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Abstract

The clustering of a graph coloring is the maximum size of monochromatic com-

ponents. This paper studies colorings with bounded clustering in graph classes

with bounded layered treewidth, which include planar graphs, graphs of bounded

Euler genus, graphs embeddable on a fixed surface with a bounded number of

crossings per edge, map graphs, amongst other examples. Our main theorem says

that every graph with layered treewidth at most k and with maximum degree at

most ∆ is 3-colorable with clustering O(k19∆37). This is the first known polyno-

mial bound on the clustering. This greatly improves upon a corresponding result

of Esperet and Joret for graphs of bounded genus.

1 Introduction

This paper considers graph1 colorings where the condition that adjacent vertices
are assigned distinct colors is relaxed. Instead, we require that every monochromatic
component has bounded size (for a given graph class). More formally, a coloring of
a graph G is a function that assigns one color to each vertex of G. For a coloring
c of G, a c-monochromatic component , or simply monochromatic component , is any
connected component of the subgraph of G induced by all the vertices assigned the
same color. A coloring has clustering η if every monochromatic component has at most
η vertices. Our focus is on minimizing the number of colors, with small monochromatic
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1Let G be a graph with vertex-set V (G) and edge-set E(G). For v ∈ V (G), let NG(v) := {w ∈
V (G) : vw ∈ E(G)} be the neighborhood of v, and let NG[v] := NG(v) ∪ {v}. For X ⊆ V (G), let
NG(X) :=

⋃
v∈X

(NG(v) \X) and NG[X] := NG(X)∪X. Denote the subgraph of G induced by X by
G[X]. Let N := {1, 2, . . . } and N0 := {0, 1, 2, . . . }. For m,n ∈ N0, let [m,n] := {m,m+ 1, . . . , n} and
[n] := [1, n].
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components as a secondary goal. The clustered chromatic number of a graph class G
is the minimum integer k such that for some integer η, every graph in G is k-colorable
with clustering η. There have been several recent papers on this topic [1, 7, 13–15, 21–
25, 28, 31, 33, 34, 41]; see [42] for a survey.

Planar graphs are 4-colorable, and indeed have clustered chromatic number 4. That
is, for every c there is a planar graph that is not 3-colorable with clustering c [26].
These examples have unbounded maximum degree. This led Kleinberg et al. [26] to
conjecture that planar graphs with bounded maximum degree are 3-colorable with
bounded clustering. Note that three colors is best possible since the Hex Lemma [19]
says that every 2-coloring of the n × n planar triangular grid (which has maximum
degree 6) contains a monochromatic path of length at least n.

Esperet and Joret [14] proved the conjecture of Kleinberg et al. [26]. In particular,
they proved that every planar graph with maximum degree ∆ is 3-colorable with clus-
tering ∆O(∆). While Esperet and Joret [14] made no effort to reduce this function, their
method will not lead to a sub-exponential clustering bound. We prove the first known
polynomial bound in such a result. Esperet and Joret [14] in fact proved 3-colorability
in the more general setting of graphs embeddable on a fixed surface2. In particular,
they proved that graphs with Euler genus g are 3-colorable with clustering ∆O(∆ 2g).
We prove a polynomial bound in this setting as well.

Theorem 1. Every graph with Euler genus at most g and maximum degree at most ∆
is 3-colorable with clustering O(g19∆37).

Note that Liu and Oum [31] proved that for all fixed t,∆ there exists a constant
c such that every (odd) Kt-minor-free graph with maximum degree at most ∆ is 3-
colorable with clustering c. This result extends Theorem 1 to more general graph
classes but with much worse clustering c.

Theorem 1 is in fact a corollary of a more general result of this paper in terms of
layered treewidth. First we explain what this means. A tree-decomposition of a graph
G is a pair (T,X = (Xx : x ∈ V (T )), where T is a tree, and for each node x ∈ V (T ),
Xx is a non-empty subset of V (G) called a bag , such that for each vertex v ∈ V (G),
the set {x ∈ V (T ) : v ∈ Xx} induces a non-empty (connected) subtree of T , and for
each edge vw ∈ E(G) there is a node x ∈ V (T ) such that {v, w} ⊆ Xx. The width of
a tree-decomposition (T,X ) is max{|Xx| − 1 : x ∈ V (T )}. The treewidth of a graph G

is the minimum width of a tree-decomposition of G. Treewidth is a key parameter in
algorithmic and structural graph theory; see [2, 20, 36, 37] for surveys.

