),j/dt + Fij,n

— Z [Fin cos (0 — 03) — Fy sin(0; — 0;)]

+ m;(gx cos 0 + g, sin 0;), (8)
which comes from (7) with the indices i and j swapped and the following
identities: Oﬁ = 0,‘]' + m, Fji,n = Fij,na Ujng = —Vjny» and Uity = —Ujts
in addition, the sum is over all spheres / except sphere i in contact with
sphere j.

The relative normal velocity of the i—j pair along its line-of-cen-
ters, Vjjn = Vin; — Ujny» 15 then found by multiplying (8) by m; and
subtracting it from (7) multiplied by m;, yielding

m,]dv,],n/dt = — m,]r,]Qi — Fijm
— T’l’l]‘ Z [Fik,n CcOoS (eik — 0,])
— Lkt sin(O,-k — 0’])} /(m, + m]')
+ m; Z [Fj,ﬁ cos (05 — 0;)
_Fjl,t sin (011 — H,J)} /(m, + mj), (9)
where v;j, = vy, — vy, = —13d0; /dt is the relative tangential velocity
and m; = mym;/(m; 4+ m;) is the reduced mass. The definition

Q;; = d0);;/dt as the rate of rotation of the line-of-centers has also been
employed.

pubs.aip.org/aip/pof

B. Tangential component of translational motion
For the tangential component of the motion of sphere i, which is
in the direction perpendicular to the line-of-centers with sphere j,
ei}-.t . d'l)i/dt = d(eint . ’U,’)/dt — ;- dei];t/dt
= dl)i,tu/dt—‘- Ui.nudaij/dty (10)
where e;;; is the unit vector in the direction of increasing 0; (i.e., tan-
gent to the interface and normal to the line-of-centers). Furthermore,
e, - Fj = Fjj; is the tangential component of the hydrodynamic force

between spheres i and j. For another sphere in close contact with
sphere i,

ejj - Fix = —Fiy sin (0 — 03) — Figr cos(0 — 0y) . (11)

Thus, the tangential component of (1) for sphere i becomes

m,-dv,-?tq /dt = fm,-v,-‘,,,jdH,-j/dt — F,]t

— Z [Fik,n sin (0,~k — Hz'j) + Fixt cos (O — Hij)}

+ m;(g, sin 0; + g, cos 0;), (12)
where again the sum is over all spheres except sphere j that are in close
contact with sphere i. A similar expression applies for the tangential
component of the motion of sphere j,
mjdvj‘,v/dt = fmjvj,,,l.jdH,-j/dt + F,Jf

+ Z [Fit.n sin (0 — 03) 4 Fjr¢ cos (0 — 03)]

+ m;(g, sin 0;; 4 g, cos 0y), (13)
using the previous identities along with F;; = Fy;;.

The relative tangential velocity, vij; = vis; — Uj,, is then found
by multiplying (13) by m; and subtracting it from (12) multiplied
by m;,

mij I:‘f,‘de,'j/dt + deh;]/dt]
= m,]U,]nQ,] =+ Fl]t + m] Z [Fik,n sin (Oik — 01])
+ Fik,t COS(@,‘k — 9,})} /(m, + m])
— m; E [Ejl,n sin (OJI — 0,]) + F}‘[‘t Cos (01 - 011)} /(H’l, + m])
(14)

Here, v;j, = —ryd0;/dt, rj = hy + a; + aj, and Q; = d0;;/dt have
been employed.

C. Rotational motion

Taking the cross product of the position vector (measured from
the center of mass) and integrating over all positions within sphere i
yield

I,‘da),‘/dt = — Z T,‘k, (15)

where —Tj = r x (—Fj) is the torque exerted by sphere k on sphere
i. Note that gravity acts through the center of mass and does not con-
tribute to the torque, with the same true of the normal forces acting
along the line-of-centers. The moment of inertia of a solid sphere i
with uniform density is I; = 2m;a? /5, neglecting the thin fluid layer.
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The torque exerted by sphere k on sphere i is a pseudo-vector in the z-
direction (out of the plane shown in Fig. 3), as are the angular veloci-
ties, with z-component Ty = a;Fy ;. Thus, (15) becomes

IidC!)i/dt = - Z a;iFis. (16)

Since vfjit = —1;jQjj + w;a; + w;a; is needed in (4) for the tangential
lubrication force, we define vj;, = w;a; + w;ja;. Then, multiplying by
(16) by Ija; and adding it to a similar expression for sphere j multiplied
by I;a; yield

LLdvy,/dt = — (Ijaf + Iiaf)Fij.t — L Z Figy — Iia,-z Z Fir,
17)

where the first sum is over all spheres k except sphere j in contact with
sphere i, and the second sum is over all spheres I except sphere i in
contact with sphere j.

D. Equation summary and general approach

For each i—j particle pair in near contact, there are five dependent
variables associated with the relative motion of that pair: surface sepa-
ration hy;, line-of-centers angle 0y, relative normal velocity along the
line-of-centers Vij.ns angular velocity of the line-of-centers Q,-j, and the
relative surface velocity due to sphere rotation vj; ,. They are governed
by the first-order ordinary differential equations (9), (14), and (17),
plus the two kinematic conditions

dhyj/dt = ~vj,  d0;/dt = Q. (18)

The required hydrodynamic forces are given in (3) and (4), with
vfj‘, = —1;jQ; + vjj», where r;; = a; + a; + h;. The resulting system
of nonlinear, first-order ordinary differential equations for particle
pairs in near contact, along with initial conditions for the particle
positions and velocities, may be solved by Runge-Kutta or other
standard numerical methods for initial-value problems. There
may also be analytical or semi-analytical approximate solutions
for limiting cases, such as demonstrated by Davis (2019) for three
spheres in a line and by Davis and Sitison (2020) for fast and slow
oblique collisions of two spheres. Although the governing equa-
tions in the pairwise rotating polar coordinate systems are more
complex than the original governing equations in fixed Cartesian
coordinates for the translational and rotational velocities of each
sphere, the present approach is expected to have two significant
advantages: (i) the necessary force expressions are already resolved
into their natural components along and normal to the line of cen-
ters and contain the pairwise relative velocities directly computed
in the solution, whereas using Cartesian coordinates for each
sphere would require computing the relative velocities and then
decomposing the force expressions into x and y components at
each time step, and (ii) the pairwise approach will accurately
resolve the small relative velocities and surface separations along
the line-of-centers (as they are direct variables in the simulations),
whereas small but accumulating errors in the absolute velocities
and positions for the individual-sphere approach in Cartesian
coordinates could yield significant errors when the differences in
positions and velocities are computed, requiring high resolution
and small time steps.

ARTICLE pubs.aip.org/aip/pof

E. Solid-solid contact and velocity reversal

If the sphere surfaces are perfectly smooth and the fluid is
treated as a continuum without molecular effects (such as slip or
attractions), then the viscous lubrication layer will prevent solid-
solid contact, because the resisting lubrication force in (3) becomes
singular as the gap approaches zero. However, prior work by our
group (Davis et al., 1986; Davis, 1987; Barnocky and Davis, 1988,
1989; Donahue et al., 2010, 2012; Davis, 2019; and Davis and Sitison,
2020) has described at least three scenarios where solid-like contact
and subsequent rebound can occur when the gap becomes suffi-
ciently small (typically on the order of micrometers): (i) glass transi-
tion of the liquid due to high lubrication pressure, (ii)
elastohydrodynamic deformation of the solids, also due to high
lubrication pressure, and (iii) solid-solid contact due to particle sur-
face roughness. For pendulum experiments using smooth metal balls
and very viscous liquid coatings, the glass-transition mechanism has
been found to dominate (Donahue et al., 2010, 2012; Danczyk ef al.,
20225 and Punch et al, 2023). However, for natural systems with
larger surface roughness and lower viscosity of the film (e.g., water),
surface roughness may dominate, while elastohydrodynamic defor-
mation may be most important for soft particles.

Once solid-solid or solid-like [here, “solid-like” might include
scenarios (i) and (ii) above, where the two particles do not come into
physical contact but still store and release energy due to elastic defor-
mation caused by high lubrication pressures] contact occurs, then
this contact may be treated either as a hard-sphere collision or a soft-
sphere collision. For a hard-sphere collision, the solid-like contact is
assumed to be instantaneous, resulting in an impulse with a normal
component (i.e., along the line-of-centers) that causes the normal com-
ponent of the relative velocity to reverse sign and typically be multiplied
by e4y (a dry coefficient of restitution, accounting for energy loss due to
inelastic effects as the solids deform and release). There may also be
changes in tangential and rotational motion during the reversal of the
normal velocity, due to friction, as previously described by considering a
tangential impulse equal to the normal impulse multiplied by a coeffi-
cient of friction (Davis and Sitison, 2020). In contrast, a soft-sphere colli-
sion is enduring, taking place over multiple time steps and using the
Hertzian contact theory or a spring-dashpot model for the solid defor-
mation and a friction model for solid-solid tangential forces.

Stratton and Wensrich (2010) and Miiller and Poschel (2012)
and others have investigated the advantages and limitations of the
hard-sphere model for dry collisions. For wet collisions, Davis (2019)
estimated the characteristic time for solid-solid contact from
Hertzian contact theory and found that it is two orders-of-magnitude
smaller than the characteristic time for penetration through the
viscous fluid coating for the experiments of Donahue ef al. (2010),
thus justifying the use of a hard-sphere model with essentially instan-
taneous contact and velocity reversal. These experiments used stiff
materials (steel spheres) with relative high impact velocities
(~1m/s) and thick fluid coatings (~0.1-1 mm). Softer materials
and thinner coatings would increase the ratio of solid-solid contact
time and fluid-penetration time, thereby pointing toward the need
for a soft-sphere model for the solid-contact phase. In the current
work, a soft-sphere (non-instantaneous) model is used for the pene-
tration through the liquid film, but a hard-sphere (instantaneous)
model is employed for solid-like contact. An extension to a soft-
sphere model for both stages would be straightforward. The details of
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the “jump” in velocities when a hard-sphere collision occurs are lengthy
and given in Appendix A.

I1l. SPECIAL CASE OF THREE EQUAL SPHERES

We focus the rest of the paper on the special case of three equal
spheres, with m; = 2m, a; = 2a,and I; = 16ma?/5 fori = 1, 2, and
3, where m is the reduced mass and a is the reduced radius. The
spheres are numbered such that sphere 2 is the middle or “target”
sphere, as shown in Fig. 3. Sphere 1 is the “striker” sphere, which col-
lides with sphere 2, while sphere 3 is initially on the other side of
sphere 2. We consider the event-driven problem where spheres 2 and
3 are initially at rest and separated by a gap h,30, and then at t = 0
sphere 1 collides with sphere 2 with velocity of magnitude v, and
angle o from the x axis (measured in the counterclockwise direction, as
shown in Fig. 3). To keep the number of variables modest, it is
assumed that none of the spheres are rotating before the collision. The
initial conditions are then hiy = hi29 = 612, haz = hasp, 012 = U120,
0r3 = O30, V1w = V1,0 COS (Of - 6120)7 U3 =0, Qpp = —v‘f sin (oc
—(‘)12,0)/4(1, and ng. =wp =wy =0att = O, where Wijj = W +(Uj.
Note that 9 = 01, = 0; + J, by definition (since t = 0 is defined
as when the liquid layers on the 1-2 pair first overlap), but h3 ¢ is not
necessarily equal to 0,3 = d, + d3(since we allow for the possibility
that the 2-3 pair is not initially in contact or that their films are already
overlapping). As described previously (Davis and Sitison, 2020), obli-
que collisions of two (or more) wet spheres have two (or more) time-
scales. First, there is a short timescale, ts = d15/(v1 cos f3), where
p = o — 0120 and v; o cos f3 is the normal component of the initial rel-
ative impact velocity of this pair. Thus, ¢ is a measure of time required
for sphere 1 to penetrate through the thin liquid layer separating it
from sphere 2, if it has enough inertia to overcome the viscous lubrica-
tion resistance and maintain its velocity. Second, there is a long time-
scale, t, =4a/(viosinff), where v;osinff is the tangential
component of the initial relative impact velocity. Thus, #; is a measure
of the time required for an agglomerated pair of particles to rotate one
radian, if the collision did not have enough inertia for them to rapidly
bounce apart. The ratio of the two time scales is f,/ts = 4a/
(012 tan ), which is large compared to unity for thin films
(012/4a < 1), except for glancing collisions for which f ~ 7/2. As
discussed by Davis (2019), there is also a very short timescale,
tc = (p20%a® /v g cos ﬁ)l/ > associated with the Hertzian solid-solid
contact, where p, is the solid density and 0 = 2(1 — v?)/=E, with v
being Poisson’s ratio and E Young’s modulus, of the colliding spheres.
As noted previously, tc < fs, except for very thin films and soft
particles.

Following Davis and Sitison (2020) for oblique collisions of two
wet spheres, the short timescale (¢5) and initial separation (0;,) are
chosen for the following dimensionless variables:

t= Unot/012, hi = hzj/5127 Dijn = Uij,n/vn,m (19)
Q; = Qda/vy, 0y = wy4a/v,

where v, o = vy cos (o — 012) and v, 9 = vy 9sin (o — O12) are the
initial normal and tangential relative velocities, respectively, for the
1-2 pair. It is noted that, without loss of generality, the x — y coordi-
nate system can be defined such that « = 0 or 0y, = 0. The govern-
ing system of non-dimensional equations for three equal spheres is

pubs.aip.org/aip/pof

Studiiy,/di = —St,(tan B)2hai 1200, — Fro
- [Fw,n cos(0y3 — 012) — FB,, sin(0y3 — 912)} /2
+ [ﬁ23,n cos (b3 — b12) — F23,r sin(0p3 — 912)} /2,
(20)
Stn;‘udfhz/df = ZStnilaﬁlz.nQIZ + FIZ,tCOt,B
+ [ﬁliﬂ sin(013 — 012)
—Q—I:“BJ cos(03 — 012)} (cotp)/2
- [ﬁzs,n sin(0s3 — 912)
+ F3 cos(03 — 012)] (cot B)/2, (21)
Styddy,/di = —5(F1ay + 1:1134:/2 + Fzs.r/z)COt B, (22)
Studiys n/di = —St, (tan f)*hai Qs — Fas
- [ﬁw,n C05(913 - 923) - FlS,t sin(913 - 923)]/2
+ [FIZ,n c0s(0y3 — O12) + Fiosin(0y3 — 012)]/25
(23)
Stut23d Q03 /di = 2St,haby3 , Q03 + Fas scot
+ [Pwn sin(013 — 0a3)
+ F13,4 cos(013 — 03)] (cot B) /2
+ [ﬁnm sin(6; — 012)
—F1pycos(0y — 012)] (cot B)/2, (24)
Stydévy3/dt = —5(Fpss + Fi3:/2 4+ F1a4/2)cot f,  (25)
dhyy/di = —b1yp, d01y/dE = hy(tan B)Qs, (26)
dhys/di = —b3.,, 03 /dt = hg(tan f)Qs3, 27)

where PAlu = 01/4a is the dimensionless film thickness, § = « — 0y, is
the impact angle, #; = r;j/4a, and St, = mv, o/ 6mua’ is the Stokes
number based on the normal component of the impact velocity and rep-
resents the ratio of particle inertia and the viscous fluid force. Note that
these equations include the possibility that sphere 1 may interact with
both spheres 2 and 3, which would occur if it rotated around sphere 2
and eventually encountered sphere 3 (see Sec. V). The corresponding
dimensionless forces from the thin fluid films between the pairs are

A ~ ~ 2 ~

Fiop=0np [1 —hu/2- h12)} /h1 —4/Ca, (28)
A ~ A ~ 2 ~
Frsn = braa |1 — s/ 2adis — hs)| Jhos —4/Ca, 29)

N ~ ~ ~ 2,
Fp3n = U3 [1 — hy3/(2dy3 — hz3)] /has —4/Ca, (30)

ﬁn‘[ = (%) tanﬁ |:*TA”12§212 + @:l In |:(2 T h12):| y (31)

2 hiz
Fm,z = (hlﬂ)tanﬂ{—?nfzn +%} In M . (32)
3a 2 h13
F h H o d 2dys — h
Fayy = (ﬂ) tanﬁ{—?mﬁu +%} In M . (33)
3a 2 h23

where F = F/(671:;mzv,,,0/(312), 2123 = 523/5127 t;l13 = 513/512, and
Ca = 3uavy o/ (0120) is the capillary number and represents the ratio
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of viscous forces and interfacial forces. Note, however, that the fluid
forces in (28)-(33) become zero when the liquid layers do not overlap:
hy; > 1 for the 1-2 pair, hy3 > d 3 for the 1-3 pair, and h,3 > dy; for
the 2-3 pair; in this case, the capillary bridge is expected to break or
else have negligible influence when the sphere surfaces separate beyond
the sum of their film thickngsses. Fing.lly, the initial conditions for the
dimensionless variables are k1, = 1, hy; = hzg‘q/élz, 012 = 0120, 023
=A023A0, Do =1, 023, =0, Qpp=—1,and Q3 = D1 = D3 =0
att = 0.

The above equations describe the dynamics of the relative motion of
each particle pair in near contact. In many applications, it may be desir-
able to track each particle individually in a fixed coordinate system. The
current method may still be employed, by solving the laws of motion to
follow one particle and then tracking the remaining particles in using the
relative motion. Choosing sphere 1 as the first particle to track, the x and
y components of (1) and (2) in non-dimensional form are

2St,,df)1‘x/dz = 713‘127?1 Ccos 012 + Fllt sin 912 — ﬁlS,n COoSs 913

+ Fpyysinfy3 + g, (34)
ZStndﬁl,y/df = —I:“lz,n sin 0}, — ﬁn,z cos Oy, — ﬁw,n sin 0,3

— 1:“13¢ cos 03 + g},, (35)

di)/dt =1y, dy /dt =01, (36)

where g = 2mdy,g/(6m1a’v,p), t = vnot/d12, ¥ = x/512, and
D = v/v,0. Once the x and y coordinates of sphere 1 are known at a
given time, it is relatively straightforward to determine the x and y
components of spheres 2 and 3,

562 = 561 —+ (?12/?%) COoSs 0127 5/2 = )A/l —+ (;’12/;1“) sin 9127 (37)
X3 =X+ (?23/%) cosly, yys=y,+ (?23/%) sin 03,  (38)

where 7 = (4a + hy;) /4a and h, = 815 /4a, as before. To follow the
rotational motion of individual particles, (15) in nondimensional form
yields

28t,déyy /dt = —5(F 2 + Fi3,)cot . (39)

Then, the remaining rotational velocities are found using
(jl)lz = CAL)1 + (1)2 and (:L)23 = (jl)z + (1)3.