A layering of a graph G is an ordered partition (V1, . . . , Vn) of V (G) into (possibly
empty) sets such that for each edge vw ∈ E(G) there exists i ∈ [1, n − 1] such that
{v, w} ⊆ Vi ∪ Vi+1. The layered treewidth of a graph G is the minimum nonnegative
integer ` such that G has a tree-decomposition (T,X = (Xx : x ∈ V (T )) and a layering
(V1, . . . , Vn), such that |Xx ∩ Vi| 6 ` for each bag Xx and layer Vi. This says that the

2The Euler genus of an orientable surface with h handles is 2h. The Euler genus of a non-orientable
surface with c cross-caps is c. The Euler genus of a graph G is the minimum Euler genus of a surface
in which G embeds (with no crossings).
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subgraph induced by each layer has bounded treewidth, and moreover, a single tree-
decomposition of G has bounded treewidth when restricted to each layer. In fact, these
properties hold when considering a bounded sequence of consecutive layers.

Layered treewidth was independently introduced by Dujmović, Morin, and Wood [12]
and Shahrokhi [40]. Dujmović et al. [12] proved that every planar graph has layered
treewidth at most 3; more generally, that every graph with Euler genus at most g

has layered treewidth at most 2g + 3; and most generally, that a minor-closed class
has bounded layered treewidth if and only if it excludes some apex graph as a minor.
Layered treewidth is of interest beyond minor-closed classes, since as described below,
there are several natural graph classes that have bounded layered treewidth but contain
arbitrarily large complete graph minors.

We prove that only three colors are needed for clustered coloring of graphs with
bounded layered treewidth and with bounded maximum degree. This is the main
result of the paper.

Theorem 2. Every graph with layered treewidth at most w and maximum degree at
most ∆ is 3-colorable with clustering O(w19∆37).

Theorem 1 is an immediate corollary of Theorem 2 and the above-mentioned bound
of Dujmović et al. [12]. The proof of Theorem 2 (presented in Section 2) is simpler
than the proof in [14], avoiding many technicalities that arise when dealing with graph
embeddings. This proof highlights the utility of layered treewidth as a general tool.
Moreover, it leads to more general results, as we now explain.

We now give three examples of graph classes with bounded layered treewidth, for
which Theorem 2 give interesting results.

(g, k)-Planar Graphs: A graph is (g, k)-planar if it can be drawn in a surface of
Euler genus at most g with at most k crossings on each edge (assuming no three edges
cross at a single point). Such graphs can contain arbitrarily large complete graph
minors, even in the g = 0 and k = 1 case [9], so the above-mentioned result of Liu
and Oum [31] is not applicable. On the other hand, Dujmović et al. [9] proved that
every (g, k)-planar graph has layered treewidth at most (4g + 6)(k + 1). Theorem 2
then implies:

Corollary 3. For all g, k,∆ ∈ N, every (g, k)-planar graph with maximum degree at
most ∆ is 3-colorable with clustering O(g19k19∆37).

Map Graphs: Map graphs are defined as follows. Start with a graph G0 embedded
in a surface of Euler genus g, with each face labelled a “nation” or a “lake”, where each
vertex of G0 is incident with at most d nations. Let G be the graph whose vertices are
the nations of G0, where two vertices are adjacent in G if the corresponding faces in
G0 share a vertex. Then G is called a (g, d)-map graph. A (0, d)-map graph is called a
(plane) d-map graph; such graphs have been extensively studied [4–6, 8, 16]. The (g, 3)-
map graphs are precisely the graphs of Euler genus at most g (see [6, 9]). So (g, d)-map
graphs provide a natural generalization of graphs embedded in a surface that allows for
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arbitrarily large cliques even in the g = 0 case (since if a vertex of G0 is incident with
d nations then G contains Kd). Dujmović et al. [9] proved that every (g, d)-map graph
has layered treewidth at most (2g + 3)(2d+ 1). Thus Theorem 2 implies:

Corollary 4. For all g, d,∆ ∈ N, every (g, d)-map graph with maximum degree at most
∆ is 3-colorable with clustering O(g19d19∆37).