TABLE I. Dimensionless parameter definitions and typical ranges.
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IV. RESULTS AND DISCUSSION

Even for the special case of three equal spheres, with two of them
initially at rest and assuming hard-sphere vs soft-sphere solid-like con-
tacts, there are several dimensionless parameters on which the collision
outcome depends, as summarized in Table I. The typical ranges of
parameter values listed are based on spheres of density p, = 2 g/cm’
and diameter 2a; = 4a = 0.1-1.0 cm, initial normal relative velocities
vy = 10-150 cm/s, a viscous fluid of viscosity 11 = 10 g/cm — s and
surface tension ¢ = 20 dyne/cm, combined thickness 1, = 0; + 9,
= 20-200 um, and minimum separation hyi, = 0.2—4 um [for typical
hydrodynamic surface roughnesses, see Smart and Leighton Jr., (1989);
Joseph et al. (2001)]. These conditions might correspond to fertilizer pel-
lets covered with a viscous polymer, for example, whereas particles wet-
ted with water would need smaller diameters and thinner films to give
similar Stokes and capillary numbers.

The range of Stokes numbers from small to large indicates a rich
variety of expected outcomes from full agglomeration (FA) to full sepa-
ration (FS) post collision, as observed in experiments for colinear colli-
sions (Donahue et al, 2010). The large values of the capillary number
indicates that capillary forces are typically weak for energetic collisions,
as also found previously (Donahue ef al, 2010; Punch ef al., 2023),
though slower collisions with low-viscosity liquid coatings could
exhibit important capillary effects (Darabi er al, 2009; Miller and
Huang, 2016; and Buck and Heinrich, 2019). The large number of
parameters would make a full mapping of the outcomes for three-
sphere collisions too long for the current work. Instead, we present in
what follows the primary effects of varying the Stokes number, capil-
lary number, impact angle, film thickness, and solid-contact parame-
ters to demonstrate the different outcomes. Unless noted otherwise,
these simulations use ey, = 1 (no solid-solid losses), =0 (negligible
contact friction), 0 = 0 (initially horizontal 2-3 pair), dy; = d13
= 1 (equal combined film thicknesses for all pairs), and hy3 9 = 1 (2-3
and 1-2 initial separations the same). Also, without loss of generality,
we specify o =0 (impact velocity of striker sphere oriented along the
x-axis) and then vary 0y, (the initial impact angle of the 1-2 pair),
with the option to also vary 0,3 ¢. Finally, k1, (dimensionless minimum
surface separation) is treated as an input parameter, such as would be
the case if surface roughness governed the minimum separation. For
the other two mechanisms (glass transition and elastohydrodynamic

Parameter Definition Description Range
St,, Moy o /67 pa® Stokes number, ratio of particle inertia to viscous resistance 0.1-20
Ca 310/ 0012 Capillary number ratio of viscous forces to interfacial tension 20-3 x 10*
h, O12/4a Ratio of combined film thickness to sphere diameter 0.002-0.2
]:lm Pmin /012 Ratio of minimum separation to combined film thickness 0.001-0.2
—p 0120 — Impact angle between line of centers and initial velocity 0-90°
dys (62 + 03) /(01 + 82) Ratio of film thickness for the 2-3 pair and 1-2 pair 0.01-100
hase hyso/ (01 + 02) Ratio of initial separation of 2-3 pair and 1-2 pair 0.01-00
0, tan-! (}’3,0 - }’2,0) Initial angle of the 2-3 line-of-centers from horizontal —120°-120°
X3,0 — X2,0
Cdry —Ujin Ug,” Dry coefficient of restitution 0.5-1
Wy Tt / Tij.u Friction coefficient for solid contact 0-0.2
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deformation), the minimum separation would be an output variable
that depended on the relative normal velocity and hence the Stokes
number.

A. Effect of the Stokes number

Figure 5 shows snapshots of the locations of the three spheres at
different times for a progression of Stokes numbers. Here,
t* = vy ot/4a is a dimensionless time based on the particle diameter
(instead of film thickness) and magnitude of the impact velocity
(instead of the normal component of the impact velocity). For low
Stokes numbers, St, = muv,o/(67pa?) = 2, which corresponds to a
low impact velocity, high fluid viscosity, and/or small particles, the col-
lision does not have enough inertia to overcome the viscous dissipation
in the fluid film, and the three particles remain fully agglomerated
(FA) after the collision. For the intermediate value, St, = 5, sphere 1

ARTICLE pubs.aip.org/aip/pof

has enough inertia to penetrate the fluid film and contact sphere 2,
then rebound through the fluid layer and separate. However, spheres 2
and 3 remain together, so the outcome is partial agglomeration (PA).
For a higher value, St, = 10, full separation (FS) of all three spheres
occurs. These three outcomes are analogous to the experimental obser-
vations of Donahue ef al. (2010) and Danczyk ef al. (2022) for rectilin-
ear collisions of three wet spheres on pendulum strings, for which they
observed full agglomeration at small Stokes number, full separation at
large Stokes number, and reverse Newton’s cradle (in which the first
sphere separates while the 2-3 pair sticks together) at intermediate sep-
arations. A fourth possibility (Newton’s cradle, in which the 1-2 pair
agglomerates and sphere 3 separates) was also observed in these recti-
linear experiments, with appropriate choice of initial separations. As
will be shown later, oblique collisions allow for the full range of PA
outcomes, where sphere 1, 2, or 3 separates while the remaining two
spheres agglomerate.

t*=1.5

t*=0.0 t*=0.5

2T T T T T ]2

-1

-1

-1

0 1 2
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FIG. 5. Collision progression for three spheres with St, =2 (top row), 5 (middle row), and 10 (bottom row), with 0‘1’2 =45° h, = 0.01, hp, = 0.05, and negligible capillary
forces.

Phys. Fluids 35, 103328 (2023); doi: 10.1063/5.0171810 35, 103328-8

Published under an exclusive license by AIP Publishing


pubs.aip.org/aip/phf

Physics of Fluids

Figure 6 shows the wet coefficients of restitution for the 1-2 pair
and the 2-3 pair vs the Stokes number for the conditions of Fig. 5. For
an oblique collision, we followed the approach of Davis and Sitison
(2020) and Donahue ef al. (2012) to define the wet coefficient of resti-
tution as the ratio of the normal component of the relative velocity at
separation to the normal component of the impact velocity

Cijw = |ijfjn| = _Uij,n/vmov (40)
where the superscript s refers to the moment during rebound of the i—j
pair that their fluid layers no longer overlap, even if the pair has trans-
lated or rotated a significant distance from its initial position. Equation
(40) applies to both the 1-2 pair and 2-3 pair, with v, o = vy cos f§
the normal component of the velocity of impact of sphere 1 with
sphere 2 in both cases (as the initial relative velocity of spheres 2 and 3
is zero). As seen in Fig. 6, the wet coefficient of restitution for the 1-2
pair is very small for St, < 5 and then rapidly increases for St,, > 5 as
the particle inertia is relatively strong, and viscous dampening is
weaker. For the 2-3 pair, the wet coefficient of restitution is small for
St, < 8 and increases for more vigorous collisions. The 1-2 coefficient
shows a plateau and a jump in its value with increasing Stokes number,
due to the interplay between the 1-2 separation and the 2-3 impact, as
explained in Sec. IV C.

Shown as a short-dashed curve in Fig. 6 is the wet coefficient of
restitution for a head-on, two-sphere collision under similar condi-
tions. From Davis and Sitison (2020), it is given by

eyer =0, St, < St eyer = egry(1 — Sty/Sty), St, > St;,  (41)

where St is a critical value for rebound
Sty = [(1+ear)/eary) [1n(1/ﬁ,,,) —3In(2—hy)+2-2/2—hy)]|.
(42)

Also shown as small circles, are simulations for an oblique, two-sphere
collisions, with the stick-rotate-separate mechanism for St, <4 and

Wet coefficient, ¢;; ,,

0 5 10 15 20
Stokes Number, St,

FIG. 6. Wet coefficient of restitution of the 1-2 (solid curve) and 2-3 (long: dashed
curve) pairs vs Stokes number for the conditions of Fig. 5. The short-dashed curve
is for a two-sphere, head-on collision using (41) and (42), whereas the small circles
are for a two-sphere oblique collision under the same conditions as the three-
sphere collision.
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the rapid-bounce mechanism for larger Stokes numbers. For interme-
diate Stokes numbers, the wet coefficient of restitution is higher for the
two-sphere collision than for the three-sphere collision, as the presence
of the third sphere inhibits the separation of the remaining pair.

Even for small Stokes numbers, the 1-2 pair has a non-zero wet
coefficient of restitution. In these cases, the rebound is not due to
solid-solid contact and bouncing but rather due to centrifugal forces
pulling the rotating 1-2 pair apart, similar to the results seen previ-
ously (Donahue ef al., 2012; Davis and Sitison, 2020; and Punch et al,,
2023) for oblique collisions of two wetted spheres. This point is illus-
trated in Fig. 7, where the separation of the 1-2 pair is plotted vs time
for several values of the Stokes number. For large Stokes numbers
(St, =5), the striker sphere rapidly penetrates through the liquid film
and impacts the target sphere and then rebounds back through the lig-
uid film, which is referred to as “rapid bounce.” For smaller Stokes
numbers, the striker sphere has less inertia and is not able to bounce
out of the liquid layer-indeed, for St, < 2.4, it does not even reach
solid contact with the target sphere. Instead, the pair sticks together
due to viscous forces, undergoes rotation along with the third sphere
in the agglomerated state, and then slowly separates due to centrifugal
forces pulling the spheres apart. This case is referred to as “stick-
rotate-separate.” The rapid-bounce case for St, = 10 is illustrated in
the bottom row of Fig. 5, whereas the stick-rotate-separate case is illus-
trated for St, =5 in the middle row of Fig. 5. Eventual separation due
to centrifugal forces occurs even for St, = 2 when there are no capil-
lary forces to hold the spheres together, but it takes until
t = vnot/S12 = 183, which corresponds to t* = v; ot /4a = 2.59 and
so is just beyond the last frame of Fig. 5. Also shown in Fig. 7 is the
angle that the line-of-centers for the 1-2 pair makes with the horizon-
tal, which increases from 7/4 to nearly 37/4 by the time separation
occurs for St,=2. In contrast, there is very little rotation of the 2-3
pair and so it remains agglomerated (Fig. 5).

B. Effect of capillary number

Although capillary forces are expected to be relatively small for
the conditions of Table I with highly viscous films, their effects may be
important in promoting agglomeration for less viscous films and
smaller particles. To illustrate this possibility, Fig. 8 shows the

] m/2

/3

1-2 Angle, 6,

/4

1-2 Separation, 1;,/3,,

Time, v, /3,

FIG. 7. Separation gap for the 1-2 pair vs time for oblique collisions with the condi-
tions of Fig. 5 and St, = 2, 3, 4, and 7 (right to left). The short-dashed line is the
angle of the line-of-centers of the 1-2 pair with respect to horizontal for St, =2,
whereas the long-dashed line shows the minimum separation where rebound
oceurs.
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1-2 Separation, 7;,/5,,

Time, v, /8,

FIG. 8. Separation gap for the 1-2 pair vs time for oblique collisions with the condi-
tions of Fig. 5 but with varying capillary numbers. The curves on the right are for
St,= 3.5 and those on the left are for St,= 7. The solid curves are for Ca — oo,
while the long-dashed curves are for Ca =6, 7, 8, and 10 (right to left) for St,=7
and for Ca =100, 200, 500, and 1000 (right to left) for St, = 3.5. The short-dashed
curve is for solid contact.

separation gap of the 1-2 pair for the conditions of Fig. 5 but with
varying Ca at low (St, = 3.5) and moderate (St, = 7) Stokes num-
bers. For the larger St,, there is rapid bounce for large Ca, and the
effects of capillary forces are negligible until Ca =< 40. In this latter
range, 4/Ca = 0.1, so the capillary suction forces in (27) and (28)
begin to become comparable to the viscous lubrication forces and slow
the rebound. Indeed, for Ca =<6, the rebound of the 1-2 pair is
completely arrested and full agglomeration (FA) vs partial agglomera-
tion (PA) occurs. For yet higher Stokes numbers, however, even
smaller capillary numbers would be required to prevent rapid bounc-
ing. The situation is quite different for smaller Stokes numbers. For
St, = 3.5, a slow stick-rotate-separate outcome is observed in the
absence of capillary forces. However, there is noticeable slowing of the
separation for Ca=1000 and complete arrest of any separation for
Ca = 100. The reason for this strong effect of capillary suction even for
Ca > 1 is that the timescale for small St,, during stick-rotate behavior
is the long timescale (#;) associated with rotation instead of the short
timescale (f5) associated with penetration through the liquid film,
allowing more time for capillary suction to work. Mathematically, the
inertia terms on the left-hand-side of (20) and (23) become small at
the long timescale and the 4/Ca capillary term on the right-hand-side
of (27) and (28) then must only balance the centrifugal terms on the
right-hand-sides of (20) and (23), respectively, which are proportional
to h, = 012/4a and, hence, small.

Figure 9 shows the effect of capillary number on the wet coeffi-
cient of restitution, for both the 1-2 and 2-3 pairs. It is seen that even
a relatively small capillary force (Ca = 100, recalling that the ratio of
capillary and viscous forces is inversely proportional to Ca) is enough
to eliminate the slow stick-rotate-separate outcome for the 1-2 pair at
St, <5, leading to the FA outcome. The range of Stokes numbers for
which the 2-3 pair remains intact is expanded to St, < 10, making it
more difficult to achieve the FS outcome. As Ca is decreased further,
the wet coefficients of restitution are reduced for both the 1-2 pair and
the 2-3 pair, due to the increased capillary suction holding them
together. However, even for moderate capillary forces (Ca = 10), the
capillary suction has negligible effect on the wet coefficient of restitu-
tion for rapid bouncing at sufficiently high Stokes numbers.
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FIG. 9. Wet coefficients of restitution vs Stokes number for the conditions of Fig. 5
but with Ca = 10, 40, 100, and oo (bottom to top or right to left).

C. Effect of impact angle

The results presented until this point in the paper are for a colli-
sion angle of 45°. Figure 10(a) shows the effects of varying the collision
angle on the wet coefficients of restitution. The results indicate a rich
variety of physics. For colinear collisions (61,9 = 0) under these con-
ditions, the 1-2 pair always sticks together, while the 2-3 pair also
remains agglomerated for Stokes numbers below a critical value of
Sty =~ 4.8 (FA), but sphere 3 separates from the 1-2 pair for larger val-
ues of St,,, as viscous forces are then insufficient to overcome the colli-
sion inertia (PA)—see Fig. 5 of Davis (2019). This behavior is
reminiscent of a Newton’s cradle for dry spheres, except that the resti-
tution coefficient for the departing sphere is reduced by viscous losses
in the wet case. It is in contrast to the findings for 01, > 0, in which
PA is observed at small Stokes numbers but with sphere 1 departing
from the 2-3 pair by the stick-rotate-separate mechanism that is
absent for colinear collisions (Donahue ef al., 2010; Davis, 2019). For
0120 = 15° and 22.5°, the wet coefficient of restitution of the 1-2 pair
remains small but nonzero as the Stokes number increases, while for
0120 = 60° it increases rapidly with increasing Stokes number beyond
St, ~ 4 (approaching ey, as St, — oc). The difference is due to the
presence of sphere 3, as such behavior is not seen for two-sphere colli-
sions (Davis and Sitison, 2020). For 05 = 15° and 22.5°, the 1-2
pair makes solid contact at high St, and begins to bounce apart.
However, before the 1-2 pair fully separates, the 2-3 pair makes con-
tact, which slows the 1-2 rebound—see (A6). In contrast, for
0120 = 60°, the 2-3 pair does not make contact until after the 1-2 pair
has separated, so this slowing mechanism only occurs after the point at
which ey, is determined. Finally, 0,0 = 30°, 37.5°, and 45° repre-
sent intermediate cases. The 2-3 contact occurs before the 1-2 pair
separates for 01, o = 30° and St, < 14.1, causing ey, ,, to remain small.
For St, = 14.1, the 2-3 contact occurs after the 1-2 separation, so
there is a jump in ey, . For 01,9 = 45°, the jump is smaller and occurs
at St, = 7.0.

Figure 10(b) is a contour plot for the wet coefficients of restitu-
tion. In general, both coefficients increase with increasing Stokes num-
ber at fixed impact angle. A small exception is the loop in e;,,, near
012,0 = 35-40° and St, = 6-8, which corresponds to the region near

Phys. Fluids 35, 103328 (2023); doi: 10.1063/5.0171810
Published under an exclusive license by AIP Publishing

35, 103328-10

959122 ¥20z IMdY +0


pubs.aip.org/aip/phf

Physics of Fluids

1
(a)
0.8 |-
z
\}b
5 09
o
©
g 04
@
=
0.2
0

|
5 10 15 20
Stokes Number, St,,

ARTICLE pubs.aip.org/aip/pof

Impact angle, 6;,

10 - R €23 = 06|

5 10 15 20
Stokes Number, St,

FIG. 10. (a) Wet coefficients of restitution vs Stokes numbers for the conditions of Fig. 5 but with 0459 = 15°,22.5°,30°, 37.5°, 45°, and 60° (bottom to top for 12, and top
to bottom for ey3,,). The solid curves are ey, ,, and the dashed curves are ey3 . (b) Contour plot of the wet coefficients vs impact angle and Stokes number. The solid curves
are erpy = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 (bottom to top) and the dashed curves are ey3,, = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 (top to bottom).

the local maximum in Fig. 10(a) for 015 = 37.5°. The confluence of
curves where ey ,, has multiple values corresponds to the jump seen in
Fig. 10(a) due to 1-2 separation moving from after to before 2-3
contact. The additional data for 0.5 < St, < 2 in the upper left-hand
corner of Fig. 10(b) represent the stick-rotate-separate mechanism,
where the striker sphere 1 has relatively small inertia and penetrates
only partway into the film separating it from the target sphere 2, and
then slowly separates from the 2-3 agglomerate due to centrifugal
forces. It is interesting to note that ey, generally increases with
increasing impact angle, as centrifugal forces are then larger and the
presence of sphere 3 has less effect. However, the opposite trend is
seen for e,3,, as a smaller impact angle will more directly transfer
momentum from sphere 1 to sphere 2 and then to sphere 3.