String Graphs: A string graph is the intersection graph of a set of curves in the
plane with no three curves meeting at a single point [17, 18, 27, 35, 38, 39]. For an
integer k > 2, if each curve is in at most k intersections with other curves, then the
corresponding string graph is called a k-string graph. Note that two curves can intersect
multiple times and contribute more than one intersection to each curve. A (g, k)-string
graph is defined analogously for curves on a surface of Euler genus at most g. Dujmović,
Joret, Morin, Norin, and Wood [11] proved that every (g, k)-string graph has layered
treewidth at most 2(k−1)(2g+3). By definition, the maximum degree of a (g, k)-string
graph is at most k. Thus Theorem 2 implies:

Corollary 5. For all integers g > 0 and k > 2, there exists η ∈ N such that every
(g, k)-string graph is 3-colorable with clustering O(g19k56).

2 The Proof

This section proves Theorem 2, which says that graphs of bounded layered treewidth
and bounded maximum degree are 3-colorable with bounded clustering. We need the
following analogous result by Alon et al. [1] for bounded treewidth graphs.

Lemma 6 ([1]). There is a function f : N×N → N such that every graph with treewidth
w and maximum degree ∆ is 2-colorable with clustering f(w,∆) ∈ O(w∆).

For a graph G with bounded maximum degree and bounded layered treewidth, if
(V1, . . . , Vn) is the corresponding layering of G, then Lemma 6 is applicable to G[Vi],
which has bounded treewidth. The idea of the proof of Theorem 2 is to use colors 1
and 2 for all layers Vi with i ≡ 1 (mod 3), use colors 2 and 3 for all layers Vi with
i ≡ 2 (mod 3), and use colors 3 and 1 for all layers Vi with i ≡ 3 (mod 3). Then
each monochromatic component is contained within two consecutive layers. The key to
the proof is to control the growth of monochromatic components between consecutive
layers. The next lemma is useful for this purpose.

Lemma 7. Let w,∆, d, k, h ∈ N. Let G be a graph with maximum degree at most ∆. Let
(T,X ) be a tree-decomposition of G with width at most w, where X = (Xt : t ∈ V (T )).
For i > 1, let Yi be a subset of V (T ), Ti a subtree of T containing Yi, and Ei a set of
pairs of vertices in

⋃
x∈Yi

Xx with |Ei| 6 k. Let G′ be the graph with V (G′) = V (G) and
E(G′) = E(G) ∪

⋃
i>1 Ei. If every vertex of G appears in at most d pairs in

⋃
i>1 Ei,

and every vertex of T is contained in at most h members of {T1, T2, . . . }, then G′ has
maximum degree at most ∆+ d and has a tree-decomposition (T,X ′) of width at most
w + 2hk with X ′

t ⊇ Xt for every t ∈ V (T ), where X ′ = (X ′
t : t ∈ V (T )).
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Proof. Since every vertex of G appears in at most d pairs in
⋃

i>1 Ei, G
′ has maximum

degree at most ∆ + d. For every i > 1, let Zi be the set of the vertices appearing in
some pair of Ei. Note that Zi ⊆

⋃
x∈Yi

Xx and |Zi| 6 2|Ei| 6 2k. For every t ∈ V (T ),
let X ′

t := Xt ∪
⋃

{i:t∈V (Ti)}
Zi. Let X ′ := (X ′

t : t ∈ V (T )).

We claim that (T,X ′) is a tree-decomposition of G′. It is clear that
⋃

t∈V (T ) X
′
t ⊇

V (G′). For each i ∈ N, for every t ∈ V (Ti), since X ′
t ⊇ Zi, X

′
t contains both ends of

each edge in Ei. For each v ∈ V (G′),

{t ∈ V (T ) : v ∈ X ′
t} = {t ∈ V (T ) : v ∈ Xt} ∪

⋃

{i:v∈Zi}

V (Ti).