Figure 11 shows the 1-2 separation and the 2-3 separation vs
time for an impact angle of 30° and several Stokes numbers. For
St, =7, the 1-2 pair makes solid contact (h;, = h,,) at # = 1.00 and
initially experiences a strong rebound. At # = 2.60, however, the 2-3
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FIG. 11. Separation vs time for the 1-2 pair (solid curves) and the 2-3 pair (long-
dashed curves) for 0129 = 30° and St, = 7, 12, and 20 (right to left). The rest of
the conditions are the same as in Fig. 5. The short-dashed curve is where solid con-
tact occurs.

pair makes solid contact, which arrests the 1-2 rebound, so that
spheres 1 and 2 slowly separate due to centrifugal forces. The rebound
of the 2-3 pair after contact is not strong enough to yield separation
until a much later time. For St, =12, both pairs experience rapid
rebound, but the 2-3 contact again occurs before the 1-2 separation,
so the 1-2 wet coefficient of restitution is relatively low (e;5,, = 0.168)
while the 2-3 pair has a higher wet coefficient of restitution
(e23,» = 0.393), even though it separates at a later time. In contrast,
for St, = 20, the 2-3 pair makes contact (f = 2.20) after the 1-2 pair
separates (f = 2.14) and so the relative normal motion of the 1-2 pair
is not impacted until after separation, and its wet coefficient of restitu-
tion is relatively large (e12,,, = 0.773, €3, = 0.579).

D. Effect of film thickness

A thicker liquid layer will cause greater viscous dissipation and is
expected to enhance agglomeration vs separation. However, varying
the dimensionless 1-2 film thickness (h, = 012/4a) alone while
keeping the ratio of minimum separation to the film thickness (/,,
= Nmin/012) fixed will have little effect, except for small Stokes number
when the centrifugal terms in (20) and (22) play a dominant role dur-
ing the slow stick-rotate-separate outcome. Instead, we consider the
more realistic scenario where hp, is fixed and so hy, = hpin/(4ah,)
varies along with varying film thickness. Similarly, the capillary num-
ber (Ca = 3uv, /001, = 310, /40(1;1“) will vary with film thickness.
In Fig. 12(a), we set ftm = 0.01 and Ca= 1000 when iza =0.01 and
then vary h, with fixed impact angle 0 12,0 = 45°. As expected, the wet
coefficients of restitution are reduced for thicker liquid films, due to
increased viscous resistance as the spheres in a pair move together and
then apart.

Figure 12(b) shows related results when the film thickness is fixed
but the minimum separation (e.g., roughness height) is varied. As
expected, a smaller minimum separation gives smaller wet restitution
coefficients, as there is greater viscous dissipation when more fluid is
squeezed out of the thin film prior to solid-solid contact. Comparing
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FIG. 12. (a) Wet coefficients of restitution vs Stokes number for collisions with a 45° degree impact angle and varying dimensionless film thickness h, = 0.005, 0.010, and
0.020 (top to bottom). The corresponding minimum separations are h, = 0.1, 0.05, and 0.025, and the corresponding capillary numbers are Ca = 2000, 1000, and 500,
respectively. (b) Similar plot but with fixed film thickness (h, = 0.01, Ca = 1000) and varying minimum separation (h, = 0.02, 0.05 and 0.10, bottom to top).

experiments to simulations like those in Fig. 12(b) could potentially
provide an estimate for the effective roughness height.

E. Effect of solid-contact parameters

When the film thins such that the separation gap decreases to
hmin» then two parameters govern the resulting solid-solid or solid-like
contact: eg, and iz A reduction in the dry coefficient of restitution
from eary=1 will reduce the wet coefficient of restitution, as seen from
(41) and (42) for a head-on, two-sphere collision. Davis and Sitison
(2020) showed that the contact friction gives a very slight reduction in
the rotational velocity of the line-of-centers for an oblique collision of
two wet spheres but has an almost negligible effect on the wet coeffi-
cient of restitution. The result for three wet spheres is quite different,
as seen in Fig. 13(a). For St,, < 4, there is little effect of contact friction,
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as either the spheres do not make contact or the contact is weak, and
the separation of the 1-2 pair is due to the stick-rotate-separate mecha-
nism. For larger St,, the separation mechanism is rapid bouncing.
Here, contact friction decreases the wet coefficient of restitution for the
1-2 pair and increases it for the 2-3 pair. With increasing friction, the
separation time of the 1-2 pair is slightly delayed (due to weaker cen-
trifugal forces) while the time at which the 2-3 pair makes solid con-
tact is slightly decreased. As a result, 2-3 contact occurs before 1-2
separation for larger St,, with increasing friction, which suppresses the
1-2 wet coefficient of restitution while enhancing the 2-3 wet coeffi-
cient of restitution.

Figure 13(b) provides more detailed information for a three-
sphere collision with S, =8 under the conditions of Fig. 13(a). The
1-2 pair makes contact at = 0.999 and then bounces apart. The rota-
tional velocity of its line-of-centers, Q;,, remains at a dimensionless
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FIG. 13. (a)Wet coefficients of restitution vs Stokes number for the conditions of Fig. 5 but with contact friction coefficients of y; = 0, 0.1 and 0.2 (left to right for e42,, and right
to left for ey34). The solid curves are for the 1-2 pair, and the dashed curves are for the 2-3 pair. (b) Dimensionless rotational velocities and separation vs time for the same

conditions but with St, =8 and p; = 0 (solid curves) y; = 0.1 (dashed curves).
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value near —1 (note that Q, itself is counterclockwise and positive, but
its nondimensional value is negative, due to v;9 < 0 for «=0 and
0120 = 45°) without friction (uf = 0) but experience a small jump
upon contact with friction (,uf = 0.1). The rotational velocities of indi-
vidual spheres (w;; = ®; + ®;) remain near zero in the absence of fric-
tion but experience a jump to counterclockwise rotation with friction.
In contrast, the dimensionless rotational velocity of the line-of-centers
of the 2-3 pair increases slightly from zero due to viscous forces prior
to contact of the 1-2 pair but then experiences a jump upon contact as
momentum is transferred from sphere 1 to sphere 2, which in turn affects
the relative velocity components of the 1-2 pair (see Appendix A).
The normal relative velocity of the 2-3 pair also experiences a jump
when the 1-2 pair makes contact, which pushes the 2-3 pair together
so that it makes contact at = 2.943 (without friction) or 2.740 (with
friction). When the 2-3 pair makes contact, there are additional
jumps in the rotational velocities. These jumps cause small changes in
the relative normal velocities of each pair during separation and,
hence, in the wet coefficients of restitution. However, the large
changes (jumps) in ej,,, seen in Fig. 13(a) have a more subtle origin,
as discussed above. Namely, separation of the 1-2 pair occurs at
t =2.795 (without friction) and # = 2.936 (with friction). Thus,
without friction, the 1-2 separation occurs before the 2-3 contact, so
e12, is unaffected by the 2-3 contact and has a relatively high value
(e12,» = 0.457). In contrast, with friction, the 1-2 separation occurs
after the 2-3 contact, and the wet restitution coefficient is reduced
(e12.w» = 0.211) because the contact with sphere 3 slows the move-
ment of sphere 2 away from sphere 1.

V. SUCCESSIVE COLLISIONS

In this section, the possibility of one of the spheres undergoing
successive collisions involving a change of “partners” is illustrated.
For example, it is apparent from the top right panel with St, =2 and
t* = 2.5 in Fig. 5 that the lower particle (sphere 1) first hits the middle
particle (sphere 2), rotates around it, and is about to strike the particle
on the right (sphere 3). A change of partners occurs, from the 1-2 pair
in close contact to the 1-3 pair in close contact. While the subsequent
outcome is of interest in its own right, the ability of the algorithm to

ARTICLE pubs.aip.org/aip/pof

handle such a change in partners is an important step in creating a
multiparticle discrete element method (DEM) in which particle-
particle contacts are made and broken throughout space and time
domains.

For the three-sphere case studied here, it is noted that knowing the
relative positions and velocities of the 1-2 pair and 2-3 pair at any given
time are sufficient to allow for calculation of this information for the
1-3 pair using geometrical considerations, as outlined in Appendix B.
Once overlap of the liquid films on spheres 1 and 3 occurs, when
hi3 < 61 + 93 = 013, then the liquid-mediated forces between the 1-3
pair, given in (29) and (32), come into play and must be included in
(20)-(25), (34), (35) and (37) to describe the dynamics of sphere 1 and
the 1-2 and 2-3 pairs. Alternatively, if the 1-2 pair separates, then it
may be desirable to follow the 1-3 pair instead. In this case, (20)-(22)
would no longer be needed (they would still hold but become redun-
dant) and instead be replaced by the corresponding equations for the
dynamics of the 1-3 pair

Studiysp/di = — St (tan )10, — Frs,s
— [13‘12‘71 cos(013 — 012) + Flz,r sin(013 — 912)} /2
— [13237,[ cos(0y3 — 013) — }A?23,t sin(03 — 013)} /2,
(43)
St 13dQus /dE = 2Stuha015, Q15 + Fis oot
- [ﬁlz,n sin(0y5 — 012)
_Flz,t cos (013 — 912)] (cotf3)/2
+ [F23,n sin(0; — 01,)
+ p23,t cos(fy; — 612)} (cotf)/2, (44)
Stadidiz/di = —5(F 130+ Fiap/2 + Faz/2)cot B (45)
Figure 14 shows an example calculation where sphere 1 changes
partners by initially impacting sphere 2 and then rotating around it
and hitting sphere 3. The conditions are the same as the top row

(St,=2) of Fig. 5. Sphere 1 makes contact with sphere 3 (via liquid-film
overlap) at t* = vy ot/4a = 2.59, while still in contact with sphere 2.