Note that for every v ∈ V (G) and i > 1, if v ∈ Zi then v ∈ Xt for some t ∈ Yi ⊆
V (Ti). Hence {t : v ∈ X ′

t} induces a subtree of T . This proves that (T,X ′) is a
tree-decomposition of G′.

Since for every t ∈ V (T ), |X ′
t| 6 |Xt|+

∑
{i:t∈V (Ti)}

|Zi| 6 w+ 1+ 2hk, the width of

(T,X ′) is at most w + 2hk. Moreover, X ′
t ⊇ Xt for every t ∈ V (T ) by definition. This

proves the lemma.

We now prove Theorem 2.

Theorem 8. Let ∆, w ∈ N. Then every graph G with maximum degree at most ∆
and with layered treewidth at most w is 3-colorable with clustering g(w,∆), for some
function g(w,∆) ∈ O(w19∆37).

Proof. Let f be the function from Lemma 6. Define

f1 := f(w,∆) ∈ O(w∆)

∆2 := ∆ + f1∆
2 ∈ O(w∆3)

w2 := w + 2(w + 1)f 2
1∆

2 ∈ O(w3∆4),

f2 := f(w2,∆2) ∈ O(w4∆7)

∆3 := ∆ + f2∆
2 ∈ O(w4∆9)

w3 := w + 4(w2 + 1)f 2
2∆

2 ∈ O(w11∆20)

f3 := f(w3,∆3) ∈ O(w15∆29)

g(w,∆) := (1 + f2∆)f3 ∈ O(w19∆37).

Let G be a graph of maximum degree at most ∆ and layered treewidth at most w.
Let (T,X ) and (Vi : i > 1) be a tree-decomposition of G and a layering of G such that
|Xt ∩ Vi| 6 w for every t ∈ V (T ) and i > 1, where X = (Xt : t ∈ V (T )). For j ∈ [3],
let Uj =

⋃∞
i=0 V3i+j.

By Lemma 6, there exists a coloring c1 : U1 → {1, 2} such that every monochromatic
component of G[U1] contains at most f1 vertices. For each i ∈ N0, let Ci be the set
of c1-monochromatic components of G[U1] contained in V3i+1 with color 2. For each
i ∈ N0 and C ∈ Ci, define the following:
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• Let Yi,C be a minimal subset of V (T ) such that for every edge e of G between
V (C) and NG(V (C)) ∩ V3i+2, there exists a node t ∈ Yi,C such that both ends of
e belong to Xt.

• Let Ei,C be the set of all pairs of distinct vertices in NG(V (C)) ∩ V3i+2.

• Let Ti,C be the subtree of T induced by {t ∈ V (T ) : Xt ∩ V (C) 6= ∅}.

Note that there are at most |V (C)|∆ 6 f1∆ edges of G between V (C) and NG(V (C)).
So |Yi,C | 6 f1∆ and |Ei,C | 6 f 2

1∆
2 for every i ∈ N0 and C ∈ Ci. In addition, Yi,C ⊆

V (Ti,C) for every i ∈ N0 and C ∈ Ci. Since (T, (Xt ∩ U1 : t ∈ V (T ))) is a tree-
decomposition of G[U1] with width at most w, for every t ∈ V (T ) and i ∈ N0, there exist
at most w+1 different members C of Ci such that t ∈ V (Ti,C). Furthermore, NG(V (C))∩
V3i+2 ⊆

⋃
x∈Yi,C

Xx, so each pair in Ei,C consists of two vertices in
⋃

x∈Yi,C
Xx. Since

every vertex v in U2 is adjacent in G to at most ∆ members of
⋃

i∈N0
Ci and every

member C of
⋃

i∈N0
Ci creates at most f1∆ pairs in EiC ,C involving v, where iC is the

index such that C ∈ CiC , every vertex in U2 appears in at most f1∆ ·∆ = f1∆
2 pairs

in
⋃

i∈N0,C∈Ci
Ei,C .

Let G2 be the graph with V (G2) := U2 and

E(G2) := E(G[U2]) ∪
⋃

i∈N0,C∈Ci

Ei,C .

We have shown that Lemma 7 is applicable with (G, T,X ) = (G[V3i+2], T, (Xt ∩ V3i+2 :
t ∈ V (T ))) (for each i ∈ N0), k = f 2

1∆
2 and d = f1∆

2 and h = w + 1. Thus G2

has maximum degree at most ∆2 and a tree-decomposition (T,X (2)) with X
(2)
t ⊇ Xt

for every t ∈ V (T ), where X (2) = (X
(2)
t : t ∈ V (T )), such that for each i ∈ N0,

(T, (X
(2)
t ∩ V3i+2 : t ∈ V (T ))) is a tree-decomposition of G2[V3i+2] of width at most w2.

Since there exists no edge of G2 between V3i+2 and V3i′+2 for i < i′, by Lemma 6, there
exists a coloring c2 : U2 → {2, 3} such that every c2-monochromatic component of G2

contains at most f2 vertices.
Since X

(2)
t ⊇ Xt for every t ∈ V (T ), we may assume that (T,X (2)) is a tree-

decomposition of G[U1 ∪U2] by redefining X
(2)
t to be the union of X

(2)
t and Xt ∩U1, for

every t ∈ V (T ).
For each i ∈ N0, let C ′

i be the set of the monochromatic components either of G[U1]
with color 1 with respect to c1 contained in V3i+4 or of G2 with color 3 with respect to
c2 contained in V3i+2. For each i ∈ N0 and C ∈ C ′

i, define the following:

• Let Y ′
i,C be a minimal subset of V (T ) such that for every edge e of G between

V (C) and NG(V (C)) ∩ V3i+3, there exists a node t ∈ Y ′
i,C such that both ends of

e belong to Xt.

• Let E ′
i,C be the set of all pairs of distinct vertices of NG(V (C)) ∩ V3i+3.

• Let T ′
i,C be the subtree of T induced by {t ∈ V (T ) : X

(2)
t ∩ V (C) 6= ∅}.

6



Note that there are at most |V (C)|∆ 6 f2∆ edges of G between V (C) and NG(V (C))∩
V3i+3 for every i ∈ N0 and C ∈ C ′

i. So |Y ′
i,C | 6 f2∆ and |E ′

i,C | 6 f 2
2∆

2 for every
i ∈ N0 and C ∈ C ′

i. In addition, Y ′
i,C ⊆ V (T ′

i,C) for every i ∈ N0 and C ∈ C ′
i. For

every i ∈ N0, since (T, (X
(2)
t ∩ U2 : t ∈ V (T ))) is a tree-decomposition of G2 with

|X
(2)
t ∩ V3i+2| 6 w2 + 1 and (T, (X

(2)
t ∩U1 : t ∈ V (T ))) is a tree-decomposition of G[U1]

with |X
(2)
t ∩ V3i+4| 6 w + 1 6 w2 + 1, we know that for every t ∈ V (T ), there exist at

most 2(w2+1) different members C ∈ Ci such that t ∈ V (T ′
i,C). Furthermore, each pair

in E ′
i,C consists of two vertices in

⋃
x∈Y ′

i,C
X

(2)
x . Since every vertex v in U3 is adjacent in

G to at most ∆ members of
⋃

i∈N0
C ′
i, and every member C of

⋃
i∈N0

C ′
i creates at most

f2∆ pairs in EiC ,C involving v, where iC is the index such that C ∈ C ′
iC

, every vertex
in U3 appears in at most f2∆

2 pairs in
⋃

i∈N0,C∈C′

i
Ei,C .

Let G3 be the graph with V (G3) := U3 and

E(G3) := E(G[U3]) ∪
⋃

i∈N0,C∈C′

i

E ′
i,C .

We have shown that Lemma 7 is applicable with (G, T,X ) = (G[V3i+3], T, (Xt ∩ V3i+3 :
t ∈ V (T ))) (for each i ∈ N0), k = f 2

2∆
2 and d = f2∆

2 and h = 2(w2 + 1). Hence G3

has maximum degree at most ∆3 and a tree-decomposition (T,X (3)) with X
(3)
t ⊇ Xt for

each t ∈ V (T ), where X (3) = (X
(3)
t : t ∈ V (T )), such that (T, (X

(3)
t ∩ V3i+3 : t ∈ V (T )))

is a tree-decomposition of G3[V3i+3] of width at most w3 for every i ∈ N0. Since there
exists no edge of G3 between V3i+3 and V3i′+3 for i < i′, by Lemma 6, there exists a
coloring c3 : U3 → {1, 3} such that every monochromatic component of G3 contains at
most f3 vertices.