0 1 2 3 4 0 1

2

3 4 0 1 2 3 4

FIG. 14. Collision progression for three spheres with St, =2, 0150 = 45°, h, = 0.01, hm = 0.05, and negligible capillary forces, showing a change of partners for sphere 1

from sphere 2 to sphere 3 and then subsequent separation of the 1-3 pair.
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FIG. 15. Collision progress for three spheres with St, = 2, 0159 = 45°, O30 = —45°, h, = 0.01, hm = 0.04, and negligible capillary forces, showing a rearrangement on
the order of the spheres and then separation of sphere 2 while the 1-3 pair remains agglomerated.

The three rotate as an agglomerated triplet for a very short time, until
t* = 2.60, when the 1-2 pair separates. The 1-3 pair subsequently sep-
arates at t* = 4.57, leaving the 2-3 pair as a doublet.

In the terminology of Donahue ef al. (2010), the outcome of
Fig. 14 is “reverse Newton’s cradle,” in that the original target spheres
2 and 3 stay together while the striker sphere 1 separates after the colli-
sion. By modifying the fluid film thickness and the initial separations,
Donahue ef al. (2010) were also able to achieve the “Newton’s cradle”
outcome of sphere 3 separating and the 1-2 remaining agglomerated
after the collision. For the colinear experiments and model of Donahue
et al. (2010), the PA outcome of sphere 2 separating and the 1-3 pair
agglomerating was not physically possible. However, for oblique colli-
sions, the initial configuration may be modified to achieve this out-
come, which is called “transfer” by Liu et al. (2017). Figure 15 shows
an example where the 1-2 pair is initially oriented at a +45° angle
from the x-axis, whereas the 2-3 pair is initially oriented at a —45°
angle from the x-axis. Sphere 1 encounters sphere 3 at t = 42.7 (¢*
= 0.60). The three spheres remain joined with their centers essentially
forming an equilateral triangle until ¢ = 49.5 (t+ = 0.70), at which
time the 2-3 pair separates. The three spheres then remain connected
in a chain but with sphere 1 instead of sphere 2 in the middle until
t = 430 (t+ = 6.08), at which time the 1-2 pair separates while the
1-3 pair remains agglomerated.

VI. CONCLUDING REMARKS

The dynamics of collisions of three wet spheres are examined
using a microphysical discrete element method that follows the relative
motion of each pair of two neighboring particles with a rotating coor-
dinate system to track normal (along the line-of-centers) and tangen-
tial (rotation of the line-of-centers) motions. The normal and
tangential lubrication forces depend on the relative particle velocity,
fluid film thickness, and separation distance of the particle surfaces
and are determined at each time step. When a minimum separation is
reached, solid contact is assumed and treated as a hard-sphere collision
with both normal (elastic) and tangential (friction) impulses.

There are rich physics with many potential outcomes for colli-
sions of three wet spheres, including full agglomeration (FA) of all

three spheres, partial agglomeration (PA) involving two spheres with
the third one separating, and full separation (FS) of all three spheres,
depending on the initial conditions. A key parameter is the Stokes
number, representing the ratio of inertia of sphere 1 as it impacts
sphere 2 to viscous forces resisting the relative normal motion. For
St, = O(1), FA typically occurs, as the collision does not have
enough inertia to overcome the viscous and capillary dampening
forces. For St,, > O(1), FS typically occurs, as the fluid forces are rel-
atively small. For intermediate Stokes numbers, PA is typical; more-
over, which sphere separates and which pair remains agglomerated
can be changed by varying the initial configuration and properties.
The specific Stokes numbers separating these outcomes depend on
the capillary number, impact angle, and other parameters. For exam-
ple, thinner films, weaker capillary forces (large Ca), and more glanc-
ing (larger impact angle) all favor separation vs agglomeration. The
separation of an interacting pair of wet particles can either be a
rapid-bounce separation—when the inertia is sufficiently strong for
the impacting sphere to penetrate through the fluid film, make elastic
solid contact with the target sphere, and rebound back through the
fluid film—or a slow, stick-rotate-separate mechanism—when a pair
with lower inertia initially agglomerates but then is slowly pulled
apart due to centrifugal forces as it rotates. The wet coefficients of
restitution are zero or very small for small Stokes numbers (due to
viscous losses and capillary suction) and then increase with increas-
ing Stokes numbers. However, their values are very sensitive to sys-
tem parameters such as impact angle, film thickness, capillary
number, and friction coefficient, indicating the need for accurate
descriptions of wet collisions.

One potential avenue for future work is to extend the model to
the scenarios when either glass transition or elastohydrodynamic
deformation governs the minimum separation. The separation scales
at which these mechanisms come into play depend on the relative nor-
mal velocity (Donahue ef al.,, 2010), and so the minimum separation
will increase with increasing Stokes number rather than remain fixed
as an input parameter. Moreover, these mechanisms occur dynami-
cally (rather than instantly) as the lubrication pressure increases, which
may require a soft-sphere vs hard-sphere approach.
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The methodology described in this work can be extended to
DEM simulations of many wet particles. Because the viscous and capil-
lary forces imposed by the fluid film are decomposed into normal and
tangential forces and depend on the narrow separation distance
between the opposing sphere surfaces, the use of polar coordinates for
particle pairs is expected to provide for highly accurate and robust sim-
ulations. In a future work, we intend to extend the method to systems
of many wet particles and compare the calculations to a traditional
method with Cartesian coordinates. Another key area for future study
is the range of validity of the hard-sphere model for solid contact and
the use of a soft-sphere model when the hard-sphere model is not
valid. Finally, we hope that the rich physics predicted herein for colli-
sions of three spheres will provide motivation for future experimental
testing.
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APPENDIX A: SOLID CONTACT

When the normal surface-to-surface separation of an i—j pair,
hi; has decreased to Ay, then solid-solid or solid-like contact
between sphere i and sphere j occurs. It is assumed that a near-
instantaneous, hard-sphere collision takes place, resulting in a rever-
sal of the normal relative velocity

b
vg-#n = —ednylyj ,» (A1)

« _»

where the superscripts “a” and “b” refer to just after and just before
the collision, respectively, and eg,,, is the dry coefficient of restitution
for the solid spheres. For simplicity, eg, is treated as a constant
material property, but it could easily be specified as a function of
the impact velocity.

For systems of more than two spheres, the effect of the colli-
sion on the velocity of each pair is important for determining the
change in relative velocities with any neighboring spheres in close

pubs.aip.org/aip/pof

contact. Integrating the normal component of the force balance
(9) for relative motion over the short duration At of contact
yields

m; (vg-,n — Ugﬂ) = —JAtF,j?,, dt = —Iju, (A2)

where Ij; , is the normal component of the impulse exerted between
spheres i and j during contact. Note that the other terms in (9) drop
out for At — 0. Then, using (A1) yields the required impulse

Iij,n = m,j(l + edry)uibj‘n' (A3)

Turning now to the motion of sphere j,
_ b
AUL"U = <UZ”U — vjﬁnzj) = I,j)n/mj‘, (A4)

from the component of the contact force balance on sphere j along
the line-of-centers of the i—j pair. This velocity change has compo-
nents both parallel and perpendicular to the line-of-centers of the
j—k pair

AV = AV, cos(ﬁjk — Gi}-), Avjy, = Avjy, sin(ij - F)ij), (A5)

where a frictionless contact is assumed (i.e., no change in the veloc-
ity of sphere j in the direction normal to the i—j line-of-centers; col-
lisions with solid friction are considered below). Since the velocity
of sphere k is not immediately affected by the i—j collision, the new
relative velocity components of the j—k pair due to the i—j collision/
rebound are

a __ b
Uen = Upen + Avj‘”jk

; = vjk}{,n + (m,]/m])(l + ed,},)vibj‘n cos(()jk — Oij)7

(A6)
Uj"zk?t = Jl-jktt + Avj,t]k = jbk,t + (mv/mj)(l + ed,y) UZ',n sin(()j — 0,1)
(A7)

For collinear collisions of three equal spheres, (A6) reduces to the
result derived previously by Davis (2019).

Now consider the case where there is friction during a solid-
solid or solid-like contact, resulting in a nearly instantaneous
change in velocity both normal and tangential to the collision sur-
face, as well as in the rotational velocities. Following Davis and
Sitison (2020), a tangential impulse proportional to the normal
impulse is assumed (valid for sliding): I;;; = = HyLijn where 1 is
the lubricated friction coefficient at contact and the upper sign here
and in what follows refers to vjj_t > 0, whereas the lower sign is for
vs;, <0, where vj;, = —rijQZ + a;0? + a;0? is the relative surface
velocity at the beginning of contact. Then, the tangential component
of the force balance for relative motion integrated over the brief
duration of contact yields

mij (”;t - Uf‘}ﬂ,t) = *J Fyjpdt = % pelij . (A8)
At
Using (A3) then gives the tangential relative velocity after impact
Vo = U5 (1 + €ary) (A9)

The rotational velocity of the line-of-centers, Q;; = —vj;,/ry;, after
the impact is
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b
e(1 4 egpry U5
Q?:leiw7 (A10)
ij i i
where 7;; = a; + a; + hpi, is the center-to-center distance at impact.
The corresponding changes in rotational velocities of the indi-

vidual spheres of the colliding pair are

_ m
of = wf’—»—ﬂfa,- (T’]) (1+ ed,),)vg’n,
' (A11)

a_ b mij b
@ =T\ (L edry)Vij s

where mj; = mym;/(m; + m;) and I; = 2m;a} /5, as before. These
results follow from integrating (17) over the short duration of con-

tact. The rotational velocity of a neighboring sphere k not partici-

pating in the collision is unchanged: w{ = w!. However, the

rotational velocity of the j—k pair undergoes a jump change, found
by integrating the j—k equivalent of (14) over the short collision
duration

Q]('lk = ka + (m,j/m,-)(l + ed,y)vg._ﬁ
Similarly, the jump in the tangential velocity of sphere j causes a
jump in the relative velocity of the j—k pair both parallel and per-
pendicular to the line-of-centers, so (A9) is replaced by
v}‘k,n = vjl;t,n + (mu/m])(l + ed,y)vf-}n
X [COS(HJ' — Hij) i,uf Sil’l(@jk — Hij)], (A13)
Vet = ”jbk,r = (myi/m;)(1+ ed’)’)vihj,n
X [sin (O — 0y) F ¢ cos (O — 05)], (A14)
as seen by integrating the j—k equivalent of (9) and (14), respec-
tively, over the short collision duration.