Define c : V (G) → {1, 2, 3} such that for every v ∈ V (G), we have c(v) := cj(v),
where j is the index for which v ∈ Uj. Now we prove that every c-monochromatic
component of G contains at most g(w,∆) vertices.

Let D be a c-monochromatic component of G with color 2. Since D is connected,
for every pair of vertices u, v ∈ V (D) ∩ U2, there exists a path Puv in D from u to
v. Since V (D) ⊆ U1 ∪ U2, for every maximal subpath P of Puv contained in U1, there
exists i ∈ N0 and C ∈ Ci such that there exists a pair in Ei,C consisting of the two
vertices in Puv adjacent to the ends of P . That is, there exists a path in G2[V (D)∩U2]
connecting u, v for every pair u, v ∈ V (D) ∩ U2. Hence G2[V (D) ∩ U2] is connected.
So G2[V (D) ∩ U2] is a c2-monochromatic component of G2 with color 2 and contains
at most f2 vertices. Hence there are at most f2∆ edges of G between V (D) ∩ U2

and NG(V (D) ∩ U2). So D[V (D) ∩ U1] contains at most f2∆ components. Since each
component of D[V (D) ∩ U1] is a c1-monochromatic component of G[U1], it contains at
most f1 vertices. Hence D[V (D) ∩ U1] contains at most f2∆f1 vertices. Since D has
color 2, V (D)∩U3 = ∅. Therefore, D contains at most (1 + f1∆)f2 6 g(w,∆) vertices.

Let D′ be a c-monochromatic component of G with color b, where b ∈ {1, 3}.
Since D′ is connected, by an analogous argument to that in the previous paragraph,
G3[V (D′) ∩ U3] is connected. So G3[V (D′) ∩ U3] is a c3-monochromatic component of

7



G3 with color b and contains at most f3 vertices. Hence there are at most f3∆ edges
of G between V (D′) ∩ U3 and NG(V (D′) ∩ U3). So D[V (D) ∩ Ub′ ] contains at most
f3∆ components, where b′ = 1 if b = 1 and b′ = 2 if b = 3. Since each component
of D[V (D) ∩ Ub′ ] is a cb′-monochromatic component of G[Ub′ ], it contains at most f2
vertices. Hence D[V (D) ∩ Ub′ ] contains at most f3∆f2 vertices. Since D has color b,
V (D)∩Ub+1 = ∅, where U4 = U1. Therefore, D contains at most (1+f2∆)f3 6 g(w,∆)
vertices. This completes the proof.

3 Subsequent Work

The following extension of Theorem 2 is proved in our companion paper [32].

Theorem 9 ([32]). For all s, t, w ∈ N there exists η ∈ N such that every graph with
layered treewidth at most w and with no Ks,t subgraph is (s+2)-colorable with clustering
η.

Graphs with no K1,t subgraph are exactly those with maximum degree less than
t. Thus, Theorem 9 with s = 1 says that graphs with bounded layered treewidth and
bounded maximum degree are 3-colourable with bounded clustering, as in Theorem 2.
On the other hand, the proof of Theorem 9 is much more complicated than that of
Theorem 2 and the clustering bound in Theorem 9 is much larger than the polynomial
clustering bound in Theorem 2.

Theorems 2 and 9 (and their proofs) were first presented in reference [32] in 2019.
This paper has now been split into the present paper and a separate paper proving
Theorem 9. Other proofs of Theorem 2 have since been obtained. One such proof
is obtained via weak diameter coloring [3, 29], although this proof does not give a
polynomial bound for the clustering. Another proof, due to Dujmović, Esperet, Morin,
Walczak, and Wood [10], improves the O(w19∆37) bound in Theorem 2 to O(w3∆2).

Recall that Liu and Oum [31] proved that every Kt-minor free graph with bounded
maximum degree is 3-colorable with bounded clustering. New proofs of this result are
included in [3, 29, 30], where the proof in [30] relies on Theorem 2 in the present paper.
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