1. Special case of three equal spheres

First, for a 1-2 collision, with the top sign for 5?2,(0 sinff >0,
where ff = o — 0120,

Abiz = —(1+ i)y, OF B, = —eary by, (A15)
AQp; = (1 + eary )iy ,c0t B/ 12, (Al6)
Ad>yy = F5p7(1 + ear)dY, ,c0t B, (A17)

Abgs, = 0.5(1 4 edr)’)ﬁ?l,n [cos(023 — 012) = iy sin(03 — 012)],
(A18)
AQy = 0.5(1 —Q—ed,y)ﬁﬁz,ncotﬂ[sin(()g — 012)I,ufcos(023 — 012)] /23,
(A19)
Adys = IZ.Suf(l + ed,y)f)[l’z,ncot P, (A20)
Ay = —0.5(1 + eary)B}, , [cos Oz — g1y sin O], (A21)
Aby, = —0.5(1 + edry)fifln [sin 01, — iy cos 015], (A22)
Ad>y = F2.501;(1 + eqry) Y, ,cot B. (A23)

Second, for a 2-3 collision, with the top sign for 1323‘71 sinff > 0,

Af}lz,n = 0.5(1 + ed,},)f;g3_n [COS(023 — QIZ)IMf sin((923 — 012)],

(A24)

AQp; = —0.5(1 + eary)ih, , cot Blsin(0; — 012)
*pycos(bas — 012)] /712, (A25)
Adyp = F2.50:(1 + ed,},)f;g&ncot B, (A26)
Abyz = —(1+ edry)ﬁlzya,n or D33, = _edryﬁlzjanv (A27)
AQy; = Tup(l+ ed,y)ﬁé’a,ncot B2, (A28)
Adys = F5u(1+ eary)i5; ,cot . (A29)

2. Frictional arrest of sliding

The expressions above assume that the maximum friction force
is achieved, so that the colliding surfaces slide over each other.
These assumptions will no longer hold for nearly head-on collisions.
In this case, the sphere surfaces do not slip, requiring

rijQE = ag;0f + ajcu]‘.z = (A30)

vg -
Then, integrating (14) over the short duration of the impulse yields
myry (ij - Qf;) = I, (A31)
and integrating (17) over the duration of the impulse yields
L <v§},w - vfjw) =- (I;af + Ijaf)l,»j,,, (A32)

where I, is the tangential impulse. Solving (A30)-(A32) for uni-
form solid spheres (where I; = 2m;a? /5 is the moment of inertia)
gives

Iij,t = Zmij(uibjw — rijQibj)/Z (A33)
Q= 500/7 + 207,/ 7y, (A34)
Vo = 512 /7 + 205,/7. (A35)

Of course, (A30) and (A33)-(A35) only hold if the magnitude of the
tangential impulse is less than the maximum value; |1, | < /I, or

\vf}w - thf’j\ < 7pe(1+ ed,},)vg.‘n/Z. (A36)

If so, then I, from (A33) replaces the maximum value
l‘f(1+edry)”1'hj,n in (A8)-(A29) and all = and F symbols are
replaced by + and —, respectively. If (A36) is not met, then
(A8)-(A29) are unchanged.

APPENDIX B: RELATIVE POSITIONS AND VELOCITIES
OF 1-3 PAIR

At any time step, the relative positions and velocities of the
1-2 and 2-3 pairs may be used to determine the relative positions
and velocities of the 1-3 pair (whether or not it is in close contact)
from geometry. Making use of the fixed Cartesian coordinate sys-
tem, the 1-3 center-to-center distance is
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) N\ 12
r3 = ((xlz +x23)" + (V12 + y23) ) s (B1)

where x;; = r;; cos 0;; and y;; = r;sin 0. Thus, the angle of the 1-3
center-to-center vector with the x-axis is

013 = tan™" (y12 + y23)/ (%12 + %23)) = cos™ " ((x12 + x23) /113).
(B2)

The gap between their surfaces, needed in the force expressions, is
his =13 — a1 —as. (B3)

The relative velocity components of the 1-3 pair in Cartesian coor-
dinates at a given time step are

U1z = Urzx + V23, (B4)

V13y = Unay + 023y, (B5)

where vy, = vy, cos 0 — vy, sin 0, vy = vjj 0 sin 0y + v cos 0,
and v;;; = —7;Q;;. These velocities may be converted to the normal
and tangential velocities required in the force expressions

V13,5 = 13,x €08 013 + v, sin 013, (B6)

Vi3 = —U1zx sin Oy + U13,y €COS 013. (B7)
Finally, the rotational velocities for the 1-3 pair are

Qi3 = d0y3/dt = —viz /113, (B8)

w13 = 01 + O3 = 03 — 013 + 201, (B9)

where w, is found from (39).

REFERENCES

Anand, A, Curtis, J. S., Wassgren, C. R,, Hancock, B. C., and Ketterhagen, W. R,,
“Predicting discharge dynamics of wet cohesive particles from a rectangular
hopper using the discrete element method (DEM),” Chem. Eng. Sci. 64(24),
5268-5275 (2009).

Andreotti, B., Forterre, Y., and Pouliquen, O., Granular Media: Between Fluid
and Solid (Cambridge University Press, 2013).

Barnocky, G., and Davis, R. H., “Elastohydrodynamic collision and rebound
of spheres: Experimental verification,” Phys. Fluids 31(6), 1324-1329
(1988).

Barnocky, G., and Davis, R. H., “The influence of pressure-dependent density and
viscosity on the elastohydrodynamic collision and rebound of two spheres,”
J. Fluid Mech. 209, 501-519 (1989).

Blumenfeld, R., Edwards, S. F., and Walley, S. M., “167Physics of granular sys-
tems,” in The Oxford Handbook of Soft Condensed Matter (Oxford University
Press, 2015). ISBN: 9780199667925.

Brady, J. F., and Bossis, G., “Stokesian dynamics,” Annu. Rev. Fluid Mech. 20(1),
111-157 (1988).

Buck, B., and Heinrich, S., “Collision dynamics of wet particles: Comparison of
literature models to new experiments,” Adv. Powder Technol. 30(12),
3241-3252 (2019).

Buck, B., Lunewski, J., Tang, Y., Deen, N. G., Kuipers, J., and Heinrich, S.,
“Numerical investigation of collision dynamics of wet particles via force bal-
ance,” Chem. Eng. Res. Des. 132, 1143-1159 (2018).

Buck, B, Tang, Y., Heinrich, S., Deen, N. G., and Kuipers, J., “Collision dynamics
of wet solids: Rebound and rotation,” Powder Technol. 316, 218-224 (2017).
Criiger, B., Salikov, V., Heinrich, S., Antonyuk, S., Sutkar, V. S., Deen, N. G., and
Kuipers, J., “Coefficient of restitution for particles impacting on wet surfaces:

An improved experimental approach,” Particuology 25, 1-9 (2016).

Cundall, P. A, and Strack, O. D., “A discrete numerical model for granular

assemblies,” Geotechnique 29(1), 47-65 (1979).

ARTICLE pubs.aip.org/aip/pof

Danczyk, M., Punch, O,, Fullard, L., Hawken, M., and Holland, D. J., “A compari-
son of models of linear collisions between spherical particles in the pendular
regime,” Powder Technol. 398, 117112 (2022).

Darabi, P., Pougatch, K., Salcudean, M., and Grecov, D., “A novel coalescence
model for binary collision of identical wet particles,” Chem. Eng. Sci. 64(8),
1868-1876 (2009).

Davis, R. H., “Elastohydrodynamic collisions of particles,” PhysicoChem.
Hydrodyn. 9, 41-52 (1987).

Davis, R. H., “Simultaneous and sequential collisions of three wetted spheres,”
J. Fluid Mech. 881, 983-1009 (2019).

Davis, R. H., and Sitison, J. W., “Oblique collisions of two wetted spheres,” Phys.
Rev. Fluids 5(5), 054305 (2020).

Davis, R. H., Rager, D. A,, and Good, B. T., “Elastohydrodynamic rebound of
spheres from coated surfaces,” J. Fluid Mech. 468, 107-119 (2002).

Davis, R. H., Serayssol, J.-M., and Hinch, E. J., “The elastohydrodynamic collision
of two spheres,” |. Fluid Mech. 163, 479-497 (1986).

Donahue, C. M., Brewer, W. M., Davis, R. H, and Hrenya, C. M,
“Agglomeration and de-agglomeration of rotating wet doublets,” J. Fluid Mech.
708, 128-148 (2012).

Donahue, C. M., Hrenya, C. M., and Davis, R. H., “Stokes’s cradle: Newton’s cra-
dle with liquid coating,” Phys. Rev. Lett. 105(3), 034501 (2010).

Ennis, B. J., Tardos, G., and Pfeffer, R., “A microlevel-based characterization of
granulation phenomena,” Powder Technol. 65(1-3), 257-272 (1991).

Gidaspow, D., Multiphase Flow and Fluidization: Continuum and Kinetic Theory
Descriptions (Academic Press, 1994).

Gollwitzer, F., Rehberg, I, Kruelle, C. A., and Huang, K., “Coefficient of restitu-
tion for wet particles,” Phys. Rev. E 86(1), 011303 (2012).

Gondret, P., Hallouin, E., Lance, M., and Petit, L., “Experiments on the motion of
a solid sphere toward a wall: From viscous dissipation to elastohydrodynamic
bouncing,” Phys. Fluids 11(9), 2803-2805 (1999).

Guo, Y., and Curtis, J. S., “Discrete element method simulations for complex
granular flows,” Annu. Rev. Fluid Mech. 47, 21-46 (2015).

Joseph, G., and Hunt, M., “Oblique particle-wall collisions in a liquid,” J. Fluid
Mech. 510, 71-93 (2004).

Joseph, G., Zenit, R., Hunt, M., and Rosenwinkel, A., “Particle-wall collisions in a
viscous fluid,” J. Fluid Mech. 433, 329-346 (2001).

Kantak, A., Hrenya, C., and Davis, R., “Initial rates of aggregation for dilute, gran-
ular flows of wet particles,” Phys. Fluids 21(2), 023301 (2009).

Kantak, A. A, and Davis, R. H., “Oblique collisions and rebound of spheres from
a wetted surface,” J. Fluid Mech. 509, 63-81 (2004).

Kantak, A. A., and Davis, R. H., “Elastohydrodynamic theory for wet oblique col-
lisions,” Powder Technol. 168(1), 42-52 (2006).

Kasper, J. H., Magnanimo, V., de Jong, S. D., Beek, A., and Jarray, A., “Effect of
viscosity on the avalanche dynamics and flow transition of wet granular mat-
ter,” Particuology 59, 64-75 (2021).

Lian, G., Adams, M., and Thornton, C., “Elastohydrodynamic collisions of solid
spheres,” J. Fluid Mech. 311, 141-152 (1996).

Liu, P., Kellogg, K. M., LaMarche, C. Q., and Hrenya, C. M., “Dynamics of
singlet-doublet collisions of cohesive particles,” Chem. Eng. J. 324, 380-391
(2017).

Liu, P, Yang, R, and Yu, A., “DEM study of the transverse mixing of wet particles
in rotating drums,” Chem. Eng. Sci. 86, 99-107 (2013).

Liu, P, Yang, R, and Yu, A., “The effect of liquids on radial segregation of granu-
lar mixtures in rotating drums,” Granular Matter 15, 427-436 (2013).

Ma, ], Liu, D., and Chen, X., “Experimental study of oblique impact between dry
spheres and liquid layers,” Phys. Rev. I 88(3), 033018 (2013).

Miiller, P., and Poschel, T., “Oblique impact of frictionless spheres: On the limita-
tions of hard sphere models for granular dynamics,” Granular Matter 14,
115-120 (2012).

Miiller, T., and Huang, K., “Influence of the liquid film thickness on the
coefficient of restitution for wet particles,” Phys. Rev. E 93(4), 042904
(2016).

Nedderman, R. M., Statics and Kinematics of Granular Materials (Cambridge
University Press, 1992).

Pahtz, T., Duran, O., De Klerk, D. N., Govender, I, and Trulsson, M., “Local rhe-
ology relation with variable yield stress ratio across dry, wet, dense, and dilute
granular flows,” Phys. Rev. Lett. 123(4), 048001 (2019).

Phys. Fluids 35, 103328 (2023); doi: 10.1063/5.0171810
Published under an exclusive license by AIP Publishing

35, 103328-17

959122 ¥20z IMdY +0


https://doi.org/10.1016/j.ces.2009.09.001
https://doi.org/10.1063/1.866725
https://doi.org/10.1017/S0022112089003198
https://doi.org/10.1146/annurev.fl.20.010188.000551
https://doi.org/10.1016/j.apt.2019.09.033
https://doi.org/10.1016/j.cherd.2018.02.026
https://doi.org/10.1016/j.powtec.2016.12.088
https://doi.org/10.1016/j.partic.2015.04.002
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1016/j.powtec.2022.117112
https://doi.org/10.1016/j.ces.2009.01.017
https://doi.org/10.1017/jfm.2019.784
https://doi.org/10.1103/PhysRevFluids.5.054305
https://doi.org/10.1103/PhysRevFluids.5.054305
https://doi.org/10.1017/S0022112002001489
https://doi.org/10.1017/S0022112086002392
https://doi.org/10.1017/jfm.2012.297
https://doi.org/10.1103/PhysRevLett.105.034501
https://doi.org/10.1016/0032-5910(91)80189-P
https://doi.org/10.1103/PhysRevE.86.011303
https://doi.org/10.1063/1.870109
https://doi.org/10.1146/annurev-fluid-010814-014644
https://doi.org/10.1017/S002211200400919X
https://doi.org/10.1017/S002211200400919X
https://doi.org/10.1017/S0022112001003470
https://doi.org/10.1063/1.3070830
https://doi.org/10.1017/S0022112004008900
https://doi.org/10.1016/j.powtec.2006.07.006
https://doi.org/10.1016/j.partic.2020.12.001
https://doi.org/10.1017/S0022112096002534
https://doi.org/10.1016/j.cej.2017.04.118
https://doi.org/10.1016/j.ces.2012.06.015
https://doi.org/10.1007/s10035-013-0392-1
https://doi.org/10.1103/PhysRevE.88.033018
https://doi.org/10.1007/s10035-012-0324-5
https://doi.org/10.1103/PhysRevE.93.042904
https://doi.org/10.1103/PhysRevLett.123.048001
pubs.aip.org/aip/phf

Physics of Fluids

Punch, O., Danczyk, M., Hawken, M., and Holland, D. J., “A comparison of pen-
dulum experiments and discrete-element simulations of oblique collisions of
wet spheres,” AIChE J. 69(3), 17989 (2023).

Radl, S., Kalvoda, E., Glasser, B. J., and Khinast, ]. G., “Mixing characteristics of wet
granular matter in a bladed mixer,” Powder Technol. 200(3), 171-189 (2010).

Schmelzle, S., and Nirschl, H., “DEM simulations: Mixing of dry and wet granular
material with different contact angles,” Granular Matter 20, 1-13 (2018).

Smart, J. R, and Leighton, Jr., D. T., “Measurement of the hydrodynamic surface
roughness of noncolloidal spheres,” Phys. Fluids A: Fluid Dyn. 1(1), 52-60 (1989).
Stratton, R, and Wensrich, C., “Modelling of multiple intra-time step collisions
in the hard-sphere discrete element method,” Powder Technol. 199(2),

120-130 (2010).

Sutkar, V. S., Deen, N. G., Padding, J. T., Kuipers, J., Salikov, V., Criiger, B.,
Antonyuk, S., and Heinrich, S., “A novel approach to determine wet restitution
coefficients through a unified correlation and energy analysis,” AIChE ]. 61(3),
769-779 (2015).

ARTICLE pubs.aip.org/aip/pof

Tang, T, He, Y., Ren, A., and Wang, T., “Experimental study and DEM numerical
simulation of dry/wet particle flow behaviors in a spouted bed,” Ind. Eng.
Chem. Res. 58(33), 15353-15367 (2019).

Umer, M., and Siraj, M. S., “DEM studies of polydisperse wet granular flows,”
Powder Technol. 328, 309-317 (2018).

Washino, K., Chan, E. L., Miyazaki, K., Tsuji, T., and Tanaka, T., “Time step crite-
ria in DEM simulation of wet particles in viscosity dominant systems,” Powder
Technol. 302, 100-107 (2016).

Washino, K., Tan, H., Hounslow, M., and Salman, A., “A new capillary force
model implemented in micro-scale CFD-DEM coupling for wet granulation,”
Chem. Eng. Sci. 93, 197-205 (2013).

Yang, F.-L., and Hunt, M., “Dynamics of particle-particle collisions in a viscous
liquid,” Phys. Fluids 18(12), 121506 (2006).

Zhang, H., and Li, S., “DEM simulation of wet granular-fluid flows in spouted
beds: Numerical studies and experimental verifications,” Powder Technol. 318,
337-349 (2017).

Phys. Fluids 35, 103328 (2023); doi: 10.1063/5.0171810
Published under an exclusive license by AIP Publishing

35, 103328-18

959122 ¥20z IMdY +0


https://doi.org/10.1002/aic.17989
https://doi.org/10.1016/j.powtec.2010.02.022
https://doi.org/10.1007/s10035-018-0792-3
https://doi.org/10.1063/1.857523
https://doi.org/10.1016/j.powtec.2009.12.008
https://doi.org/10.1002/aic.14693
https://doi.org/10.1021/acs.iecr.9b02448
https://doi.org/10.1021/acs.iecr.9b02448
https://doi.org/10.1016/j.powtec.2018.01.021
https://doi.org/10.1016/j.powtec.2016.08.018
https://doi.org/10.1016/j.powtec.2016.08.018
https://doi.org/10.1016/j.ces.2013.02.006
https://doi.org/10.1063/1.2396925
https://doi.org/10.1016/j.powtec.2017.05.009
pubs.aip.org/aip/phf

